
WebSphere® Information Integration

Administration Guide for Federated Systems

Version 9

SC19-1020-00

���

WebSphere® Information Integration

Administration Guide for Federated Systems

Version 9

SC19-1020-00

���

Note

Before using this information and the product that it supports, be sure to read the general information under “Notices and

trademarks” on page 353.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Overview of a federated

system 1

Federated systems 1

The federated server 2

What is a data source? 2

The federated database 3

Wrappers and wrapper modules 3

How you interact with a federated system 4

DB2 command line processor (CLP) 4

DB2 Command Center 5

DB2 Control Center 5

Application programs 6

DB2 family tools 6

Rational Data Architect 6

Web services providers 6

Supported data sources 6

The federated database system catalog 10

The SQL compiler 10

The query optimizer 10

Compensation 11

Pass-through sessions 12

Default wrapper names 13

Server definitions and server options 13

User mappings 14

Nicknames and data source objects 14

Valid data source objects 15

Nickname column options 16

Data type mappings 17

Function mappings 17

Index specifications 17

Federated stored procedures 18

Collating sequences 18

How collating sequences determine sort orders 19

Setting the local collating sequence to optimize

queries 19

Chapter 2. Modifying data source

configurations 21

Altering a wrapper (DB2 Control Center) 21

Altering a wrapper - examples 21

Altering a wrapper (DB2 command line) 22

Altering server definitions and server options . . . 22

Restrictions on altering server definitions . . . 23

Altering the data source version in a server

definition (DB2 Control Center) 24

Altering the data source version in a server

definition (DB2 command line) 24

Altering all of the server definitions for a specific

data source type 25

Using server options in server definitions (DB2

Control Center) 25

Changing server options temporarily for

relational data sources 26

The hierarchy of server option settings 26

Using server options in server definitions (DB2

command line) 26

Altering a user mapping (DB2 Control Center) . . 27

Altering a user mapping (DB2 command line) . . . 28

Altering a nickname (DB2 Control Center) 29

Restrictions on altering nicknames 30

Altering nickname column names (DB2 Control

Center) 31

Altering nickname column names (DB2

command line) 32

Altering nickname options (DB2 Control Center) 33

Altering nickname options (DB2 command line) 34

Altering nickname column options (DB2 Control

Center) 34

Altering nickname column options (DB2

command line) 35

Altering a nickname (DB2 command line) 37

Dropping a wrapper 37

Dropping a server definition 38

Dropping a user mapping 40

Dropping a nickname 40

Chapter 3. Data type mappings 43

Data type mappings in a federated system 43

Data type mappings and the federated database

global catalog 43

When to create alternative data type mappings . . 44

Data type mappings for nonrelational data sources 45

Forward and reverse data type mappings 45

Creating data type mappings 45

Creating a data type mapping for a data source

data type – example 46

Creating a type mapping for a data source data

type and version – example 46

Creating a type mapping for all data source

objects on a server – example 47

Altering a local type for a data source object (DB2

Control Center) 48

Altering a local type for a data source object –

examples 49

Altering a local type for a data source object (DB2

command line) 50

Altering LONG data types to VARCHAR data types 51

Chapter 4. Mapping functions and

user-defined functions 53

Function mappings in a federated system 53

When to create your own function mappings . . 53

Why function mappings are important 53

How function mappings work in a federated system 54

Requirements for mapping user-defined functions

(UDFs) 54

Function templates 55

Creating function templates 55

© Copyright IBM Corp. 1998, 2006 iii

Providing function mapping overhead information

to the query optimizer 57

Function mapping options that specify function

overhead - examples 57

Updating overhead information 58

Specifying function names in a function mapping . 59

Mapping functions with the same name 59

Mapping functions with different names 59

How to create function mappings 59

Creating a function mapping for a specific data

source type 60

Creating a function mapping for a specific data

source type and version 60

Creating a function mapping for all data source

objects on a specific server 61

User-defined functions in applications 62

Disabling a default function mapping 62

Dropping a user-defined function mapping 63

Chapter 5. Creating index

specifications 65

Index specifications in a federated system 65

Creating index specifications for data source objects 65

Creating index specifications on tables that acquire

new indexes 67

Creating index specifications on views 68

Creating index specifications on Informix synonyms 69

Chapter 6. Developing federated

procedures 73

Federated procedures 73

Restrictions on federated procedures 73

Overloaded procedures in federated systems . . 76

Creating federated procedures 77

Discovering data source procedures 78

Input and output parameters for federated

procedures 79

CREATE PROCEDURE (Sourced) statement -

examples 81

Granting or revoking authorizations to call

federated procedures 83

Locating parameter information 85

Calling federated procedures 86

Authorization to call federated procedures . . . 87

Altering or dropping federated procedures 88

Federated procedure troubleshooting 88

Chapter 7. Transparent DDL 93

What is transparent DDL 93

Remote LOB columns and transparent DDL . . . 94

Creating remote tables and transparent DDL . . . 94

Creating new remote tables using transparent

DDL 94

Creating new remote tables using transparent

DDL - examples 96

Altering remote tables using transparent DDL . . . 97

Dropping remote tables using transparent DDL . . 98

Chapter 8. Transaction support in a

federated system 101

Understanding federated system transaction

support 101

What is an update in a federated system? 102

What is an update transaction in a pass-through

session? 103

Data sources that automatically commit DDL

statements 103

User-defined functions that are pushed down to

the data source for processing 103

Two-phase commit for federated transactions . . . 104

Planning for federated two-phase commit . . . 104

Federated architecture for two-phase commit 105

Two-phase commit for federated transactions -

examples 107

How federated two-phase commit transactions

are processed 111

Enabling two-phase commit for federated

transactions 114

Data source requirements and configuration for

federated two-phase commit transactions 116

Configuring DRDA data sources 117

Configuring Oracle data sources 118

Configuring Informix data sources 119

Configuring Microsoft SQL Server data sources 120

Configuring Sybase data sources 121

Recovering from federated two-phase commit

problems 123

Resynchronization for federated systems . . . 123

Manually recovering indoubt transactions . . . 124

Tracing distributed unit of work transaction

states across data sources 125

Troubleshooting federated two-phase commit

issues 126

Federated two-phase commit performance 127

Improving federated two-phase commit

performance 128

Chapter 9. Insert, update, and delete

operations 131

Authorization privileges for INSERT, UPDATE, and

DELETE statements 131

Federated system INSERT, UPDATE, and DELETE

restrictions 131

Unsupported data sources 131

Referential integrity in a federated system 132

INSERT, UPDATE, and DELETE statements and

large objects (LOBs) 132

Preserving statement atomicity in a federated

system 132

Modifying data in a federated system 134

Inserting data into data source objects 134

Updating data in data source objects 135

Deleting data from data source objects 135

Assignment semantics in a federated system . . . 136

Assignment semantics in a federated system -

examples 138

Chapter 10. Working with nicknames 139

iv Administration Guide for Federated Systems

Nicknames in a federated system 139

WITH HOLD syntax 139

Triggers 139

Accessing data with nicknames 139

The SQL statements you can use with

nicknames 140

Accessing new data source objects 143

Creating nicknames for relational and

nonrelational data sources 144

Accessing data sources using pass-through sessions 145

Accessing heterogeneous data through federated

views 145

Creating federated views - examples 146

Creating a nickname on a nickname 147

Selecting data in a federated system 147

Selecting data in a federated system - examples 148

Informational constraints on nicknames 150

Specifying informational constraints on nicknames

(DB2 Control Center) 150

Specifying informational constraints on nicknames

(DB2 command line) 151

Specifying informational constraints on nicknames

- examples 152

Chapter 11. Nickname statistics . . . 155

Nickname statistics update facility - overview . . 155

Methods of retrieving nickname statistics 156

Retrieving nickname statistics 157

Retrieving statistics for multiple nicknames

(DB2 Control Center) 158

Retrieving statistics for a single nickname (DB2

Control Center) 159

Retrieving nickname statistics from the

command line - examples 159

Creating a DB2 tools catalog 160

Viewing the status of the updates to nickname

statistics (DB2 Control Center) 160

Viewing the status of the updates to nickname

statistics (DB2 command line) 161

SYSPROC.NNSTAT stored procedure 161

Chapter 12. Importing and exporting

data for nicknames 165

Restrictions for importing data into nicknames . . 165

IMPORT command with nicknames - examples . . 166

Restrictions for exporting data using nicknames 166

Chapter 13. Error tolerance in nested

table expressions 167

Specifying nested table expressions for error

tolerance 168

Nested table expressions for error tolerance -

example 168

Data source support for nested-table-expressions

for error tolerance 169

Restrictions on nested-table-expressions for error

tolerance 170

Chapter 14. Monitoring a federated

system 171

Health indicators for federated nicknames and

servers 171

Activating the federated health indicators 172

Monitoring the health of federated nicknames and

servers 172

Monitoring the health of federated nicknames

and servers - example 172

Snapshot monitoring of federated systems -

Overview 173

Monitoring federated queries 174

Snapshot monitoring of federated queries -

example 175

Federated database systems monitor elements . . 177

Chapter 15. Unicode support for

federated data sources 179

Unicode support for federated systems 179

Specifying the client code page for Unicode

support of Microsoft SQL Server and ODBC data

sources 180

Supported Unicode code pages for the MSSQL and

ODBC wrapper CODEPAGE option 181

Specifying the file code page for Unicode support

of table-structured file data sources 181

Specifying the file code page for Unicode support

of table-structured file data sources - example . . 182

Errors when remote and federated code point sizes

are different 182

Chapter 16. Tuning the performance

of a federated system 183

Publications about federated performance 183

Query analysis 183

Pushdown analysis 185

Server characteristics affecting pushdown

opportunities 186

SQL differences 186

Collating sequence 187

Federated server options 188

Type and function mapping factors 189

Nickname characteristics affecting pushdown

opportunities 190

Local data type of a nickname column 190

Federated column options 191

Query characteristics affecting pushdown

opportunities 191

Analyzing where a query is evaluated 192

Analyzing where a query is evaluated with the

DB2_MAXIMAL_PUSHDOWN server option . . 192

Understanding access plan evaluation decisions 193

Why isn’t this predicate being evaluated

remotely? 193

Why isn’t the GROUP BY operator evaluated

remotely? 193

Why isn’t the SET operator evaluated remotely? 194

Why isn’t the ORDER BY operation evaluated

remotely? 194

Contents v

Why is a remote INSERT with a fullselect

statement not completely evaluated remotely? . 194

Why is a remote INSERT with VALUES clause

statement not completely evaluated remotely? . 195

Why is a remote, searched UPDATE statement

not completely evaluated remotely? 195

Why is a positioned UPDATE statement not

completely evaluated remotely? 195

Why is a remote, searched DELETE statement

not completely evaluated remotely? 195

Data source upgrades and customization 196

Pushdown of predicates with function templates 196

Global optimization 197

Server characteristics affecting global

optimization 197

Nickname characteristics affecting global

optimization 199

Analyzing global optimization 202

Understanding access plan optimization

decisions 203

System monitor elements affecting performance 204

Chapter 17. Parallelism with queries

that reference nicknames 207

Intrapartition parallelism with queries that

reference nicknames 207

Enabling intrapartition parallelism with queries

that reference nicknames 207

Intrapartition parallelism with queries that

reference nicknames - examples of access plans . 208

Interpartition parallelism with queries that

reference nicknames 209

Enabling interpartition parallelism with queries

that reference nicknames 212

Interpartition parallelism with queries that

reference nicknames - examples of access plans . 212

Computational partition groups 215

Defining a computational partition group . . . 215

Interpartition parallelism with queries that

reference nicknames - performance expectations . 216

Mixed parallelism with queries that reference

nicknames 216

Enabling mixed parallelism with queries that

reference nicknames 216

Mixed parallelism with queries that reference

nicknames - examples of access plans 217

Chapter 18. Asynchronous processing

of federated queries 219

Asynchronous processing of federated queries -

examples 219

Asynchrony optimization 220

Access plans without asynchrony 220

Access plans optimized for asynchrony 220

Access plans - examples 221

Controlling resource consumption 224

Enabling asynchrony optimization 225

Database manager configuration parameter:

FEDERATED_ASYNC 226

Bind and precompile options:

FEDERATED_ASYNCHRONY 227

Server option:

DB2_MAX_ASYNC_REQUESTS_PER_QUERY . 228

Tuning considerations for asynchrony optimization 229

Restrictions on asynchrony optimization 230

Determining if asynchrony optimization is applied

to a query 230

Chapter 19. Materialized query tables

and federated systems 233

Materialized query tables and federated systems –

overview 233

Creating a federated materialized query table . . 233

Data source specific restrictions for materialized

query tables 234

Restrictions on using materialized query tables

with nicknames 236

Chapter 20. Cache tables 237

Creating cache tables 238

Modifying the settings for materialized query

tables 239

Adding materialized query tables to a cache table 240

Routing queries to cache tables 240

Enabling and disabling the replication cache

settings 241

Dropping materialized query tables from a cache

table 242

Dropping cache tables 242

Chapter 21. How client applications

interact with data sources 243

Chapter 22. Nicknames in your

applications 245

Reference data source objects by nicknames in SQL

statements 245

Nicknames in DDL statements 245

Data source statistics impact applications 246

Defining column options on nicknames 247

Setting the NUMERIC_STRING column option 247

Setting the

VARCHAR_NO_TRAILING_BLANKS column

option 247

Chapter 23. Creating and using

federated views 249

Creating federated views - examples 249

Chapter 24. Maintain data integrity

with isolation levels 251

Statement level isolation in a federated system . . 252

Connection level isolation in a federated system 253

Chapter 25. Federated LOB support 255

LOB locators 256

Restrictions on LOBs 256

vi Administration Guide for Federated Systems

Performance considerations for LOB processing 256

Chapter 26. Distributed requests . . . 259

Distributed requests for querying data sources . . 259

Distributed requests for querying data sources -

examples 259

Optimizing distributed requests with server

options 260

Chapter 27. Using pass-through

sessions within applications 263

Querying data sources directly with pass-through 263

Federated pass-through considerations and

restrictions 263

Pass-through sessions to Oracle data sources . . . 265

Chapter 28. Federated system security 267

Overview of the user mapping plugin for external

repositories 267

Advantages of using an external repository to store

user mappings 267

Relationship between the federated server and the

user mapping plugin 267

User mapping plugin architecture 269

UserMappingRepository class 270

UserMappingCrypto class 271

UserMappingEntry class 272

UserMappingOption class 273

UserMappingException class 274

LDAP sample plugin 275

Description of files for the LDAP sample plugin 276

Developing a plugin for retrieving user mappings

from an external repository 277

Extending the sample LDAP plugin files to

other external repositories 278

Modifying the UserMappingCryptoLDAP

sample file 279

Modifying the UserMappingRepositoryLDAP

sample file 280

Compiling the user mapping plugin files . . . 281

Creating the configuration file for the user

mapping plugin 282

Testing the user mapping plugin 282

Installing the user mapping plugin files 283

Configuring access to the user mapping plugin . . 284

Troubleshoot the user mapping plugin 285

Oracle Label Security and federated systems . . . 287

Chapter 29. Federated system and

data source configuration parameters . 289

Views in the global catalog table containing

federated information 289

Nickname column options for federated systems 291

Function mapping options for federated systems 298

Nickname options for federated systems 299

Server options for federated systems 304

Valid server types in SQL statements 319

BioRS wrapper 320

BLAST wrapper 320

CTLIB wrapper 320

DRDA wrapper 320

Entrez wrapper 321

Excel wrapper 321

HMMER wrapper 321

Informix wrapper 321

MSSQLODBC3 wrapper 321

NET8 wrapper 322

ODBC wrapper 322

OLE DB wrapper 322

Table-structured files wrapper 322

Teradata wrapper 322

Web services wrapper 322

WebSphere Business Integration wrapper . . . 323

XML wrapper 323

User mapping options for federated systems . . . 323

Wrapper options for federated systems 324

Chapter 30. Federated system and

data source mappings 327

Default forward data type mappings 327

DB2 Database for Linux, UNIX, and Windows

data sources 327

DB2 for iSeries data sources 328

DB2 for VM and VSE data sources 328

DB2 for z/OS data sources 329

Informix data sources 330

Microsoft SQL Server data sources 331

ODBC data sources 333

Oracle NET8 data sources 334

Sybase data sources 334

Teradata data sources 335

Default reverse data type mappings 336

DB2 Database for Linux, UNIX, and Windows

data sources 337

DB2 for iSeries data sources 338

DB2 for VM and VSE data sources 338

DB2 for z/OS data sources 339

Informix data sources 339

Microsoft SQL Server data sources 340

Oracle NET8 data sources 341

Sybase data sources 342

Teradata data sources 342

Unicode default data type mappings 343

Unicode default forward data type mappings -

Microsoft SQL Server wrapper 343

Unicode default reverse data type mappings -

Microsoft SQL Server wrapper 343

Unicode default forward data type mappings -

NET8 wrapper 344

Unicode default reverse data type mappings -

NET8 wrapper 344

Unicode default forward data type mappings -

ODBC wrapper 344

Unicode default reverse data type mappings -

ODBC wrapper 345

Unicode default forward data type mappings -

Sybase wrapper 345

Unicode default reverse data type mappings -

Sybase wrapper 346

Data types supported for nonrelational data

sources 346

Contents vii

Accessing information about IBM . . 351

Contacting IBM 351

Accessible documentation 352

Providing comments on the documentation . . . 352

Notices and trademarks 353

Notices 353

Trademarks 355

Index 357

viii Administration Guide for Federated Systems

Chapter 1. Overview of a federated system

Federated systems

A federated system is a special type of distributed database management system

(DBMS). A federated system consists of a DB2® instance that operates as a

federated server, a database that acts as the federated database, one or more data

sources, and clients (users and applications) that access the database and data

sources.

With a federated system, you can send distributed requests to multiple data

sources within a single SQL statement. For example, you can join data that is

located in a DB2 table, an Oracle table, and an XML tagged file in a single SQL

statement. The following figure shows the components of a federated system and a

sample of the data sources you can access.

The power of a federated system is in its ability to:

v Correlate data from local tables and remote data sources, as if all the data is

stored locally in the federated database

v Update data in relational data sources, as if the data is stored in the federated

database

XML

VSAM

IMS

Software AG
Adabas

CA-IDMS

CA-Datacom

Integrated SQL view

WebSphere
Classic

Federation Server
for z/OS

WebSphere Federation Server

SQL, SQL/XML

Federation server

Wrappers and functions

O
D
B
C

Biological
data and

algorithms

Text XML Excel WebSphere
MQ

Script

Sybase

DB2 family

Informix

Microsoft
SQL Server

Teradata

Oracle

ODBC

DB2 UDB
for z/OS

Figure 1. The components of a federated system

© Copyright IBM Corp. 1998, 2006 1

v Move data to and from relational data sources

v Take advantage of the data source processing strengths, by sending requests to

the data sources for processing

v Compensate for SQL limitations at the data source by processing parts of a

distributed request at the federated server

The federated server

The DB2® server in a federated system is referred to as the federated server. Any

number of DB2 instances can be configured to function as federated servers. You

can use existing DB2 instances as your federated servers, or you can create new

ones specifically for the federated system.

The DB2 instance that manages the federated system is called a server because it

responds to requests from end users and client applications. The federated server

often sends parts of the requests it receives to the data sources for processing. A

pushdown operation is an operation that is processed remotely. The DB2 instance

that manages the federated system is referred to as the federated server, even

though it acts as a client when it pushes down requests to the data sources.

Like any other application server, the federated server is a database manager

instance. Application processes connect and submit requests to the database within

the federated server. However, two main features distinguish it from other

application servers:

v A federated server is configured to receive requests that might be partially or

entirely intended for data sources. The federated server distributes these

requests to the data sources.

v Like other application servers, a federated server uses DRDA® communication

protocols (over TCP/IP) to communicate with DB2 family instances. However,

unlike other application servers, a federated server uses the native client of the

data source to access the data source. For example, a federated server uses the

Sybase Open Client to access Sybase data sources and an Microsoft® SQL Server

ODBC Driver to access Microsoft SQL Server data sources.

What is a data source?

In a federated system, a data source can be a relational database (such as Oracle or

Sybase) or a nonrelational data source (such as a BLAST search algorithm or an

XML tagged file).

Through some data sources you can access other data sources. For example, with

the ODBC wrapper you can access WebSphere® Classic Federation server for

z/OS® data sources such as DB2 UDB for z/OS, IMS™, CA-IDMS, CA-Datacom,

Software AG Adabas, and VSAM.

The method, or protocol, used to access a data source depends on the type of data

source. For example, DRDA® is used to access DB2® for z/OS™ data sources.

Data sources are autonomous. For example, the federated server can send queries

to Oracle data sources at the same time that Oracle applications can access these

data sources. A federated system does not monopolize or restrict access to the

other data sources, beyond integrity and locking constraints.

2 Administration Guide for Federated Systems

The federated database

To end users and client applications, data sources appear as a single collective

database in DB2®. Users and applications interface with the federated database that is

managed by the federated server.

The federated database contains a system catalog that stores information about

data. The federated database system catalog contains entries that identify data

sources and their characteristics. The federated server consults the information

stored in the federated database system catalog and the data source wrapper to

determine the best plan for processing SQL statements.

The federated system processes SQL statements as if the data from the data sources

were ordinary relational tables or views within the federated database. As a result:

v The federated system can correlate relational data with data in nonrelational

formats. This is true even when the data sources use different SQL dialects, or

do not support SQL at all.

v The characteristics of the federated database take precedence when there are

differences between the characteristics of the federated database and the

characteristics of the data sources. Query results conform to DB2 semantics, even

if data from other non-DB2 data sources is used to compute the query result.

Examples:

– The code page that the federated server uses is different than the code page

used that the data source uses. In this case, character data from the data

source is converted based on the code page used by the federated database,

when that data is returned to a federated user.

– The collating sequence that the federated server uses is different than the

collating sequence that the data source uses. In this case, any sort operations

on character data are performed at the federated server instead of at the data

source.

Wrappers and wrapper modules

Wrappers are mechanisms by which the federated database interacts with data

sources. The federated database uses routines stored in a library called a wrapper

module to implement a wrapper.

These routines allow the federated database to perform operations such as

connecting to a data source and retrieving data from it iteratively. Typically, the

federated instance owner uses the CREATE WRAPPER statement to register a

wrapper in the federated database. You can register a wrapper as fenced or trusted

using the DB2_FENCED wrapper option.

You create one wrapper for each type of data source that you want to access. For

example, you want to access three DB2 for z/OS™ database tables, one DB2 for

iSeries™ table, two Informix® tables, and one Informix view. In this case, you need

to create one wrapper for the DB2 data source objects and one wrapper for the

Informix data source objects. After these wrappers are registered in the federated

database, you can use these wrappers to access other objects from those data

sources. For example, you can use the DRDA® wrapper with all DB2 family data

source objects—DB2 Version 9.1 for Linux, UNIX®, and Windows®, DB2 for z/OS,

DB2 for iSeries, and DB2 Server for VM and VSE.

You use the server definitions and nicknames to identify the specifics (name,

location, and so forth) of each data source object.

Chapter 1. Overview of a federated system 3

A wrapper performs many tasks. Some of these tasks are:

v It connects to the data source. The wrapper uses the standard connection API of

the data source.

v It submits queries to the data source.

– For data sources that support SQL, the query is submitted in SQL.

– For data sources that do not support SQL, the query is translated into the

native query language of the source or into a series of source API calls.
v It receives results sets from the data source. The wrapper uses the data source

standard APIs for receiving results set.

v It responds to federated database queries about the default data type mappings

for a data source. The wrapper contains the default type mappings that are used

when nicknames are created for a data source object. For relational wrappers,

data type mappings that you create override the default data type mappings.

User-defined data type mappings are stored in the global catalog.

v It responds to federated database queries about the default function mappings

for a data source. The federated database needs data type mapping information

for query planning purposes. The wrapper contains information that the

federated database needs to determine if DB2 functions are mapped to functions

of the data source, and how the functions are mapped. This information is used

by the SQL Compiler to determine if the data source is able to perform the

query operations. For relational wrappers, function mappings that you create

override the default function type mappings. User-defined function mappings

are stored in the global catalog.

Wrapper options are used to configure the wrapper or to define how WebSphere

Federation Server uses the wrapper.

How you interact with a federated system

Because the federated database is a DB2® family database, you can interact with it

in a variety of ways.

You can interact with a federated system using any one of these methods:

v The DB2 command line processor (CLP)

v The DB2 Command Center GUI

v The DB2 Control Center GUI

v Application programs

v DB2 family tools

v Web services providers

The steps in the federated documentation provide the commands and SQL

statements that can be entered in the DB2 command line processor or the DB2

Command Center GUI. The documentation indicates when tasks can be performed

through the DB2 Control Center GUI. Since the DB2 Control Center GUI is

intuitive, the steps to perform these tasks through the DB2 Control Center are not

included in this documentation.

DB2 command line processor (CLP)

You can perform most of the tasks necessary to setup, configure, tune, and

maintain the federated system through the DB2 command line processor. In some

cases you can use either the DB2 command line processor or the DB2 Command

Center.

4 Administration Guide for Federated Systems

For example, you can use the DB2 command line processor or the DB2 Command

Center to perform the following tasks:

v Create, alter, or drop user-defined data type mappings

v Create, alter, or drop user-defined function mappings

DB2 Command Center

Through the DB2 Command Center, you can create and run distributed requests

without having to manually type out lengthy SQL statements.

Use the DB2 Command Center when you are tuning the performance of the

federated system. The DB2 Command Center is a convenient way to use the DB2

Explain functionality to look at the access plans for distributed requests. The DB2

Command Center can also be used to work with the SQL Assistant tool.

DB2 Control Center

The DB2 Control Center GUI allows you to perform most of the tasks necessary to

setup, configure, and modify the federated system. The DB2 Control Center uses

panels—dialog boxes and wizards—to guide you through a task.

The DB2 Control Center panels contain interactive help when your mouse hovers

over a control such as a list box or command button. Additionally, each panel has

a help button that provides information about the panel task, and links to related

concepts and reference information.

You can either use a wizard to create the federated objects, or you can create each

object individually.

Use the DB2 Control Center to configure access to Web services, WebSphere®

Business Integration, and XML data sources. The features built into the DB2

Control Center simplify the steps that are required for you to configure the

federated server to access these data sources.

The DB2 Control Center GUI is the easiest way to perform the essential data

source configuration tasks:

v Create the wrappers and set the wrapper options

v Specify the environment variables for your data source

v Create the server definitions and set the server options

v Create the user mappings and set the user options

v Create the nicknames and set the nickname options or column options

After you configure the federated server to access your data sources, you can use

the DB2 Control Center to:

v Modify the data source configuration

v Monitor the status of the nicknames and servers

v Maintain current statistics for your nicknames

v Create and modify cache tables

v Specify informational constraints on nicknames

v Create remote tables through WebSphere Federation Server using transparent

DDL

Chapter 1. Overview of a federated system 5

Application programs

Applications do not require any special coding to work with federated data.

Applications access the system just like any other DB2 client application.

Applications interface with the federated database that is within the federated

server.

To obtain data from data sources, applications submit queries in DB2 SQL to the

federated database. The federated database then distributes the queries to the

appropriate data sources, collects the requested data, and returns this data to the

applications. However, since the federated database interacts with the data sources

through nicknames, you need to be aware of:

v The SQL restrictions you have when working with nicknames

v How to perform operations on nicknamed objects

DB2 family tools

You can interact with a federated database using host and midrange tools.

Host and midrange tools such that you can use to interact with a federated

database include:

v DB2 SPUFI on DB2 for z/OS™

v Interactive SQL (STRSQL) on DB2 for iSeries™

Rational Data Architect

You can use the metadata tools that are provided with Rational® Data Architect to

enhance and extend the information that you access with WebSphere Federation

Server federated functions.

With Rational Data Architect, you can find and map relationships among a variety

of data sources, build scripts that represent those relationships, and then deploy

scripts to federated, non-federated, local, or remote servers.

By using Rational Data Architect with WebSphere Federation Server, you can share

the metadata between the heterogeneous products. Rational Data Architect

provides tools that support the management, impact analysis, search, and reporting

across all forms of metadata. You can then map your heterogeneous data and

structures and deploy to a server.

Web services providers

You can interact with a federated database through web services providers.

Within federated systems, a Web services wrapper is available to access Web

services with SQL statements on nicknames and views that invoke Web services.

You can create a Web services wrapper and nicknames that specify input to the

Web service and access the output from the Web service with SELECT statements.

Supported data sources

There are many data sources that you can access using a federated system.

The following table lists the supported data sources:

6 Administration Guide for Federated Systems

Table 1. Supported data source versions and access methods.

Data source Supported versions Access methods and

requirements

BLAST 2.2.3 through 2.2.8

fixpacks supported

BLAST daemon (supplied

with the wrapper)

BioRS 5.2.x.x HTTP

DB2 Database for Linux®,

UNIX®, and Windows®

8.1, 8.2, 9.1 DRDA®

DB2 Universal Database™

for z/OS

6.1, 7.1 with the

following APARs

applied:

v PQ62695

v PQ55393

v PQ56616

v PQ54605

v PQ46183

v PQ62139

8.1

DRDA

DB2 Universal Database

for iSeries™

5.2 with the following

APARs and PTFs

applied:

v APAR SE06003, PTF

SI04582

v APAR SE07533, PTF

SI05991

v APAR SE08416, PTF

SI07135

v APAR II13348, PTFs

SF99502, SI11626,

SI11378

5.3

5.4 with APAR SE23546,

PTF SI21661 applied.

DRDA

DB2 Server for VM and

VSE

7.1 (or later) with fixes

for APARs for schema

functions applied.

DRDA

Entrez Supported HTTP.

GenBank Supported HTTP. Connection to the

NCBI through the Web. Use

the Entrez wrapper to access

this data source.

HMMER 2.2g, 2.3 HMMER daemon (supplied

with the wrapper)

Chapter 1. Overview of a federated system 7

Table 1. Supported data source versions and access methods. (continued)

Data source Supported versions Access methods and

requirements

Informix® 7.31, 8.4, 8.5, 9.4, 10.0 Informix Client SDK V2.81

(or later)

On Solaris, the Informix

client SDK version 2.81.FC2

is not supported. If you are

using the Informix client

version 2.81.FC2, update the

client to version 2.81.FC2R1

or later.

On Windows, the Informix

client SDK version 2.81.TC2

or later.

On the 64-bit mode zLinux

operating system, the

Informix client version

2.81.FC1 or 2.81.FC2 is not

supported. If you are using

one of those client versions,

update the client to version

2.81.FC3 or later.

KEGG KEGG API 3.2 User-defined functions for

KEGG

Microsoft® Excel 97, 2000, 2002, 2003 Excel 97, 2000, 2002, or 2003

installed on the federated

server

Microsoft SQL Server 2000 SP3 and later

service packs on that

release, 2005

On Windows, the Microsoft

SQL Server Client ODBC 3.0

(or later) driver.

On UNIX:

v DataDirect Technologies

(formerly MERANT)

Connect ODBC 4.2 (or

later) driver.

v Microsoft SQL Server

wrapper with a UTF-8

database requires

DataDirect Connect for

ODBC 4.2 Service Pack 2

or later.

ODBC 3.x ODBC driver for the data

source. ODBC driver access

to Redbrick and ODBC

driver access to WebSphere

Classic Federation Server for

z/OS data sources, such as

IMS, VSAM, CA-Datacom,

CA-IDMS, and Software AG

Adabas.

OLE DB 2.7, 2.8 OLE DB 2.0 (or later)

8 Administration Guide for Federated Systems

Table 1. Supported data source versions and access methods. (continued)

Data source Supported versions Access methods and

requirements

OMIM Supported HTTP. Connection to the

NCBI through the Web and

the OMIM query.fcgi utility.

Use the Entrez wrapper to

access this data source.

Oracle 8.1.7, 9.0, 9.1, 9.2, 9i, 10g Oracle net client or NET8

client software

PeopleSoft 8.x IBM® WebSphere Business

Integration Adapter for

PeopleSoft v2.3.1, 2.4.

Requires WebSphere MQ

Series.

PubMed Supported HTTP. Connection to the

NCBI through the Web. Use

the Entrez wrapper to access

this data source.

SAP 3.x, 4.x IBM WebSphere Business

Integration Adapter for

mySAP.com v2.3.1, 2.4.

Requires WebSphere MQ

Series.

Script Script daemon (supplied with

the wrapper)

Siebel 7, 7.5, 2000 IBM WebSphere Business

Integration Adapter for Siebel

eBusiness Applications v2.3.1,

2.4. Requires WebSphere MQ

Series.

Sybase 12.0, 12.5 Sybase Open Client ctlib

interface

Table-structured files None

Teradata V2R4, V2R5, V2R6 Teradata Call-Level Interface,

Version 2 (CLIv2) Release

04.06 (or later)

On Windows, the Teradata

client TTU 7.0 or later and

the Teradata API library

CLIv2 4.7.0 or later on the

federated server.

Web services SOAP 1.0., 1.1, WSDL

1.0, 1.1 specifications

HTTP, HTTPS. SOAP

user-defined functions

consume Web services.

WebSphere MQ Server edition 6.0 WebSphere MQ user-defined

functions in schemas

DB2MQ, DB2MQ1C, and

DB2MQT.

XML 1.0 specification None

Chapter 1. Overview of a federated system 9

The federated database system catalog

The federated database system catalog contains information about the objects in

the federated database and information about objects at the data sources.

The catalog in a federated database is called the global catalog because it contains

information about the entire federated system. DB2® query optimizer uses the

information in the global catalog and the data source wrapper to plan the best way

to process SQL statements. The information stored in the global catalog includes

remote and local information, such as column names, column data types, column

default values, index information, and statistics information.

Remote catalog information is the information or name used by the data source.

Local catalog information is the information or name used by the federated

database. For example, suppose a remote table includes a column with the name of

EMPNO. The global catalog would store the remote column name as EMPNO.

Unless you designate a different name, the local column name will be stored as

EMPNO. You can change the local column name to Employee_Number. Users

submitting queries which include this column will use Employee_Number in their

queries instead of EMPNO. You use the ALTER NICKNAME statement to change

the local name of the data source columns.

For relational and nonrelational data sources, the information stored in the global

catalog includes both remote and local information.

To see the data source table information that is stored in the global catalog, query

the SYSCAT.TABLES, SYSCAT.NICKNAMES, SYSCAT.TABOPTIONS,

SYSCAT.INDEXES, SYSCAT.INDEXOPTIONS, SYSCAT.COLUMNS, and

SYSCAT.COLOPTIONS catalog views in the federated database.

The global catalog also includes other information about the data sources. For

example, the global catalog includes information that the federated server uses to

connect to the data source and map the federated user authorizations to the data

source user authorizations. The global catalog contains attributes about the data

source that you explicitly set, such as server options.

The SQL compiler

The DB2 SQL compiler gathers information to help it process queries.

To obtain data from data sources, users and applications submit queries in SQL to

the federated database. When a query is submitted, the DB2 SQL compiler consults

information in the global catalog and the data source wrapper to help it process

the query. This includes information about connecting to the data source, server

information, mappings, index information, and processing statistics.

The query optimizer

As part of the SQL compiler process, the query optimizer analyzes a query. The

compiler develops alternative strategies, called access plans, for processing the

query.

Access plans might call for the query to be:

v Processed by the data sources

v Processed by the federated server

10 Administration Guide for Federated Systems

v Processed partly by the data sources and partly by the federated server

The query optimizer evaluates the access plans primarily on the basis of

information about the data source capabilities and the data. The wrapper and the

global catalog contain this information. The query optimizer decomposes the query

into segments that are called query fragments. Typically it is more efficient to

pushdown a query fragment to a data source, if the data source can process the

fragment. However, the query optimizer takes into account other factors such as:

v The amount of data that needs to be processed

v The processing speed of the data source

v The amount of data that the fragment will return

v The communication bandwidth

v Whether there is a usable materialized query table on the federated server that

represents the same query result

The query optimizer generates access plan alternatives for processing a query

fragment. The plan alternatives perform varying amounts of work locally on the

federated server and on the remote data sources. Because the query optimizer is

cost-based, it assigns resource consumption costs to the access plan alternatives.

The query optimizer then chooses the plan that will process the query with the

least resource consumption cost.

If any of the fragments are to be processed by data sources, the federated database

submits these fragments to the data sources. After the data sources process the

fragments, the results are retrieved and returned to the federated database. If the

federated database performed any part of the processing, it combines its results

with the results retrieved from the data source. The federated database then

returns all results to the client.

Compensation

The ability by WebSphere Federation Server to process SQL that is not supported

by a data source is called compensation.

The federated database does not push down a query fragment if the data source

cannot process it, or if the federated server can process it faster than the data

source can process it. For example, suppose that the SQL dialect of a data source

does not support a CUBE grouping in the GROUP BY clause. A query that contains

a CUBE grouping and references a table in that data source is submitted to the

federated server. The federated database does not pushdown the CUBE grouping

to the data source, but processes the CUBE itself.

The federated database compensates for lack of functionality at the data source in

two ways:

v It can request that the data source use one or more operations that are

equivalent to the DB2 function stated in the query. For example, a data source

does not support the cotangent (COT(x)) function, but supports the tangent

(TAN(x)) function. The federated database can request that the data source

perform the calculation (1/TAN(x)), which is equivalent to the cotangent

(COT(x)) function.

v It can return the set of data to the federated server, and perform the function

locally.

Chapter 1. Overview of a federated system 11

For relational data sources, each type of RDBMS supports a subset of the

international SQL standard. In addition, some types of RDBMSs support SQL

constructs that exceed this standard. An SQL dialect, is the totality of SQL that a

type of RDBMS supports. If an SQL construct is found in the DB2 SQL dialect, but

not in the relational data source dialect, the federated server can implement this

construct on behalf of the data source.

The federated database can compensate for differences in SQL dialects. An example

of this ability is the common-table-expression clause. DB2 SQL includes the clause

common-table-expression. In this clause, a name can be specified by which all

FROM clauses in a fullselect can reference a result set. The federated server will

process a common-table-expression for a data source, even though the SQL dialect

used by the data source does not include common-table-expression.

With compensation, the federated database can support the full DB2 SQL dialect

for queries of data sources. Even data sources with weak SQL support or no SQL

support will benefit from compensation. You must use the DB2 SQL dialect with a

federated system, except in a pass-through session.

Pass-through sessions

You can submit SQL statements directly to data sources by using a special mode

called pass-through.

You submit SQL statements in the SQL dialect used by the data source. Use a

pass-through session when you want to perform an operation that is not possible

with the DB2® SQL/API. For example, use a pass-through session to create a

procedure, create an index, or perform queries in the native dialect of the data

source.

Currently, the data sources that support pass-through, support pass-through using

SQL. In the future, it is possible that data sources will support pass-though using a

data source language other than SQL.

Similarly, you can use a pass-through session to perform actions that are not

supported by SQL, such as certain administrative tasks. However, you cannot use a

pass-through session to perform all administrative tasks. For example, you can

create or drop tables at the data source, but you cannot start or stop the remote

database.

You can use both static and dynamic SQL in a pass-through session.

The federated server provides the following SQL statements to manage

pass-through sessions:

SET PASSTHRU

Opens a pass-through session. When you issue another SET PASSTHRU

statement to start a new pass-through session, the current pass-through

session is terminated.

SET PASSTHRU RESET

Terminates the current pass-through session.

GRANT (Server Privileges)

Grants a user, group, list of authorization IDs, or PUBLIC the authority to

initiate pass-through sessions to a specific data source.

12 Administration Guide for Federated Systems

REVOKE (Server Privileges)

Revokes the authority to initiate pass-through sessions.

Default wrapper names

There are wrappers for each supported data source. Some wrappers have default

wrapper names.

When you use the default name to create the wrapper, the federated server

automatically picks up the data source library associated with the wrapper.

 Table 2. Data sources with default wrapper names.

Data source Default wrapper names

DB2 Version 9.1 for Linux, UNIX and

Windows®

DRDA

DB2 Universal Database for z/OS DRDA

DB2 Universal Database for iSeries DRDA

DB2 Server for VM and VSE DRDA

Informix INFORMIX

Microsoft® SQL Server MSSQLODBC3

ODBC ODBC

OLE DB OLEDB

Oracle NET8

Sybase CTLIB

Teradata TERADATA

Server definitions and server options

After wrappers are created for the data sources, the federated instance owner

defines the data sources to the federated database.

The instance owner supplies a name to identify the data source, and other

information that pertains to the data source. This information includes:

v The type and version of the data source

v The database name for the data source (RDBMS only)

v Metadata that is specific to the data source

For example, a DB2® family data source can have multiple databases. The

definition must specify which database the federated server can connect to. In

contrast, an Oracle data source has one database, and the federated server can

connect to the database without knowing its name. The database name is not

included in the federated server definition of an Oracle data source.

The name and other information that the instance owner supplies to the federated

server are collectively called a server definition. Data sources answer requests for

data and are servers in their own right.

The CREATE SERVER and ALTER SERVER statements are used to create and

modify a server definition.

Chapter 1. Overview of a federated system 13

Some of the information within a server definition is stored as server options. When

you create server definitions, it is important to understand the options that you

can specify about the server.

Server options can be set to persist over successive connections to the data source,

or set for the duration of a single connection.

User mappings

Typically, you need to define an association between the federated server and a

data source.

When a federated server needs to pushdown a request to a data source, the server

must first establish a connection to the data source. For most data sources, the

federated server does this by using a valid user ID and password to that data

source. When a user ID and password is required to connect to a data source, you

can define an association between the federated server authorization ID and the

data source user ID and password. This association can be created for each user ID

that will be using the federated system to send distributed requests. This

association is called a user mapping.

In some cases, you do not need to create a user mapping if the user ID and

password that you use to connect to the federated database are the same as those

that you use to access the remote data source. You can create and store the user

mappings in the federated database, or you can store the user mappings in an

external repository, such as LDAP.

Nicknames and data source objects

After you create the server definitions and user mappings, the federated instance

owner creates the nicknames. A nickname is an identifier that is used to reference

the object located at the data sources that you want to access. The objects that

nicknames identify are referred to as data source objects.

Nicknames are not alternative names for data source objects in the same way that

aliases are alternative names. They are pointers by which the federated server

references these objects. Nicknames are typically defined with the CREATE

NICKNAME statement along with specific nickname column options and

nickname options.

When an end user or a client application submits a distributed request to the

federated server, the request does not need to specify the data sources. Instead, the

request references the data source objects by their nicknames. The nicknames are

mapped to specific objects at the data source. These mappings eliminate the need

to qualify the nicknames by data source names. The location of the data source

objects is transparent to the end user or the client application.

Suppose that you define the nickname DEPT to represent an Informix® database

table called NFX1.PERSON. The statement SELECT * FROM DEPT is allowed from

the federated server. However, the statement SELECT * FROM NFX1.PERSON is

not allowed from the federated server (except in a pass-through session) unless

there is a local table on the federated server named NFX1.PERSON.

When you create a nickname for a data source object, metadata about the object is

added to the global catalog. The query optimizer uses this metadata, and the

information in the wrapper, to facilitate access to the data source object. For

14 Administration Guide for Federated Systems

example, if the nickname is for a table that has an index, the global catalog

contains information about the index. The wrapper contains the mappings between

the DB2® data types and the data source data types.

Nickname data based on data source objects that use a labeling security system are

not ordinarily cached, so data in the object remains secure. For example with the

Oracle Net8 wrapper, if you create a nickname on an Oracle table that uses Oracle

Label Security, the table is automatically identified as secure. The resulting

nickname data cannot be cached which means that materialized query tables

cannot be created on it. This setting ensures that the information is viewed only by

users with the appropriate authority on the Oracle system. Nicknames that were

created on data source objects that use Oracle Label Security before this feature

was available need to be changed to disallow caching. You can use the ALTER

NICKNAME statement to allow or disallow caching on a nickname. All other

nicknames based on wrappers other than Oracle Net8 must use the ALTER

NICKNAME statement to disable data caching on the federated server.

Currently, you cannot execute some DB2 utility operations on nicknames, such as

RUNSTATS.

You cannot use the Cross Loader utility to cross load into a nickname.

Valid data source objects

Nicknames identify objects at the data source that you want to access. The

following table lists the types of objects that you can create a nickname for in a

federated system.

 Table 3. Valid data source objects

Data source Valid objects

BioRS BioRS databanks

BLAST FASTA files indexed for BLAST search

algorithms

DB2 Version 9.1 for Linux, UNIX, and

Windows

Nicknames, materialized query tables, tables,

views

DB2 for iSeries Tables, views, physical and logical files

DB2 for VM and VSE Tables, views

DB2 for z/OS Tables, views

Entrez Entrez databases

HMMER HMM database files (libraries of Hierarchical

Markov Models, such as PFAM), that can be

searched by HMMER’s hmmpfam or

hmmsearch programs.

Informix Tables, views, synonyms

Microsoft Excel .xls files (only the first sheet in the workbook

is accessed)

Microsoft SQL Server Tables, views

ODBC Tables, views

Oracle Tables, views, synonyms

Script Scripts

Sybase Tables, views

Chapter 1. Overview of a federated system 15

Table 3. Valid data source objects (continued)

Data source Valid objects

Teradata Tables, views

Table-structured files Text files that meet a specific format.

Websphere Business Integration adapters Websphere Business Integration business

objects that map to BAPIs in SAP, business

components in Siebel, and component

interfaces in PeopleSoft

Web Services Operations in a Web services description

language file

XML-tagged files Sets of items in an XML document

Nickname column options

You can supply the global catalog with additional metadata information about the

nicknamed object. This metadata describes values in certain columns of the data

source object. You assign this metadata to parameters that are called nickname

column options.

The nickname column options tell the wrapper to handle the data in a column

differently than it normally would handle it. The SQL complier and query

optimizer use the metadata to develop better plans for accessing the data.

Nickname column options are used to provide other information to the wrapper as

well. For example for XML data sources, a nickname column option is used to tell

the wrapper the XPath expression to use when the wrapper parses the column out

of the XML document.

With federation, the DB2® server treats the data source object that a nickname

references as if it is a local DB2 table. As a result, you can set nickname column

options for any data source object that you create a nickname for. Some nickname

column options are designed for specific types of data sources and can be applied

only to those data sources.

Suppose that a data source has a collating sequence that differs from the federated

database collating sequence. The federated server typically would not sort any

columns containing character data at the data source. It would return the data to

the federated database and perform the sort locally. However, suppose that the

column is a character data type (CHAR or VARCHAR) and contains only numeric

characters (’0’,’1’,...,’9’). You can indicate this by assigning a value of ’Y’ to the

NUMERIC_STRING nickname column option. This gives the DB2 query optimizer

the option of performing the sort at the data source. If the sort is performed

remotely, you can avoid the overhead of porting the data to the federated server

and performing the sort locally.

You can define nickname column options for relational nicknames using the

ALTER NICKNAME statements. You can define nickname column options for

nonrelational nicknames using the CREATE NICKNAME and ALTER NICKNAME

statements.

16 Administration Guide for Federated Systems

Data type mappings

The data types at the data source must map to corresponding DB2® data types so

that the federated server can retrieve data from data sources.

Some examples of default data type mappings are:

v The Oracle type FLOAT maps to the DB2 type DOUBLE

v The Oracle type DATE maps to the DB2 type TIMESTAMP

v The DB2 for z/OS™ type DATE maps to the DB2 type DATE

For most data sources, the default type mappings are in the wrappers. The default

type mappings for DB2 data sources are in the DRDA® wrapper. The default type

mappings for Informix® are in the INFORMIX wrapper, and so forth.

For some nonrelational data sources, you must specify data type information in the

CREATE NICKNAME statement. The corresponding DB2 data types must be

specified for each column of the data source object when the nickname is created.

Each column must be mapped to a particular field or column in the data source

object.

For relational data sources, you can override the default data type mappings. For

example, by default the Informix INTEGER data type maps to the DB2 INTEGER

data type. You could override the default mappings and map Informix’s INTEGER

data type to DB2 DECIMAL(10,0) data type.

Function mappings

For the federated server to recognize a data source function, the function must be

mapped to an existing counterpart function in DB2® Version 9.1 for Linux, UNIX®

and Windows®.

WebSphere Federation Server supplies default mappings between existing data

source functions and DB2 counterpart functions. For most data sources, the default

function mappings are in the wrappers. The default function mappings to DB2 for

z/OS™ functions are in the DRDA® wrapper. The default function mappings to

Sybase functions are in the CTLIB wrapper, and so forth.

For relational data sources, you can create a function mapping when you want to

use a data source function that the federated server does not recognize. The

mapping that you create is between the data source function and a DB2

counterpart function at the federated database. Function mappings are typically

used when a new built-in function or a new user-defined function become

available at the data source. Function mappings are also used when a DB2

counterpart function does not exist. In this case, you must also create a function

template.

Index specifications

When you create a nickname for a data source table, information about any

indexes that the data source table has is added to the global catalog. The query

optimizer uses this information to expedite the processing of distributed requests.

The catalog information about a data source index is a set of metadata, and is

called an index specification.

Chapter 1. Overview of a federated system 17

The query optimizer uses this information to expedite the processing of distributed

requests.

A federated server does not create an index specification when you create a

nickname for:

v A table that has no indexes

v A view, which typically does not have any index information stored in the

remote catalog

v A data source object that does not have a remote catalog from which the

federated server can obtain the index information

Suppose that a table acquires a new index, in addition to the ones it had when the

nickname was created. Because index information is supplied to the global catalog

at the time the nickname is created, the federated server is unaware of the new

index. Similarly, when a nickname is created for a view, the federated server is

unaware of the underlying table (and its indexes) from which the view was

generated. In these circumstances, you can supply the necessary index information

to the global catalog. You can create an index specification for tables that have no

indexes. The index specification tells the query optimizer which column or

columns in the table to search on to find data quickly.

Federated stored procedures

Federated procedure access enables users of federated systems to access remote

stored procedures at remote data sources.

A federated stored procedure is a local stored procedure that is mapped to a stored

procedure at a data source. You use the CREATE PROCEDURE (Sourced)

statement to register a federated stored procedure.

Collating sequences

The order in which character data is sorted in a database depends on the structure

of the data and the collating sequence defined for the database.

Suppose that the data in a database is all uppercase letters and does not contain

any numeric or special characters. A sort of the data should result in the same

output, regardless of whether the data is sorted at the data source or at the

federated database. The collating sequence used by each database should not

impact the sort results. Likewise, if the data in the database is all lowercase letters

or all numeric characters, a sort of the data should produce the same results

regardless of where the sort actually is performed.

If the data consists of any of the following structures:

v A combination of letters and numeric characters

v Both uppercase and lowercase letters

v Special characters such as @, #, €

Sorting this data can result in different outputs, if the federated database and the

data source use different collating sequences.

In general terms, a collating sequence is a defined ordering for character data that

determines whether a particular character sorts higher, lower, or the same as

another character.

18 Administration Guide for Federated Systems

How collating sequences determine sort orders

A collating sequence determines the sort order of the characters in a coded

character set.

A character set is the aggregate of characters that are used in a computer system or

programming language. In a coded character set, each character is assigned to a

different number within the range of 0 to 255 (or the hexadecimal equivalent

thereof). The numbers are called code points; the assignments of numbers to

characters in a set are collectively called a code page.

In addition to being assigned to a character, a code point can be mapped to the

character’s position in a sort order. In technical terms, then, a collating sequence is

the collective mapping of a character set’s code points to the sort order positions of

the set’s characters. A character’s position is represented by a number; this number

is called the weight of the character. In the simplest collating sequence, called an

identity sequence, the weights are identical to the code points.

Suppose that database ALPHA uses the default collating sequence of the EBCDIC

code page, and that database BETA uses the default collating sequence of the

ASCII code page. Sort orders for character strings at these two databases would

differ, as shown in the following example:

SELECT.....

 ORDER BY COL2

EBCDIC-Based Sort ASCII-Based Sort

COL2 COL2

---- ----

V1G 7AB

Y2W V1G

7AB Y2W

Similarly, character comparisons in a database depend on the collating sequence

defined for that database. In this example, database ALPHA uses the default

collating sequence of the EBCDIC code page. Database BETA uses the default

collating sequence of the ASCII code page. Character comparisons at these two

databases would yield different results, as shown in the following example:

SELECT.....

 WHERE COL2 > ’TT3’

EBCDIC-Based Results ASCII-Based Results

COL2 COL2

---- ----

TW4 TW4

X82 X82

39G

Setting the local collating sequence to optimize queries

Administrators can create federated databases with a particular collating sequence

that matches a data source collating sequence.

Then for each data source server definition, the COLLATING_SEQUENCE server

option is set to ’Y’. This setting tells the federated database that the collating

sequences of the federated database and the data source match.

Chapter 1. Overview of a federated system 19

You set the federated database collating sequence as part of the CREATE

DATABASE API. Through this API, you can specify one of the following

sequences:

v An identity sequence

v A system sequence (the sequence used by the operating system that supports the

database)

v A customized sequence (a predefined sequence that DB2 supplies or that you

define yourself)

Suppose that the data source is DB2 for z/OS. Sorts that are defined in an ORDER

BY clause are implemented by a collating sequence based on an EBCDIC code

page. To retrieve DB2 for z/OS data sorted in accordance with ORDER BY clauses,

configure the federated database so that it uses the predefined collating sequence

based on the appropriate EBCDIC code page.

20 Administration Guide for Federated Systems

Chapter 2. Modifying data source configurations

Altering a wrapper (DB2 Control Center)

After you configure a wrapper, you can use the ALTER WRAPPER statement to

modify the configuration based on your system requirements. You can alter a

wrapper by using the DB2 Control Center or by using the DB2 command line.

Before you begin

The authorization ID associated with the statement must have SYSADM or

DBADM authority.

Restrictions

You cannot drop the DB2_FENCED wrapper option.

The federated server cannot process an ALTER WRAPPER statement within a

given unit of work if the unit of work already includes one of the following

statements:

v A SELECT statement that references a nickname for a table or view at the data

source that the wrapper includes

v An open cursor on a nickname for a table or view at the data source that the

wrapper includes

v An insert, delete, or update issued against a nickname for a table or view at the

data source that the wrapper includes

About this task

This task describes how to alter a wrapper from the DB2 Control Center.

Procedure

To alter a wrapper from the DB2 Control Center:

1. Expand the Federated Database Objects folder. The wrapper objects are

displayed in the contents pane of the DB2 Control Center window.

2. Right-click on the wrapper that you want to change and click Alter from the

list of actions. The Alter Wrapper notebook opens.

a. On the Settings page, make the changes.

b. Click Set Variables to set the data source environment variables for the

wrapper. Environment variables are not required for all wrappers.
3. Click OK to alter the wrapper and close the Alter Wrapper notebook.

Altering a wrapper - examples

This topic provides examples of modifying wrapper options with the ALTER

WRAPPER statement.

To change the DB2_FENCED option to ’Y’ for the wrapper named drda, issue the

following statement:

ALTER WRAPPER drda OPTIONS (SET DB2_FENCED ’Y’);

© Copyright IBM Corp. 1998, 2006 21

To change the MODULE option to ’/opt/odbc/lib/libodbc.a(odbc.so)’ for the

wrapper named odbc , issue the following statement:

ALTER WRAPPER odbc OPTIONS (SET MODULE ’/opt/odbc/lib/libodbc.a(odbc.so)’);

Altering a wrapper (DB2 command line)

After you configure a wrapper, you can use the ALTER WRAPPER statement to

modify the configuration based on your system requirements. You can alter a

wrapper by using the DB2 Control Center or by using the DB2 command line.

Before you begin

The authorization ID associated with the statement must have SYSADM or

DBADM authority.

Restrictions

You cannot drop the DB2_FENCED wrapper option.

The federated server cannot process an ALTER WRAPPER statement within a

given unit of work if the unit of work already includes one of the following

statements:

v A SELECT statement that references a nickname for a table or view at the data

source that the wrapper includes

v An open cursor on a nickname for a table or view at the data source that the

wrapper includes

v An insert, delete, or update issued against a nickname for a table or view at the

data source that the wrapper includes

About this task

This task describes how to alter a wrapper from the DB2 command line. You can

use the ALTER WRAPPER statement to add, set, or drop one or more wrapper

options.

Procedure

To alter a wrapper from the DB2 command line, issue the ALTER WRAPPER

statement.

Altering server definitions and server options

You use the ALTER SERVER statement to modify a server definition. Some of the

information within a server definition is stored as server options. When you

modify a server definition, it is important to understand the options that you can

specify about the server.

A server definition identifies a data source to the federated database. The server

definition consists of a local name and other information about that data source

server. The server definition is used by the wrapper when SQL statements that use

nicknames are submitted to the federated database.

22 Administration Guide for Federated Systems

For relational data sources, server options can be set temporarily using the SET

SERVER OPTION statement. This statement overrides the server option value in

the server definition for the duration of a single connection to the federated

database.

Modify a server definition when:

v You upgrade to a new version of the data source

v You want to make the same change to all of the server definitions for a specific

data source type

v You want to add or change a server option on an existing server definition

Restrictions on altering server definitions

You need to be aware of several restrictions when you alter server definitions.

The following restrictions apply to altering server definitions:

v You cannot specify a wrapper in the ALTER SERVER statement that is not

registered with the federated server.

v The federated server cannot process an ALTER SERVER statement within a

given unit of work (UOW) under either of the following conditions:

– The statement references a single data source, and the UOW already includes

one of the following statements:

- A SELECT statement that references a nickname for a table or view within

the data source

- An open cursor on a nickname for a table or view within the data source

- An insert, delete or update issued against a nickname for a table or view

within the data source
– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes one of

the following statements:

- A SELECT statement that references a nickname for a table or view within

one of the data sources

- An open cursor on a nickname for a table or view within one of the data

sources

- An insert, delete or update issued against a nickname for a table or view

within one of the data sources
v The federated server does not verify whether the server version that you specify

matches the remote server version. Specifying an incorrect server version can

result in SQL errors when you access nicknames that belong to the DB2 server

definition. These SQL errors are most likely to occur when you specify a server

version that is later than the actual version of the remote server. In that case,

when you access nicknames that belong to the server definition, the federated

server might send SQL to the remote server that the remote server does not

recognize. On the ALTER SERVER statement, this situation applies only to the

form of the statement that alters the server version (server-name VERSION

server-version).

v You must specify the full server option name. For example, you cannot specify

the abbreviation DB2_TWO_PHASE. Instead, you need to specify the full server

option name DB2_TWO_PHASE_COMMIT.

Chapter 2. Modifying data source configurations 23

Altering the data source version in a server definition (DB2

Control Center)

You can alter an existing server definition to change the version of the data source

that the remote server uses. You can alter a server definition from the DB2 Control

Center or from the DB2 command line.

Before you begin

The authorization ID issuing the ALTER SERVER statement must include either

SYSADM or DBADM authority on the federated database.

Restrictions

See “Restrictions on altering server definitions” on page 23.

Procedure

To alter a server definition from the DB2 Control Center:

1. Expand the Federated Database Objects folder. The server definition objects are

displayed in the contents pane of the DB2 Control Center window.

2. Right-click on the server definition that you want to change and click Alter

from the list of actions. The Alter Server Definition notebook opens.

3. On the Server page, click the Version arrow to specify a different version for

the data source.

4. Click OK to alter the server definition and close the Alter Server Definition

notebook.

Altering the data source version in a server definition (DB2

command line)

You can alter an existing server definition to change the version of the data source

that the remote server uses. You can alter a server definition from the DB2 Control

Center or from the DB2 command line.

Before you begin

The authorization ID issuing the ALTER SERVER statement must include either

SYSADM or DBADM authority on the federated database.

Restrictions

See “Restrictions on altering server definitions” on page 23.

Procedure

To alter a server definition from the DB2 command line, issue the ALTER SERVER

statement.

Example: You are working with a server definition for a Microsoft SQL Server

Version 6.5 data source. The name that you assigned the server in the CREATE

SERVER statement is SQLSVR_ASIA. If the Microsoft SQL Server is upgraded to

Version 7.0, the following statement alters the server definition:

ALTER SERVER SQLSVR_ASIA VERSION 7

24 Administration Guide for Federated Systems

Altering all of the server definitions for a specific data source

type

You can alter all of the existing server definitions for a particular type of data

source in a single ALTER SERVER statement. Use a single statement when you

want the same change to apply to all of the server definitions of the same type.

Before you begin

The authorization ID issuing the ALTER SERVER statement must include either

SYSADM or DBADM authority on the federated database.

Restrictions

You can only set or drop server options using the ALTER SERVER statement for an

entire type of data sources if the server options were added by a prior ALTER

SERVER statement operation.

Procedure

To alter all of the existing server definitions for a particular type of data source,

issue a single ALTER SERVER statement.

Example: Five Sybase servers are registered in the global catalog for your Sybase

data sources. Whenever a user ID is sent to any of these Sybase servers for

authentication, you want the federated server to always fold the user ID to

uppercase. In addition, you want to set how long the federated server will wait for

a response from these Sybase servers to an SQL statement. You specify the amount

of time in seconds. You can modify all five server definitions at the same time the

following ALTER SERVER statement:

ALTER SERVER TYPE sybase

 OPTIONS (ADD FOLD_ID ’U’, ADD TIMEOUT ’600’)

Using server options in server definitions (DB2 Control Center)

There are general server options and server options that are for specific data source

types. You can alter a server definition from the DB2 Control Center or from the

command line prompt to add or change a server option.

Before you begin

The authorization ID issuing the ALTER SERVER statement must include either

SYSADM or DBADM authority on the federated database.

Restrictions

See “Restrictions on altering server definitions” on page 23.

About this task

Server options are set to values that persist over successive connections to the data

source. These values are stored in the federated system catalog.

Procedure

To do this task from the DB2 Control Center:

Chapter 2. Modifying data source configurations 25

1. Expand the Federated Database Objects folder. The server definition objects are

displayed in the contents pane of the DB2 Control Center window.

2. Right-click on the server definition that you want to change and click Alter

from the list of actions. The Alter Server Definition notebook opens.

3. On the Settings page, select the server option that you want to add or remove.

4. For options that you are adding or changing, specify the value of an option.

5. Click OK to alter the server definition and close the Alter Server Definition

notebook.

Some server options are required and cannot be dropped. Other server options

cannot be added if specific server options are already set.

Changing server options temporarily for relational data

sources

The SET SERVER OPTION statement overrides the server option value in the

server definition for the duration of a single connection to the federated database.

The overriding value does not get stored in the global catalog.

Procedure

To set a server option value temporarily for a relational data source, use the SET

SERVER OPTION statement.

For example:

SET SERVER OPTION PLAN_HINTS TO Y’ FOR SERVER ORA_SERVER

When used with static SQL statements, the SET SERVER OPTION statement will

have no effect with the IUD_APP_SVPT_ ENFORCE server option.

The hierarchy of server option settings

When you have the same server option set with one value for a data source type

and set with another value on a specific data source server, there is a hierarchy

among the settings.

For example, the PLAN_HINTS server option is set to ’Y’ for the data source type

ORACLE. However, the PLAN_HINTS server option is set to ’N’ in the server

definition for a specific Oracle data source server PURNELL. The setting for the

specific data source server overrides the setting for the data source type. This

configuration causes PLAN_HINTS to be enabled at all Oracle data source servers

except PURNELL.

Using server options in server definitions (DB2 command line)

There are general server options and server options that are for specific data source

types. You can alter a server definition from the DB2 Control Center or from the

command line prompt to add or change a server option.

Before you begin

The authorization ID issuing the ALTER SERVER statement must include either

SYSADM or DBADM authority on the federated database.

Restrictions

26 Administration Guide for Federated Systems

See “Restrictions on altering server definitions” on page 23.

About this task

Server options are set to values that persist over successive connections to the data

source. These values are stored in the federated system catalog.

Procedure

To do this task from the command line prompt, issue the ALTER SERVER

statement. For example:

v You created a server definition for an Informix server using the server name of

INFMX01. You now want to change the DB2_MAXIMAL_PUSHDOWN option

to Y. The statement to alter the server definition is:

 ALTER SERVER INFMX01 OPTIONS (SET DB2_MAXIMAL_PUSHDOWN ’Y’)

v You created a server definition for an Oracle server using the server name of

ORCL99. You now want to add the FOLD_ID and FOLD_PW options to the

definition. The statement to alter the server definition is:

ALTER SERVER ORCL99 OPTIONS (ADD FOLD_ID ’U’, FOLD_PW ’U’)

v You want to set the timeout value to the number of seconds the CTLIB wrapper

should wait for a response from the Sybase server. You use the TIMEOUT server

option to set this value. The statement to alter the server definition is:

ALTER SERVER SYBSERVER OPTIONS (ADD TIMEOUT ’60’)

Altering a user mapping (DB2 Control Center)

A user mapping is the association between the authorization ID at the federated

server and the authorization ID at the data source. User mappings are needed so

that distributed requests can be sent to the data source.

Before you begin

If the authorization ID issuing the statement is different than the authorization ID

that is mapped to the data source, then the authorization ID issuing the statement

must include either SYSADM or DBADM authority on the federated database.

Restrictions

The federated server cannot process an ALTER USER MAPPING statement within

a given unit of work (UOW) if the UOW already includes one of the following

statements:

v A SELECT statement that references a nickname for a table or view at the data

source the mapping includes

v An open cursor on a nickname for a table or view at the data source that the

mapping includes

v An insert, delete, or update issued for a nickname of a table or view at the data

source the mapping includes

About this task

The ALTER USER MAPPING statement is used to change the authorization ID or

password that is used at the data source for a specific federated server

authorization ID.

Chapter 2. Modifying data source configurations 27

You can alter a user mapping from the DB2 Control Center or the command line

prompt.

Procedure

To alter a user mapping from the DB2 Control Center:

1. Expand the Federated Database Objects folder. The user mapping objects are

displayed in the contents pane of the DB2 Control Center window.

2. Right-click on the user mapping that you want to change and click Alter from

the list of actions. The Alter User Mapping window opens.

3. Change the value of the option.

4. Click OK to alter the user mapping and close the Alter User Mapping window.

Altering a user mapping (DB2 command line)

A user mapping is the association between the authorization ID at the federated

server and the authorization ID at the data source. User mappings are needed so

that distributed requests can be sent to the data source.

Before you begin

If the authorization ID issuing the statement is different than the authorization ID

that is mapped to the data source, then the authorization ID issuing the statement

must include either SYSADM or DBADM authority on the federated database.

Restrictions

The federated server cannot process an ALTER USER MAPPING statement within

a given unit of work (UOW) if the UOW already includes one of the following

statements:

v A SELECT statement that references a nickname for a table or view at the data

source the mapping includes

v An open cursor on a nickname for a table or view at the data source that the

mapping includes

v An insert, delete, or update issued for a nickname of a table or view at the data

source the mapping includes

About this task

The ALTER USER MAPPING statement is used to change the authorization ID or

password that is used at the data source for a specific federated server

authorization ID.

You can alter a user mapping from the DB2 Control Center or the command line

prompt.

Procedure

To alter a user mapping from the DB2 command line, issue the ALTER USER

MAPPING statement:

For example, Jenny uses the federated server to connect to a Sybase server called

SYBSERVER. She accesses the federated server with the authorization ID of jennifer.

The authorization ID jennifer is mapped to the authorization ID jenn on the Sybase

28 Administration Guide for Federated Systems

server. The authorization ID for Jenny on the Sybase server is changed to jen123.

The ALTER USER MAPPING statement to map jennifer to jen123 is:

ALTER USER MAPPING FOR jennifer SERVER SYBSERVER

 OPTIONS (SET REMOTE_AUTHID ’jen123’)

Tomas uses the federated server to connect to an Oracle server called

ORASERVER. He accesses the federated server with the authorization ID of tomas.

The authorization ID tomas is mapped to the authorization ID tom on the Oracle

server. The password for Tomas on the Oracle server is changed. His new

password is day2night. The ALTER USER MAPPING statement to map tomas to

the new password is:

ALTER USER MAPPING FOR tomas SERVER ORASERVER

 OPTIONS (SET REMOTE_PASSWORD ’day2night’)

The REMOTE_AUTHID and REMOTE_PASSWORD user options are case sensitive

unless you set the FOLD_ID and FOLD_PW server options to ’U’ or ’L’ in the

CREATE SERVER statement.

Altering a nickname (DB2 Control Center)

Nicknames are identifiers that are used to reference an object that you want to

access at a data source. You can change the data source column names that are

stored in the global catalog and set column options by altering the nicknames. You

can alter a nickname from the DB2 Control Center or the DB2 command line.

Before you begin

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname

Restrictions

See “Restrictions on altering nicknames” on page 30.

About this task

You might want to alter a nickname to:

v Alter the local column names for the columns of the data source object

v Alter the local data types for the columns of the data source object

v Add, set, or drop nickname and column options

v Add or drop a primary key

v Add or drop one or more unique, referential, or check constraints

v Alter one or more referential, check, or functional dependency constraint

attributes

v Prevent nickname caching on the federated server

Chapter 2. Modifying data source configurations 29

v Enable nickname caching on the federated server. If cache tables or materialized

query tables are associated with a cached nickname, you must drop those tables

before you alter the caching option.

Procedure

To alter a nickname from the DB2 Control Center:

1. Select the Nicknames folder.

2. Right-click on the nickname that you want to change and click Alter. The Alter

Nickname notebook opens.

3. On the Nicknames page change the applicable options.

4. On the Keys page, set the referential integrity constraints for the nickname. You

can set a primary key, unique key, or foreign key constraint.

5. On the Check Constraints page, set the check constraints or functional

dependency constraints for the nickname.

6. On the Settings page, set the nickname options for the nickname.

7. Click OK to alter the nickname and close the notebook.

Some nickname options are required and cannot be dropped. Other nickname

options cannot be added if specific nickname options are already set.

When the data source object structure or content changes significantly, you should

update the nickname statistics. Significant changes include the addition or removal

of multiple rows.

Restrictions on altering nicknames

You need to be aware of several restrictions when you alter a nickname.

Column names

The ALTER NICKNAME statement cannot be used to alter column names

for the following data sources. You must drop the nickname and create the

nickname again with the correct column names.

 v BLAST

v HMMER

Column options

If one of the following options is set on a column, you cannot add any

other options to that column:

v SOAPACTIONCOLUMN

v URLCOLUMN

v PRIMARY_KEY

v FOREIGN_KEY

For BioRS

v If you change the element name of a column by using the

ELEMENT_NAME option, the new name is not checked to ensure that it

is correct. An incorrect option might result in errors when the column is

referenced in a query.

v If you make changes to the IS_INDEXED column option, the changes are

not verified with the BioRS server. An incorrect option might result in

errors when the column is referenced in a query.

Data types

30 Administration Guide for Federated Systems

v If you change the data type of a column, the new data type must be

compatible with the data type of the corresponding data source column

or element. Changing the local data type to a data type that is

incompatible with the remote data type might cause unpredictable

errors.

v The local_data_type cannot be LONG VARCHAR, LONG VARGRAPHIC,

XML, or a user-defined data type.

v The data_source_data_type cannot be a user-defined type.

v You cannot override the existing local types or create new local types for

some of the nonrelational data sources. Check the documentation for the

specific data source wrapper for more information on this restriction.

v When the local specification of a column’s data type is changed, the

federated database manager invalidates any statistics (for example,

HIGH2KEY and LOW2KEY) that are gathered for that column.

v The local type is set for the specific data source object when it is

accessed with that nickname. The same data source object can have

another nickname that uses the default data type mapping.

Indexes

The ALTER NICKNAME statement cannot be used to register a new data

source index in the federated database. Use the CREATE INDEX statement

with the SPECIFICATION ONLY clause to create an index specification.

LOCAL NAME and LOCAL TYPE parameters

v ALTER NICKNAME statement cannot be used to change the local names

or data types for the columns in the nickname if:

– The nickname is used in a view, SQL method, or SQL function

– You define an informational constraint on the nickname
v The federated_column_options clause must be specified last if you also

need to specify the LOCAL NAME parameter, the LOCAL TYPE

parameter, or both in the ALTER NICKNAME statement.

Nicknames

The ALTER NICKNAME statement cannot be used to change the name of

the BioRS databank that is referenced by or used in a BioRS nickname. If

the name of a BioRS databank changes, you must drop the nickname and

create the nickname again.

 You cannot use the ALTER NICKNAME statement to disallow caching on

a nickname with cache tables or materialized query tables. You must drop

the cache tables and the materialized query tables before you disallow

caching on the nickname.

Units of work

The federated server cannot process an ALTER NICKNAME statement

within a given unit of work under any of the following conditions:

v If the nickname referenced in the ALTER NICKNAME statement has a

cursor open on it in the same unit of work.

v If an insert, delete or update is issued in the same unit of work for the

nickname that is referenced in the ALTER NICKNAME statement.

Altering nickname column names (DB2 Control Center)

You can alter a nickname to change the column names. You can change column

names from the DB2 Control Center or the DB2 command line.

Chapter 2. Modifying data source configurations 31

Before you begin

The authorization ID issuing the statement must include at least one of the

following privileges:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname

Restrictions

See “Restrictions on altering nicknames” on page 30.

About this task

When you create a nickname, the column names that are associated with the data

source object are stored in the federated database. For some data sources, the

wrapper specifies the column names. For other data sources, you must specify the

column names when you create the nickname.

Procedure

To alter nickname column names from the DB2 Control Center:

1. Select the Nicknames folder.

2. Right-click on the nickname that you want to change and click Alter. The Alter

Nickname notebook opens.

3. On the Nicknames page, select the column that you want to change and click

Change. The Change Column window opens.

4. Type the column name.

5. Click OK to change the column name and close the window.

6. Click OK to alter the nickname and close the notebook.

Altering nickname column names (DB2 command line)

You can alter a nickname to change the column names. You can change column

names from the DB2 Control Center or the DB2 command line.

Before you begin

The authorization ID issuing the statement must include at least one of the

following privileges:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname

Restrictions

32 Administration Guide for Federated Systems

See “Restrictions on altering nicknames” on page 30.

About this task

When you create a nickname, the column names that are associated with the data

source object are stored in the federated database. For some data sources, the

wrapper specifies the column names. For other data sources, you must specify the

column names when you create the nickname.

Procedure

To alter nickname column names from the DB2 command line, issue the ALTER

NICKNAME statement.

ALTER NICKNAME nickname

 ALTER COLUMN current_name

 LOCAL NAME new_name

Altering nickname options (DB2 Control Center)

Nickname options are parameters that you specify on the nickname when you

issue the CREATE NICKNAME and ALTER NICKNAME statements. You can add,

set, or drop nickname options by using the ALTER NICKNAME statement. You

can change column names from the DB2 Control Center or the DB2 command line.

Before you begin

The authorization ID issuing the statement must include at least one of the

following privileges:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname

Restrictions

See “Restrictions on altering nicknames” on page 30.

About this task

For example, the nickname DRUGDATA1 is created for the table-structured file

drugdata1.txt. The fully qualified path that was originally defined in the CREATE

NICKNAME statement was /user/pat/drugdata1.txt.

To change the FILE_PATH nickname option, issue the following statement :

Procedure

To change column names from the DB2 Control Center:

1. Select the Nicknames folder.

2. Right-click on the nickname that you want to change and click Alter. The Alter

Nickname notebook opens.

3. On the Settings page, select the check box next to any option that you want to

add or remove. You cannot remove a required option.

Chapter 2. Modifying data source configurations 33

4. To specify or change the value of an option, click the Value field for the option.

Depending on the option, you can either select a value from the list, click to

select multiple values, or you can type a new value.

5. Click OK to alter the nickname and close the notebook.

Altering nickname options (DB2 command line)

Nickname options are parameters that you specify on the nickname when you

issue the CREATE NICKNAME and ALTER NICKNAME statements. You can add,

set, or drop nickname options by using the ALTER NICKNAME statement. You

can change nickname options from the DB2 Control Center or the DB2 command

line.

Before you begin

The authorization ID issuing the statement must include at least one of the

following privileges:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname

Restrictions

See “Restrictions on altering nicknames” on page 30.

Procedure

To change a nickname option from the command line prompt, issue the ALTER

NICKNAME statement.

ALTER NICKNAME nickname

 OPTIONS (SET option_name ’option_string_value’)

Example: The nickname DRUGDATA1 is created for the table-structured file

drugdata1.txt. The fully qualified path that was originally defined in the CREATE

NICKNAME statement was /user/pat/drugdata1.txt. To change the FILE_PATH

nickname option, issue the following statement:

ALTER NICKNAME DRUGDATA1 OPTIONS (SET FILE_PATH ’/usr/kelly/data/drugdata1.txt’)

Altering nickname column options (DB2 Control Center)

You can add, set, or drop nickname column options using the ALTER NICKNAME

statement. You can change column names from the DB2 Control Center or the DB2

command line.

Before you begin

The authorization ID issuing the statement must include at least one of the

following privileges:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

34 Administration Guide for Federated Systems

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname

Restrictions

See “Restrictions on altering nicknames” on page 30.

About this task

You specify column information in the CREATE NICKNAME and ALTER

NICKNAME statements by using parameters called nickname column options.

Procedure

To alter nickname column options from the DB2 Control Center

1. Select the Nicknames folder.

2. Right-click on the nickname that you want to change and click Alter. The Alter

Nickname notebook opens.

3. On the Nicknames page, select the column that you want to change and click

Change. The Change Column window opens.

4. Select the column option that you want to add or remove.

5. For options that you are adding or changing, specify the value of an option.

6. Click OK to change the column option and close the window.

7. Click OK to alter the nickname and close the notebook.

Altering nickname column options (DB2 command line)

You can add, set, or drop nickname column options using the ALTER NICKNAME

statement. You can change column names from the DB2 Control Center or the DB2

command line.

Before you begin

The authorization ID issuing the statement must include at least one of the

following privileges:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname

Restrictions

See “Restrictions on altering nicknames” on page 30.

About this task

You specify column information in the CREATE NICKNAME and ALTER

NICKNAME statements by using parameters called nickname column options. You

can specify any of these values in either uppercase or lowercase letters.

Chapter 2. Modifying data source configurations 35

Procedure

To alter nickname column options from the command line prompt, use the ALTER

NICKNAME statement.

Example 1: Specifying the NUMERIC_STRING column option with relational data

sources

The NUMERIC_STRING column option applies to character type columns (CHAR

and VARCHAR). Suppose that a data source has a collating sequence that differs

from the federated database collating sequence. The federated server typically

would not sort any columns containing character data at the data source. It would

return the data to the federated database and perform the sort locally. However,

suppose that the column is a character data type and contains only numeric

characters (’0’,’1’,...,’9’). You can indicate this by assigning a value of ’Y’ to the

NUMERIC_STRING column option. This gives the DB2 UDB query optimizer the

option of performing the sort at the data source. If the sort is performed remotely,

you can avoid the overhead of sorting the data at the federated server.

The nickname ORA_INDSALES for an Oracle table called INDONESIA_SALES.

The table contains the column POSTAL_CODE with the data type of VARCHAR.

Originally the column contained only numeric characters, and the

NUMERIC_STRING column option was set to ’Y’. However, the column now

contains a mixture of numeric and non-numeric characters. To change the

NUMERIC_STRING column option to ’N’, use this statement:

ALTER NICKNAME ORA_INDSALES ALTER COLUMN POSTAL_CODE

 OPTIONS (SET NUMERIC_STRING ’N’)

Example 2: Specifying the VARCHAR_NO_TRAILING_BLANKS column option

with relational data sources

The VARCHAR_NO_TRAILING_BLANKS column option can be used to identity

specific columns that contain no trailing blanks. The SQL Compiler will factor in

this setting when it checks for all operations (such as comparison operations)

performed on columns.

The nickname ORA_INDSALES is for an Oracle table called INDONESIA_SALES.

The table contains the column NAME with the data type of VARCHAR. The

NAME column does not have trailing blanks. To add the

VARCHAR_NO_TRAILING_BLANKS option to the nickname, use this statement:

ALTER NICKNAME ORA_INDSALES ALTER COLUMN NAME

 OPTIONS (ADD VARCHAR_NO_TRAILING_BLANKS ’Y’)

Example 3: Specifying the XPATH column option with nonrelational data sources

The nickname EMPLOYEE is for an XML data source. An XPATH was specified for

the fnmae column. To set the XPATH column option to a different path, use this

statement:

ALTER NICKNAME EMPLOYEE ALTER COLUMN fname

 OPTIONS (SET XPATH ’./@first’)

36 Administration Guide for Federated Systems

Altering a nickname (DB2 command line)

Nicknames are identifiers that are used to reference an object that you want to

access at a data source. You can change the data source column names that are

stored in the global catalog and set column options by altering the nicknames. You

can alter a nickname from the DB2 Control Center or the DB2 command line.

Before you begin

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname

Restrictions

See “Restrictions on altering nicknames” on page 30.

About this task

You might want to alter a nickname to:

v Alter the local column names for the columns of the data source object

v Alter the local data types for the columns of the data source object

v Add, set, or drop nickname and column options

v Add or drop a primary key

v Add or drop one or more unique, referential, or check constraints

v Alter one or more referential, check, or functional dependency constraint

attributes

Procedure

To alter a nickname from the DB2 command line, issue the ALTER NICKNAME

statement with the appropriate parameters set.

When the data source object structure or content changes significantly, you should

update the nickname statistics. Significant changes include the addition or removal

of multiple rows.

Dropping a wrapper

There are several reasons why you might want to drop a wrapper.

Before you begin

To issue the DROP WRAPPER statement, you must have SYSADM or DBADM

authority.

About this task

Chapter 2. Modifying data source configurations 37

Sometimes there is more than one wrapper that you can use to access a data

source. The one you choose might depend on the version of the data source client

software that you are using. Or it might depend on the operating system that you

are using on your federated server. Suppose that you want to access two Oracle

tables and one Oracle view. You are using Oracle Version 8, and the operating

system on your federated server is Windows NT®. Originally you created the

SQLNET wrapper. Since WebSphere Federation Server does not support the

SQLNET wrapper, you can drop the SQLNET wrapper and create the NET8

wrapper.

Another reason to drop a wrapper is that you no longer need access to the data

source that the wrapper is associated with. For example, suppose that your

organization has a requirement to access client information in both Informix and

Microsoft SQL server databases. You create one wrapper for the Informix data

source and one wrapper for the Microsoft SQL Server data source. Later your

organization decides to migrate all of the information from Microsoft SQL Server

to Informix. You no longer need the Microsoft SQL Server wrapper and you can

drop it.

Important: There are serious consequences when you drop a wrapper. Other

objects that you registered with the federated server are impacted:

v All server definitions that are dependent on the dropped wrapper are also

dropped.

v All objects that are dependent on the dropped server definitions are also

dropped.

v All nicknames that are dependent on the dropped server definitions are also

dropped. Dropping the nicknames dependent on the server definition affects the

objects dependent on those nicknames:

– Any index specifications dependent on the dropped nicknames are also

dropped.

– Any views dependent on the dropped nicknames are marked inoperative.

– Any materialized query tables dependent on the dropped nicknames are also

dropped.
v All packages and cached dynamic SQL statements dependent on the dropped

nicknames are marked invalid, and remain invalid until the dependent objects

are re-created.

Procedure

To drop a wrapper, use the DROP statement.

Example: Drop the Microsoft SQL Server MSSQLODBC3 wrapper:

DROP WRAPPER MSSQLODBC3

Dropping a server definition

Dropping a server definition deletes the definition from the global catalog. The

data source object that the server definition references is not affected. You can drop

a server definition using the DB2 Control Center or using DROP statement from

the DB2 command line processor.

Before you begin

You must have SYSADM or DBADM authority to drop a server definition.

38 Administration Guide for Federated Systems

Restrictions

The federated server cannot process a DROP SERVER statement within a given

unit of work (UOW) under either of the following conditions:

v The statement references a single data source, and the UOW already includes

one of the following statements:

– A SELECT statement that references a nickname for a table or view within the

data source

– An open cursor on a nickname for a table or view within the data source

– An insert, delete or update issued against a nickname for a table or view

within the data source
v The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW includes one of the

following statements:

– A SELECT statement that references a nickname for a table or view within

one of the data sources

– An open cursor on a nickname for a table or view within one of the data

sources

– An insert, delete or update issued against a nickname for a table or view

within one of the data sources

About this task

When you no longer need to access a data source server, drop the server definition

from the federated database. When you drop a server definition, other objects that

you registered with the federated server are impacted:

v All user-defined function mappings, user-defined data type mappings, and user

mappings that are dependent on the dropped server definition are also dropped.

v All nicknames that are dependent on the dropped server definition are also

dropped. Dropping the nicknames dependent on the server definition, affects the

objects dependent on those nicknames:

– Any index specifications dependent on the dropped nicknames are also

dropped.

– Any views dependent on the dropped nicknames are marked inoperative.

– Any materialized query tables dependent on the dropped nicknames are also

dropped.
v All packages and cached dynamic SQL statements dependent on the dropped

nicknames are marked invalid, and remain invalid until the dependent objects

are re-created.

Procedure

To delete a server definition, issue the DROP statement:

DROP SERVER server_name

where server_name identifies the server definition to be dropped.

Example: An Informix server uses the server name INFMX01. The following DROP

statement drops the server definition:

DROP SERVER INFMX01

Chapter 2. Modifying data source configurations 39

Dropping a user mapping

When a user no longer needs access to a remote data source, drop the user

mapping between the federated server and the remote data source server. If the

user is mapped to more than one data source server, you will need to drop each

mapping separately.

Before you begin

To issue the DROP USER MAPPING statement, the authorization ID of the DROP

statement must have SYSADM or DBADM authority, if this authorization ID is

different from the federated database user ID specified in the user mapping.

Otherwise, if the authorization ID and the user ID in the user mapping match, no

authorities or privileges are required.

Procedure

To drop a user mapping, issue the DROP statement:

DROP USER MAPPING FOR user_ID SERVER local_server_name

where:

v user_ID is the authorization ID for the user on the federated server

v local_server_name is the local name that is used to identify the remote data source

server in the server definition.

Dropping a nickname

Dropping a nickname deletes the nickname from the global catalog on the

federated server. The data source object that the nickname references is not

affected.

Before you begin

The nickname must be listed in the catalog.

The privileges that must be held by the authorization ID of the DROP statement

when dropping nicknames must include one of the following:

v SYSADM or DBADM authority

v DROPIN privilege on the schema for the nickname

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname

v CONTROL privilege on the nickname

Restrictions

For nicknames to relational data sources, the federated server cannot process the

DROP NICKNAME statement within a given unit of work (UOW) under either of

the following conditions:

v A nickname referenced in the statement has a cursor open on it in the same

UOW.

v A nickname referenced in this statement is already referenced by a SELECT

statement in the same UOW.

40 Administration Guide for Federated Systems

v An insert, delete or update is issued in the same UOW for the nickname

referenced in the statement.

For nicknames to nonrelational data sources, the federated server cannot process

the DROP NICKNAME statement within a given unit of work (UOW) under any

of the following conditions:

v A nickname referenced in this statement has a cursor open on it in the same

UOW.

v A nickname referenced in this statement is already referenced by a SELECT

statement in the same UOW.

About this task

When you drop a nickname, other objects that you registered with the federated

server are impacted:

v Dropping a nickname affects the objects dependent on those nicknames:

– Any index specifications dependent on the dropped nicknames are also

dropped.

– Any views dependent on the dropped nicknames are marked inoperative.

– Any materialized query tables dependent on the dropped nicknames are also

dropped.
v All packages and cached dynamic SQL statements dependent on the dropped

nickname are marked invalid, and remain invalid until the dependent objects are

re-created.

Procedure

To delete a nickname, issue the DROP statement:

DROP NICKNAME nickname

where nickname identifies the nickname to be dropped.

Chapter 2. Modifying data source configurations 41

42 Administration Guide for Federated Systems

Chapter 3. Data type mappings

Data type mappings in a federated system

The data types at a data source must map to corresponding DB2 data types. This

mapping enables the federated server to retrieve data from the data source.

The federated database supplies a set of default data type mappings for some data

sources. For other data sources you must provide the data type mappings that you

want to use. For nonrelational data sources, you cannot override the existing data

type mappings or create new mappings.

Some examples of default data type mappings are:

v The Oracle type FLOAT maps by default to the DB2 type DOUBLE

v The Oracle type DATE maps by default to the DB2 type TIMESTAMP

v The DB2 Universal Database for z/OS type DATE maps by default to the DB2

type DATE

Nicknames that are created after a mapping is changed use the new type mapping.

Nicknames that are created before the mapping is changed use the default data

type mapping.

If you already created the nicknames, you can update the existing nicknames in

one of the following ways:

v You can alter each nickname

v You can drop and re-create each nickname

DB2 federated servers do not support mappings for the following data types:

v The local data type cannot be LONG VARCHAR, LONG VARGRAPHIC,

DATALINK, or a user-defined data type.

v The remote data type cannot be a user-defined type.

However, you can use a cast function to convert the user-defined data type in a

view at the remote data source to a built-in or system data type. You can then

create a nickname for the view. For most data sources, if you create such views,

the views have no statistics or indexes and you cannot update the views.

Data type mappings and the federated database global catalog

Local data type definitions are stored in the SYSCAT.COLUMNS catalog view of

the federated database global catalog.

When you write a CREATE NICKNAME statement, you specify a data source

object that the nickname represents. In most cases, the federated server defines a

DB2-supported data type for each column or field in that data source object. For

some nonrelational data sources, you must supply the DB2 data type.

For relational data sources, to determine which local data type to store in the

SYSCAT.COLUMNS catalog view, the federated server looks for forward data type

mapping information in the wrappers and in the SYSCAT.TYPEMAPPINGS catalog

view. Mappings in the SYSCAT.TYPEMAPPINGS catalog view take precedence

over the default mappings in the wrappers. If you create alternative mappings to

© Copyright IBM Corp. 1998, 2006 43

override the default data type mappings, the federated server uses the alternative

mappings. If multiple mappings apply to a column, the federated server uses the

most recently created mappings.

For nonrelational data sources, to determine which local data type to store in the

SYSCAT.COLUMNS catalog view, the federated server looks for data type

mapping information in the wrappers. Depending on the nonrelational data source,

the degree to which you can modify the data types defined by the wrapper varies.

For some nonrelational data sources, you do not specify any columns. The wrapper

defines the data types. For other data sources you can override the data types. And

for other data sources, you must specify the column data types on the CREATE

NICKNAME statement.

When you write CREATE TABLE transparent DDL for relational data sources,

specify DB2 data types in the statement. The federated server checks for

information about the reverse data type mappings between the federated database

and the data source. The federated server looks for this information in the wrapper

and the SYSCAT.TYPEMAPPINGS catalog view.

When values from a data source column are returned to the federated database,

the values conform fully to the DB2 data type that the data source column is

mapped to. If this mapping is a default mapping, the values also conform fully to

the data source type in the mapping. For example, if an Oracle table with a FLOAT

column is defined to the federated database, the default mapping of Oracle FLOAT

to DB2 DOUBLE automatically applies to that column. The values that are

returned from the column conform fully to both the FLOAT and DOUBLE data

types.

When to create alternative data type mappings

You can create alternative data type mappings for relational data sources.

You might want to create alternative data type mappings in the following

situations:

v To override a default data type mapping

For some wrappers, you can change the format or length of values that are

returned. You can change the format or length by changing the DB2 data type

that the values must conform to. For example, the Oracle DATE data type is

used as a timestamp and contains the century, year, month, day, hour, minute,

and second. By default, the Oracle DATE data type maps to the DB2

TIMESTAMP data type. To return only the hour, minute, and second

information, you can override the default data type mapping so that the Oracle

DATE data type maps to the DB2 TIME data type. When the Oracle DATE

columns are queried, only the time portion of the Oracle timestamp values is

returned to the federated server.

v When a default mapping does not exist

If a default data type mapping is not available for a data source data type, you

must create a mapping for the new data type.

You use the CREATE TYPE MAPPING statement to define new data type

mappings. Mappings that you create are stored in the SYSCAT.TYPEMAPPINGS

catalog view in the federated database.

44 Administration Guide for Federated Systems

Data type mappings for nonrelational data sources

For some nonrelational data sources, the data type mappings are not in the

wrappers. In some cases, you must specify the local type information in the

CREATE NICKNAME statement.

The following example shows how column data types are specified in the CREATE

NICKNAME statement for some of the nonrelational data sources:

CREATE NICKNAME DRUGDATA1

 (Dcode Integer NOT NULL, Drug CHAR(20), Manufacturer CHAR(20))

 FOR SERVER biochem_lab

 OPTIONS (FILE_PATH ’/usr/pat/DRUGDATA1.TXT’, COLUMN_DELIMITER ’,’,

 SORTED ’Y’, KEY_COLUMN ’DCODE’, VALIDATE_DATA_FILE ’Y’)

Forward and reverse data type mappings

Forward type mappings and reverse type mappings are the two kinds of mappings

between data source data types and federated database data types.

A forward type mapping is a mapping from a remote data type to a comparable local

data type. Forward type mappings are used when you a create a nickname for a

data source object. The comparable local type for each column in the data source

object is stored in the global catalog.

A reverse type mapping is a mapping from a local data type to a comparable remote

data type. Reverse type mapping is used with transparent DDL.

Figure 2 shows forward and reverse data type mapping.

Creating data type mappings

To create a data type mapping you use the CREATE TYPE MAPPING statement.

You can issue the statement from the DB2 Command Center or the command line

processor, or include it in an application program. You cannot use the DB2 Control

Center to create or modify data type mappings.

Before you begin

The privileges held by the authorization ID associated with the statement must

have SYSADM or DBADM authority.

Restrictions

v The local_data_type value cannot be LONG VARCHAR, LONG VARGRAPHIC,

DATALINK, or a user-defined data type.

Data type mapping

Reverse

Remote
data source
data type

DB2 local
data type

Forward

Figure 2. Forward and reverse data type mappings

Chapter 3. Data type mappings 45

v The data_source_data_type value cannot be a user-defined type.

v For nonrelational data sources, the degree to which you can override existing

data type mappings or create mappings is limited.

Procedure

To create a data type mapping, issue the CREATE TYPE MAPPING statement.

Creating a data type mapping for a data source data type –

example

In this example, all Oracle tables and views that use the Oracle NUMBER data

type must map to the DB2 DECIMAL(8,2) data type. The Oracle NUMBER data

type is mapped by default to the DB2 DOUBLE data type, a floating decimal data

type.

Use the ALTER NICKNAME statement to change the local types of existing

nicknames. You must modify each nickname separately to change the local data

type to DECIMAL(8,2).

If the nicknames do not exist, create a data type mapping that specifies the data

source type.

For example, to create the type mapping from Oracle NUMBER data type to the

DB2 DECIMAL(8,2) data type, issue the following statement:

CREATE TYPE MAPPING MY_ORACLE_DEC FROM SYSIBM.DECIMAL(8,2)

 TO SERVER TYPE ORACLE TYPE NUMBER

MY_ORACLE_DEC

The name that you give to the type mapping. The name cannot duplicate a

data type mapping name that already exists in the catalog.

FROM SYSIBM.DECIMAL(8,2)

The local DB2 schema and the local data type. If the length or precision

and scale are not specified, then these values are determined from the

source data type.

TO SERVER TYPE ORACLE

The type of data source.

TYPE NUMBER

The data source data type that you are mapping to the local data type.

User-defined data types are not allowed.

The DB2 DECIMAL(8,2) data type is defined locally for the Oracle columns.

When you create nicknames on Oracle tables and views that contain NUMBER

columns, the Oracle NUMBER data type maps to the DB2 DECIMAL(8,2) data

type.

Creating a type mapping for a data source data type and

version – example

In this example, Oracle tables and views exist on different versions of the Oracle

server. For all tables and views on Oracle Version 8.0.3 servers, columns that use

the Oracle NUMBER(23,3) data type must map to the DB2 DECIMAL(8,2) data

type.

46 Administration Guide for Federated Systems

The Oracle NUMBER(23,3) data type is mapped by default to the DB2

DECIMAL(23,3) data type.

Use the ALTER NICKNAME statement to change the local types of existing

nicknames. You must modify each nickname separately to change the local data

type to DECIMAL(8,2).

If the nicknames do not exist, create a data type mapping that specifies the data

source type.

For example, to map the Oracle NUMBER(23,3) data type to the DB2

DECIMAL(8,2) data type for Oracle servers using Version 8.0.3, issue the following

statement:

CREATE TYPE MAPPING ORA_DEC FROM SYSIBM.DECIMAL(8,2)

 TO SERVER TYPE ORACLE VERSION 8.0.3 TYPE NUMBER(23,3)

ORA_DEC

The name that you give to the type mapping. The name cannot duplicate a

data type mapping name that already exists in the catalog.

FROM SYSIBM.DECIMAL(8,2)

The local DB2 schema and the local data type. If the length or precision

and scale are not specified, then these values are determined from the

source data type.

TO SERVER TYPE ORACLE

The type of data source.

VERSION 8.0.3

The version of data source server. You must specify the version. You can

also specify the release and the modification of the release, as shown in

this example.

TYPE NUMBER(23,3)

The data source data type that you are mapping to the local data type.

User-defined data types are not allowed.

The federated database defines the DB2 DECIMAL(8,2) data type locally for the

Oracle columns on Version 8.0.3 servers.

When you create nicknames on Oracle tables and views that contain NUMBER

columns, the Oracle NUMBER data type maps to the DB2 DECIMAL(8,2) data

type.

Oracle tables and views on servers that do not use Version 8.0.3 use the default

data type mapping.

Creating a type mapping for all data source objects on a

server – example

In this example, the server is defined to the federated database as ORA2SERVER.

Each table contains a column with an Oracle DATE data type.

The Oracle DATE data type contains the century, year, month, day, hour, minute,

and second. The Oracle DATE data type is mapped by default to the local DB2

TIMESTAMP data type. However, when you query any object on this server, the

result set must return only the time information (hour, minute, and second).

Chapter 3. Data type mappings 47

Use the ALTER NICKNAME statement to change the local types of existing

nicknames. You must modify each nickname separately to change the local data

type to TIME.

If the nicknames do not exist, create a data type mapping that specifies the data

source type.

To map the Oracle DATE data type to the DB2 TIME data type for the

ORA2SERVER, issue the following statement:

CREATE TYPE MAPPING ORA2_DATE FROM SYSIBM.TIME

 TO SERVER ORA2SERVER TYPE DATE

ORA2_DATE

The name that you give to the type mapping. The name cannot duplicate a

data type mapping name that already exists in the catalog.

FROM SYSIBM.TIME

The local DB2 schema and the local data type. If the length or precision

and scale are not specified, then these values are determined from the

source data type.

TO SERVER ORA2SERVER

The local name of the data source server.

TYPE DATE

The data source data type that you are mapping to the local data type.

User-defined data types are not allowed.

The federated database locally defines the DB2 TIME data type for the Oracle

columns of data type DATE.

When you create nicknames on Oracle tables and views that contain DATE

columns, the Oracle DATE data type maps to the DB2 DECIMAL(8,2) data type.

Data source objects on other Oracle servers are not affected by this data type

mapping.

Altering a local type for a data source object (DB2 Control Center)

You use the ALTER NICKNAME statement instead of the CREATE TYPE

MAPPING statement to change a local data type. You can change the data type

from the DB2 Control Center or the DB2 command line.

Before you begin

The authorization ID issuing the statement must include at least one of the

following privileges:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname.

Restrictions

See “Restrictions on altering nicknames” on page 30.

48 Administration Guide for Federated Systems

About this task

When you create a nickname, the data types that are associated with the data

source object are stored in the federated database. For some data sources, the

wrapper specifies the data types for you. For other data sources, you must specify

the data types when you create the nickname.

You can specify a local type for a column of a specific data source object.

Important: Changing the local data type can result in errors or loss of information

if you change the local data type for a column to a type that differs greatly from its

remote type.

Procedure

To change the local data type from the DB2 Control Center:

1. Select the Nicknames folder.

2. Right-click on the nickname that you want to change and click Alter. The Alter

Nickname notebook opens.

3. On the Nicknames page, select the column that you want to change and click

Change. The Change Column window opens.

4. Select the data type.

5. Click OK to change the data type and close the window.

6. Click OK to alter the nickname and close the notebook.

To treat the contents of a local column that has a character data type as bit (binary)

data, use the FOR BIT DATA clause in the ALTER NICKNAME statement. When

you use this clause to change the local data type of a column, code page

conversions are not performed when data is exchanged with other systems.

Comparisons are done in binary, irrespective of the remote database collating

sequence.

Altering a local type for a data source object – examples

This topic provides examples that show how to change the data types for a data

source object.

Example: A numeric data type mapping

In an Oracle table for employee information, the BONUS column is defined with a

data type of NUMBER(32,3). The Oracle data type NUMBER(32,3) is mapped by

default to the DB2 data type DOUBLE, a double-precision floating-point number

data type. A query that includes the BONUS column might return values that look

like this:

5.0000000000000E+002

1.0000000000000E+003

The scientific notation indicates the number of decimal places and the direction

that the decimal point should be moved. In this example +002 signifies that the

decimal point should be moved two places to the right, and +003 signifies that the

decimal point should be moved three places to the right.

Queries that include the BONUS column can return values that look like dollar

amounts. You change the local definition for the BONUS column in the table from

the DOUBLE data type to DECIMAL data type. Use a precision and scale that

Chapter 3. Data type mappings 49

reflect the format of actual bonuses. For example, if the dollar portion of the

bonuses would not exceed six figures, map NUMBER(32,3) to DECIMAL(8,2).

Under the constraint of this new local type, queries that include the BONUS

column return values like this:

 500.00

1000.00

The nickname for the Oracle table is ORASALES. To map the BONUS column in

the ORASALES table to the DB2 DECIMAL (8,2) data type, issue the following

ALTER NICKNAME statement:

ALTER NICKNAME ORASALES ALTER COLUMN BONUS

 LOCAL TYPE DECIMAL(8,2)

ORASALES

The nickname that you defined for the Oracle table.

ALTER COLUMN BONUS

The name of the column that is defined locally in the federated database

SYSCAT.COLUMNS catalog view.

LOCAL TYPE DECIMAL(8,2)

Identifies the new local type for the column.

This mapping applies only to the BONUS column in the Oracle table that is

identified by the nickname ORASALES. All other Oracle data source objects that

include the BONUS column use the default data type mapping for the Oracle

NUMBER data type.

Example: A date data type mapping

The nickname for an Oracle table named SALES is ORASALES. The SALES table

contains a column that is the Oracle DATE data type. The default type mapping

for the Oracle DATE data type is to the DB2 TIMESTAMP data type. However, you

want to display only the date value when you retrieve data from this column. You

can alter the nickname for the SALES table to change the local type to the DB2

DATE data type.

ALTER NICKNAME ORASALES ALTER COLUMN ORDER_DATE

 LOCAL TYPE DATE

Example: A data type mapping for a nonrelational data source

The nickname for a table-structured file named drugdata1.txt is DRUGDATA1.

The drugdata1.txt file contains a column that lists pharmaceutical drug names.

The column name is DRUG. The DRUG column was originally defined as a

CHAR(20). The length of the column must be changed to CHAR(30). You can alter

the nickname for the drugdata1.txt file to change the mapping to the correct

length:

ALTER NICKNAME DRUGDATA1 ALTER COLUMN DRUG

 LOCAL TYPE CHAR(30)

Altering a local type for a data source object (DB2 command line)

You use the ALTER NICKNAME statement instead of the CREATE TYPE

MAPPING statement to change a local data type. You can change the data type

from the DB2 Control Center or the DB2 command line.

Before you begin

50 Administration Guide for Federated Systems

The authorization ID issuing the statement must include at least one of the

following privileges:

v SYSADM or DBADM authority

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Definer of the nickname as recorded in the DEFINER column of the catalog view

for the nickname.

Restrictions

See “Restrictions on altering nicknames” on page 30.

About this task

When you create a nickname, the data types that are associated with the data

source object are stored in the federated database. For some data sources, the

wrapper specifies the data types for you. For other data sources, you must specify

the data types when you create the nickname.

You can specify a local type for a column of a specific data source object.

Important: Changing the local data type can result in errors or loss of information

if you change the local data type for a column to a type that differs greatly from its

remote type.

Procedure

To change the local data type from command line prompt, use the ALTER

NICKNAME statement. For example:

ALTER NICKNAME nickname ALTER COLUMN column_name

 LOCAL TYPE data_type

To treat the contents of a local column that has a character data type as bit (binary)

data, use the FOR BIT DATA clause in the ALTER NICKNAME statement. When

you use this clause to change the local data type of a column, code page

conversions are not performed when data is exchanged with other systems.

Comparisons are done in binary, irrespective of the remote database collating

sequence.

Altering LONG data types to VARCHAR data types

To enable insert and update operations for LONG data types, you can alter the

LONG data types to the VARCHAR data type.

Table 4 lists the long data type by data source that you can alter.

 Table 4. LONG data types by data source that can be altered to the VARCHAR data type

Data source

Remote data

type Length

Local default

data type

ALTER to

VARCHAR

DRDA LONG

VARCHAR

1–32672 CLOB VARCHAR

Chapter 3. Data type mappings 51

Table 4. LONG data types by data source that can be altered to the VARCHAR data

type (continued)

Data source

Remote data

type Length

Local default

data type

ALTER to

VARCHAR

LONG

VARCHAR FOR

BIT DATA

1–32672 BLOB VARCHAR FOR

BIT DATA

Informix BYTE 1–32672 BLOB VARCHAR FOR

BIT DATA

TEXT 1–32672 CLOB VARCHAR

Microsoft

SQL Server

IMAGE 1–32672 host

vars; 1–8000

literal

BLOB VARCHAR FOR

BIT DATA

TEXT 1–32672 host

vars; 1–8000

literal

CLOB VARCHAR

Oracle NET8 LONG 1–32672 host

vars; 1–4000

literal

CLOB VARCHAR

LONG RAW 1–32672 host

vars; 1–4000

literal

BLOB VARCHAR FOR

BIT DATA

Sybase CTLIB IMAGE 1–32672 BLOB VARCHAR FOR

BIT DATA

TEXT 1–32672 CLOB VARCHAR

Teradata BYTE 32673–64000 BLOB VARCHAR FOR

BIT DATA(32672)

CHAR 32673–64000 CLOB VARCHAR(32672)

VARBYTE 32673–64000 BLOB VARCHAR FOR

BIT DATA(32672)

VARCHAR 32673–64000 CLOB VARCHAR(32672)

52 Administration Guide for Federated Systems

Chapter 4. Mapping functions and user-defined functions

Function mappings in a federated system

WebSphere Federation Server supplies default mappings between existing data

source functions and DB2 counterpart functions.

For the federated server to use a data source function, a mapping is needed from a

DB2 function or a function template to the data source function.

The default function mappings are in the wrapper modules.

For nonrelational data sources, you cannot override the existing function mappings

or create new mappings.

When to create your own function mappings

When a default function mapping is not available for a data source function, you

can create a function mapping.

One reason that a function mapping is not available is that the federated database

does not have a function that corresponds to the data source function.

Another reason a mapping is not available is that the data source has a similar

function to a DB2 function, but it does not return the same results. If the data

source returns slightly different results or different results for certain sets of input

data, the wrappers do not normally map to these functions. However, if you do

not care about the differences in the result sets, then you can create a mapping

between the functions. Creating a mapping might improve performance.

Use functions mappings when:

v A new built-in function becomes available at the data source

v A new user-defined function becomes available at the data source

v A DB2 counterpart function does not exist

v A counterpart function exists but returns slightly different results, which you do

not care about

The settings for function mappings are stored in the SYSCAT.FUNCMAPPINGS

catalog view.

When you create a function mapping, it is possible that the return values from a

function evaluated at the data source will be different than the return values from

a compatible function evaluated at the federated database. WebSphere Federation

Server uses the function mapping, but it might result in an SQL syntax error or

unexpected results.

Why function mappings are important

Function mappings are one of several important inputs to the pushdown analysis

performed by the query optimizer.

In deciding on the best query access plan, the query optimizer factors the

capabilities of the data source to perform a particular type of SQL function or

© Copyright IBM Corp. 1998, 2006 53

operation. If the function does not have a mapping, the function will not be sent to

the data source for processing. Functions and other operations that can be pushed

down to the data source improve performance.

If the data source has a similar function to a DB2 function, but it returns slightly

different results, creating a function mapping might improve performance. For

example, the Informix® STDEV (standard deviation) function produces different

results than the DB2 STDDEV function for some sets of input data. For this reason

the Informix wrapper does not have a default mapping between these two

functions. If you do not care about the result set differences, you might improve

the performance of queries that access Informix data sources and use the DB2

STDDEV function. By creating a function mapping between the Informix STDEV

and the DB2 STDDEV function, you provide the query optimizer the choice of

sending the processing of that function down to the data source.

How function mappings work in a federated system

When you submit queries to the federated server that contain one or more

functions, the federated server checks for information about the mappings between

the DB2® functions and the data source functions.

The federated server checks two places for mapping information:

v The wrapper. The data source wrapper contains the default function mappings.

v The SYSCAT.FUNCMAPPINGS catalog view. This view contains entries you

create that override or augment the default function mappings that are in the

wrapper. It also contains new mappings that you create when there is no default

function mapping. When multiple mappings can be applied to a function, the

most recently created one is applied.

Function mapping options specify information about the function and the potential

cost of processing a function at the data source. Function mapping options provide

information such as:

v Name of the remote data source function

v The estimated number of instructions processed the first and last time that the

data source function is invoked.

v Estimated number of I/Os performed the first and last time that the data source

function is invoked.

v Estimated number of instructions processed per invocation of the data source

function.

When you create a function mapping, you are mapping from a DB2 function or

function template to a counterpart function at the data source. When a DB2

counterpart function does not exist, or when you want to force the federated server

to use the data source function, you can create a function template to act as the

counterpart.

Requirements for mapping user-defined functions (UDFs)

Before you can invoke a data source user-defined function in a federated system,

the federated database must associate the data source function with a function

specification stored in the global catalog on the federated server.

There are two conditions under which the federated database can associate a

function specification with a data source function:

54 Administration Guide for Federated Systems

v The federated database has a function whose signature corresponds to that of

the signature of the data source function. A signature consists of a function name

and function input parameters. Signatures correspond when both the following

conditions are true:

– They contain the same names and the same number of parameters

– The data type of each parameter in one signature is the same as (or can be

converted to) the data type of the corresponding parameter in the other

signature.
v If the federated database does not have a function with the requisite signature,

you can define a function template that contains this signature. You then map

the function template to the data source function that you want to invoke.

The settings for function mappings are stored in the SYSCAT.FUNCMAPPINGS

catalog view.

Function templates

The federated server recognizes a data source function when there is a mapping

between the data source function and a DB2® counterpart function at the federated

database.

You can create a function template to act as the DB2 counterpart function when no

counterpart exists.

A function template is a DB2 function that you create for the purpose of forcing the

federated server to invoke a data source function. However, unlike a regular

function, a function template has no executable code. When the federated server

receives queries that specify the function template, the federated server will invoke

the data source function.

The function template is created with the CREATE FUNCTION statement using the

AS TEMPLATE parameter.

After you create a function template, you must then create the function mapping

between the template and the data source function. A function mapping is created

using the CREATE FUNCTION MAPPING statement.

Creating function templates

The federated server recognizes a data source function when there is a mapping

between the data source function and a counterpart function at the federated

database. You can create a function template to act as the counterpart when no

counterpart exists.

Before you begin

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SYSADM or DBADM authority

v IMPICIT_SCHEMA authority on the databaes, if the implicit or explicit schema

name of the function does not exist

v CREATEIN privilege on the schema, if the schema name of the function exists

Restrictions

Chapter 4. Mapping functions and user-defined functions 55

If the data source function has input parameters:

v The DB2 counterpart function must have the same number of input parameters

that the data source function has.

v The data types of the input parameters for the DB2 counterpart function must be

compatible with the corresponding data types of the input parameters for data

source function. The data type cannot be LONG VARCHAR, LONG

VARGRAPHIC, DATALINK, or a user-defined type.

If the data source function has no input parameters, the DB2 counterpart function

cannot have any input parameters.

Procedure

To create a function template:

1. Use the CREATE FUNCTION statement with the AS TEMPLATE parameter.

For example:

CREATE FUNCTION BONUS ()

 RETURNS DECIMAL(8,2)

 AS TEMPLATE

 DETERMINISTIC

 NO EXTERNAL ACTION

BONUS ()

The name you give to the function template.

RETURNS DECIMAL(8,2)

The data type of the output.

AS TEMPLATE

Indicates that this is a function template, not a function.

DETERMINISTIC

Specifies that the function always returns the same results for a given

set of argument values.

NO EXTERNAL ACTION

Specifies that the function has no external impact on objects that are not

managed by the database manager.
You must specify the DETERMINISTIC and NO EXTERNAL ACTION clauses

according to whether the function itself is deterministic and whether it causes

any external action. Otherwise, restrictions will be imposed on the SQL

operations that are supported with this function template.

2. After you create a function template, you must then create the function

mapping between the template and the data source function. A function

mapping is created using the CREATE FUNCTION MAPPING statement. For

example:

CREATE FUNCTION MAPPING MY_INFORMIX_FUN FOR BONUS()

 SERVER TYPE INFORMIX OPTIONS (REMOTE_NAME ’BONUS()’)

MY_INFORMIX_FUN

The name you give to the function mapping. The name cannot

duplicate a function mapping name that is already described in the

federated database global catalog. It must be unique.

FOR BONUS()

The local DB2 function template name. Include data type input

parameters in parenthesis.

56 Administration Guide for Federated Systems

SERVER TYPE INFORMIX

Identifies the type of data source which contains the function that you

want to map to.

OPTIONS (REMOTE_NAME ’BONUS()’)

An option that identifies the name of the remote data source function

that you are mapping to the local DB2 function template.

Providing function mapping overhead information to the query

optimizer

The query optimizer uses overhead information to estimate executing costs.

When a query that contains a function is received by the DB2 SQL Complier, the

query optimizer determines if the function can be pushed down to the data source.

Suppose that pushdown analysis determines that either the data source or the

federated database is able to process the function.

When you create a function mapping, you can provide the federated database with

important information about the potential cost, or overhead, of executing a data

source function at the data source. The query optimizer uses these overhead

estimates to compare the estimated cost of executing the data source function with

the estimated cost of executing the DB2 function.

This information helps the DB2 query optimizer determine the best strategy for

executing the query. When a distributed request is processed, the optimizer

evaluates multiple access strategies and estimates the overhead to invoke the DB2

function and the data source function. The strategy that is expected to cost the

least amount of overhead is used.

You include estimated overhead statistics in the CREATE FUNCTION MAPPING

statement. For example, the statement can specify the estimated number of

instructions that would be required to invoke the data source function. It can

specify the estimated number of I/Os that would be expended for each byte of the

argument set that is passed to this function. These estimates are stored in the

global catalog, and appear in the SYSCAT.FUNCMAPOPTIONS view. When a DB2

function is used in the mapping (instead of a data source function or a DB2

function template) the global catalog contains estimates of overhead that would be

consumed when the DB2 function is invoked. You can see these estimates in the

SYSCAT.ROUTINES view.

Function mapping options that specify function overhead -

examples

This topic lists the mapping options that specify function overhead and provides

examples.

To specify estimated statistics in the CREATE FUNCTION MAPPING statement,

use the function mapping options that specify function overhead. The privileges

held by the authorization ID of the statement must have SYSADM or DBADM

authority.

The following table lists the function mapping options that specify function

overhead and the default values for these options.

Chapter 4. Mapping functions and user-defined functions 57

Table 5. Function mapping options that specify function overhead

Option Valid settings

Default

setting

INITIAL_INSTS Estimated number of instructions processed the first

and last time that the data source function is invoked.

’0’

INITIAL_IOS Estimated number of I/Os performed the first and last

time that the data source function is invoked.

’0’

INSTS_PER_ARGBYTE Estimated number of instructions processed for each

byte of the argument set that is passed to the data

source function.

’0’

INSTS_PER_INVOC Estimated number of instructions processed per

invocation of the data source function.

’450’

IOS_PER_ARGBYTE Estimated number of I/Os expended for each byte of

the argument set that is passed to the data source

function.

’0″

IOS_PER_INVOC Estimated number of I/Os per invocation of a data

source function.

’0’

PERCENT_ARGBYTES Estimated average percent of input argument bytes that

the data source function will actually read.

’100’

Example: PERCENT_ARGBYTES function mapping option

Suppose that you want to map a user-defined function named US_DOLLAR at an

Oracle data source to a DB2 user-defined function that you create. The Oracle data

source server is called ORACLE2. You decide to name the DB2 user-defined

function DOLLAR and to name this function mapping ORACLE_DOLLAR. You

want set the PERCENT_ARGBYTES function mapping option to provide the

optimizer with more accurate overhead information. Use the following syntax:

CREATE FUNCTION MAPPING ORACLE_DOLLAR FOR DOLLAR()

 SERVER ORACLE2

 OPTIONS (REMOTE_NAME ’US_DOLLAR()’, PERCENT_ARGBYTES ’250’)

Example: INSTS_PER_INVOC function mapping option

Suppose that you want to map the local function UCASE(CHAR) to an Oracle

user-defined function called UPPERCASE. The Oracle function is at a data source

called ORACLE2. You want to include the estimated number of instructions per

invocation of the Oracle user-defined function. Use the following syntax:

CREATE FUNCTION MAPPING MY_ORACLE_FUN4 FOR SYSFUN.UCASE(CHAR)

 SERVER ORACLE2

 OPTIONS (REMOTE_NAME ’UPPERCASE’, INSTS_PER_INVOC ’1000’)

Updating overhead information

If the estimates of consumed overhead change, you can record the change in the

global catalog.

To record new estimates for the data source function, you must first drop or

disable the function mapping. Then re-create the mapping specifying the new

estimates in the CREATE FUNCTION MAPPING statement. The new estimates

will be added to the SYSCAT.FUNCMAPPINGS catalog view. To record changed

estimates for the DB2 function, you can update the SYSSTAT.ROUTINES catalog

view directly.

58 Administration Guide for Federated Systems

Specifying function names in a function mapping

The values that you enter in the CREATE FUNCTION MAPPING statement

depend on whether the functions that you are mapping together have the same

name or different names.

The privileges held by the authorization ID of the statement must have SYSADM

or DBADM authority.

Mapping functions with the same name

You can create a mapping between two functions (or a DB2 function template and

a data source function) that have the same name.

Procedure

To map two functions with the same name, issue the CREATE FUNCTION

MAPPING statement.

Example: You want to map a user-defined function named MYFUN at an Informix

data source to the DB2 user-defined function named TINA.MYFUN. The Informix

data source server is called INFORMIX2. The following statement maps the

function:

CREATE FUNCTION MAPPING FOR TINA.MYFUN(SYSTEM.INTEGER) SERVER INFORMIX2

Mapping functions with different names

You can create a mapping between two functions (or a DB2 function template and

a data source function) that have different names.

Procedure

To create a mapping between two functions with different names, issue the

CREATE FUNCTION MAPPING statement:

1. Assign the name of the DB2 function or function template to the function_name

parameter.

2. Specify a function mapping option called REMOTE_NAME and assign the

name of the data source function to this option. The REMOTE_NAME must be

less than 255 characters.

Example: You want to map a user-defined function named UPPERCASE at an

Oracle data source to the DB2 function UCASE(CHAR). The Oracle data source

server is called ORACLE2. You also want to include the estimated number of

instructions per invocation of the UPPERCASE function. You decide to name this

function mapping ORACLE_UPPER. The syntax would be:

CREATE FUNCTION MAPPING ORACLE_UPPER FOR SYSFUN.UCASE(CHAR)

 SERVER ORACLE2 OPTIONS

 (REMOTE_NAME ’UPPERCASE’, INSTS_PER_INVOC ’1000’)

How to create function mappings

Use the CREATE FUNCTION MAPPING statement to specify alternative function

mappings that override the default function mappings.

When you create alternative function mappings, the entries appear in the

SYSCAT.FUNCMAPPINGS catalog view.

Chapter 4. Mapping functions and user-defined functions 59

You can also use the CREATE FUNCTION MAPPING statement to specify

function mapping options. When you specify function mapping options, the

information appears in the SYSCAT.FUNCMAPOPTIONS catalog view.

With the CREATE FUNCTION MAPPING statement, you can:

v Create a function mapping for all data sources of a specific type. For example,

all Informix® data sources.

v Create a function mapping for all data sources of a specific type and version. For

example, all Informix 9 data sources.

v Create a function mapping for a specific server.

v Provide function mapping statistical information to the optimizer

v Disable a default function mapping or a function mapping that you defined.

You can issue the CREATE FUNCTION MAPPING statement in the DB2®

Command Center or in the command line processor (CLP). You can also embed the

CREATE FUNCTION MAPPING statement in an application program. The DB2

Control Center does not support creating or modifying function mappings.

Creating a function mapping for a specific data source type

You can create a mapping to a function for all data sources of a specific type.

Before you begin

The privileges held by the authorization ID of the statement must have SYSADM

or DBADM authority.

Restrictions

You cannot override the existing function mappings or create new mappings for

nonrelational data sources.

Procedure

To map a DB2 function template to a data source function, use the CREATE

FUNCTION MAPPING statement.

Example: Map a DB2 function template to an Oracle user-defined function for

all Oracle data sources

CREATE FUNCTION MAPPING MY_ORACLE_FUN1

 FOR NOVA.STATS (DOUBLE, DOUBLE)

 SERVER TYPE ORACLE

 OPTIONS (REMOTE_NAME ’STAR.STATISTICS’)

The template is called STATS and belongs to a schema called NOVA. The Oracle

user-defined function is called STATISTICS and belongs to a schema called STAR.

Creating a function mapping for a specific data source type

and version

You can create a mapping to a function for all data sources that use a specific

version of the data source type.

Before you begin

60 Administration Guide for Federated Systems

The privileges held by the authorization ID of the statement must have SYSADM

or DBADM authority.

Restrictions

You cannot override the existing function mappings or create new mappings for

nonrelational data sources.

Procedure

To create a mapping for a specific data source type and version, use the CREATE

FUNCTION MAPPING statement.

Example: Map a DB2 function template to a Sybase user-defined function for all

Sybase data sources that use Version 12

The template is called SYB_STATS and belongs to a schema called EARTH. The

Sybase user-defined function is called STATISTICS and belongs to a schema called

MOON. The CREATE FUNCTION MAPPING is:

CREATE FUNCTION MAPPING SYBASE_STATS

 FOR EARTH.SYB_STATS (DOUBLE, DOUBLE)

 SERVER TYPE SYBASE VERSION 12

 OPTIONS (REMOTE_NAME ’MOON.STATISTICS’)

Creating a function mapping for all data source objects on a

specific server

You can create a mapping to a function that is used by all data sources objects on a

specific remote server.

Before you begin

The privileges held by the authorization ID of the statement must have SYSADM

or DBADM authority.

Restrictions

You cannot override the existing function mappings or create new mappings for

nonrelational data sources.

Procedure

To create a function mapping for all data source objects on a specific server, use the

CREATE FUNCTION MAPPING statement.

Example: Map a function template called BONUS to a user-defined function

called BONUS

You only want the mapping to apply to an Oracle data source server called

ORA_SALES. Because the function names are the same, you do not need to specify

the REMOTE_NAME function mapping option.

CREATE FUNCTION MAPPING BONUS_CALC FOR BONUS()

 SERVER ORA_SALES

Chapter 4. Mapping functions and user-defined functions 61

User-defined functions in applications

Application developers often need to create their own suite of functions specific to

their application or domain. They can use user-defined scalar functions for this

purpose.

For example, a retail store could define a PRICE data type for tracking the cost of

items that it sells. This store might also want to define a SALES_TAX function.

This function would take a given price value as input, compute the applicable

sales tax, and return this data to the requesting user or application.

These functions can operate over all database types, including large object types

and distinct types. User-defined functions allow queries to contain powerful

computation and search predicates to filter irrelevant data close to the source of the

data, thereby reducing response time. The SQL optimizer treats user-defined

functions exactly like built-in functions such as SUBSTR and LENGTH. You can

develop applications using different application language environments, such as C,

C++, COBOL, and FORTRAN. The applications can share a set of SQL user-defined

functions even though they are developed using different application language

environments.

User-defined functions can manipulate data and perform actions. For example, you

might enable a user-defined function to send an electronic message or to update a

flat file.

In DB2®, user-defined functions can include:

v Functions that you define from scratch.

v Functions in the SYSFUN schema. Examples include mathematical functions

such as SIN, COS, and TAN; scientific functions such as RADIANS, LOG10, and

POWER; and general purpose functions such as LEFT, DIFFERENCE, and

UCASE.

Disabling a default function mapping

Default function mappings cannot be dropped. However, you can render them

inoperable by disabling them.

Before you begin

The privileges held by the authorization ID of the statement must have SYSADM

or DBADM authority.

Procedure

To disable a default function mapping, the CREATE FUNCTION MAPPING

statement specifies the name of the DB2 function and sets the DISABLE option to

’Y’.

Example: Disable a default function mapping between the DB2 SIN function

and a similar function on Oracle data sources

When a query that requests Oracle data and that references SIN is processed, either

function might be invoked. The function invoked depends on which function is

estimated by the query optimizer to require less overhead.

62 Administration Guide for Federated Systems

To ensure that the DB2 SIN function is invoked and that the Oracle SIN function is

not invoked, you must disable the default function mapping. Use the following

syntax:

CREATE FUNCTION MAPPING FOR SYSFUN.SIN(INT)

TYPE ORACLE OPTIONS (DISABLE ’Y’)

Dropping a user-defined function mapping

When you no longer require a function mapping that you created, you can delete

the function mapping.

Before you begin

The privileges held by the authorization ID of the statement must have SYSADM

or DBADM authority.

About this task

If you drop a user-defined function mapping that was created to override a default

function mapping, the default function mapping will be used.

User-defined function mappings are listed in the SYSCAT.FUNCMAPPINGS

catalog view.

Procedure

To drop a function mapping that you created, use the DROP FUNCTION

MAPPING statement.

Example: Drop a function mapping called BONUS_CALC

DROP FUNCTION MAPPING BONUS_CALC

Chapter 4. Mapping functions and user-defined functions 63

64 Administration Guide for Federated Systems

Chapter 5. Creating index specifications

Index specifications in a federated system

In a federated system, you use the CREATE INDEX statement with a nickname to

store information in the global catalog about the availability of an index on the

remote object. The query optimizer uses this information to optimize queries.

When you issue a CREATE INDEX statement

v If a nickname is created for a table, the CREATE INDEX statement collects index

information about the index that was created on the remote table.

v If a nickname is created for a view, the CREATE INDEX statement references the

nickname for the view and contains information about the index on the table

underlying the view.

The index specification tells the federated server about the columns and their

uniqueness properties that comprise a remote index. It does not tell the federated

server about the statistical properties of the index, such as, the number of unique

values of the index key.

You do not need to supply index specifications if the remote index was in place at

the time that the nickname was created.

A federated server does not create an index specification when you create a

nickname for:

v A table that has no indexes

v A view, which typically does not have any index information stored in the

remote catalog

v A data source object that does not have a remote catalog from which the

federated server can obtain the index information

Suppose that a table acquires a new index, in addition to the ones it had when the

nickname was created. Because index information is supplied to the global catalog

at the time the nickname is created, the federated server is unaware of the new

index. Similarly, when a nickname is created for a view, the federated server is

unaware of the underlying table (and its indexes) from which the view was

generated. In these circumstances, you can supply the necessary index information

to the global catalog. You can create an index specification for tables that have no

indexes. The index specification tells the query optimizer which column or

columns in the table to search on to find data quickly.

Use index specifications with relational data sources. Creating an index

specification for a nonrelational data source will not improve performance.

Creating index specifications for data source objects

When a nickname is created for a data source table, the federated server supplies

the global catalog with information about any indexes that the data source table

has. The optimizer uses this information to expedite the processing of distributed

requests. This information is a set of metadata and is called an index specification.

Before you begin

© Copyright IBM Corp. 1998, 2006 65

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SYSADM or DBADM authority

v One of CONTROL privilege on the object or INDEX privilege on the object. And

one of IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist, or CREATEIN privilege on the schema,

if the schema name of the index refers to an existing schema.

Restrictions

There are some restrictions when creating an index specification on a nickname.

v If the bind option DYNAMICRULES BIND applies, the statement cannot be

dynamically prepared. Also, you cannot use the INCLUDE, CLUSTER,

PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS, and ALLOW

REVERSE SCANS parameters in the CREATE INDEX statement.

v UNIQUE should be specified only if the data for the index key contains unique

values for every row of the data source table. The uniqueness will not be

checked.

v The sum of the stored lengths of the specified columns must not be greater than

1024.

v No LOB column, DATALINK column, or distinct type column based on a LOB

or DATALINK can be used as part of an index. This restriction is enforced even

if the length attribute of the column is small enough to fit within the 1024-byte

limit.

About this task

The federated server does not create an index specification if:

v A nickname is created for a table that has no index.

v A nickname is created for a data source object that does not contain indexes

such as a view or Informix synonym.

v A nickname is created for a nonrelational object, for example, a table-structured

file, Excel spreadsheet, BLAST algorithm, or XML tagged file.

v The remote index is on a LOB column.

v The remote index contains a total key length greater than 1024 bytes.

v The maximum number of key parts is more than 16.

In these circumstances the federated server does not store index specifications for

the data source objects. However, for the first two items in the previous list you

can supply the necessary index information to the global catalog. You can use the

CREATE INDEX statement to specify the index information.

Procedure

To create an index, you can embed the CREATE INDEX statement in an

application program or issue the statement as a dynamic SQL statement from the

Control Center or the command line.

When used with nicknames, the CREATE INDEX statement creates an index

specification in the federated global catalog; it does not create an index on the data

source table.

Use the following syntax to create an index specification:

66 Administration Guide for Federated Systems

CREATE INDEX index_name ON nickname

(column_name) SPECIFICATION ONLY

CREATE UNIQUE INDEX index_name ON nickname

(column_name DESC) SPECIFICATION ONLY

For an index specification, column_name is the name by which the federated server

references a column of a data source table.

Creating index specifications on tables that acquire new indexes

For situations in which a table acquires a new index, you should create an index

specification on the nickname that corresponds to the table.

Before you begin

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SYSADM or DBADM authority

v One of CONTROL privilege on the object or INDEX privilege on the object. And

one of IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist, or CREATEIN privilege on the schema,

if the schema name of the index refers to an existing schema.

Restrictions

There are some restrictions when creating an index on a nickname.

v If the bind option DYNAMICRULES BIND applies, the statement cannot be

dynamically prepared. Also, you cannot use the INCLUDE, CLUSTER,

PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS, and ALLOW

REVERSE SCANS parameters in the CREATE INDEX statement.

v UNIQUE should be specified only if the data for the index key contains unique

values for every row of the data source table. The uniqueness will not be

checked.

v The sum of the stored lengths of the specified columns must not be greater than

1024.

v No LOB column, DATALINK column, or distinct type column based on a LOB

or DATALINK can be used as part of an index. This restriction is enforced even

if the length attribute of the column is small enough to fit within the 1024-byte

limit.

About this task

There are several situations in which a table acquires a new index:

v You create a nickname for a table that does not have an index, but acquires an

index later

v You create a nickname for a table that has an index, but acquires another index

later

In these situations, you should create an index specification for the table so that

the SQL Complier can use this information when processing queries that reference

the table.

Procedure

Chapter 5. Creating index specifications 67

The following examples describe how to create an index specification for a

nickname that corresponds to a table that acquires an index.

Example: A table that has no index, later acquires an index

Suppose that you create the nickname EMPLOYEE for a data source table called

CURRENT_EMP, which has no indexes. Sometime after this nickname is created,

an index was defined on CURRENT_EMP using the WORKDEPT and JOB

columns for the index key.

To create an index specification that describes this index, the syntax would be:

CREATE UNIQUE INDEX JOB_BY_DEPT ON EMPLOYEE

(WORKDEPT, JOB) SPECIFICATION ONLY

where JOB_BY_DEPT is the index name.

Example: A table acquires a new index

Suppose that you create the nickname JP_SALES for a table called JAPAN_SALES.

A new index is later added to the table in addition to the ones it had when the

nickname was created. The new index uses the MARKUP column for the index

key.

To create an index specification that describes this index, the syntax would be:

CREATE UNIQUE INDEX JP_MARKUP ON JP_SALES (MARKUP) SPECIFICATION ONLY

where JP_MARKUP is the index name.

Creating index specifications on views

When a nickname is created for a view, the federated server is unaware of the

underlying table (and its indexes) from which the view was generated. Create an

index specification for the view so that the SQL Compiler can use this information

when processing queries that reference the view.

Before you begin

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SYSADM or DBADM authority

v One of CONTROL privilege on the object or INDEX privilege on the object. And

one of IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist, or CREATEIN privilege on the schema,

if the schema name of the index refers to an existing schema.

Restrictions

There are some restrictions when creating an index on a nickname.

v If the bind option DYNAMICRULES BIND applies, the statement cannot be

dynamically prepared. Also, you cannot use the INCLUDE, CLUSTER,

PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS, and ALLOW

REVERSE SCANS parameters in the CREATE INDEX statement.

v UNIQUE should be specified only if the data for the index key contains unique

values for every row of the data source table. The uniqueness will not be

checked.

68 Administration Guide for Federated Systems

v The sum of the stored lengths of the specified columns must not be greater than

1024.

v No LOB column, DATALINK column, or distinct type column based on a LOB

or DATALINK can be used as part of an index. This restriction is enforced even

if the length attribute of the column is small enough to fit within the 1024-byte

limit.

Procedure

To create an index specification for a view:

v Ensure that the column or columns that the table index is based on is part of the

view.

v If you want to create index specifications for all indexes on the underlying table,

each index specification must be created separately.

Example: Create an index specification that describes the REGION index

Suppose that you create the nickname JP_SALES2003 for a view called

JAPAN_SALES2003. The underlying table for this view is the JAPAN_SALES table

which contains several indexes: REGION, AMOUNT, SALES_REP. The CREATE

INDEX statement you create will reference the nickname for the view and contain

information about the index of the underlying table for the view.

CREATE UNIQUE INDEX JP_2003_REGION ON JP_SALES2003

(REGION) SPECIFICATION ONLY

where JP_2003_REGION is the index name, and JP_SALES2003 is the nickname for

the view JAPAN_SALES2003.

Creating index specifications on Informix synonyms

This topic describes the action that the federated server takes for Informix

synonyms based on a table or on a view:

Before you begin

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SYSADM or DBADM authority

v One of CONTROL privilege on the object or INDEX privilege on the object. And

one of IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist, or CREATEIN privilege on the schema,

if the schema name of the index refers to an existing schema.

Restrictions

There are some restrictions when creating an index on a nickname.

v If the bind option DYNAMICRULES BIND applies, the statement cannot be

dynamically prepared. Also, you cannot use the INCLUDE, CLUSTER,

PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS, and ALLOW

REVERSE SCANS parameters in the CREATE INDEX statement.

v UNIQUE should be specified only if the data for the index key contains unique

values for every row of the data source table. The uniqueness will not be

checked.

Chapter 5. Creating index specifications 69

v The sum of the stored lengths of the specified columns must not be greater than

1024.

v No LOB column, DATALINK column, or distinct type column based on a LOB

or DATALINK can be used as part of an index. This restriction is enforced even

if the length attribute of the column is small enough to fit within the 1024-byte

limit.

About this task

In Informix, you can create a synonym for a table or view. While the DB2

federated server allows you to create nicknames for Informix synonyms, the action

that the federated server takes depends on whether the synonym is based on a

table or a view:

v Suppose that a nickname is created for a synonym, and the synonym is based on

an Informix table. If the federated server determines that the table the synonym

refers to has an index, then an index specification is created for the synonym. If

the table that the synonym refers to does not have an index, then no index

specification is created for the synonym. However you can create an index

specification manually, using the CREATE INDEX statement.

v Suppose that a nickname is created for a synonym, and the synonym is based on

an Informix view. The federated server can not determine which underlying

table or tables the view is based on. Therefore no index specification is created

for the synonym. However you can create an index specification manually using

the CREATE INDEX statement.

Procedure

The following examples describe how to create an index specification on a

nickname that corresponds to an Informix synonym.

Example: A nickname is created on an Informix synonym that is based on a

table

When the synonym is based on an Informix table that does not contain an index,

you can create an index specification for the synonym to tell the optimizer which

column or columns to search on to find data quickly. The statement you create will

specify the nickname for the synonym, and you will supply information about the

column or columns in the table that the synonym is based on.

In this example, you create the nickname CONTRACTS for a synonym called

SALES_CONTRACTS. The table that this synonym is based on is called

SALES2006_TABLE and contains several indexes: REGION, AMOUNT,

SALES_REP. The CREATE INDEX statement you create will reference the nickname

for the synonym and contain information about the index of the underlying table

for the synonym.

To create an index specification that describes the REGION index, the syntax

would be:

CREATE UNIQUE INDEX NORTHWEST_2006_REGION ON CONTRACTS (REGION) SPECIFICATION ONLY

where NORTHWEST_2006_REGION is the index name and CONTRACTS is the

nickname for the synonym SALES_CONTRACTS.

Example: A nickname is created on an Informix synonym that is based on a

view

70 Administration Guide for Federated Systems

You create the nickname JP_SALES2003 for a synonym based on a view called

JAPAN_SALES2003. The underlying table for this view is the JAPAN_SALES table

which contains several indexes: REGION, AMOUNT, SALES_REP. The CREATE

INDEX statement that you create will reference the nickname for the synonym and

contain information about the index of the underlying table for the view.

When creating an index specification for a synonym based on a view, make certain

that the column or columns the table index is based on, is part of the view. If you

want to create index specifications for all indexes on the underlying table, each

index specification must be created separately.

To create an index specification that describes the REGION index, the syntax

would be:

CREATE UNIQUE INDEX JP_2003_REGION ON JP_SALES2003 (REGION) SPECIFICATION ONLY

where JP_2003_REGION is the index name and JP_SALES2003 is the nickname for

the view JAPAN_SALES2003.

Chapter 5. Creating index specifications 71

72 Administration Guide for Federated Systems

Chapter 6. Developing federated procedures

Federated procedures enable you to invoke procedures at a data source as if the

remote procedure is a local procedure.

Federated procedures

A federated procedure is a federated database object that references a procedure on a

data source. Federated procedures are sometimes called federated stored

procedures.

Federated procedures are not alternative names for data source procedures in the

same way that aliases are alternative names. A federated procedure is defined at

the federated database but calls a data source procedure when the federated

procedure is invoked. Because the federated procedure is a federated database

object, users or client applications can invoke the data source procedure logic by

calling a federated database procedure. The results of the data source procedure,

such as the output parameters, are returned by the federated procedure. Using a

federated procedure makes the location of the data source procedure transparent to

the user or the client application. You call the data source procedure by using the

name of the federated procedure.

A federated procedure is to a remote procedure what a nickname is to a remote

table. Nicknames and federated procedures are objects on the federated database.

A nickname is an object that references an object, such as a table or view, on the

data source. With a nickname, you can query a data source object. With a federated

procedure, you can call a data source procedure

Use the CREATE PROCEDURE (Sourced) statement to register a federated stored

procedure. You can embed the CREATE PROCEDURE (Sourced) statement in an

application program or issue the statement with dynamic SQL statements.

When you create a federated procedure, the data types for the parameters for the

data source procedure are mapped to the federated data types using the default

forward data type mappings.

You can create federated procedures for the following data sources:

v Oracle

v Sybase

For Oracle data sources, you can create federated procedures for Oracle procedures

or functions.

Important: You can only create federated procedures when you use a trusted, or

unfenced, wrapper to access the data source.

Restrictions on federated procedures

There are incompatibilities with and limitations on the federated procedures.

The restrictions that apply to local procedures also apply to federated procedures.

The key restrictions on federated procedures are as follows:

© Copyright IBM Corp. 1998, 2006 73

v Federation returns a maximum of one result set when you use federated

procedures.

v You can create federated procedures for Oracle and Sybase procedures.

v The federated procedures must be associated with a trusted wrapper.

The following sections highlight the additional restrictions that apply federated

procedures.

Result sets

For Oracle procedures, federation returns only one result set. If the data source

procedure returns multiple result sets, only the first result set is returned to the

user or client application. The other result sets are discarded, and the SQL0464W

warning message is returned.

For Sybase procedures that return an output parameter and a result set, the result

set is discarded. If the Sybase procedure returns a result set and return value, a

return value of 0 is provided, regardless of the actual return value from the data

source procedure. You will not receive a warning message in either of these

situations.

However, the result sets are discarded and the SQL0464W message is returned

when both of the following conditions are true:

v The federated procedure is defined for a Sybase procedure that returns result

sets, and

v The federated procedure is invoked inside a trigger or a user-defined function.

Federated procedures do not support WITH HOLD cursors, scrollable cursors, or

updatable cursors. If the data source procedure uses these types of cursors, you do

not receive a warning or error message. Applications that access result sets with

data source procedure that use these types of cursors might behave differently.

Typically the cursors are returned without the hold capability and forward

read-only cursors.

Sybase data sources

For Sybase server version 12.0, all of the parameters are input parameters.

Federated procedures cannot return an output parameter value. This is a Sybase

catalog limitation and does not apply to higher versions of Sybase, such as version

12.5 and version 15.

The DB2_RETURN_STATUS value is retrieved for Sybase procedures that return

result sets, but always returns a value of zero (0) regardless of the actual return

value from the Sybase procedure.

The Sybase wrapper cannot call a procedure in these situations:

v When another procedure is already called

v When another statement is executed during a single connection

To work around these limitations you can define the federated procedure on

another server. For example, the following statements succeed if the nickname

syb_nick and the procedure syb_proc are defined on the different servers. If the

nickname and the procedure are defined on the same server, the statements fail.

74 Administration Guide for Federated Systems

DECLARE clientcur CURSOR

FOR SELECT colsml,coldec,colvch,coltsp

FROM syb_nick

OPEN clientcur;

CALL syb_proc();

Federated clients

To retrieve data from remote result sets, your federated client must be DB2

Universal Database for Linux, UNIX, and Windows, version 8 or higher, or DB2

Database for z/OS.

Procedure calls and access levels

Procedure calls and access levels have these issues:

v By default, the CALL RESOLUTION IMMEDIATE clause is used with federated

procedures when you issue the PRECOMPILE command. The CALL

RESOLUTION DEFERRED clause is not supported with federated procedures.

v You cannot not see output when a federated procedure calls a data source

procedure that prints to a buffer or the standard output.

v When you call a federated procedure from an external user-defined function, the

federated procedure must not have the access level set to READS SQL DATA or

MODIFIES SQL DATA. Federated access is blocked inside external functions.

Data types

For the parameters and result sets, you can use all of the data types that are

supported for nickname columns except LOB data types. Federated procedures do

not support complex data types.

Transactions

Consider the following issues when using federated procedures with transactions:

v The data source procedure that the federated procedure references must not

issue a COMMIT or a ROLLBACK statement. Federation does not enforce this

restriction and data inconsistencies might occur if the data source procedure

issues a COMMIT or ROLLBACK statement.

v Federated procedures with the MODIFIES SQL DATA access level cannot be

invoked inside of triggers, dynamic compound statements, SQL scalar, tables,

row functions, and methods. After a SAVEPOINT statement is issued, you

cannot call a federated procedure with the MODIFIES SQL DATA access level.

DataJoiner® stored procedure syntax

The DataJoiner syntax to create stored procedure nicknames is not supported.

DataJoiner stored procedure nicknames that are migrated to WebSphere Federation

Server must be dropped. Create federated procedures to replace the DataJoiner

stored procedure nicknames by using the CREATE PROCEDURE (Sourced)

statement.

How procedures are invoked has also changed. Any applications or scripts that

invoke DataJoiner stored procedure nicknames will need to be migrated to

WebSphere Federation Server.

Chapter 6. Developing federated procedures 75

Overloaded procedures in federated systems

Overloaded procedures are procedures that have identical names and schemas.

Overloaded procedures can have a different number of parameters or different

parameter signatures. The purpose of overloading a procedure is to create similar

versions of a procedure.

The federated server allows overloaded procedures only if each procedure has a

different number of parameters.

Oracle allows overloaded procedures if each procedure has a different number of

parameters or if the parameter types are different. You can create federated

procedures for Oracle overloaded procedures.

To distinguish procedures that use the identical name, schema name and number

of parameters, you must specify the UNIQUE ID when you create the federated

procedure.

There are two ways that you can determine the UNIQUE ID, by using the

discovery feature in the Control Center and by querying the Oracle catalog.

Use the discover feature in the Control Center

When you create a federated procedure in the Control Center, the discovery feature

determines if the Oracle procedure is overloaded. The overloaded value is

displayed in the UNIQUE ID field for each Oracle procedure.

Query the Oracle catalog

To determine the UNIQUE ID, you can query the OVERLOAD column in the

Oracle SYS.ALL_ARGUMENTS catalog. The UNIQUE ID value is a character

literal that contains a number, such as 1. You can use the passthru mode on the

federated server or query the Oracle client directly.

For example, to query the Oracle catalog and display the signature and overload

column for a procedure that begins with HJZ, use the following SELECT statement:

SELECT owner, package_name, object_name, overload, position, argument_name, in_out,

data_type

 FROM all_arguments aa

 WHERE object_name like ’HJZ%’

 ORDER BY owner, package_name, object_name,overload, position;

The following output from the above query shows that the HJZ_PACK1 package

contains three procedures that use the name HJZTEST1. You determine the number

of procedures by looking at the OBJECT_NAME AND OVERLOAD columns. The

first procedure has one IN parameter with a number data type. The second

procedure has one IN parameter with a character data type. The third procedure

has one OUT parameter with a character data type and one IN parameter with a

number data type. The output shows that there are two procedures in the

HJZ_PACK1 package that use the name HJZTEST3. There is also a procedure with

the name HJZTEST1 that is not in the package. This last procedure has one IN

parameter that uses a number data type.

OWNER PACKAGE_NAME OBJECT_NAME OVERLOAD POSITION ARGUMENT_NAME IN_OUT DATA_TYPE

-------- ------------ ----------- -------- -------- ------------- ------ ---------

J15USER1 HJZ_PACK1 HJZTEST1 1 1 A IN NUMBER

J15USER1 HJZ_PACK1 HJZTEST1 2 1 A IN CHAR

J15USER1 HJZ_PACK1 HJZTEST1 3 0 - OUT CHAR

J15USER1 HJZ_PACK1 HJZTEST1 3 1 A IN NUMBER

76 Administration Guide for Federated Systems

J15USER1 HJZ_PACK1 HJZTEST3 1 1 A IN NUMBER

J15USER1 HJZ_PACK1 HJZTEST3 1 2 B OUT NUMBER

J15USER1 HJZ_PACK1 HJZTEST3 2 1 A IN CHAR

J15USER1 HJZ_PACK1 HJZTEST3 2 2 B OUT CHAR

J15USER1 - HJZTEST1 - 1 A IN NUMBER

9 record(s) selected.

To create a federated procedure for the second overloaded procedure with an IN

parameter of CHAR data type, issue the following CREATE PROCEDURE

statement:

CREATE PROCEDURE HJZTEST1 SOURCE J15USER1.HJZ_PACK1.HJZTEST1

 NUMBER OF PARAMETERS 1 UNIQUE ID ’2’

 FOR SERVER ORA_SERVER WITH RETURN TO CLIENT ALL;

Important: In the above example, the NUMBER OF PARAMETERS clause does not

uniquely identify the procedure. There are two procedures in the table

with the name HJZTEST1 and each procedure has one parameter. You

must specify the UNIQUE ID clause to indicate the overloaded

procedure that you want to use. Use the value from the OVERLOAD

column as the value for the UNIQUE_ID clause. When the UNIQUE ID

clause is specified, the NUMBER OF PARAMETERS clause is optional.

Use the NUMBER OF PARAMETERS clause to validate that the data

source procedure has the number of parameters that you expect.

Creating federated procedures

You must create a federated procedure for each data source procedure that you

want to invoke from the federated server.

Before you begin

v The procedure must already exist on the data source.

v Register a wrapper and server definition for the data source that contains the

procedures that you want to use.

v For data sources that require user mappings, create the user mappings between

the federated server and the data source server.

Restrictions

v The authorization ID of the statement must have at least one of the following:

– IMPLICIT_SCHEMA privilege on the database, if the schema name of the

procedure does not refer to an existing schema

– CREATEIN privilege on the schema, if the schema name of the procedure

refers to an existing schema

– SYSADM or DBADM authority
v For data sources that require user mappings, the data source authorization ID

for the CREATE PROCEDURE statement must include the privilege to select the

procedure description from the data source catalog tables.

About this task

In the CREATE PROCEDURE (Sourced) statement, the source procedure is the

procedure on the data source. The sourced procedure is the federated procedure.

For Oracle data sources, you can create federated procedures for Oracle procedures

or functions. Oracle functions are similar to Oracle procedures except that Oracle

functions use a return value. You can create a federated procedure and a function

Chapter 6. Developing federated procedures 77

mapping for the same Oracle function. Use a function mapping when you need to

use the Oracle function in SQL as a scalar function. Use a federated procedure

when you need to use the Oracle function in CALL statements. The return value

for the federated procedure appears at the beginning of the parameter list as an

extra OUT parameter. The name of the parameter is always DEFAULT.

You can create a federated procedure by using the Control Center or from the

command line. The Control Center populates the fields and settings that are based

on information from the data source procedure.

Procedure

To create a federated procedure, use one of the following methods:

 Method Description

Control Center 1. Right-click the Federated Stored

Procedures folder and click Create. The

Federated Stored Procedures folder is

located under the wrapper and server

definition that you registered for the data

source. The Federated Stored Procedures

folder appears only when the wrapper

that you registered is a trusted wrapper.

2. In the Discover window, generate a list

of potential data source procedures. To

specify the information for a single

procedure, click Add.

3. In the Create Federated Stored

Procedure window, select the check box

next to the procedures that you want to

create.

4. Click OK .

Command line Issue the CREATE PROCEDURE (Sourced)

statement. For example:

CREATE PROCEDURE

 federated_procedure_name

 SOURCE remote_schema_name.

remote_procedure_name

 FOR SERVER server_definition_name;

Use the SYSCAT.ROUTINESFEDERATED catalog view to see a list of the federated

procedures that you created.

To make changes to a federated procedure, you must drop the procedure and

create the procedure again with the new settings.

Discovering data source procedures

You can retrieve information about the data source procedures by using the

Discover window in the Control Center.

About this task

78 Administration Guide for Federated Systems

To discover data source procedures, the federated server searches the system

catalogs on the data source and retrieves information about the data source

procedures. The Control Center automatically populates the fields with the

required information.

Procedure

To discover data source procedures:

1. Access the Create Federated Stored Procedure window. Right-click the

Federated Stored Procedures folder and click Create.

2. In the Create Federated Stored Procedure window, click Discover.

3. In the Discover window, specify criteria that filters the search by schema,

package name, or procedure or function name. By default, system objects are

excluded from the search.

 Table 6. Examples of criteria that you can specify in the Discover window

Criteria Action

Schema names that start with a range of

letters of the alphabet, such as the letters, A

to P

Use the BETWEEN operator and specify the

value ’A’ AND ’P’ for the remote schema.

The filter returns information about the data

source procedures and functions with

schemas like ADMIN1, ADMIN2, ORA1,

ORA2, and PDB.

Specific schema names such as ADMIN1 and

PDB

Use the IN operator and specify the value

’ADMIN1’,’PDB’ for the remote schema. The

filter returns information about the data

source procedures and functions that are

only in the ADMIN1 or the PDB schemas.

All schemas except SCHEMA3 or SCHEMA6 Use the NOT IN operator and specify the

value ’SCHEMA3’ OR ’SCHEMA6’.

Procedure names that begin with PROC Use the LIKE operator and specify the value

PROC%.

 Note: When you specify a filter, you must use single quotation marks around the values

that you specify in the Value fields.

Tip: Use the Count button in the Discover window to determine how many

procedures will be located based on your criteria. If the number of

procedures is large, specify additional criteria to limit the search.

To review the information that is retrieved from the data source, select a procedure

from the list in the Create Federated Stored Procedures window and click

Properties. Verify the information and ensure that all of the required fields are

completed before you create the federated procedures.

Input and output parameters for federated procedures

The data types that are used by the data source procedure are mapped to federated

data types. This mapping includes data types for the input and output parameters

and data types for the columns in the result set. The federated server uses the

default forward data type mappings.

Chapter 6. Developing federated procedures 79

You can use the CREATE TYPE MAPPING statement to override the default type

mapping for the data source parameters. However, the type mappings of the result

set are not affected by user-defined type mappings.

Each argument in the CALL statement must be compatible with the corresponding

parameter in the procedure. Federated procedures follow the same parameter

assignment rules as local procedures.

Federation uses three types of parameters: IN, OUT, and INOUT.

Oracle procedures and functions

You can create federated procedures for Oracle functions. Oracle returns only a

single value for functions. The return value for the function is included as an

output parameter at the beginning of the function argument list. When you specify

the NUMBER OF PARAMETERS clause in the CREATE PROCEDURE (Sourced)

statement, do not count the return values.

For some Oracle data types, information about the precision, length and scale is

not stored in the Oracle catalog when the parameters of a procedure are declared.

When a federated procedure is created, information about the Oracle procedure is

gathered from the Oracle catalog. Because information about the precision, length

and scale is not stored in the Oracle catalog, the federated procedures behave in

the following way:

v Uses the maximum length for the parameter data types.

v Maps the Oracle NUMBER data types to the federated DOUBLE data type. You

can change this mapping by overriding the default forward data type mapping

for Oracle NUMBER.

Tip: Overriding the default forward data type mappings will affect other federated

DDL operations, such as CREATE NICKNAME. To avoid this problem,

change the type mapping before you create the procedure. Create the

procedure for the Oracle procedure with the new type mapping, then DROP

the new type mapping. Subsequent nicknames and procedures that you create

will use the default type mapping.

Sybase procedures

Sybase procedures use INPUT and OUTPUT parameters. The Sybase wrapper

maps a Sybase INPUT parameter to a federated IN parameter and a Sybase

OUTPUT parameter to a federated INOUT parameter.

The Sybase wrapper can return either an OUTPUT parameter or a result set. When

a Sybase procedure returns both an OUTPUT parameter and a result set, only the

parameter is returned. The result set is discarded. You do not receive an error or

warning when the result set is discarded.

Although you can use optional procedure parameters in Sybase, you cannot use

optional procedure parameters in federated procedures. You must specify all of the

parameters including the optional parameters, when you call the federated

procedure.

80 Administration Guide for Federated Systems

CREATE PROCEDURE (Sourced) statement - examples

Use the CREATE PROCEDURE (Sourced) statement to create federated procedures.

The examples show the required parameters, the optional parameters, and

parameters for specific data sources.

Required parameters

The following example shows the required parameters when you create a

federated procedure:

CREATE PROCEDURE PROC1 SOURCE BHATIA.PROC1_SYBASE

 FOR SERVER SYBASE_SERVER;

PROC1

Specifies the name of the federated procedure.

SOURCE BHATIA.PROC1_SYBASE

Specifies the name of the schema and procedure on the data source.

FOR SERVER SYBASE_SERVER

Specifies a server definition where the federated procedure is created.

Optional parameters - Sybase procedures

The following example shows the optional parameters when you create a federated

procedure for a Sybase procedure:

CREATE PROCEDURE PROC1 SOURCE BHATIA.PROC1_SYBASE

 NUMBER OF PARAMETERS 3 FOR SERVER SYBASE_SERVER

 SPECIFIC MYPROC1 WITH RETURN TO CLIENT ALL

 MODIFIES SQL DATA DETERMINISTIC EXTERNAL ACTION;

NUMBER OF PARAMETERS 5

Specifies the total number of IN, OUT, and INOUT parameters that the

Sybase procedure uses. Use this parameter when you have more than one

procedure with the same schema name and procedure name. For example,

if your schema is BHATIA and you have a PROC1 procedure with three

parameters and another PROC1 procedure with one parameter, the name

for both of these procedures is BHATIA.PROC1. The value for the

NUMBER OF PARAMETERS in the data source procedure indicates which

procedure you refer to in the CREATE PROCEDURE statement.

SOURCE BHATIA.PROC1_SYBASE

Specifies the schema and name for the Sybase procedure. For Sybase

procedures, you specify a two-part name in the CREATE PROCEDURE

statement. The format for this two-part name is

source_schema_name.source_procedure_name.

SPECIFIC MYPROC1

Specifies a unique name for the federated procedure that you are creating.

This parameter is used only for federated procedures and is not associated

with data source procedures. If you do not specify a unique name, a name

is generated by the federated database manager.

WITH RETURN TO CLIENT ALL

Specifies that the result set is returned to the client application. Federation

returns a maximum of one result set. If this parameter is not specified, the

default is WITH RETURN TO CALLER ALL.

MODIFIES SQL DATA

Indicates the level of data access for SQL statements that are included in

the federated procedure. If the clause specified does not match the Sybase

Chapter 6. Developing federated procedures 81

procedure, an error message is returned. If you do not specify this clause,

the clause for the Sybase procedure is used.

DETERMINISTIC

Specifies if the federated procedure always returns the same results for a

given set of argument values. This parameter can improve the performance

of the interaction between the federated server and the data source.

EXTERNAL ACTION

Specifies if the federated procedure takes an action that changes the state

of an object that is not managed by the database manager.

Optional parameters - Oracle procedures

The following example shows the optional parameters when you create a federated

procedure for an Oracle procedure:

CREATE PROCEDURE PROC2 SOURCE ZELLER_SCHEMA.ORACLE_PKG9.PROC2

 NUMBER OF PARAMETERS 5 UNIQUE_ID ’2’ FOR SERVER ORA_SERVER

 SPECIFIC MYPROC1 WITH RETURN TO CLIENT ALL

 MODIFIES SQL DATA DETERMINISTIC NO EXTERNAL ACTION;

NUMBER OF PARAMETERS 5

Specifies the total number of IN, OUT, and INOUT parameters that the

Oracle procedure uses. Use this parameter when you have more than one

procedure with the same schema name and procedure name. For example,

if your schema is ZELLER and you have a PROC1 procedure with two

parameters and another PROC1 procedure with three parameters, the name

for both of these procedures is ZELLER.PROC1. The value for the

NUMBER OF PARAMETERS in the data source procedure indicates which

procedure you refer to in the CREATE PROCEDURE statement. Oracle

REFCURSOR parameters must be included in the NUMBER OF

PARAMETERS count.

SOURCE ZELLER_SCHEMA.ORACLE_PKG9.PROC2

Specifies the schema, package, and name for the Oracle procedure or

function. If the Oracle procedure or function is in a package, you must

specify a three-part name in the CREATE PROCEDURE statement. The

format for this three-part name is

source_schema_name.source_package_name.source_procedure_name. If the Oracle

procedure or function is not in a package, you must specify a two-part

name in the CREATE PROCEDURE statement. The format for this two-part

name is source_schema_name.source_procedure_name.

UNIQUE_ID ’2’

Specifies the unique identifier for the Oracle procedure. Use the

UNIQUE_ID parameter only when the schema name, the procedure name,

and the number of parameters do not uniquely identify an Oracle

procedure. The UNIQUE ID is the value in the

ALL_ARGUMENTS.OVERLOAD column in the Oracle system catalog. If

you do not specify the UNIQUE ID parameter, the federated server detects

the overloaded procedures and returns an error. Use this option only with

Oracle procedures.

SPECIFIC MYPROC1

Specifies a unique name for the federated procedure that you are creating.

This parameter is used only for federated procedures and is not associated

with data source procedures. If you do not specify a unique name, a name

is generated by the federated database manager. This parameter is

optional.

82 Administration Guide for Federated Systems

WITH RETURN TO CLIENT ALL

Specifies that the result set is returned to the client application. Federation

returns a maximum of one result set. If this parameter is not specified, the

default is WITH RETURN TO CALLER ALL.

MODIFIES SQL DATA

Indicates the level of data access for SQL statements that are included in

the federated procedure. If the clause specified does not match the Oracle

procedure, an error message is returned. If you do not specify this clause,

the clause for the Oracle procedure is used.

DETERMINISTIC

Specifies if the federated procedure always returns the same results for a

given set of argument values. This parameter can improve the performance

of the interaction between the federated server and the data source.

NO EXTERNAL ACTION

Specifies if the federated procedure takes an action that changes the state

of an object that is not managed by the database manager.

Granting or revoking authorizations to call federated procedures

The administrator of the federated database must grant other users the required

authorizations to call the federated procedures.

Before you begin

The user that calls the federated procedure must have a valid user mapping from

the federated server to the data source. The remote user ID from the user mapping

must have the authorization on the data source that is equivalent to the EXECUTE

authorization on the federated server. A user can be granted EXECUTE

authorization on the federated procedure. But if the user authorization on the data

source is not equivalent to the EXECUTE authorization on the federated server,

calls to the data source procedure fail.

The authorization ID for the GRANT statement must have at least one of the

following authorities:

v The WITH GRANT OPTION for EXECUTE on the federated procedure

v SYSADM or DBADM authority

Procedure

To grant or revoke the authorization to call federated procedures:

Specify the authorization privileges by using the Control Center or from the

command line:

Chapter 6. Developing federated procedures 83

Method Description

Control Center 1. Right-click the name of the federated

procedure and click Privileges.

2. Select the user or group that you want to

set privileges for. To add a new user,

click Add User. To add a new group,

select the Group tab and click Add

Group.

3. From the Privileges: EXECUTE

drop-down box:

v Select Yes to grant only the EXECUTE

privilege.

v Select Grant to grant the EXECUTE

and WITH GRANT OPTION

privileges.

v Select No to remove the EXECUTE

privilege from the user or group.

4. You can grant or revoke privileges to

multiple users at the same time. Select

the users from the list and click Grant

All or Revoke All to grant or revoke the

EXECUTE privilege for the selected

users.

5. Click OK.

Command line Specify the privileges in the GRANT

statement.

Example 1:

To grant the EXECUTE privilege on

all procedures in the BHATIA

schema, including any procedures

that are created in the future, to

users in the HR_DEPT group, use

the following statement:

GRANT EXECUTE ON PROCEDURE

 BHATIA.* TO HR_DEPT

Example 2:

To grant the EXECUTE privilege on

the PROC1 procedure to user

ZELLER and give the this person

the ability to grant the EXECUTE

privilege on this procedure to

others, use the following statement:

GRANT EXECUTE ON PROCEDURE PROC1

 TO ZELLER

 WITH GRANT OPTION

Example 3:

To grant the EXECUTE privilege to

user ERFAN on the PROC2

procedure that was created with a

specific name of MY_PROC2, use

the following statement:

GRANT EXECUTE ON SPECIFIC

 PROCEDURE MY_PROC2 TO ERFAN

84 Administration Guide for Federated Systems

Locating parameter information

After you create the federated procedures, you can find information about the

input and output parameters by using the Control Center or by querying the

catalog views.

About this task

There are system catalog views that contain information about the federated

procedures:

v SYSCAT.ROUTINES

v SYSCAT.ROUTINESFEDERATED

v SYSCAT.ROUTINEOPTIONS

v SYSCAT.ROUTINEPARMS

v SYSCAT.ROUTINEPARMOPTIONS

Use the SYSCAT.ROUTINESFEDERATED view to determine the data source server

that the federated procedure is associated with.

Procedure

To locate federated procedure information:

Use one of the following methods:

 Method Description

Control Center Select the name of the federated procedure.

The parameter information is displayed in

the details pane on the right side of the

Control Center window.

Command line Query the SYSCAT.ROUTINEPARMS view.

For example, you create a federated procedure BHATIA.FEDPROC1 that is for the

data source procedure ZELLER.EMPLOYEE. The data source procedure uses one

input and one output parameter. You issue this statement:

CREATE PROCEDURE BHATIA.FEDPROC1 SOURCE ZELLER.EMPLOYEE

 NUMBER OF PARAMETERS 2 FOR SERVER S1;

The following examples show SELECT statements that find information about the

input and output parameters in the SYSCAT.ROUTINEPARMS catalog view:

SELECT rowtype, parmname, typename, ordinal

 FROM syscat.routineparms

 WHERE routinename=’FEDPROC1’ AND routineschema=’BHATIA’;

SELECT rowtype, char(parmname,30), char(typename,30), ordinal

 FROM syscat.routineparms

 WHERE routinename=’FEDPROC1’ AND routineschema = ’BHATIA’

 ORDER BY ordinal;

The routineschema parameter is the schema name of the federated procedure and

not the data source procedure.

Chapter 6. Developing federated procedures 85

Calling federated procedures

You call data source procedures the same way that you call local procedures. You

specify the federated procedure, which references the data source procedure, in a

CALL statement.

Before you begin

v The user that calls the federated procedure must have EXECUTE privilege on

the data source and a valid user mapping from the federated server to the data

source.

v For data sources that require a user mapping, the data source authorization ID

for the statement must have the privilege to call the data source procedure.

Restrictions

There are incompatibilities and limitations on calling federated procedures.

About this task

You can call a federated procedure by using the Command Editor or from the

command line.

Procedure

To call a federated procedure:

1. You must know the input and output parameters for the federated procedure

before you issue a CALL statement. Use one of the following methods to look

up the parameter information:

 Method Description

Control Center Click the Federated Stored Procedures

folder. Information about the parameters

appears in the properties pane on the lower

right side of the Control Center window.

You can see the name of each parameter, the

parameter data types, and the parameter

mode (IN, OUT, INOUT).

To access the Command Editor, click Tools,

Command Editor.

86 Administration Guide for Federated Systems

Method Description

Command line Issue a SELECT statement to look up the

parameter information in the

SYSCAT.ROUTINEPARMS view in the

federated database catalog. You can look up

information, such as the ordinal number, the

parameter name, and the parameter data

type. For example, if the federated

procedure FEDPROC1 is in the federated

schema BOB, issue this SELECT statement:

SELECT ordinal, char(parmname,30)

 AS name,

 rowtype, char(typename,30) AS type

 FROM syscat.routineparms

 WHERE routinename=’FEDPROC1’ AND

 routineschema = ’BOB’

 ORDER BY ordinal;

The result of the query lists the parameters:

ORDINAL NAME ROWTYPE TYPE

------- ---- ------- --------

1 P1 P INTEGER

2 P2 O VARCHAR

The P row type indicates an input

parameter. The O row type indicates an

output parameter. There is also a B row type

that indicates both an input and output

parameter, or INOUT parameter.

2. Issue the CALL statement either on the command line or in the Command

Editor. For example, if the FEDPROC1 federated procedure is defined with one

input parameter and one output parameter, you issue this CALL statement:

CALL FEDPROC1(10 , ?)

Authorization to call federated procedures

To call a federated procedure, you must have the correct authorizations on the

federated procedure and the data source procedure.

When you call a federated procedure, the user mapping and authorization

privileges of the user ID that created the federated procedure are used to access

the data source tables.

Example

The user ZELLER creates a federated procedure called FP1. The FP1 procedure

references a Sybase procedure that accesses a Sybase table. The remote

authorization ID in the user mapping for ZELLER has the privilege to update the

Sybase table. The user ZELLER grants the EXECUTE privilege to the user BHATIA

on the FP1 procedure. The user BHATIA must have a valid user mapping to a

remote authorization ID that has EXECUTE privilege on the Sybase procedure that

is referenced by the FP1 procedure. The remote authorization ID that user BHATIA

is mapped to does not need to have SELECT privilege on the Sybase procedure.

When the user BHATIA calls the FP1 procedure, the user BHATIA can update the

table in Sybase.

Chapter 6. Developing federated procedures 87

Altering or dropping federated procedures

You cannot alter a federated procedure directly. To make changes to a federated

procedure, you must drop the procedure and create the procedure again with the

new settings.

Before you begin

The Authorization ID for the DROP PROCEDURE statement must have one of the

following authorities:

v SYSADM or DBADM authority

v DROPIN privilege on the schema for the federated procedure

v Definer of the procedure as recorded in the DEFINER column of the catalog

view for the federated procedure

v CONTROL privilege on the federated procedure

About this task

When you drop a federated procedure, the procedure is deleted from the system

catalog on the federated database. The data source procedure that the federated

procedure references is not affected. When you drop a federated procedure, the

applications that are dependent on the dropped procedures are invalidated.

You can drop a federated procedure by using the Control Center or from the

command line.

Procedure

To drop a federated procedure, use one of the following methods:

 Method Procedure

Control Center 1. Expand the Federated Objects folder, the

Server definitions folder, and the

Federated Stored Procedures folder in

the object tree.

2. Right-click the federated procedure that

you want to drop and click Drop.

Command line Use the DROP statement. For example:

DROP PROCEDURE federated_procedure_name

Federated procedure troubleshooting

If you encounter problems with federated procedures, there are several ways that

you can troubleshoot the problems.

The following queries and diagnostic tools help you to view information about the

federated procedures. This information will assist you in resolving problems with

the federated procedures.

Verify data source procedure information

If the SQL1253N error is returned when you issue a CREATE PROCEDURE

statement, you can issue the following queries against the catalog tables on the

88 Administration Guide for Federated Systems

data source to verify information about the data source procedure. The SQL1253N

error indicates that the source procedure specified in the CREATE PROCEDURE

(Sourced) statement was not found at the data source. You can query the Oracle

server directly or use a pass-through session to query the Oracle server.

For Oracle procedures that are in a package:

SELECT owner, package_name, object_name, overload, parm_count

 FROM (

 SELECT owner, package_name, object_name, overload,

 SUM(case

 WHEN data_type IS NULL

 THEN 0

 ELSE 1

 END)

 AS parm_count

 FROM sys.all_arguments

 WHERE data_level = 0

 GROUP BY owner, package_name, object_name, overload

) aa

 WHERE object_name = ’’ AND

 package_name = ’’ AND

 owner = ’’ AND

 overload = ’’ AND <-- optional

 parm_count =; <-- optional

For Oracle procedures that are not in a package:

SELECT object_name, object_type, status

 FROM sys.all_objects

 WHERE owner = ’’ AND

 object_name = ’’ AND

 object_type IN (’PROCEDURE’, ’FUNCTION’)

For Sybase procedures:

SELECT id

 FROM dbo.sysobjects

 WHERE id = object_id(’.’) AND

 (TYPE = ’P’ OR TYPE =’XP’)

Diagnostic tools

Use the Explain utility, the DESCRIBE command, or the db2audit command to

diagnose problems with federated procedures.

For example, the FED_PROC1 procedure has three OUTPUT parameters. To use

the DESCRIBE command on the FED_PROC1 procedure, issue the following

command:

DESCRIBE CALL FED_PROC1(?,?,?);

System monitor

The system monitor elements in the federated database contain information about

federated procedures. The monitor elements are as follows:

v The Stored Procedure Time monitor element, stored_proc_time, contains the time

it has taken the data source to respond to federated procedure statements.

v The Rows Returned by Stored Procedures monitor element, sp_rows_selected,

contains the number of rows that are sent from the data source to the federated

server. You can use this element to calculate the average number of rows sent to

Chapter 6. Developing federated procedures 89

the federated server from the data source for each federated procedure. Or, you

can also calculate the average time to return a row to the federated server from

the data source.

v The Stored Procedures monitor element, stored_procs, contains a count of the

total number of procedures that the federated server has called from this data

source.

SQL error SQL30090 with return code 21

There are several situations in which why the SQL30090 error with return code 21

is returned. One of the most common situations is when a federated procedure is

being created using a fenced wrapper. Federated procedures can be created only on

trusted wrappers.

Result set not returned

A result set might not be returned to the client or caller for one of the following

reasons:

v The clause for returning result sets is not specified correctly in the federated

procedure.

v Some data sources do not return sets in the same order each time a procedure is

called. Because federated procedures return only the first result set, a different

result set might be returned from the data source when the federated procedure

is called.

For example, there are two procedures on the data source, PROCEDURE A and

PROCEDURE B. PROCEDURE B calls PROCEDURE A. The statements to create

these procedures are:

CREATE PROCEDURE A ()

BEGIN

 DECLARE cur1 CURSOR WITH RETURN TO CLIENT

 FOR SELECT * FROM t;

 OPEN cur1

END

CREATE PROCEDURE B (arg1 INT)

BEGIN

 DECLARE cur2 CURSOR WITH RETURN TO CLIENT

 FOR SELECT * FROM t;

 IF arg1<10) THEN

 CALL A();

 END IF;

 OPEN cur2

END;

The federated procedure FEDPROC1 references the data source PROCEDURE B.

The statement for the FEDPROC1 procedure is:

CREATE PROCEDURE FEDPROC1

SOURCE newton.B

FOR SERVER s1

NUMBER OF PARAMETERS 1

WITH RETURN TO CLIENT 1;

A local procedure calls the federated procedure FEDPROC1. The statement for the

local procedure is:

CREATE PROCEDURE local (arg1 INT)

 BEGIN

 CALL FEDPROC1 (arg1)

END;

90 Administration Guide for Federated Systems

When you issue the CALL LOCAL(1) statement, the cur1 result set from

PROCEDURE A is returned. The result set cur2 is not returned.

However, if you issue the CALL LOCAL(20) statement, the cur2 result set from

PROCEDURE B is returned.

Stored procedure nicknames from DataJoiner

DataJoiner stored procedure nicknames are not migrated to IBM WebSphere

Federation Server. You must drop the stored procedure nicknames that you used in

DataJoiner and create the procedures again using the CREATE PROCEDURE

(Sourced) statement.

Federated procedures are called differently than stored procedure nicknames in

DataJoiner. You might need to make updates to the applications or scripts that

used the DataJoiner stored procedure nicknames.

Pass-through session (Oracle only)

If you create a data source procedure, function, or package in a pass-through

session, a successful message is returned even if the object definition has an error.

The object is created on the Oracle server but it is marked INVALID. You cannot

create federated procedures on INVALID objects. When you attempt to create a

federated procedure that references an INVALID Oracle object, the CREATE

PROCEDURE (Sourced) statement fails.

Use one of the following methods to determine why an object is not valid:

v Use the SHOW ERRORS command in the SQL*Plus utility from Oracle.

v Query the Oracle sys.all_errors catalog table.

Chapter 6. Developing federated procedures 91

92 Administration Guide for Federated Systems

Chapter 7. Transparent DDL

What is transparent DDL

Transparent DDL provides the ability to create and modify remote tables through

the federated database without using pass-through sessions.

The SQL statements you use with transparent DDL are CREATE TABLE, ALTER

TABLE, and DROP TABLE.

A transparent DDL CREATE TABLE statement creates a remote table at the data

source and a nickname for that table at the federated server. It will map the DB2

data types you specify to the remote data types using the default reverse type

mappings. In general, the wrappers provide type mappings. You can also create

user-defined reverse type mappings to override the default mappings.

The advantage of using transparent DDL is that database administrators can use

procedures that they are familiar with to create both local and remote tables.

Transparent DDL centralizes table administration and facilitates granting

authorizations.

Transparent DDL is supported with the following data sources:

v DB2 for z/OS

v DB2 for iSeries

v DB2 Database for Linux, UNIX, and Windows

v DB2 Server for VM and VSE

v Informix

v Microsoft SQL Server

v ODBC

v Oracle

v Sybase

v Teradata

The database administrator can either use the DB2 Control Center or DDL

statements in the DB2 command line processor (CLP) to create the tables. Using

transparent DDL avoids the need to learn the different DDL syntax required for

each data source.

Before you can create remote tables on a data source through the federated

database, you need to configure access to the data source:

v The wrapper for that data source needs to be registered in the global catalog

v The server definition needs to be created for the server where the remote table

will be located

v The user mappings, if required, need to be created between the federated server

and the data source server

Use the remote table wizard in the DB2 Control Center to create remote tables.

The privileges held by the authorization ID of the transparent DDL statements

must include at least one of the following:

© Copyright IBM Corp. 1998, 2006 93

v SYSADM or DBADM authority

v CREATETAB authority on the database and USE privilege on the table space as

well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema

To issue transparent DDL statements, your authorization ID must have the

necessary privileges on the nickname (for the federated server to accept the

request), and the comparable privileges on the remote data source server (for the

data source to accept the request).

Remote LOB columns and transparent DDL

You specify the length of a LOB column when using transparent DDL.

Some data sources, such as Oracle and Informix, do not store the lengths of LOB

columns in their system catalogs. When you create a nickname on a table,

information from the data source system catalog is retrieved including column

length. Since no length exists for the LOB columns, the federated database assumes

that the length is the maximum length of a LOB column in DB2 Database for

Linux, UNIX, and Windows. The federated database stores the maximum length in

the federated database catalog as the length of the nickname column.

However, when you create a remote table using transparent DDL you must specify

the length of the LOB column. When the federated server creates a nickname on

the remote table, it stores the length you specify in the federated database catalog

as the length of the nickname column. The maximum length of a LOB column is 2

gigabytes.

Creating remote tables and transparent DDL

When a remote table is created through the federated database using transparent

DDL, several other actions occur.

When you create the remote table:

v A nickname is automatically created for the remote table. The nickname has the

same name as the table name specified in the CREATE TABLE statement. The

remote table has the same name as the table name unless you specify another

name using the REMOTE_TABNAME option.

v The schema of the remote table is the nickname schema unless you specify

another schema using the REMOTE_SCHEMA option.

v The nickname created using transparent DDL can be used like any other

nickname. In addition, you can ALTER and DROP the remote table (something

you cannot do with a nickname created using CREATE NICKNAME).

v A row is added in the SYSCAT.TABOPTIONS catalog view with an option name

of TRANSPARENT and a value of ’Y’.

Creating new remote tables using transparent DDL

To create a remote table using transparent DDL, you can use either the DB2

Control Center wizard or the CREATE TABLE statement.

Before you begin

94 Administration Guide for Federated Systems

Before you create a remote table, you must configure the federated server to access

that data source. This configuration includes:

v Creating the wrapper for that data source type

v Supplying the server definition for the server where the remote table will be

located

v Creating the user mappings between the federated server and the data source

server

To issue transparent DDL statements, your authorization ID must have the

necessary privileges on the nickname (for the federated server to accept the

request), and the comparable privileges on the remote data source server (for the

data source to accept the request).

The privileges held by the authorization ID issuing the transparent DDL statements

must include at least one of the following:

v SYSADM or DBADM authority

v CREATETAB authority on the database and USE privilege on the table space as

well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema

Restrictions

The following restrictions apply to creating a remote table using transparent DDL:

v You cannot modify or drop tables that were natively created at the remote data

source.

v Materialized query tables cannot be created on remote data sources.

v You can specify basic column information in the table definition, but you will

not be able to specify table options or column options. For example, the LOB

options (LOGGED and COMPACT) are not supported.

v You cannot specify a comment on a column.

v You cannot generate column contents.

v You can specify a primary key, but you cannot specify a foreign key or check

constraints. The columns used for a primary key must be NOT NULL, and

cannot include columns containing LOBs.

v You cannot modify the parameters of existing columns, such as the data type or

length.

v The DEFAULT clause in the CREATE TABLE statement is not supported.

About this task

Use the remote table wizard in the DB2 Control Center to avoid specifying a

parameter or option that is not supported. Through the wizard you can specify

columns by selecting from a list of predefined columns, or by specifying the

attributes for a new column.

Procedure

To create a remote table from the command line prompt, issue the CREATE TABLE

statement with the appropriate parameters set.

Chapter 7. Transparent DDL 95

To create a remote table in the DB2 Control Center, use the Create Remote Table

wizard:

1. Expand the Federated Database Objects folder.

2. Expand the wrapper and server definition objects for the data source that you

want to create a remote table for.

3. Right-click the Remote Tables folder and click Create. The Create Remote Table

wizard starts.

4. Complete the steps in the wizard.

Creating new remote tables using transparent DDL - examples

The following examples illustrate what to specify to create remote tables using

transparent DDL and the use of data type mappings.

When you create remote tables using transparent DDL:

v The remote data source must support the column data types and primary key

option in the CREATE TABLE statement.

Example: The remote data source does not support primary keys. Depending on

how the data source responds to requests it does not support, an error might be

returned or the request might be ignored.

v The remote server must be specified in the OPTIONS clause. The OPTIONS

clause can be used to override the remote name or the remote schema of the

table being created. The SQL_SUFFIX option is allowed at the end of the

CREATE TABLE statement. You can specify this option for any relational data

source to add data source-specific options to the CREATE TABLE statement that

is issued at the data source.

Example: You want to create the table EMPLOY on an Oracle server. In the

CREATE TABLE statement, use the DB2 data types when you specify each column.

Using the CLP, the syntax to create the table is:

CREATE TABLE EMPLOY

 (EMP_NO CHAR(6) NOT NULL,

 FIRSTNAME VARCHAR(12) NOT NULL,

 MIDINT CHAR(1) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 HIREDATE DATE,

 JOB CHAR(8),

 SALARY DECIMAL(9,2),

 PRIMARY KEY (EMP_NO))

 OPTIONS (REMOTE_SERVER ’ORASERVER’,

 REMOTE_SCHEMA ’J15USER1’, REMOTE_TABNAME ’EMPLOY’)

EMPLOY

The name of the nickname associated with the table.

REMOTE_SERVER ’ORASERVER’

The name that you supplied for the server in the CREATE SERVER

statement. This value is case-sensitive.

REMOTE_SCHEMA ’J15USER1’

The remote schema name. Although this parameter is optional, it is

recommended that you specify a schema name. If this parameter is not

specified, the nickname schema is used for the remote schema name. This

value is case-sensitive.

REMOTE_TABNAME ’EMPLOY’

The remote table name. This parameter is optional. If this parameter is not

specified, the local table name is used for the remote table name. This

96 Administration Guide for Federated Systems

value must be a valid name on the remote data source and cannot be an

existing table name. This value is case-sensitive.

In the example above, the federated database uses reverse data type mappings to

map the DB2 data types to Oracle data types. On the remote Oracle server, the

EMPLOY table is created using Oracle data types. The following table shows the

mappings from the DB2 data types to the Oracle data types for the columns

specified in the example.

 Table 7. An example of reverse data type mappings from the federated database to Oracle

Column DB2 data type specified in the

CREATE TABLE statement

Oracle data type used in the remote

table

EMP_NO CHAR(6) NOT NULL CHAR(6) NOT NULL

FIRST_NAME VARCHAR(12) NOT NULL VARCHAR2(12) NOT NULL

MID_INT CHAR(1) NOT NULL CHAR(1) NOT NULL

LAST_NAME VARCHAR(15) NOT NULL VARCHAR2(15) NOT NULL

HIRE_DATE DATE DATE

JOB CHAR(8) CHAR(8)

SALARY DECIMAL(9,2) NUMBER(9,2)

Altering remote tables using transparent DDL

You can alter remote data source tables that were created through the federated

database using transparent DDL. You cannot alter tables that were created directly

at the remote data source.

Before you begin

The privileges held by the authorization ID of the transparent DDL statements

must include at least one of the following:

v SYSADM or DBADM authority

v CREATETAB authority on the database and USE privilege on the table space as

well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema

To issue transparent DDL statements, your authorization ID must have the

necessary privileges on the nickname (for the federated server to accept the

request), and the comparable privileges on the remote data source server (for the

data source to accept the request).

Restrictions

The following restrictions apply to altering a remote table using transparent DDL:

v You cannot modify tables that were natively created at the remote data source.

v An existing primary key cannot be altered or dropped in a remote table.

v Altering a remote table invalidates any packages dependent on the nickname

associated with the remote table.

Chapter 7. Transparent DDL 97

v The remote data source must support the changes in the ALTER TABLE

statement. For example, suppose that the remote data source does not support

primary keys. Depending on how the data source responds to requests it does

not support, an error might be returned or the request might be ignored.

v You cannot specify a comment on a column.

v You cannot generate column contents.

v You can specify a primary key, but you cannot specify a foreign key or check

constraints. The columns used for a primary key must be NOT NULL, and

cannot include columns containing LOBs.

v You cannot modify the parameters of existing columns, such as the data type or

length.

v The DEFAULT clause in the ALTER TABLE statement is not supported.

About this task

You can use either the DB2 Control Center or the ALTER TABLE statement to

modify tables created through WebSphere Federation Server using transparent

DDL. Use the DB2 Control Center to avoid specifying a parameter or option that is

not supported. Using the ALTER TABLE statement you can:

v Add new columns

v Add the table primary key

Do not use the ALTER TABLE statement to add or modify column options. Use the

ALTER NICKNAME statement instead.

Procedure

To alter a remote table using transparent DDL, issue the ALTER TABLE statement:

Example: You want to add a primary key on a remote table EMPLOYEE that you

created using transparent DDL. Using the following ALTER TABLE statement to

modify the table:

ALTER TABLE EMPLOYEE

 ADD PRIMARY KEY (EMP_NO, WORK_DEPT)

The columns used for a primary key must be NOT NULL, and cannot be columns

that contain LOBs.

Example: You want to add the columns ORDER_DATE and SHIP_DATE to the

remote table SPALTEN that was created using transparent DDL. Using the

following ALTER TABLE statement to create the table:

ALTER TABLE SPALTEN

 ADD COLUMN ORDER_DATE DATE

 ADD COLUMN SHIP_DATE DATE

Dropping remote tables using transparent DDL

You can drop remote data source tables that were created through the federated

database using transparent DDL. You cannot drop tables that were created directly

at the remote data source.

Before you begin

98 Administration Guide for Federated Systems

The privileges held by the authorization ID of the transparent DDL statements

must include at least one of the following:

v SYSADM or DBADM authority

v CREATETAB authority on the database and USE privilege on the table space as

well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema

To issue transparent DDL statements, your authorization ID must have the

necessary privileges on the nickname (for the federated server to accept the

request), and the comparable privileges on the remote data source server (for the

data source to accept the request).

Restrictions

You cannot drop tables that were natively created at the remote data source.

About this task

To drop a remote table that was created through the federated database using

transparent DDL, you can use either the DB2 Control Center or the DROP

statement.

Dropping a nickname for a remote table created using transparent DDL merely

drops the local nickname for that table. The DROP NICKNAME statement does

not drop the remote table. You must use the DROP TABLE statement to drop the

remote table.

Dropping a remote table first deletes the table on the data source, then deletes the

corresponding nickname for the remote table in the federated database. Deleting

the nickname invalidates any packages based on that nickname.

Procedure

To drop a remote table, issue the DROP TABLE statement.

Example: To drop a table named SPALTEN, issue the following DROP statement:

DROP TABLE SPALTEN

where SPALTEN is the local name for the remote table.

Chapter 7. Transparent DDL 99

100 Administration Guide for Federated Systems

Chapter 8. Transaction support in a federated system

Understanding federated system transaction support

Knowledge of transaction processing concepts in a DB2 Database for Linux, UNIX,

and Windows distributed environment will help you understand federated system

transactions.

To understand federated system transaction processing, you should be familiar

with the following distributed transaction processing concepts:

v Unit of work (UOW)

v Remote unit of work (RUOW)

v Distributed unit of work (DUOW)

v Multisite update

v Transaction manager (TM)

v Resource manager (RM)

v Type 1 connection

v Type 2 connection

v One-phase commit

v Two-phase commit

These concepts work identically in both federated and non-federated database

systems. However, the scope of each concept changes in a federated system.

For example, a unit of work implicitly begins when any data in a database is read

or written. For a unit of work in a federated system, the database can be a

federated database or a data source database. For a distributed unit of work in a

federated system, you can access both a federated database and a data source

database.

An application must end a unit of work by issuing either a COMMIT or a

ROLLBACK statement, regardless of the number of databases that are accessed.

The COMMIT statement makes all changes within a unit of work permanent. The

ROLLBACK statement removes these changes from a database. Changes made by a

unit of work become visible to other applications after a successful commit.

Recommendation: Always explicitly commit or roll back units of work in your

applications.

In a distributed unit of work that involves updates of multiple databases on

multiple sites, data must be consistent. The multisite update or two-phase commit

protocol is commonly used to ensure data consistency across multiple databases

within a distributed unit of work.

Federated transactions support both one-phase commit protocol and two-phase

commit protocol. The DB2_TWO_PHASE_COMMIT server option enables

two-phase commit support for the following data sources:

v DB2 family data sources

v Informix

v Oracle

© Copyright IBM Corp. 1998, 2006 101

v Sybase

v MS SQL Server

When a data source is declared as a federated two-phase commit data source, that

is, the DB2_TWO_PHASE_COMMIT server option is set to “Y”, a commit against

this data source uses two-phase commit protocol, even if it is a single site update

transaction or a multi site update transaction.

When a data source is declared as a federated one-phase commit data source (the

default), and it is a single site update transaction, a commit against this data

source uses one-phase commit protocol.

In the following example of a one-phase commit operation, Oracle is defined as a

one-phase commit data source:

SELECT * FROM oracle_nickname

UPDATE oracle_nickname

COMMIT

In the following example of a two-phase commit operation, Oracle and DRDA are

defined as two-phase commit data sources:

SELECT * FROM oracle_nickname

UPDATE oracle_nickname

SELECT * FROM drda_nickname

UPDATE drda_nickname

COMMIT

What is an update in a federated system?

In a federated system, an update is not just a transaction that includes an INSERT,

UPDATE, or DELETE statement. There are certain operations that are considered

updates in a federated system and certain types of updates that are allowed in

federated system.

In a federated system, updates can be performed locally or remotely.

v Local site updates are updates to DB2 tables or views that do not reference

nicknames

v Remote site updates are updates to objects on a remote data source. Remote data

sources include:

– Another DB2 Database for Linux, UNIX, and Windows database or instance

on the federated server

– Another DB2 Database for Linux, UNIX, and Windows database or instance

on another server

– Data sources other than DB2 Database for Linux, UNIX, and Windows, such

as DB2 for iSeries, Informix, Oracle, and Teradata

There are four types of actions that the federated server considers to be update

transactions. The following table shows the updates that you can perform on a

federated system.

 Table 8. Types of updates and the site where the updates are performed

Type of action Local site Remote site Explanation

Local update (DDL and

DML)

Y N An update on an object in the

federated database.

102 Administration Guide for Federated Systems

Table 8. Types of updates and the site where the updates are performed (continued)

Type of action Local site Remote site Explanation

Remote update (nickname) N Y An update on a remote data

source object that you created a

nickname for.

Dynamic SQL in

pass-through sessions

N Y An update on a remote data

source object. You cannot use a

pass-through session to update

local objects. Even SELECT queries

sent in pass-through sessions are

considered to be an update action.

Transparent DDL Y Y A pair of transactions that create,

alter, or drop remote tables and

their corresponding nicknames in a

federated database. For example, a

pair of transactions that create a

remote table on a data source and

a nickname on the federated

server.

What is an update transaction in a pass-through session?

A federated server treats all dynamic SQL statements sent through pass-through

sessions as updates. This behavior ensures data integrity.

If a dynamic SQL statement that is sent through a pass-through session is

successful, the transaction is recorded as an update. The SQL can be any type of

statement, including SELECT statements.

Data sources that automatically commit DDL statements

Some data sources, such as Oracle, automatically commit the current transaction at

their data source sites as part of a DDL statement execution.

If you create a remote table using transparent DDL or in a pass-through session,

these data sources cannot rollback the remote table after the table is created. You

must delete the remote table manually.

User-defined functions that are pushed down to the data

source for processing

If a remote user-defined function performs an update on a data source, the

federated server is unaware of the update.

Because the federated server does not treat these user-defined functions as update

statements, all the statement level protection that the federated system applies to

the update operations is not applicable. As a result, data integrity might be

compromised in some situations.

Important: Data integrity cannot be guaranteed when a user-defined function that

is pushed down to a data source performs an update.

Chapter 8. Transaction support in a federated system 103

Two-phase commit for federated transactions

A federated system can use two-phase commit for transactions that access one or

more data sources. Two-phase commit uses the industry standard X/Open XA

protocol to coordinate the processing of distributed unit of work transactions.

In a two-phase commit operation, commit processing occurs in two phases: the

prepare phase and the commit phase. During the prepare phase in a federated

system, a federated server polls all of the federated two-phase commit data sources

that are involved in a transaction. This polling activity verifies whether each data

source is ready to commit or roll back the data. During the commit phase, the

federated server instructs each two-phase commit data source to either commit the

data or to roll back the transaction.

In a one-phase commit environment, multiple data sources are updated one data

source at a time using separate commit operations. This can cause data

synchronization problems if some data sources are successfully updated and others

are not.

For example, if a transaction withdraws funds from one account and deposits them

in another account using one-phase commit, the system might successfully commit

the withdraw operation and unsuccessfully commit the deposit operation. The

deposit operation can be rolled back, but the withdraw operation cannot because it

has already been successfully committed. The result is that the funds are virtually

″lost″.

In a two-phase commit environment, the withdraw and deposit transactions are

prepared together and either committed or rolled back together. The result is that

the integrity of the fund amounts remains intact.

 Related concepts

 Multisite Updates

 X/Open distributed transaction processing model

 “Data source requirements and configuration for federated two-phase commit

transactions” on page 116
Before enabling federated two-phase commit for a data source, you must ensure

it is a supported data source.

 “Recovering from federated two-phase commit problems” on page 123
A federated system can recover from problems during two-phase commit with

automatic resynchronization or manual recovery of indoubt transactions.

 “Federated two-phase commit performance” on page 127
Data sources that are configured for two-phase commit transactions incur a

performance penalty when you compare them to data sources that are

configured for one-phase commit transactions.
 Related tasks

 “Enabling two-phase commit for federated transactions” on page 114
To use federated two-phase commit for specific data sources, you must enable

the associated federated servers. The enablement process involves preparing the

federated server and modifying the data source server definition.

Planning for federated two-phase commit

Federated two-phase commit does not provide benefits in all business

environments. Also, there are several factors to consider before you decide to

deploy federated two-phase commit.

104 Administration Guide for Federated Systems

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.doc/doc/c0004786.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/c0004558.htm

To use two-phase commit for federated transactions, you must consider the

following issues:

v Whether your operating system and data source environment can support

two-phase commit for federated transactions.

v Whether your business environment requires two-phase commit for federated

transactions.

To decide whether or not two-phase commit is right for your business

environment, you need to understand how two-phase commit for federated

transactions works and the problems that it solves.

v How to configure the federated server and compatible data sources to use

two-phase commit for federated transactions.

There are basic federated server and data source requirements to use two-phase

commit for federated transactions as well as performance considerations you

must consider when deploying two-phase commit.

v To manually resolve indoubt transactions, you need to understand the inner

workings of two-phase commit for federated transactions.

Two-phase commit for federated transactions can resolve problems without

intervention. But when there are extended network outages, hardware failures,

or an urgent need to free up system resources, you can manually resolve

problems through heuristic processing.

 Related concepts

 “Manually recovering indoubt transactions” on page 124
If you cannot wait for resynchronization to automatically resolve indoubt

transactions, you can resolve the indoubt transactions manually. This process is

sometimes referred to as heuristic processing.

 “Data source requirements and configuration for federated two-phase commit

transactions” on page 116
Before enabling federated two-phase commit for a data source, you must ensure

it is a supported data source.
 Related tasks

 “Enabling two-phase commit for federated transactions” on page 114
To use federated two-phase commit for specific data sources, you must enable

the associated federated servers. The enablement process involves preparing the

federated server and modifying the data source server definition.

 Resolving indoubt transactions manually

Federated architecture for two-phase commit

Federated two-phase commit is based on the two-phase commit feature available

in DB2. In two-phase commit, the X/Open Distributed Transaction Processing

(DTP) model has multiple components: transaction identifiers, transaction

managers, and resource managers. In federated systems using federated two-phase

commit, another component is added, the federated transaction manager.

A federated server becomes a federated transaction manager if the server

coordinates activity for one or more remote data sources that use the two-phase

commit protocol. A federated transaction manager performs some transaction

management functions on behalf of the transaction manager. The client or

application that initiates a distributed unit of work transaction and the transaction

manager are unaware of the activity that the federated transaction manager

coordinates at the remote data sources. The federated transaction manager

communicates with DB2 Universal Database transaction managers using an XA

interface. In addition to any X/Open requirements for two-phase commit, the

Chapter 8. Transaction support in a federated system 105

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/t0004636.htm

transaction manager database must be accessible from the federated instance.

Resource managers follow the instructions that are provided by a federated

transaction manager to commit or roll back a transaction.

The following figure shows an example of a simple two-phase commit transaction

in a typical federated system, from client initiation to the data source updates.

Federated client

Transaction manager

DB2 UDB
for iSeries

DB2 for Linux,
Unix, and
Windows

DB2 UDB
for z/OS

DB2 UDB
for z/OS

Data sources managed by federated server

Other data
sources

Federated server

Federated
transaction
manager

Federated two-phase commit connections

Federated
database

DB2 database
Other transaction
management software

In the previous figure, the connection from the client to the transaction manager is

a type 2 connection. Each database connection also has its own sync point setting.

A sync point is a point in time when all the recoverable data that a program

accesses is consistent. Sync point two-phase connections support distributed unit of

work transactions with updates to multiple data sources.

When the client connects to the DB2 database, the transaction manager is aware of

the transaction, but no additional coordination is required from the federated

server. When the federated server connects to the data sources by using the

two-phase commit protocol, the federated server becomes the federated transaction

manager. The federated server monitors and coordinates the two-phase commits.

At this point, the transaction manager is unaware of the two-phase commit

transactions with the data sources. The transaction manager only knows that a

single transaction is being processed with the federated server.

Data sources are not capable of initiating resynchronization if a failure occurs in a

federated system. The federated server initiates the resynchronization process.

Figure 3. Simple federated two-phase commit transaction

106 Administration Guide for Federated Systems

Results can be unpredictable if you attempt to access a data source by using

multiple paths in the same transaction with federated two-phase commit. For

example, if the federated server is a resource manager to an external transaction

manager, the data source might be accessed indirectly from the federated server

and directly as a resource manager to the transaction manager. In this case, the

data source might not be able to tell whether these two paths are from the same

global transaction. The data source might create two transaction entries for the

same global transaction and treat each transaction as separate from the other,

possibly leading to unpredictable results. The data source might also detect that

the two paths are from the same global transaction, and reject the second path.

 Related concepts

 X/Open distributed transaction processing model

 DB2 transaction manager

Two-phase commit for federated transactions - examples

A federated system that uses two-phase commit can be configured in several

different ways. Configuration choices depend on the required solution.

Configurations can use Type 1 or Type 2 connections.

Type 1 connections are connections in which an application process is connected to

an application server according to the rules for remote unit of work.

Type 2 connections are connections in which an application process is connected to

an application server and establishes the rules for application-directed distributed

unit of work. The application server is then the current server for the process.

The following figure shows a DB2 Type 1 connection with a federated server

functioning as the transaction manager.

Chapter 8. Transaction support in a federated system 107

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/c0004558.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/c0005021.htm

The following figure shows a DB2 Type 2 connection with a federated server

functioning as the resource manager. In this configuration, all federated data

sources must be supported for federated two-phase commit and enabled for

federated two-phase commit.

Federated
Client

Federated
Client

Federated database Federated database

Sybase Sybase

Oracle Oracle
DB2 UDB
for z/OS Informix

One-phase One-phase

read read

read

update

update

update

Two-phase

Two-phase Two-phase Two-phase Two-phase

Two-phase

Figure 4. DB2 Type 1 connection with a federated server as the transaction manager

108 Administration Guide for Federated Systems

The following figure shows a DB2 Type 2 connection with a federated server

functioning as the transaction manager.

Federated
Client

Two-phase Two-phase Two-phase

Federated Two-phase Federated Two-phaseFederated Two-phase

DB2
(TM)

TM_DATABASE

DB2
(RM)

Oracle
Instance

Other
Data Sources

DB2 UDB
for z/OS

Federated
database

Figure 5. DB2 Type 2 connection with federated server as the resource manager

Chapter 8. Transaction support in a federated system 109

The following figure shows an XA connection with a federated server functioning

as the resource manager.

Federated
Client

Two-phase Two-phase Two-phase

Federated two-phase Federated one-phase
(Read-only)

Federated two-phase

DB2 UDB
for z/OS

TM_DATABASE

DB2
(RM)

Oracle
instance

Other
data sources

DB2Federated
database

Figure 6. DB2 Type 2 connection with a federated server as the transaction manager

110 Administration Guide for Federated Systems

Related reference

 CONNECT (Type 1) statement

 CONNECT (Type 2) statement

How federated two-phase commit transactions are processed

The federated server maintains data consistency and atomicity of the data sources

that it manages. The range of possible transactions depends on the type of

connection and whether the federated server is the transaction manager or resource

manager for the connection.

Atomicity is a database principal in which sets of operations are defined within

indivisible transactions. This principal ensures that the database is consistent at all

times because if a single operation within the indivisible transaction fails, the

whole transaction fails rather than compromising data integrity due to a partial

change.

For example, a transaction to transfer funds from one account to another involves

withdrawing funds from the first account and adding funds to the second account.

If only the withdrawal succeeds, the funds essentially cease to exist in the first

account.

The federated server processes federated update requests under strict rules. A

federated update is one of the following actions:

v A federated insert, update, or delete operation where the corresponding data

source supports insert, update, or delete operations. For example, some data

Federated
Client

Two-phase Two-phase Two-phase

Federated Two-phase Federated Two-phaseFederated Two-phase

DB2
(TM)

TM_DATABASE

DB2
(RM)

Oracle
Instance

Other
Data Sources

DB2 UDB
for z/OS

Federated
database

Figure 7. XA connection with federated server as the resource manager

Chapter 8. Transaction support in a federated system 111

http://publib.boulder.ibm.com/infocenter/db2help/help/topic/com.ibm.db2.udb.admin.doc/doc/r0000906.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000908.htm

sources do not support update operations. Some data sources are read-only, in

which case federated insert, update, or delete operations are not allowed.

v A successful pass-through operation inside a pass-through session.

v A transparent DDL operation, which is considered to be both a local update and

a federated update because it performs database update both locally and

remotely.

v A federated stored procedure with MODIFY SQL ACCESS.

Note: Do not use multiple paths to access the same data source within in a single

transaction. Such a transaction can become deadlocked. That is, the

transaction can hang. For example, do not use multiple federated servers to

refer to the same data sources in the same transaction.

The following table lists what happens in a single distributed unit of work

transaction including the type of connection, the type of commit, the federated

server role in the transaction, what operations are allowed, and how transparent

DDL can be used.

 Table 9. What happens in a single distributed unit of work transaction

Type of

commit

Type of

connection

Federated server

role Operations Transparent DDL

One-
phase

DB2 Type 1

or XA local

transaction

Sub-transaction

manager. Also acts

as the transaction

coordinator,

determines the

transaction outcome,

and delivers it to

each participating

resource manager.

One-phase commit

and two-phase

commit read

operations are

permitted. One

one-phase data

source can be

updated as long as

it is the only update

in the transaction.

Allowed and

managed according

to one-phase

commit data source

rules. Each

statement that is

issued must be the

only update in a

one-phase commit

transaction. Cannot

coexist with other

federated two-phase

commit data source

updates in the same

transaction. It is

strongly

recommended that

COMMIT or

ROLLBACK

statements be issued

before and after

transparent DDL

transactions occur.

Two-
phase

DB2 Type 1

or XA local

transaction

Transaction manager.

Also acts as the

transaction

coordinator,

determines the

transaction outcome,

and delivers it to

each participating

resource manager.

One-phase commit

and two-phase

commit read

operations are

permitted. Multiple

two-phase data

sources can be

updated.

Allowed and

managed according

to two-phase

commit data source

rules. Can coexist

with other federated

two-phase or

one-phase commit

data source updates

in the same

transaction.

112 Administration Guide for Federated Systems

Table 9. What happens in a single distributed unit of work transaction (continued)

Type of

commit

Type of

connection

Federated server

role Operations Transparent DDL

One-
phase

DB2 Type 2

or XA global

transaction

Can be the

transaction manager.

If not the transaction

manager, only relays

the outcome from

the external

transaction

coordinator to each

participating

resource manager.

One-phase commit

and two-phase

commit read

operations are

permitted.

One-phase updates

are not allowed

except for

DB2-coordinated

transactions which

can perform

federated one-phase

updates over a

Distributed

Relational Database

Architecture™

(DRDA) two-phase

inbound connection.

Allowed and

managed according

to one-phase

commit data source

rules. Each

statement that is

issued must be the

only update in a

one-phase commit

transaction. Cannot

coexist with other

federated two-phase

commit data source

updates in the same

transaction. It is

strongly

recommended that

COMMIT or

ROLLBACK

statements be issued

before and after

transparent DDL

transactions occur.

Two-
phase

DB2 Type 2

or XA global

transaction

Can be the

transaction manager.

If not the transaction

manager, only relays

the outcome from

the external

transaction

coordinator to each

participating

resource manager.

One-phase commit

and two-phase

commit read

operations are

permitted. Multiple

two-phase data

sources can be

updated.

Allowed and

managed according

to two-phase

commit data source

rules. Can coexist

with other federated

two-phase or

one-phase commit

data source updates

in the same

transaction.

How data consistency and atomicity are maintained

Federated servers attempt to ensure data consistency and maintain transaction

atomicity of data sources.

Any conflict between an application synchronization point setting and the update

capability of a target data source results in an error (SQL30090, reason code 18).

Local updates that include DDL made to the federated database cannot be mixed

within the same transaction as an update to a federated one-phase data source.

Transparent DDL

Using DDL and transparent DDL

Local updates that include DDL made to the federated database cannot be mixed

within the same transaction as an update to a federated one-phase data source.

Transparent DDL is an exception. For transparent DDL, both local updates and

data source updates are allowed regardless of the type of connection and whether

the data source is configured for one-phase or two-phase commit.

Chapter 8. Transaction support in a federated system 113

Transparent DDL creates a table on a remote data source and a nickname in the

local federated database for the remote table. A federated server treats transparent

DDL transactions as updates.

Transparent DDL provides the ability to create and modify remote tables through

the DB2 database system, without the need to use pass-through sessions. The SQL

statements for transparent DDL are CREATE TABLE, ALTER TABLE, and DROP

TABLE. For example, a transparent DDL CREATE TABLE statement creates a

remote table at the data source and a nickname for that table at the federated

server. The statement contains a local update operation and a remote update

operation.

Some data sources, such as Oracle, do not permit transparent DDL on a federated

two-phase commit connection.

 Related tasks

 Dropping a table
 Related reference

 CONNECT (Type 1) statement

 CONNECT (Type 2) statement

 CREATE TABLE statement

 ALTER TABLE statement

Enabling two-phase commit for federated transactions

To use federated two-phase commit for specific data sources, you must enable the

associated federated servers. The enablement process involves preparing the

federated server and modifying the data source server definition.

Before you begin

v When you enable federated two-phase commit for a data source, you increase

the number of records that are written to both the federated server database log

and the data source database log. Consider the impact this has on the

administration and maintenance of these log files in order to ensure that they

comply with your local policies.

v The data source that you want to use must be a supported federated two-phase

commit data source.

v For DB2 Universal Database for iSeries,version 5.3, and earlier and DB2

Universal Database for z/OS data sources, ensure that the configuration

parameter SPM_NAME is set to the default value, the server host name.

SPM_NAME defaults to a variant of the first seven characters of the TCP/IP

host name. DB2 Universal Database for iSeries, version 5.4, and later does not

require that you set SPM_NAME.

About this task

The DB2_TWO_PHASE_COMMIT server option enables two-phase commit for

data sources. You register a data source server definition by using the CREATE

SERVER statement. The value you set for DB2_TWO_PHASE_COMMIT persists for

all connections that are established under that server definition. You can change

the value at any time by using the ALTER SERVER statement. After the CREATE

SERVER or ALTER SERVER statement is successfully committed, the new setting is

available for use on subsequent outbound connection requests.

114 Administration Guide for Federated Systems

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/t0005370.htm
http://publib.boulder.ibm.com/infocenter/db2help/help/topic/com.ibm.db2.udb.admin.doc/doc/r0000906.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000908.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000927.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000888.htm

Clients and application programs can use the SET SERVER OPTION to temporarily

override the current value of the DB2_TWO_PHASE_COMMIT server option. The

SET SERVER OPTION statement must be run immediately after the connection to

the federated server database and before any connections are established to the

remote data sources. The command is in effect only for the duration of the

connection to the federated database. You cannot change the

DB2_TWO_PHASE_COMMIT server option once the federated server has

established a connection to the remote data source.

When you include the XA_OPEN_STRING_OPTIONS option in a CREATE

SERVER statement, you can embed specialized information in the default

XA_OPEN string. This embedded information can be any of the following kinds of

information:

v Unique IDs for transactions in addition to what IBM WebSphere Federated

Server provides

v User-defined parameters about how transactions are handled

v A user-defined string to append to the XA_OPEN request

When an XA_OPEN call is made, usually at the beginning of the first transaction

to a remote data source that uses two-phase commit, the wrapper appends the

value of the user-defined string onto the default XA_OPEN string for the

XA_OPEN call.

You can include both DB2_TWO_PHASE_COMMIT and

XA_OPEN_STRING_OPTIONS in a CREATE SERVER, SET SERVER, or ALTER

SERVER statement.

Procedure

In general, to enable two-phase commit for a federated data source:

1. Run the CREATE SERVER, ALTER SERVER, or SET SERVER statement with the

DB2_TWO_PHASE_COMMIT option set to Y.

2. Optional: Run the CREATE SERVER, ALTER SERVER, or SET SERVER

statement with the XA_OPEN_STRING_OPTIONS option.

Server option examples

This example shows how to set two-phase commit by using the CREATE SERVER

statement:

CREATE SERVER Net8_Server TYPE ORACLE VERSION 8.1.7 WRAPPER NET8

OPTIONS (DB2_TWO_PHASE_COMMIT ’Y’);

This example shows how to disable two-phase commit by using the ALTER

SERVER statement:

ALTER SERVER Net8_Server OPTIONS (SET DB2_TWO_PHASE_COMMIT ’N’);

This example shows how to set an XA trace file to D:\Temp\sybase_xa.log for the

Sybase wrapper using the ALTER SERVER statement and the

XA_OPEN_STRING_OPTIONS server option:

 ALTER SERVER Ctlib_Server OPTIONS (ADD XA_OPEN_STRING_OPTIONS

’-LD:\Temp\sybase_xa.log’);

This example shows how to temporarily disable two-phase commit by using the

SET SERVER OPTION statement:

SET SERVER OPTION DB2_TWO_PHASE_COMMIT TO ’N’ FOR SERVER Net8_Server;

Chapter 8. Transaction support in a federated system 115

Related concepts

 “Two-phase commit for federated transactions” on page 104
A federated system can use two-phase commit for transactions that access one

or more data sources. Two-phase commit uses the industry standard X/Open

XA protocol to coordinate the processing of distributed unit of work

transactions.
 Related tasks

 “Configuring DRDA data sources” on page 117
The federated server provides connectivity to DB2 data sources by using the

open DRDA protocol. This support is equivalent to that provided by the DB2

Connect™ server.

 “Configuring Oracle data sources” on page 118
There are several requirements and restrictions for using Oracle data sources for

federated two-phase commit.

 “Configuring Informix data sources” on page 119
There are several requirements and restrictions for using Informix data sources

for federated two-phase commit.

 “Configuring Microsoft SQL Server data sources” on page 120
There are several requirements and restrictions for using Microsoft SQL Server

data sources for federated two-phase commit.

 “Configuring Sybase data sources” on page 121
There are several requirements and restrictions for using Sybase data sources

for federated two-phase commit.
 Related reference

 CREATE SERVER statement

 ALTER SERVER statement

 SET SERVER OPTION statement

 RESET DATABASE MANAGER CONFIGURATION command

 UPDATE DATABASE MANAGER CONFIGURATION command

 resync_interval - Transaction resync interval configuration parameter

 tm_database - Transaction manager database name configuration parameter

 spm_name - Sync point manager name configuration parameter

 svcename - TCP/IP service name configuration parameter

Data source requirements and configuration for federated two-phase

commit transactions

Before enabling federated two-phase commit for a data source, you must ensure it

is a supported data source.

Federated systems support two-phase commit operations with the following data

sources:

v DB2 family data sources through the Distributed Relational Database

Architecture (DRDA) protocol:

– DB2 Universal Database for Linux, UNIX, and Windows, version 8.1 or later

– DB2 Universal Database for z/OS, version 7.1 or later

– DB2 Universal Database for iSeries, version 5.3 or later
v Informix IDS, version 7.31 or later, version 9.40 or later, version 10.0 or later

v Informix XPS, version 8.40 or later

116 Administration Guide for Federated Systems

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002170.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002165.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002178.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0001970.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0001988.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000310.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000314.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000339.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000273.htm

v Microsoft SQL Server 2000 and Microsoft SQL Server 2005 for a federated server

only on Windows

v Oracle, version 8.1.7 or later, with the XA library

v Sybase Adaptive Server Enterprise, version 12 or later, with the XA library for a

federated server only on Windows

If you attempt to enable federated two-phase commit for an unsupported data

source, you receive an SQL1881N error.

 Related concepts

 “Two-phase commit for federated transactions” on page 104
A federated system can use two-phase commit for transactions that access one

or more data sources. Two-phase commit uses the industry standard X/Open

XA protocol to coordinate the processing of distributed unit of work

transactions.

Configuring DRDA data sources

The federated server provides connectivity to DB2 data sources by using the open

DRDA protocol. This support is equivalent to that provided by the DB2 Connect

server.

In addition, for two-phase commit, the federated server interacts with each data

source using the industry-standard XA model.

Before you begin

Restrictions:

v Not all DB2 data sources support XA over DRDA natively. For those that do not,

such as DB2 Universal Databasefor z/OS and DB2 Universal Database for

iSeries, the federated server uses the syncpoint manager (SPM). The syncpoint

manager performs a mapping between the XA and non-XA two-phase-commit

flows that all DB2 servers support. When federated two-phase commit access is

provided by using the syncpoint manager, not all XA semantics are supported

because of incompatibilities between federated support and the syncpoint

manager. For example, transactions cannot be nested. All transactions must be

committed or rolled back before starting a new transaction.

v Federated two-phase commit supports Multiple Virtual Storage (MVS™), but

MVS does not allow a SAVEPOINT statement to be issued in a federated

two-phase commit transaction. You can control the rollback policy when a

two-phase commit error occurs by using the IUD_APP_SVPT_ENFORCE server

option.

v In a DB2-coordinated transaction, a DB2 Universal Database for z/OS client can

perform a federated one-phase update over a Distributed Relational Database

Architecture (DRDA) two-phase inbound connection. However, such an update

cannot be completed over an XA DRDA two-phase inbound connection. Nor can

a mix of one-phase and two-phase updates over a DRDA two-phase inbound be

completed.

v The XA_OPEN_STRING_OPTIONS server option is not supported for DRDA

data sources. If you use the option, an SQL1881 error is returned.

Requirements:

Chapter 8. Transaction support in a federated system 117

v For those DB2 data sources that support XA by using SPM rather than by

supporting XA natively, ensure that the SPM_NAME and SVCENAME

parameters in the database manager configuration are properly set to their

defaults.

Procedure

To configure a DRDA data source:

Run the CREATE SERVER, ALTER SERVER, or SET SERVER statement with the

DB2_TWO_PHASE_COMMIT option set to Y.

The DRDA wrapper automatically generates the following XA OPEN string for

DRDA data sources:

DB=dbname,UID=uid,PWD=password,TPM=FDB2,HOLD_CURSOR=T

 Related concepts

 Wrapper and wrapper modules
 Related tasks

 “Enabling two-phase commit for federated transactions” on page 114
To use federated two-phase commit for specific data sources, you must enable

the associated federated servers. The enablement process involves preparing the

federated server and modifying the data source server definition.
 Related reference

 spm_name - Sync point manager name configuration parameter

 svcename - TCP/IP service name configuration parameter

 SAVEPOINT statement

 CREATE SERVER statement

 ALTER SERVER statement

 SET SERVER OPTION statement

Configuring Oracle data sources

There are several requirements and restrictions for using Oracle data sources for

federated two-phase commit.

Before you begin

Restrictions:

v Pass-through DDL and transparent DDL directed to Oracle both fail with

SQL30090 reason code 21 (ORA-2089) Regular SQL submitted in pass-through

sessions works.

Requirements:

v The Oracle client used on the federated server should be a complete installation

to ensure that all libraries relevant to XA are present. Ensure that djxlinkOracle

was successfully run so that all DB2 and Oracle libraries are available and linked

properly. Note that the djxlink scripts are run automatically if you install the

Oracle client before you install the federated server.

v You must give the following privileges to all users that run two-phase commit

transactions from the federated server:

– grant select on dba_pending_transactions to USERID;

– grant select on dba_2pc_pending to USERID;

118 Administration Guide for Federated Systems

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.websphere.ii.db2udb.federation.overview.doc/prod_overview/cfpint07.html
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000339.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000273.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0003271.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002170.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002165.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002178.htm

– grant force transaction to USERID;
v Optionally, you can also give the following privilege to users that run two-phase

commit transactions from the federated server:

– grant force any transaction to USERID;
v If you intend to run more than 10 two-phase commit transactions

simultaneously, consider increasing the distributed_transactions parameter of

your Oracle server found in the init.ora file.

Procedure

To configure an Oracle data source:

1. Run the CREATE SERVER, ALTER SERVER, or SET SERVER statement with the

DB2_TWO_PHASE_COMMIT option set to Y.

The Oracle wrapper automatically creates the following XA OPEN string for

Oracle data sources:

Oracle_XA=Acc=Puid/password+SesTm=0+DB=dbname+SqlNet=dblink+Threads=true

For example:

XA_OPEN_STRING_OPTIONS ’+LogDir=/home/user/directory+DbgFl=0x7’

2. Specify additional XA options by using the XA_OPEN_STRING_OPTIONS

server option.

 Related concepts

 “Troubleshooting federated two-phase commit issues” on page 126
Troubleshooting federated two-phase commit issues is often specific to the data

source that is causing the issue.
 Related tasks

 “Enabling two-phase commit for federated transactions” on page 114
To use federated two-phase commit for specific data sources, you must enable

the associated federated servers. The enablement process involves preparing the

federated server and modifying the data source server definition.

 Configuring access to Oracle data sources
 Related reference

 CREATE SERVER statement

 ALTER SERVER statement

 SET SERVER OPTION statement

Configuring Informix data sources

There are several requirements and restrictions for using Informix data sources for

federated two-phase commit.

Before you begin

Restrictions:

v You cannot access Informix nicknames with a mix of a two-phase commit server

and a one-phase commit server in a single connection to a federated server.

v The WITH HOLD cursor option is not supported.

v The XA_OPEN_STRING_OPTIONS server option is not supported for Informix

data sources.

Requirements:

v The Informix database must have logging enabled.

Chapter 8. Transaction support in a federated system 119

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.websphere.ii.foundation.conn.fw.orc.doc/configuring/tlsorc01.html
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002170.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002165.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002178.htm

v The Informix XA library only allows one connection per thread. As a result, the

federated server cannot access Informix data sources with multiple servers that

are enabled for federated two-phase commit in a single connection. If an

application needs to use multiple servers that are enabled for federated

two-phase commit, complete the optional steps in the following procedure.

Procedure

To configure an Informix data source:

1. Run the CREATE SERVER, ALTER SERVER, or SET SERVER statement with the

DB2_TWO_PHASE_COMMIT option set to Y.

The Informix wrapper generates the following XA OPEN string automatically

for Informix data sources:

DB=dbname;RM=rmname;CON=con;USER=user;PASSWD=password

2. If an application needs to use multiple servers that are enabled for federated

two-phase commit, complete the following steps:

a. Copy the Informix wrapper libraries: libdb2informix.a, libdb2informixF.a,

and libdb2informixU.a.

b. Define multiple instances of the Informix wrapper by specifying a different

copy of the Informix wrapper libraries in the LIBRARY clause within the

CREATE SERVER statement.

c. Define each federated two-phase commit server for the different wrapper

instances.
For example:

CREATE WRAPPER wrapper1 library ’libdb2informix.a’

CREATE SERVER server1 type informix version 9.4 wrapper wrapper1 options

 (node ’inf1’, dbname ’firstdb’, db2_two_phase_commit ’Y’);

CREATE WRAPPER wrapper2 library ’libdb2informix2.a’

CREATE SERVER server2 type informix version 9.4 wrapper wrapper2 options

 (node ’inf2’, dbname ’seconddb’, db2_two_phase_commit ’Y’);

 Related tasks

 “Enabling two-phase commit for federated transactions” on page 114
To use federated two-phase commit for specific data sources, you must enable

the associated federated servers. The enablement process involves preparing the

federated server and modifying the data source server definition.

 Configuring access to Informix data sources
 Related reference

 CREATE SERVER statement

 ALTER SERVER statement

 SET SERVER OPTION statement

 DECLARE CURSOR statement

Configuring Microsoft SQL Server data sources

There are several requirements and restrictions for using Microsoft SQL Server data

sources for federated two-phase commit.

Before you begin

Restrictions:

v For Microsoft SQL Server data sources, federated two-phase commit is only

supported by IBM WebSphere Federated Server installed on Windows.

v The DB2 isolation level is not propagated to the Microsoft SQL server.

120 Administration Guide for Federated Systems

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.websphere.ii.db2udb.foundation.conn.fw.inf.doc/configuring/tlsinf01.html
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002170.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002165.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002178.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000937.htm

Requirements:

v For federated two-phase commit to work with Microsoft SQL, an extra server

option, XA_OPEN_STRING_OPTIONS, must be added to the server:

alter server S1 options(add xa_open_string_options

’RMRecoveryGuid=c200e360-38c5-11ce-ae62-08002b2b79ef’);

where RMRecoveryGuid = resource manager ID.

The resource manager ID is available in the following location of the Microsoft

SQL Server Registry:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer]

 "ResourceMgrID" = "{resource manager ID}"

Procedure

To configure a Microsoft SQL Server data source:

1. Run the CREATE SERVER, ALTER SERVER, or SET SERVER statement with the

DB2_TWO_PHASE_COMMIT option set to Y.

The Microsoft SQL Server wrapper automatically generates the following XA

OPEN string for Microsoft SQL Server data sources:

TM=tmname

2. Specify additional XA options in addition to the required RMRRecovery Guid

value by using the XA_OPEN_STRING_OPTIONS server option.

 Related tasks

 “Enabling two-phase commit for federated transactions” on page 114
To use federated two-phase commit for specific data sources, you must enable

the associated federated servers. The enablement process involves preparing the

federated server and modifying the data source server definition.

 Configuring access to Microsoft SQL Server data sources
 Related reference

 CREATE SERVER statement

 ALTER SERVER statement

 SET SERVER OPTION statement

Configuring Sybase data sources

There are several requirements and restrictions for using Sybase data sources for

federated two-phase commit.

Before you begin

Restrictions:

v For Sybase data sources, federated two-phase commit is only supported by IBM

WebSphere Federated Server installed on Windows.

v Pass-through DDL and transparent DDL directed to Sybase both fail with an

SQL910N error. Regular SQL submitted in pass-through sessions works.

Requirements:

v The Sybase database administrator must have a license for distributed

transaction management of Sybase Adaptive Server Enterprise (ASE) and must

enable the feature with the following command in the isql tool:

sp_configure ’enable dtm’, 1

Sybase ASE must be restarted for this parameter to take effect.

Chapter 8. Transaction support in a federated system 121

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.websphere.ii.foundation.conn.fw.mss.doc/configuring/tlsmss01.html
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002170.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002165.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002178.htm

v The user name that is specified in an open string must have the dtm_tm_role in

the corresponding Sybase ASE. The administrative user can assign this role with

the following command in the isql tool:

sp_role "grant", dtm_tm_role, user_name

v For a data source for Sybase Adaptive Server Enterprise (ASE) to act as a

resource manager to a federated database, a logical resource manager (LRM)

entry must exist in the xa_config file in the $SYBASE/$SYBASE_OCS/config

directory (version 12 or later) that maps the resource manager name to the

Sybase ASE name. Consult the Sybase ASE XA documentation for more

information.

The LRM name is used by the federated server in the XA OPEN string. The

federated server uses the Sybase ASE node name for the LRM name.

v Ensure that the server name specified in the XA configuration file xa_config is

present in the initialization file sql.ini in the $SYBASE/ini directory.

Procedure

To configure a Sybase data source:

1. Install the Sybase XA library file libxadtm.dll on the federated server.

2. Before you use federated two-phase commit functions, create the following

LRM entries in the $SYBASE/$SYBASE_OCS/config/xa_config file. If you do

not have write permissions for the xa_config file, create an xa_config file in

another directory and set its absolute path in the XACONFIGFILE environment

variable in the db2dj.ini file:

;one comment line is required

lrm=lrm_name

server=server_name

where server_name is an entry name in the $SYBASE/ini/sql.ini file.

3. The Sybase wrapper automatically creates the following default XA_OPEN

string for Sybase data sources:

-Nrmname -Uuserid -Ppassword

If you need to specify other options for the XA_OPEN string, use the

XA_OPEN_STRING_OPTIONS server option.

 Related concepts

 “Troubleshooting federated two-phase commit issues” on page 126
Troubleshooting federated two-phase commit issues is often specific to the data

source that is causing the issue.
 Related tasks

 “Enabling two-phase commit for federated transactions” on page 114
To use federated two-phase commit for specific data sources, you must enable

the associated federated servers. The enablement process involves preparing the

federated server and modifying the data source server definition.

 Configuring access to Sybase data sources
 Related reference

 CREATE SERVER statement

 ALTER SERVER statement

 SET SERVER OPTION statement

122 Administration Guide for Federated Systems

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.websphere.ii.foundation.conn.fw.syb.doc/configuring/tlssyb01.html
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002170.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002165.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0002178.htm

Recovering from federated two-phase commit problems

A federated system can recover from problems during two-phase commit with

automatic resynchronization or manual recovery of indoubt transactions.

 Related concepts

 “Two-phase commit for federated transactions” on page 104
A federated system can use two-phase commit for transactions that access one

or more data sources. Two-phase commit uses the industry standard X/Open

XA protocol to coordinate the processing of distributed unit of work

transactions.

Resynchronization for federated systems

Federated two-phase commit includes an automatic process that attempts to handle

errors during commit transactions.

Besides errors on the federated server, a federated environment increases the

potential for errors that result from network, communications, or data source

failures.

To ensure data integrity, the federated server handles these errors during the

federated two-phase commit process:

First phase error

If a database communicates that it has failed to prepare to commit a unit of

work, the federated server rolls back the unit of work during the second phase

of the commit process. During the second phase, the federated server sends a

rollback message to all participating data sources that are waiting for the

transaction outcome.

Second phase error

Error handling at this phase depends upon whether the second phase commits

or rolls back the transaction. The second phase only rolls back the transaction

if the first phase encountered an error.

If one of the participating data sources fails to commit or rollback the unit of work,

possibly due to a communications failure, the federated server retries the commit

or rollback through a process called resynchronization. Resynchronization is

initiated and managed by the federated server automatically. The calling

application is informed that the commit was successful through the SQLCA (SQL

communications area) if the application connects to the federated server through a

two-phase commit connection. The calling application is disconnected from the

federated server if the application connects to the federated server through a

one-phase commit connection.

Most data sources are not capable of initiating resynchronization if a failure occurs

in a federated system. The federated server initiates the resynchronization process.

In certain circumstances, a federated server might fail during transaction

processing, for example, due to a power failure. Resynchronization usually resolves

any distributed unit of work transactions without intervention.

Resynchronization attempts to complete all indoubt transactions. As part of normal

resynchronization, the resynchronization agent connects to the resource manager

database for a transaction and issues a commit or rollback decision. The federated

transaction manager then propagates that decision to the data sources that

participated in the distributed unit of work transaction.

Chapter 8. Transaction support in a federated system 123

Related concepts

 Error recovery during two-phase commit

Manually recovering indoubt transactions

If you cannot wait for resynchronization to automatically resolve indoubt

transactions, you can resolve the indoubt transactions manually. This process is

sometimes referred to as heuristic processing.

For example, the communications link between the external transaction manager

and a federated transaction manager fails in the middle of a transaction. If you

have enough information about the transaction, you can free resources on the

federated server and on remote data sources by rolling back the transaction from

the federated server.

Use heuristic processing only when you know the reason for the transaction

failure, and you must free locked resources immediately. In most situations, let the

automated resynchronization recover transactions. There are multiple layers of

transaction management in a federated system. Recovering transactions

heuristically is a complex and potentially risky process.

There are three basic ways to perform heuristic processing:

v The LIST INDOUBT TRANSACTIONS command

You can use this command line command to perform heuristic processing.

v The Indoubt Transaction Manager window

You can use this graphical user interface tool to perform heuristic processing.

v Heuristic APIs

You can use these APIs within your applications to perform heuristic processing.

The specific operations and tasks that you use to perform heuristic processing

varies, depending on the circumstances of the error.

In federated systems, when a heuristic processing request is sent to a federated

transaction manager, the resulting decision to commit or roll back must be

compatible with the actual status of the indoubt transaction on the federated

server. Otherwise, an error message is returned.

The status of federated two-phase commit in doubt transactions is slightly different

than basic DB2 two-phase commit in doubt transactions:

v A status of (d) means that the transaction is missing commit acknowledgement

from one or more federated data sources.

v A status of (b) means that the transaction is missing rollback acknowledgement

from one or more federated data sources.

If you cannot successfully commit or rollback a transaction with status (d) or (b),

you can specify that the transactions be forgotten by using option (f). However,

when you use the (f) option, all records of the transaction are erased from the

federated server and you must manually clean up any remaining synchronization

problems on the involved data sources. Only use the (f) option when it is

absolutely necessary, such as when a remote server crashes or connections to

remote servers are dropped and there is an urgent requirement to free up resources

and use it with caution.

124 Administration Guide for Federated Systems

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/c0005034.htm

Note: Because the (d) and (b) statuses are new for WebSphere Federation Server

v9.1, down-level federated clients cannot support them. If you use a

down-level client to manually recover indoubt transactions, the (d) and (b)

statuses are mapped to status (m), instead, which is not an accurate value.

To prevent inaccurate information when you are manually recovering

indoubt transactions, be sure to use a v9.1 federated client. By default, the

computer that runs WebSphere Federated Server v9.1 includes the v9.1

federated client.

 Related concepts

 Indoubt transaction management APIs
 Related tasks

 Resolving indoubt transactions manually
 Related reference

 LIST INDOUBT TRANSACTIONS command

Tracing distributed unit of work transaction states across data

sources

If you decide to resolve indoubt transactions manually instead of letting

synchronization resolve them automatically, tracing transactions in the federated

system is essential. When you are tracing an indoubt distributed unit of work

transaction, the only way to determine the data source or data sources that failed is

to capture the XID for the failed transaction.

You must look for that XID in the data source database managers for all of the

data sources that a federated server might have accessed as a part of the

distributed unit of work transaction.

To determine the identifier and state of each transaction that is involved in the

distributed unit of work that you want to trace, issue the LIST INDOUBT

TRANSACTIONS command in your application database, the federated database,

and any data sources in the distributed unit of work transaction.

Note: Each data source that supports the two-phase commit protocol might use a

different command. Search for the string XID in the command

documentation for your specific data source.

The federated transaction manager generates an XID in hexadecimal format during

transaction processing. This XID begins with the format identifier of F2PC, which

is the number 46325243 in hexadecimal format. The federated transaction manager

sends the XID to the data sources. Before a federated server sends an XID to a data

source, however, the federated server changes the XID so that it conforms to the

XID format of that data source. These modifications include updating the branch

qualifier length section of the XID and adding the branch qualifier section of the

XID.

You might need to compare XIDs across several data sources, so you must know

which part of the XID that you can accurately compare across your environment

when you trace an XID.

For example, the transaction manager is a DB2 database. When you issue the LIST

INDOUBT TRANSACTIONS command at the database, a string in hexadecimal

representation is returned for the transaction XID that is similar to the following

one:

Chapter 8. Transaction support in a federated system 125

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/c0001922.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/t0004636.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0001963.htm

463250430000019 000000004739314533463135 2E47453934000000 000000000000E80000

This string is actually composed of several distinct parts:

 Format ID Transaction

identifier

length

Branch

qualifier

length

Transaction identifier

46325043 00000019 00000000 4739314533463135 2E47453934000000

000000000000E800 00

The values listed in the string are hexadecimal. For example, the transaction

identifier length (hexadecimal 19) represents the decimal value 25.

If that same XID is passed from a federated server that acts as a federated

transaction manager to a data source that acts as a resource manager, the XID

string is appended. For example, the XID that is passed to a resource manager for

a DB2 database system for Windows data source changes to the following format:

463252430000019 000000014739314533463135 2E47453934000000 000000000000E8000001

Here is that same changed XID string broken down into the standard parts:

 Format ID TID length Branch

qualifier length

Transaction identifier Branch

qualifier

46325043 00000019 00000001 4739314533463135

2E47453934000000

000000000000E800 00

01

The branch qualifier length now has a 1, and the branch qualifier section is added.

However, the transaction identifier field has not changed. You can still trace the

XID across different data sources by limiting your search string input to the

transaction identifier section.

 Related reference

 LIST INDOUBT TRANSACTIONS command

Troubleshooting federated two-phase commit issues

Troubleshooting federated two-phase commit issues is often specific to the data

source that is causing the issue.

Applications must handle error codes that indicate that transactions have timed

out, specifically -913 and -918 error codes in addition to checking for -911 error

codes.

Oracle data source troubleshooting

Try the following methods to troubleshoot issues with Oracle data sources.

v To log information:

db2 "alter server ora1 options (add XA_OPEN_STRING_OPTIONS

’+LogDir=C:\temp+DbgFl=0x7’)

Where C:\temp is the full path to the location where you want the log file

created. Logging information can significantly slow performance, so log

information only when you are troubleshooting issues.

126 Administration Guide for Federated Systems

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0001963.htm

v To display trace information, add the following lines to the Oracle client

sqlnet.ora file:

TRACE_LEVEL_CLIENT=16

TRACE_DIRECTORY_CLIENT=C:\temp

You can also set TRACE_LEVEL_CLIENT to a lower number, such as 4 or 8.

Displaying trace information can significantly slow performance, so enable trace

level information only when you are troubleshooting issues.

v To list pending transactions exist on the Oracle data source:

select * from dba_pending_transactions where formatid=1177702467;

select * from dba_2pc_pending;

To list the state of a transaction and the ID of a transaction:

select A.STATE, A.LOCAL_TRAN_ID, A.FAIL_TIME, A.GLOBAL_TRAN_ID,

B.FORMATID || ’.’ || B.GLOBALID || ’.’ || b.BRANCHID as fmt_xid

from dba_2pc_pending A, dba_pending_transactions B

where A.GLOBAL_TRAN_ID = B.FORMATID || ’.’ ||

B.GLOBALID and STATE=’prepared’ and B.FORMATID=1177702467;

v To resolve transactions manually:

rollback force ’4.31.157818’;

commit force ’10.24.154537’

where ’4.31.157818’ is the Oracle field A.LOCAL_TRAN_ID that corresponds to

the XID in GLOBAL_TRAN_ID.

Sybase data source troubleshooting

Try the following methods to troubleshoot issues with Sybase data sources.

v Check the Sybase XA log file syb_xa_log located in the $SYBASE directory.

v Use the db2diag tool to check the db2diag.log file.

v To check a transaction on the Sybase server:

$ isql -Uuser_name -Ppassword -Sserver_name

1> sp_transactions

2> go

If you find an invalid or unnecessary transaction, ask the Sybase administrator

to delete the transaction.
 Related concepts

 Analyzing db2diag.log files using db2diag
 Related tasks

 “Configuring Oracle data sources” on page 118
There are several requirements and restrictions for using Oracle data sources for

federated two-phase commit.

 “Configuring Sybase data sources” on page 121
There are several requirements and restrictions for using Sybase data sources

for federated two-phase commit.

Federated two-phase commit performance

Data sources that are configured for two-phase commit transactions incur a

performance penalty when you compare them to data sources that are configured

for one-phase commit transactions.

Chapter 8. Transaction support in a federated system 127

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.pd.doc/doc/c0020701.htm

When a data source uses two-phase commit, the federated server acts as a

coordinator, ensuring that all participants are correctly synchronized. This

coordination is achieved by additional logging on the federated server and

additional communication between data sources. As such, a federated transaction

accessing a data source for two-phase commit requires more processing than a

transaction that accesses a data source for one-phase commit. Consequently, a data

source must be enabled for two-phase commit only when the federated

transactions require two-phase commit.

A federated transaction that only requires one-phase commit, such as an update to

a single site, but which is run on a data source for two-phase commit is likely to

incur a performance penalty when you compare it to the same transaction that is

run on a data source without two-phase commit.

A transaction under two-phase commit control incurs the following additional

processing regardless of whether or not the transaction requires two-phase commit:

1. All transactions require additional database log writes to the federated server

log file.

The additional log writes enable the federated server to track the data sources

in the transaction in order to coordinate subsequent commit and rollback

operations.

2. All transactions require additional database communication between the

federated server and the data source.

3. IUD (Insert, Update, and Delete) operations require one or more additional

database log writes to the remote data source.

Most of the additional processing occurs at the transaction boundaries and is not

influenced by the contents within the transaction. As a result, the percentage

increase in elapsed time for a short transaction is greater than that for a long

transaction.

Concurrent transactions cause the federated server to write multiple log records

from the log buffer to the log file in a single write operation. Consequently,

applications running federated two-phase commit transactions concurrently incur

less overhead than applications running the same transactions serially.

 Related concepts

 “Two-phase commit for federated transactions” on page 104
A federated system can use two-phase commit for transactions that access one

or more data sources. Two-phase commit uses the industry standard X/Open

XA protocol to coordinate the processing of distributed unit of work

transactions.

 Elements of performance

Improving federated two-phase commit performance

You can take steps to improve the performance of transactions in a federated

two-phase commit configuration.

Consider the following possible configurations:

v In order to reduce the time spent writing the additional log records to the

federated server, place the federated database log files on a device that is

capable of fast write transactions, preferably a device that has a write cache.

Generally, the federated server log write transactions cause most of the

additional processing time. Correct placement of the log files is likely to improve

128 Administration Guide for Federated Systems

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/c0005414.htm

the two-phase commit performance. This improvement is particularly true for

read-only transactions. The placement of the federated server log files is

controlled by the NEWLOGPATH database configuration parameter.

v For IUD (Insert, Update, and Delete) transactions, place the remote data source

log files on media that are capable of fast writes.

v To reduce the overhead introduced by additional XA messages that are sent

between the federated server and data sources:

– Place the federated server on the same computer as one of the two-phase

commit data sources.

– If you cannot place the federated server on the same computer as a data

source, increase the network speed and reduce latency between the federated

server and the data sources to help improve performance.

For applications, only enable two-phase commit for a data source when at least

one transaction in the application requires two-phase commit. For each server, set

the default value for DB2_TWO_PHASE_COMMIT to N and use the SET SERVER

OPTION statement to enable two-phase commit within the applications that

specifically require two-phase commit.

 Related concepts

 Quick-start tips for performance tuning
 Related reference

 newlogpath - Change the database log path configuration parameter

Chapter 8. Transaction support in a federated system 129

http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/c0007586.htm
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.admin.doc/doc/r0000246.htm

130 Administration Guide for Federated Systems

Chapter 9. Insert, update, and delete operations

Authorization privileges for INSERT, UPDATE, and DELETE statements

The privileges required to issue INSERT, UPDATE, and DELETE statements on

nicknames are similar to the privileges required to issue these same statements on

tables. In addition, you must hold adequate privileges on the data source to

perform select, insert, update, and delete operations on the underlying object.

You can grant or revoke SELECT, INSERT, UPDATE, and DELETE privileges on a

nickname.

However, granting or revoking privileges on a nickname does not grant or revoke

privileges at the data source. At the data source, the privileges must be granted or

revoked for the REMOTE_AUTHID specified in the user mapping at the federated

server.

The privileges held by the authorization ID of the statement must include the

necessary privileges on the nickname (for the federated database to accept the

request). The user ID at the data source that is mapped to the authorization ID

(through a user mapping) must have the necessary privileges on the underlying

table object (for the data source to accept the request).

When a query is submitted to the federated database, the authorization privileges

on the nickname in the query are checked. The authorization requirements of the

data source object referenced by the nickname are only applied when the query is

actually processed. If you do not have SELECT privilege on the nickname, then

you can not select from the data source object that the nickname refers to.

Likewise, just because you have UPDATE privilege on the nickname does not

mean you will automatically be authorized to update the data source object that

the nickname represents. Passing the privileges checking at the federated server

does not imply that you will pass the privilege checking at the remote data source.

Through user mappings, a federated server authorization ID is mapped to the data

source user ID. The privilege checking is enforced at the data source.

Federated system INSERT, UPDATE, and DELETE restrictions

Some restrictions apply to using INSERT, UPDATE, or DELETE statements in a

federated system.

The following restrictions apply to updates on nicknames:

v A data source object that is read-only, such as a JOIN view, cannot be updated

v You cannot perform insert, update, and delete operations on federated views

created with UNION ALL statements. Federated views created with UNION

ALL statements are read-only views.

Unsupported data sources

The federated system does not support insert, update and delete operations against

nicknames on nonrelational data sources.

The data sources that federation does not support include:

© Copyright IBM Corp. 1998, 2006 131

v BLAST

v BioRS

v Entrez

v Excel

v HMMER

v Table-structured files

v Web services

v WebSphere Business Integration

v XML

Referential integrity in a federated system

In a federated system, the federated database does not enforce referential integrity

among data sources.

However, referential integrity constraints at a data source can affect nickname

updates. Suppose that you need to insert data that is on the federated server into a

nickname. When the federated server sends the insert to the data source, it violates

a referential integrity constraint at that data source. The federated server maps the

resulting error to a federated error.

Applications are responsible for referential integrity between data sources.

INSERT, UPDATE, and DELETE statements and large objects (LOBs)

You can perform read operations on remote LOBs on federated systems. Write

operations on LOBs are supported for some data sources.

With federation you can perform read operations on LOBs that are located in any

relational data source. You can perform write operations on LOBs that are located

in the following data sources:

v Oracle (Version 8 or higher), using the NET8 wrapper

v DB2 for z/OS (Version 7 or higher), DB2 for iSeries (Version 5), and DB2

Database for Linux, UNIX, and Windows (Version 7 or higher), using the DRDA

wrapper

Under certain conditions, you can perform write operations on LOBs in other data

sources by altering the nickname column type to a VARCHAR.

Preserving statement atomicity in a federated system

During update operations, federated systems always attempt to keep data in an

atomic state at the completion of a DML statement. When data is in an atomic

state, it is guaranteed to either be successfully processed or to remain unchanged.

When a client or application issues an INSERT, UPDATE, or DELETE statement on

a nickname, a federated server internally processes that statement either as a single

DML statement, or as a series of multiple DML statements. If a federated server

must send multiple DML statements to a target data source for processing, it is

possible that data atomicity might be compromised. To prevent compromising data

atomicity, federated systems use data source savepoint APIs to monitor the series

of multiple DML statements.

132 Administration Guide for Federated Systems

Some data sources or versions of data sources do not externalize savepoint APIs

that the federated system can use. Under these circumstances, federated INSERT,

UPDATE, or DELETE statements are run without the protection of savepoint APIs.

When an error occurs during federated insert, update, delete transactions, partial

update results can occur at the data sources. To correct inconsistency problems, a

federated system automatically performs an internal transaction rollback before it

returns an SQLCODE error to the applications.

The following data sources do not externalize savepoint APIs that the federated

server can use:

v DB2 for iSeries

v DB2 for VM and VSE

v Informix

v Microsoft SQL Server

v ODBC

v Teradata

When an entire insert, update, or delete transaction is pushed down to the data

source for processing, the federated server assumes that the data source will

preserve the statement atomicity if an error occurs. When only part of the insert,

update, or delete transaction is pushed down to the data source for processing, the

entire transaction is rolled back if an error occurs.

The IUD_APP_SVPT_ENFORCE server option controls this behavior. By default,

this server option is set to ’Y’, which rolls back transactions that encounter an

error. You can use the CREATE SERVER, ALTER SERVER, or SET SERVER

OPTION statement to change the default behavior by altering the server option

setting. This change applies to all data source objects that are accessed through the

server you specify.

Scenarios for IUD_APP_SVPT_ENFORCE server option behavior

Suppose that you create the nickname INFMX_UT for an Informix table named UT.

The UT table has four integer columns, i1, i2, i3, and i4. The i1 column is a unique

index column. Assume that AUTOCOMMIT is not activated.

The UT table is empty. You issue an INSERT statement on nickname INFX_UT to

insert the values 1, 22, 34, and 40 into Row 1 of the table. The statement is

successful.

Then you issue a multiple row INSERT statement on the nickname INFX_UT to

insert three rows of data:

v Row 2: 2, 37, 34, 55

v Row 3: 3 ,42, 59, 40

v Row 4: 1, 55, 62, 75

Default behavior of the IUD_APP_SVPT_ENFORCE server option

By default, the IUD_APP_SVPT_ENFORCE server option is set to ’Y’.

When set to ’Y’, this server option performs an internal rollback of the

entire transaction. Although the first two rows of data from the second

INSERT are successfully inserted, the data in the last row to be inserted

Chapter 9. Insert, update, and delete operations 133

violates the unique index requirement on column i1. Consequently, all

rows for both INSERT statements are rolled back because the entire

transaction is rolled back.

Alternate behavior of the IUD_APP_SVPT_ENFORCE server option

When the IUD_APP_SVPT_ENFORCE server option is set to ’N’ the

transaction is not rolled back. Table 10 lists the rows of the UT table after

the inserts. Because the data in the last row to be inserted violates the

unique index requirement on column i1, the Informix server returns an

error message to the federated system. The second and third rows of data

remain in the table. The federated system returns the SQL error SQL0803N

to your application. The SQL0803N error message describes the violation of

unique indexes. Your application must handle the error recovery.

 Table 10. Example of the Informix UT table

Column (unique

index) Column Column Column

Row i1 i2 i3 i4

Row 1 1 22 34 40

Row 2 2 37 34 55

Row 3 3 42 59 40

Modifying data in a federated system

Inserting data into data source objects

To insert data into data sources, use the nicknames for the data source objects in

the INSERT statement.

To insert data using a nickname, all of the following privileges must be true:

v The privileges held by the authorization ID of the statement must include the

INSERT privilege on the nickname (for the federated database to accept the

request).

v The user ID at the data source must have the INSERT privilege on the

underlying table object (for the data source to accept the request).

v The user ID at the data source must be mapped to the authorization ID at the

federated server through a user mapping.

Restrictions

Federation does not support INSERT operations with nonrelational data sources.

Procedure

To insert data into data source objects, issue the INSERT statement.

Example: An Informix table consists of two columns. The first column contains

INTEGER data and the second column contains VARCHAR data (up to 20

characters). The nickname infx_table_nn is registered with the federated server for

the Informix table.

134 Administration Guide for Federated Systems

You can issue INSERT, UPDATE, and DELETE statements on the Informix table

using the infx_table_nn nickname. The following statement inserts a new row of

information into the Informix table:

INSERT INTO db2user1.infx_table_nn VALUES(1,’Walter’)

Updating data in data source objects

To update data into data sources, use the nicknames for the data source objects in

the UPDATE statement.

Before you begin

To update data using a nickname, all of the following privileges must be true:

v The privileges held by the authorization ID of the statement must include the

UPDATE privilege on the nickname (for the federated database to accept the

request)

v The user ID at the data source must have the UPDATE privilege on the

underlying table object (for the data source to accept the request)

v The user ID at the data source must be mapped to the authorization ID at the

federated server through a user mapping.

Restrictions

Federation does not support UPDATE operations with some data sources, see

“Federated system INSERT, UPDATE, and DELETE restrictions” on page 131.

To update data into data source objects, issue the UPDATE statement.

Example: An Informix table consists of two columns. The first column contains

INTEGER data and the second column contains VARCHAR data (up to 20

characters). The nickname infx_table_nn is registered with the federated server for

the Informix table.

You can issue INSERT, UPDATE, and DELETE statements on the Informix table

using the infx_table_nn nickname. The following statement updates a row of

information in the Informix table:

UPDATE db2user1.infx_table_nn SET c2=’Bill’ WHERE c1=2

Deleting data from data source objects

To delete data from data sources, use the nicknames for the data source objects in

the DELETE statement.

Before you begin

To delete data using a nickname, all of the following privileges must be true:

v The privileges held by the authorization ID of the statement must include the

DELETE privilege on the nickname (for the federated database to accept the

request)

v The user ID at the data source must have the DELETE privilege on the

underlying table object (for the data source to accept the request)

v The user ID at the data source must be mapped to the authorization ID at the

federated server through a user mapping.

Restrictions

Chapter 9. Insert, update, and delete operations 135

Federation does not support DELETE operations with some data sources, see

“Federated system INSERT, UPDATE, and DELETE restrictions” on page 131.

Procedure

To delete data from data source objects, issue the DELETE statement.

Example: An Informix table consists of two columns. The first column contains

INTEGER data and the second column contains VARCHAR data (up to 20

characters). The nickname infx_table_nn is registered with the federated server for

the Informix table.

You can issue INSERT, UPDATE, and DELETE statements on the Informix table

using the infx_table_nn nickname. The following statement deletes a row of

information in the Informix table:

DELETE FROM infx_table_nn WHERE c1=3

Assignment semantics in a federated system

When you assign data to a nickname column, the data type might change based on

the assignment rules that WebSphere Federation Server uses. You should

understand the assignment rules so you get the results that you expect.

The rules for determining the target data type of an assignment to a nickname

column are:

v Determine the local source type: The local source type is determined by the local

column type or the local result type of the expressions. If the source is constant,

the local source type is the same as the type of the constant.

v Determine the target type:

– If the assignment source has no type, such as parameter markers and NULLs,

then the target type is MIN(local_target_type, remote_target_type), where

local_target_type is the updated column local data type and

remote_target_type is the updated column data source data type. The

remote_target_type refers to the default forward type mapping type of the

remote target column’s data type.

– If the assignment source is not NULL or parameter markers, then the target

type is MIN(local_target_type, remote_target_type, local_source_type).

The definition of MIN(type1, type2)

v Type1 and type2 are not exactly the same.

v MIN(type1,type2) = MIN(type2, type1)

v MIN(type1, type2) = remote_target_type(local_target_type), when MIN(type1,

type2) = DECIMAL(0,0)

v BLOB is only compatible with BLOB, so MIN(BLOB(x), BLOB(y))=BLOB(z)

where z=min(x,y)

v TIME and DATE data types are not compatible.

v Datetime types and character strings are compatible.

v In Unicode databases, character strings and graphic strings are compatible.

The following tables list the minimum of two data types for numeric, character

string, graphic string, and date and time data types.

136 Administration Guide for Federated Systems

Table 11. Numeric data types

type1 type2 MIN(type1, type2)

SMALLINT SMALLINT or INTEGER or

BIGINT or REAL or

DOUBLE

SMALLINT

INTEGER BIGINT or REAL or

DOUBLE

INTEGER

BIGINT REAL or DOUBLE BIGINT

REAL DOUBLE REAL

DECIMAL(w,x) SMALLINT DECIMAL(p,0) where p=w-x,

if p<5; SMALLINT, otherwise

DECIMAL(w,x) INTEGER DECIMAL(p,0) where p=w-x,

if p<11; INTEGER, otherwise

DECIMAL(w,x) BIGINT DECIMAL(p,0) where p=w-x,

if p<19; BIGINT, otherwise

DECIMAL(w,x) DECIMAL(y,z) DECIMAL(p,s) where

p=min(w,y)+min(w-x,y-z),

s=min(x,z)

DECIMAL(w,x) DOUBLE or REAL DECIMAL(w,x)

The following table lists the minimum of two data types for character string data

types.

 Table 12. Character string data types

type1 type2 MIN(type1, type2)

CHAR(x) CHAR(y) or VARCHAR(y) or

LONG VARCHAR or

CLOB(y)

CHAR(z) where z=min(x,y)

VARCHAR(x) VARCHAR(y) or LONG

VARCHAR or CLOB(y)

VARCHAR(z) where

z=min(x,y)

LONG VARCHAR CLOB(y) LONG VARCHAR where

x>32700, CLOB(x) where

x<=32700

CLOB(x) CLOB(y) CLOB(z) where z=min(x,y)

The following table lists the minimum of two data types for graphic string data

types.

 Table 13. Graphic string data types

type1 type2 MIN(type1, type2)

GRAPHIC(x) GRAPHIC(y) or

VARGRAPHIC(y) or LONG

VARGRAPHIC or

DBCLOB(y)

GRAPHIC(z) where

z=min(x,y)

VARGRAPHIC(x) VARGRAPHIC(y) or LONG

VARGRAPHIC or

DBCLOB(y)

VARGRAPHIC(z) where

z=min(x,y)

LONG VARGRAPHIC DBCLOB(y) LONG VARGRAPHIC where

x>32700, DBCLOB(x) where

x<=32700

DBCLOB(x) DBCLOB(y) DBCLOB(z) where

z=min(x,y)

Chapter 9. Insert, update, and delete operations 137

The following table lists the minimum of two data types for data and time data

types.

 Table 14. Date and time data types

type1 type2 MIN(type1, type2)

DATE TIMESTAMP DATE

TIME TIMESTAMP TIME

If the data of data type CHAR you are inserting is shorter than the target length,

the data source pads the rest of the column.

If you are inserting data of DATE or TIME data type into a remote column of

TIMESTAMP data type, the data source pads the rest of the column.

Assignment semantics in a federated system - examples

The following table shows several examples of the application of federated

assignment semantics in queries given a local type and remote type.

 Table 15. Examples of assignment semantics

Local type Remote type Your query Generated remote query

FLOAT INTEGER set c1=123.23 set c1=INTEGER(123.23)

INTEGER FLOAT set c1=123.23 set c1=INTEGER(123.23)

FLOAT INTEGER set c1=123 set c1=123

CHAR(10) CHAR(20) set c1=’123’ set c1=’123’ (’123’ has a type

VARCHAR(3) and it’s the

shortest of all)

CHAR(10) CHAR(20) set c1=char23col set c1=CHAR(char23col, 10)

CHAR(10) CHAR(20) set c1=expr1 v set c1=expr1 -- if expr1

returns char(n) n<= 10

v set c1=CHAR(expr1, 10) if

expr1 returns char(n) n>10

TIMESTAMP DATE set c1= current

timestamp

set c1=DATE(current timestamp)

138 Administration Guide for Federated Systems

Chapter 10. Working with nicknames

Nicknames in a federated system

When you want to select or modify data source data, you query the nicknames by

using the SELECT, INSERT, UPDATE, and DELETE statements. You submit queries

in DB2 SQL to the federated database.

You can join data from local tables and remote data sources with a single SQL

statement, as if all the data is local. For example, you can join data that is in the

following objects:

v A local DB2 table in the federated database, an Oracle table, and a Sybase view

v A DB2 UDB for z/OS table on one server, a DB2 UDB for z/OS table on another

server, and an Excel spreadsheet

By processing SQL statements as if the data sources were ordinary relational tables

or views within the federated database, the federated system can join relational

data with data in nonrelational formats.

Tables and views in the federated database are local objects. Do not create

nicknames for these objects. Instead use the actual object name in your SQL

statements.

Remote objects are objects not located in the federated database. You need to create

nicknames for these objects. For example:

v Tables and views in another database or instance on the federated system

v Tables and views in another database or instance on another system

v Tables and views in data sources such as Oracle, Sybase, and ODBC

WITH HOLD syntax

You can use the WITH HOLD syntax on a cursor that is defined on a nickname.

If you use the syntax and the data source does not support the WITH HOLD

syntax, the attribute is ignored.

Triggers

A nickname cannot be an update target in a trigger.

You can include SELECT statements on nicknames in the trigger body. You cannot

include INSERT, UPDATE, or DELETE statements on nicknames in the trigger

body.

Accessing data with nicknames

With a federated system, you can easily access data, regardless of where it is

stored. To access data, you create nicknames for your data source objects, such as

tables and views.

For example, if the nickname DEPT represents the remote table

EUROPE.PERSON.DEPT, you can use the statement SELECT * FROM DEPT to

© Copyright IBM Corp. 1998, 2006 139

query information in the remote table. When you query a nickname, you do not

have to remember the connection details about the data source. Thus, you do not

need to be concerned with these issues:

v The name of the object at the data source

v The server on which the data source object resides

v The data source type on which the object resides, such as Informix and Oracle

v The query language or SQL dialect that the data source uses

v The data type mappings between the data source and federated server

v The function mappings between the data source and federated server

The underlying metadata in the federated database catalog provides the federated

server with the information that it needs to process your queries. This metadata is

gathered from the data sources when the federated server and database are set up

and configured to access the data sources.

After the federated system is set up, you use the nicknames to query the data

sources or to further enhance the federated system configuration.

The SQL statements you can use with nicknames

SQL statements support the use of nicknames.

 Table 16. Common SQL statements for use with nicknames

SQL statement Description Authorization required

ALTER

NICKNAME

Modifies an existing nickname by

changing the local column name,

the local data type, the federated

column options, or the

informational constraints. The

table or view at the data source is

not affected.

v SYSADM or DBADM

v ALTER or CONTROL privilege

on the nickname

v ALTERIN privilege on the

schema, if the schema name of

the nickname exists

v Definer of the nickname, as

recorded in the DEFINER

column of the catalog view for

the nickname

ALTER TABLE Changes a remote table that was

created through the federated

database by using transparent

DDL. You cannot alter tables that

were created natively on the data

source. Can use informational

constraints to add a referential

integrity constraint to a nickname.

v SYSADM or DBADM

v ALTER or CONTROL privilege

on the nickname

v ALTERIN privilege on the

schema, if the schema name of

the nickname exists

COMMENT ON Adds or replaces comments in the

catalog descriptions of various

objects, including functions,

function mappings, indexes,

nicknames, servers, server

options, type mappings, and

wrappers.

v SYSADM or DBADM

v ALTER or CONTROL privilege

on the object

v ALTERIN privilege on the

schema

v Definer of the object, as

recorded in the DEFINER

column of the catalog view for

the object

140 Administration Guide for Federated Systems

Table 16. Common SQL statements for use with nicknames (continued)

SQL statement Description Authorization required

CREATE ALIAS Defines an alias for a nickname. v SYSADM or DBADM

v IMPLICIT_SCHEMA authority

on the database, if the implicit

or explicit schema name of the

alias does not exist

v CREATEIN privilege on the

schema, if the schema name of

the alias refers to an existing

schema

CREATE INDEX

with

SPECIFICATION

ONLY clause

Creates an index specification

(metadata) that indicates to the

query optimizer that a data source

object has an index. No actual

index is created, only the

specification is created.

v SYSADM or DBADM

v CONTROL or INDEX privilege

on the underlying data source

object — and either

IMPLICIT_SCHEMA authority

on the database, or CREATEIN

privilege on the schema

CREATE TABLE

with the OPTIONS

clause

Creates a remote table through the

federated database using

transparent DDL.

v SYSADM or DBADM

v CREATETAB privilege on the

database and USE privilege on

the table space —and either

IMPLICIT_SCHEMA authority

on the database, or CREATEIN

privilege on the schema

CREATE TABLE

with the AS

fullselect and DATA

INITIALLY

DEFERRED

REFRESH clauses

Creates a materialized query table

using a fullselect that references a

nickname.

v SYSADM or DBADM

v CREATETAB privilege on the

database and USE privilege on

the table space —and either

IMPLICIT_SCHEMA authority

on the database, or CREATEIN

privilege on the schema

v CONTROL privilege on the

table or view

v SELECT privilege on the table

or view and ALTER privilege if

REFRESH DEFERRED is

specified

CREATE VIEW Creates a view that references one

or more nicknames.

v SYSADM or DBADM

v CONTROL or SELECT privilege

on the nickname—and either

IMPLICIT_SCHEMA authority

on the database, or CREATEIN

privilege on the schema

DELETE Deletes rows from the data source

object, such as a table or view that

has a nickname.

v SYSADM or DBADM

v DELETE privilege on the

nickname and DELETE

privilege on the underlying

data source object

v CONTROL privilege on the

underlying data source object

Chapter 10. Working with nicknames 141

Table 16. Common SQL statements for use with nicknames (continued)

SQL statement Description Authorization required

DROP Deletes an object, such as a

nickname, federated view, or

index specification. The table,

view, or index at the data source

is not affected.

When the tables that are created

by using the transparent DDL are

dropped, the corresponding

nickname for that table is also

dropped.

v SYSADM or DBADM

v DROPIN privilege on the

schema for the object

v CONTROL privilege on the

object

GRANT Grants privileges on nicknames

and federated views, such as

ALTER, DELETE, INDEX,

INSERT, SELECT, or UPDATE.

Privileges at the data source must

be granted separately.

v SYSADM or DBADM

v WITH GRANT OPTION for

each identified privilege

v CONTROL privilege on the

object

INSERT Inserts rows into the data source

object, such as a table or view that

has a nickname.

v SYSADM or DBADM

v INSERT privilege on the

nickname and INSERT privilege

on the underlying data source

object

v CONTROL privilege on the

underlying data source object

LOCK TABLE Causes the remote object at the

data source to be locked. Prevents

concurrent application processes

from changing a data source table

that has a nickname.

v SYSADM or DBADM

v SELECT privilege on the

underlying table

v CONTROL privilege on the

underlying table.

REVOKE Revokes privileges on nicknames

and federated views, such as

ALTER, DELETE, INDEX,

INSERT, SELECT, or UPDATE.

Privileges at the data source must

be revoked separately.

v SYSADM or DBADM

v CONTROL privilege on the

object

SELECT Selects rows from the data source

object, such as a table or view that

has a nickname.

v SYSADM or DBADM

v SELECT privilege on the

nickname and SELECT privilege

on the underlying data source

object

v CONTROL privilege on the

underlying data source object

UPDATE Updates the values in specified

columns in rows in the data

source object, such as a table or

view that has a nickname.

v SYSADM or DBADM

v UPDATE privilege on the

nickname and UPDATE

privilege on the underlying

data source object

v CONTROL privilege on the

underlying data source object

142 Administration Guide for Federated Systems

When you submit a query to the federated database, the authorization privileges

for the nickname in the query are checked. The authorization requirements of the

data source object that the nickname refers to are only applied when the query is

processed at the data source.

To select, insert, update, or delete data with a nickname, the authorization ID of

the statement must include these privileges:

v The appropriate privilege on the nickname for the federated database to accept

the request

v The appropriate privilege on the underlying table object for the data source to

accept the request

For example to update a data source using a nickname, you need UPDATE

privilege on the nickname and UPDATE privilege on the underlying data source

object.

Accessing new data source objects

To access new data source objects, you must create nicknames for them. Use the

CREATE NICKNAME statement for data sources that do not have nicknames.

Before you begin

The federated system must be configured to access the data source.

A server definition for the data source server on which the object resides must

exist in the federated database. You create a server definition with the CREATE

SERVER statement.

To insert, update, or delete data with a nickname, all of the following privileges

must be true:

v The privileges held by the authorization ID of the statement must include the

necessary SELECT, INSERT, UPDATE, and DELETE privileges on the nickname

for the federated database to accept the request.

v The user ID at the data source must have the necessary SELECT, INSERT,

UPDATE, and DELETE privileges on the underlying table object for the data

source to accept the request.

v The user ID at the data source must be mapped to the authorization ID at the

federated server through a user mapping.

You must have the required authorizations for the CREATE NICKNAME

statement.

v SYSADM or DBADM

v IMPLICIT_SCHEMA authority on the federated database, if the implicit or

explicit schema name of the nickname does not exist

v CREATEIN privilege on the schema, if the schema name of the nickname exists

About this task

Periodically, you need to access data source objects that lack nicknames. These

might be new objects added to a data source, such as a newly created view. These

might be existing objects that were not registered with the federated server when it

was initially setup. In either case, you must create a nickname for the object.

Chapter 10. Working with nicknames 143

Procedure

To access new data source objects, issue the CREATE NICKNAME statement.

Creating nicknames for relational and nonrelational data

sources

The CREATE NICKNAME statement differs slightly for relational and

nonrelational data sources.

For relational data sources the CREATE NICKNAME statement syntax is:

CREATE NICKNAME nickname_name FOR server_name."remote_schema"."object_name"

nickname_name

A unique nickname for the data source object. Nicknames can be up to 128

characters in length.

 The nickname is a two-part name—the schema and the nickname. If you

omit the schema when creating the nickname, the schema of the nickname

will be the authentication ID of the user creating the nickname. The default

values for the schema name are chosen based on the following hierarchy:

1. CURRENT SCHEMA special register

2. SESSION_USER special register

3. SYSTEM USER special register

4. Authorization ID connected to the database

FOR server_name.″remote_schema″.″object_name″

A three-part identifier for the remote data source object. If your data source

does not support schemas, omit the schema from the CREATE

NICKNAME statement.

v server_name is the name assigned to the data source server in the

CREATE SERVER statement.

v remote_schema is the name of the remote schema to which the object

belongs.

v object_name is the name of the remote object that you want to access.

OPTIONS (options_list)

Information about the nickname that enables the SQL Query Compiler and

the wrapper to efficiently execute queries.

For some nonrelational data sources the CREATE NICKNAME statement syntax is:

CREATE NICKNAME nickname_name column_definition_list

 FOR SERVER server_name

 OPTIONS (options_list)

nickname_name

A unique nickname for the data source object, as described above for

relational data sources.

column_definition_list

A list of nickname columns and data types.

FOR SERVER server_name

The local name that you created for the remote server in the server

definition information CREATE SERVER statement.

144 Administration Guide for Federated Systems

OPTIONS (options_list)

Information about the nickname that enables the SQL Query Compiler and

the wrapper to efficiently execute queries.

Accessing data sources using pass-through sessions

You can submit SQL statements directly to data sources by using a special mode

that is called pass-through. The pass-through session allows you to submit SQL

statements in the SQL dialect for that data source.

Use a pass-through session when you want to perform an operation that is

impossible with the SQL. For example, use a pass-through session to create a

procedure, create an index, or perform queries in the native dialect of the data

source.

The data sources that support pass-through only accept SQL statements in a

pass-through session.

Similarly, you can use a pass-through session to perform actions that are not

supported by SQL, such as certain administrative tasks. The administrative tasks

that you can perform depend on the data source. For example, for DB2 Database

for Linux, UNIX, and Windows, you can run the statistics utility for the data

source, but you cannot start or stop the remote database.

You can query only one data source at a time in a pass-through session. Use the

SET PASSTHRU command to open a session. When you use the SET PASSTHRU

RESET command it closes the pass-through session. If you use the SET PASSTHRU

command instead of the SET PASSTHRU RESET command, the current

pass-through session is closed and a new pass-through session is opened.

You can use the WITH HOLD syntax on a cursor in a pass-through session. If you

use the syntax and the data source does not support the WITH HOLD syntax, the

attribute is ignored.

You cannot use pass-through sessions with nonrelational data sources.

Accessing heterogeneous data through federated views

A federated view is a view in the federated database whose base tables are located at

remote data sources. The federated view references base tables with nicknames,

instead of the data source table names.

Before you begin

You must have one of the following authorizations to issue the CREATE VIEW

statement:

v SYSADM or DBADM

v For each nickname in any fullselect, both:

– CONTROL or SELECT privilege on the underlying table or view

– One of the following authorities or privileges:

- IMPLICIT_SCHEMA authority on the federated database, if the implicit or

explicit schema name of the view does not exist

- CREATEIN privilege on the schema, if the schema name of the view refers

to an existing schema

Chapter 10. Working with nicknames 145

Privileges for the underlying objects are not considered when defining a view on a

federated database nickname.

Restrictions

Federated views with UNION ALL statements are read-only views.

Federated views that include more than one nickname in the FROM clause are

read-only views.

Federated views that include only one nickname in the FROM clause might be

read-only views.

v If the nickname in the FROM clause is to a nonrelational data source, the

federated view is read-only.

v If you include other nicknames as predicates or as subqueries when you create

the view, the federated view can be updated.

About this task

When you query from a federated view, data is retrieved from the remote data

source. The action of creating a federated database view of data source data is

sometimes called “creating a view on a nickname.” This is because you reference

the nicknames instead of the data sources when you create the view.

These views offer a high degree of data independence for a globally integrated

database, just as views defined on multiple local tables do for centralized relational

database managers.

Procedure

To create a federated view, issue the CREATE VIEW statement.

Authorization requirements of the data source for the table or view referenced by

the nickname are applied when the query is processed. The authorization ID of the

statement can be mapped to a different remote authorization ID by a user

mapping.

Creating federated views - examples

These examples show how to create federated views to access data from several

data sources. The examples show the syntax for the CREATE VIEW statement for

federation.

Example: Creating a federated view that merges similar data from several data

source objects

You are working with customer data on separate servers: one in Europe, one in

Asia, and one in South America. The European customer data is in an Oracle table.

The nickname for that table is ORA_EU_CUST. The Asian customer data is in a

Sybase table. The nickname for that table is SYB_AS_CUST. The South American

customer data is in an Informix table. The nickname for that table is

INFMX_SA_CUST. Each table has columns containing the customer number

(CUST_NO), the customer name (CUST_NAME), the product number (PROD_NO),

and the quantity ordered (QUANTITY). To create a view from these nicknames

that merge this customer data, issue the following statement:

146 Administration Guide for Federated Systems

CREATE VIEW FV1

 AS SELECT * FROM ORA_EU_CUST

 UNION

 SELECT * FROM SYB_AS_CUST

 UNION

 SELECT * FROM INFMX_SA_CUST

Example: Joining data to create a federated view

You are working with customer data on one server and sales data on another

server. The customer data is in an Oracle table. The nickname for that table is

ORA_EU_CUST. The sales data is in a Sybase table. The nickname for that table is

SYB_SALES. You want to match up the customer information with the purchases

that are made by those customers. Each table has a column containing the

customer number (CUST_NO). To create a federated view from these nicknames

that joins this data, issue the following statement:

CREATE VIEW FV4

 AS SELECT A.CUST_NO, A.CUST_NAME, B.PROD_NO, B.QUANTITY

 FROM ORA_EU_CUST A, SYB_SALES B

 WHERE A.CUST_NO=B.CUST_NO

Creating a nickname on a nickname

You can create a nickname on a nickname.

Procedure

To create a nickname on a nickname, follow the steps in this example.

Example: Access a Microsoft Excel spreadsheet from an AIX® federated server

You have a federated server on AIX and a federated server on Windows. You want

to access an Excel spreadsheet from both federated servers. However, the Excel

wrapper is only supported on federated servers on Windows. To access the Excel

spreadsheet from the AIX federated server:

1. On the Windows federated server, install WebSphere Federation Server.

2. Configure the Windows federated server to access Excel data sources.

3. On the Windows federated server, create a nickname for the Excel spreadsheet.

4. On the AIX federated server, install WebSphere Federation Server.

5. Configure the AIX federated server to access DB2 family data sources.

6. On the AIX federated server, create a nickname for the Excel nickname on the

Windows federated server.

Selecting data in a federated system

How you select data in a federated systems depends on the type of data source

that you select from.

Some of the types of distributed requests used with a federated system are

requests that query:

v A single remote data source

v A local data source and a remote data source

v Multiple remote data sources

v A combination of remote and local data sources

Chapter 10. Working with nicknames 147

To select data from the data sources, use the nicknames for the data source objects

in the SELECT statement.

The federated database is a local data source. Tables and views in the federated

database are local objects. You do not create nicknames for these objects, you use

the actual object name in the SELECT statements.

Remote data sources include: another DB2 Database for Linux, UNIX, and

Windows database instance on the federated server, another DB2 Database for

Linux, UNIX, and Windows database instance on another server, and data sources

other than DB2 Database for Linux, UNIX, and Windows. Objects that reside on

remote data sources are remote objects.

Selecting data in a federated system - examples

This topic illustrates a scenario in which a federated server access multiple data

sources and provides examples of SELECT statements.

Example: A federated server is configured to access a DB2 for OS/390® data

source, a DB2 for iSeries data source, and an Oracle data source. Stored in each

data source is a table that contains sales information. This configuration is depicted

in the following figure.

The sales tables include columns that record the customer number (CUST_NO), the

quantity ordered (QUANTITY), and the product number ordered (PROD_NO).

Also, a local table in the federated database contains price information. The price

table includes columns that record the product number (PROD_NO) and the

current price (PRICE).

Federated
database

DB2 for Z/OS

Price Table

DB2 for Z/OS DB2 for iServer

DB2 clients (end user and application)

US Sales
Table

Japan Sales Table

Europe
Sales
Table

Indonesia Sales Table

Sales by
Region ViewEmployees Table

Clients Table

Syscat Table Views

Global Catalog

Oracle

Figure 8. Sample federated system with DB2 and Oracle data sources

148 Administration Guide for Federated Systems

The nicknames for the remote data source objects are stored in the

SYSCAT.TABLES tables, as shown in the following figure. The TYPE column

indicates the type of object, such as nickname (N), local table (T), or view (V).

To select data using a nickname, all of the following privileges must be true:

v The privileges held by the authorization ID of the statement must include the

SELECT privilege on the nickname (for the federated database to accept the

request).

v The user ID at the data source must have the SELECT privilege on the

underlying table object (for the data source to accept the request).

v The user ID at the data source must be mapped to the authorization ID at the

federated server through a user mapping.

The following SELECT statement examples use the sample federated system

described above.

Example: Querying a single data source:

Z_EU_SALES contains the products ordered by your European customers. It also

includes the quantity ordered at each sale. This query uses a SELECT statement

with an ORDER BY clause to list the sales in Europe and sorts the list by customer

number:

SELECT CUST_NO, PROD_NO, QUANTITY

 FROM Z_EU_SALES

 ORDER BY CUST_NO

Example: Joining a local data source and a remote data source:

PRICES is a table that resides in the federated database. It contains the price list

for the products that you sell. You want to select the prices from this local table

that correspond to the products listed in Z_EU_SALES. You also want to sort the

result set by the customer number.

SELECT sales.CUST_NO, sales.PROD_NO, sales.QUANTITY

 FROM Z_EU_SALES sales, PRICES

 WHERE sales.PROD_NO=PRICES.PROD_NO

 ORDER BY sales.CUST_NO

Example: Querying multiple remote data sources:

You want to gather all the sales information from each region and order the result

set by product number.

Data source object
name
PRICES

EUROPE_SALES

US_SALES

JAPAN_SALES
SALES_BY_REGION

Federated
database
DB2 for z/OS
database
DB2 for iSeries
database
Oracle database
Oracle database

Type of object Location

Local table

Remote table

Remote table

Remote table
Remote view

TABNAME TYPE

.....

PRICES
FED_PRICES
Z_EU_SALES
iS_US_SALES
ORA_JAPANSALES
ORA_REGIONSALES

T
N
N
N
N
N

Data source information SYSCAT Tables

Figure 9. Tables and nicknames for sample queries

Chapter 10. Working with nicknames 149

WITH GLOBAL_SALES (Customer, Product, Quantity) AS

 (SELECT CUST_NO, PROD_NO, QUANTITY FROM Z_EU_SALES

 UNION ALL

 SELECT CUST.NO,PROD.NO, QUANTITY FROM iS_US_SALES

 UNION ALL

 SELECT CUST.NO,PROD.NO, QUANTITY FROM ORA_JAPANSALES)

 SELECT Customer, Product, Quantity

 FROM GLOBAL_SALES

 ORDER BY Product

A view at the Oracle data source lists the sales for Japan and Indonesia. The

nickname for this view is ORA_SALESREGION. You want to combine this

information with the sales from the United States and display the product prices

next to each sale.

SELECT us_jpn_ind.CUST_NO, us_jpn_ind.PROD_NO,

 us_jpn_ind.QUANTITY, us_jpn_ind.QUANTITY*PRICES.PRICE

 AS SALEPRICE FROM

 (SELECT CUST_NO, PROD_NO, QUANTITY

 FROM ORA_SALESREGION

 UNION ALL

 SELECT CUST_NO, PROD_NO, QUANTITY

 FROM iS_US_SALES us) us_jpn_ind,PRICES

 WHERE us_jpn_ind.PROD_NO = PRICES.PROD_NO

 ORDER BY SALEPRICE DESC

Informational constraints on nicknames

You can use informational constraints on nicknames to improve the performance of

queries. Informational constraints are rules that the optimizer uses to improve

performance but that the database manager does not enforce.

You can specify the following for nicknames:

v Referential constraints

v Check constraints

v Functional dependency constraints

v Primary key constraints

v Unique constraints

Specifying informational constraints on nicknames (DB2 Control

Center)

To improve the performance of queries on remote data sources, you can specify

informational constraints to nicknames. However, the federated server does not

enforce or check the constraints. You can specify informational constraints on a

nickname from the DB2 Control Center or the DB2 command line.

Restrictions

After you define informational constraints on a nickname, you can only alter the

column names for that nickname after you remove the informational constraints.

About this task

For relational data sources, you can specify informational constraints when you

alter a nickname.

150 Administration Guide for Federated Systems

For nonrelational data sources, you can specify informational constraints when you

create a nickname or alter a nickname.

Procedure

To specify informational constraints on a nickname from the DB2 Control Center:

1. Select the Nicknames folder:

v If you are creating a nickname, in the object details pane of the DB2 Control

Center, click Create Nicknames from the list of actions. The Nicknames

wizard opens.
v From the Create Nicknames window, open the Add Nickname notebook or

the Properties notebook for a nickname:
a. If you plan to create a single nickname, click Add. The Add Nickname

notebook opens.

b. If the discover feature generated a list of nicknames, select the nickname

that you want to add informational constraints to. Then click Properties.

The Properties notebook opens.
v If you are altering a nickname, click on the nickname that you want to alter.

In the object details pane of the DB2 Control Center, click Alter from the list

of actions. The Alter Nickname notebook opens.
2. On the Keys page, set the referential integrity constraints for the nickname. You

can set a primary key, unique key, or foreign key constraint.

3. On the Check Constraints page, set the check constraints or functional

dependency constraints for the nickname.

4. Click OK to set the informational constraints and close the notebook.

Specifying informational constraints on nicknames (DB2 command

line)

To improve the performance of queries on remote data sources, you can add

informational constraints to nicknames. However, the federated server does not

enforce or check the constraints. You can specify informational constraints on a

nickname from the DB2 Control Center or the DB2 command line.

Restrictions

After you define informational constraints on a nickname, you can only alter the

column names for that nickname after you remove the informational constraints.

About this task

For relational data sources, you can specify informational constraints when you

alter a nickname.

For nonrelational data sources, you can specify informational constraints when you

create a nickname or alter a nickname.

Procedure

To specify informational constraints on a nickname from the DB2 command line,

issue the CREATE NICKNAME statement or the ALTER NICKNAME statement

with the appropriate constraint attributes.

Chapter 10. Working with nicknames 151

Specifying informational constraints on nicknames - examples

These examples illustrate the use of informational constraints on nicknames. You

use the CREATE or ALTER NICKNAME statements for check constraints,

referential constraints, and other data structures.

Example: Informational check constraint

In the following remote table, the data in the salary column is always greater than

10000.

CREATE TABLE account.salary (

 empno INTEGER NOT NULL PRIMARY KEY,

 salary INTEGER NOT NULL

);

Create a nickname for this table:

CREATE NICKNAME account.salary FOR myserv.account.salary;

Then add informational check constraints for the nickname by issuing the

following statement:

ALTER NICKNAME account.salary ADD CONSTRAINT cons1 CHECK(salary > 10000)

NOT ENFORCED

ENABLE QUERY OPTIMIZATION;

Example: Informational referential constraint: nickname to nickname

In this example, there are two nicknames N1 and N2. Column F1 of nickname N2

contains the key value in column P1 of nickname N1. You can define the referential

constraint on nickname N2 by issuing the following statement:

ALTER NICKNAME SCHEMA1.N2 ADD CONSTRAINT ref1

 FOREIGN KEY (F1) REFERENCES SCHEMA1.N1 (P1)

 NOT ENFORCED;

Example: Informational referential constraint: nickname to table

In this example, nickname N3 with column F1 contains the key value in column P1

of table T1. You can define the referential constraint on nickname N3 by issuing

the following statement:

ALTER NICKNAME SCHEMA1.N3 ADD CONSTRAINT ref1

 FOREIGN KEY (F1) REFERENCES SCHEMA1.T1 (P1)

 NOT ENFORCED;

Example: Informational referential constraint: table to nickname

In this example, table T2 with column F1 contains the key value in column P1 of

nickname N4. You can define the referential constraint on table T2 by issuing the

following statement:

ALTER TABLE SCHEMA1.T2 ADD CONSTRAINT ref1

 FOREIGN KEY (F1) REFERENCES SCHEMA1.N4 (P1)

 NOT ENFORCED;

Example: Functional dependency

In this example, the column pair C1 and C2 uniquely determine the value in the

column P1. You can define the functional dependency by issuing the following

statement:

152 Administration Guide for Federated Systems

ALTER NICKNAME SCHEMA1.NICK1 ADD CONSTRAINT FD1 CHECK(P1 DETERMINED BY (C1,C2))

 NOT ENFORCED ENABLE QUERY OPTIMIZATION;

Example: Table-structured file

This statement defines a primary key for a table-structured file:

CREATE NICKNAME MY_FILE (

 X INTEGER NOT NULL,

 Y INTEGER,

 PRIMARY KEY (X) NOT ENFORCED

) FOR SERVER MY_SERVER OPTIONS(FILE_PATH ’/usr/pat/DRUGDATA1.TXT’);

Star schema

The statement creates four dimension tables and one fact table:

CREATE TABLE SCHEMA.FACT (

 LOCATION_CODE INTEGER NOT NULL,

 PRODUCT_CODE INTEGER NOT NULL,

 CUSTOMER_CODE INTEGER NOT NULL,

 SDATE DATE NOT NULL,

 SALES INTEGER NOT NULL

);

CREATE TABLE SCHEMA.LOCATION (

 LOCATION_CODE INTEGER NOT NULL PRIMARY KEY,

 STATE CHAR(2) NOT NULL,

 SHOP_ID INTEGER NOT NULL,

 ...

);

CREATE TABLE SCHEMA.PRODUCT (

 PRODUCT_CODE INTEGER NOT NULL PRIMARY KEY,

 PRODUCT_CAT INTEGER NOT NULL,

 PRODUCT_NAME VARCHAR(20) NOT NULL,

 ...

);

CREATE TABLE SCHEMA.CUSTOMER (

 CUSTOMER_CODE INTEGER NOT NULL PRIMARY KEY,

 NAME VARCHAR(20) NOT NULL,

 TEL VARCHAR(10) NOT NULL,

 ...

);

CREATE TABLE SCHEMA.TIMEDIM (

 SDATE DATE NOT NULL UNIQUE,

 YEAR INTEGER NOT NULL,

 QUARTER INTEGER NOT NULL,

 ...

);

The federated server creates the following nicknames for the fact table and the

dimension tables:

CREATE NICKNAME SCHEMA.FACT FOR SERVER.SCHEMA.FACT;

CREATE NICKNAME SCHEMA.LOCATION FOR SERVER.SCHEMA.LOCATION;

CREATE NICKNAME SCHEMA.PRODUCT FOR SERVER.SCHEMA.PRODUCT;

CREATE NICKNAME SCHEMA.CUSTOMER FOR SERVER.SCHEMA.CUSTOMER;

CREATE NICKNAME SCHEMA.TIMEDIM FOR SERVER.SCHEMA.TIMEDIM;

You can define the following foreign key relationship by issuing the following

statements:

Chapter 10. Working with nicknames 153

ALTER NICKNAME SCHEMA.FACT ADD CONSTRAINT L1 FOREIGN KEY (LOCATION_CODE)

 REFERENCES SCHEMA.LOCATION(LOCATION_CODE)

 NOT ENFORCED ENABLE QUERY OPTIMIZATION;

ALTER NICKNAME SCHEMA.FACT ADD CONSTRAINT P1 FOREIGN KEY (PRODUCT_CODE)

 REFERENCES SCHEMA.PRODUCT(PRODUCT_CODE)

 NOT ENFORCED ENABLE QUERY OPTIMIZATION;

ALTER NICKNAME SCHEMA.FACT ADD CONSTRAINT C1 FOREIGN KEY (CUSTOMER_CODE)

 REFERENCES SCHEMA.CUSTOMER(CUSTOMER_CODE)

 NOT ENFORCED ENABLE QUERY OPTIMIZATION;

ALTER NICKNAME SCHEMA.FACT ADD CONSTRAINT S1 FOREIGN KEY (SDATE)

 REFERENCES SCHEMA.TIMEDIM(SDATE)

 NOT ENFORCED ENABLE QUERY OPTIMIZATION;

When the value of the TEL column in the CUSTOMER nickname is unique, you

can add the following informational unique constraint with this statement:

ALTER NICKNAME SCHEMA.CUSTOMER ADD CONSTRAINT U1 UNIQUE(TEL)

 NOT ENFORCED ENABLE QUERY OPTIMIZATION;

When the value of the SHOP_ID column in the LOCATION nickname uniquely

determines the value of the LOCATION_ID column, you can define the following

functional dependency with this statement:

ALTER NICKNAME SCHEMA.LOCATION

ADD CONSTRAINT F1 CHECK(LOCATION_ID DETERMINED BY SHOP_ID)

 NOT ENFORCED ENABLE QUERY OPTIMIZATION;

Because the value of the QUARTER column in the TIMEDIM nickname is between

1 and 4, you can define the following informational check constraint with this

statement:

ALTER NICKNAME SCHEMA.TIMEDIM

ADD CONSTRAINT Q1 CHECK(QUARTER BETWEEN 1 AND 4)

 NOT ENFORCED ENABLE QUERY OPTIMIZATION;

The statements in this example create nicknames for remote tables. Nicknames

have primary keys when remote tables have primary keys. When you create

nickname on views, nicknames lack primary keys. In this case, you can change the

nickname to add an informational primary key constraint. For example:

CREATE NICKNAME SCHEMA.LOCATION FOR SERVER.SH.V_LOCATION;

ALTER NICKNAME SCHEMA.LOCATION

 ADD CONSTRAINT P1 PRIMARY KEY (LOCATION_CODE) NOT ENFORCED;

154 Administration Guide for Federated Systems

Chapter 11. Nickname statistics

Nickname statistics update facility - overview

You retrieve the statistics for a nickname to provide the query optimizer with

accurate and current information about the nickname. The optimizer uses this

information to determine an optimal access plan for a query.

When you register a nickname for a data source object, the federated server adds

information about that data source object to the system catalog on the federated

database. The query optimizer uses this information to plan how to retrieve data

from the data source object. The federated database does not automatically detect

changes to the data source objects, so the information in the system catalog can

become outdated.

You can retrieve the currently available statistics on database nicknames, columns,

and indexes from the remote data source. You can retrieve nickname statistics by

using the DB2 Control Center or the DB2 Command Line Processor.

You can retrieve nickname statistics for the following relational data sources:

v DB2 family (DRDA)

v Informix

v Microsoft SQL Server

v ODBC

v Oracle (NET8)

v Sybase (CTLIB)

v Teradata

You can retrieve nickname statistics for the following nonrelational data sources:

v BioRS

v Excel

v Table-structured files

v XML on the root nickname

You can update the following statistics using the catalog-based method for

statistics collection:

v CARD

v FPAGES

v NPAGES

v OVERFLOW

v COLCARD

v HIGH2KEY

v LOW2KEY

v NLEAF

v NLEVELS

v CLUSTERFACTOR

v CLUSTERRATIO

© Copyright IBM Corp. 1998, 2006 155

v FULLKEYCARD

v FIRSTKEYCARD

You can update the following statistics using the data-based method for statistics

collection:

v CARD

v COLCARD

v HIGH2KEY

v LOW2KEY

v FULLKEYCARD

v FIRSTKEYCARD

You can retrieve the statistics of a single nickname or all nicknames in a schema on

a specific server definition. You can also retrieve statistics for nicknames on data

source objects with Oracle Label Security. If the database is restricted, only users

with the appropriate access can view the HIGH2KEY and LOW2KEY statistics. For

unrestricted databases, the nickname statistics on objects with Oracle Label

Security are exposed and might pose a security risk. In those instances, you can

restrict access to the system catalogs that contain sensitive information. If any part

of the retrieval fails, the database rolls back the changes.

You can retrieve nickname statistics on any operating system that supports the

federated server.

Methods of retrieving nickname statistics

You can choose the method to use for statistics collection, and you can limit your

choices to specific columns and indexes. The catalog-based method has better

performance. By contrast, the data-based method provides more up-to-date

statistics, but takes longer to run.

You can choose one of the following methods for statistics collection:

v Catalog-based method

The catalog-based method copies statistics from data source catalog tables to the

federated catalog table. Only those statistics that can be semantically mapped to

federated statistics are copied. However, the nickname statistics are only as

accurate and up-to-date as the information currently in the catalog at the remote

source. If statistics information is out-of-date, the nickname statistics collected

are also out-of-date. When you use the catalog-based method, ensure that

statistics on the remote source are current.

Because statistics are copied from the remote source catalog to the catalog on the

federated server, the catalog-based method of statistics collection is generally

very fast.

v Data-based method

The data-based method does not depend on the statistics at the remote source.

This method generates its own statistics empirically through the results of the

queries that it issues against the nicknames. With this method, the statistics that

are collected accurately reflect the remote data.

The data-based method can be slow if the row size of the nicknames involved is

large. The queries typically involve large sorts and aggregates. For this reason,

choose data-based statistics collection only if satisfactory statistics cannot be

obtained by the catalog-based method.

156 Administration Guide for Federated Systems

If you want to increase the performance of the data-based method at the expense

of the quality of the statistics gathered, limit statistics collection to the types of

columns and indexes for which the benefit is greatest. Those types of columns

include columns that are involved in predicates, join keys, grouping operations, or

columns that are part of one or more indexes.

With the catalog-based method, you generally do not need to limit statistics

collection to specific columns or indexes, because the overhead of this collection

method is very low.

Retrieving nickname statistics

You can retrieve the statistics for a nickname to ensure that the query optimizer

uses the information about the nickname that is available at the data source. You

can update nickname statistics for a single nickname, multiple nicknames, or all

nicknames from the DB2 Control Center or the DB2 command line.

About this task

The query optimizer also gathers statistics for data source objects with Oracle

Label Security, including the HIGH2KEY and LOW2KEY nickname statistics. For

databases that are restricted, only users with the appropriate access level can see

the statistics. For unrestricted databases, you can restrict access or set the

HIGH2KEY and LOW2KEY nickname statistics to an empty or meaningless value.

Before you begin

The following prerequisites apply when you use the command line prompt to

update statistics:

v The federated server creates the log file on the server. The directories that you

list in the path must exist.

v The privileges for the fenced user ID of the federated instance must include the

privilege to create the log file in the specified location.

Restrictions

The user ID that you use to connect to the federated database must be mapped to

the remote data source table.

If the local column name or type does not represent the default type mapping from

the remote column name or type, the nickname statistics update utility will not

retrieve column statistics.

About this task

By default, statistics collection is attempted for all columns and all indexes of a

nickname. You can also limit statistics to specific columns and indexes and specify

a log file.

Procedure

To update nickname statistics from the DB2 command line or within your

application, call the stored procedure SYSPROC.NNSTAT.

To update nickname statistics from the DB2 Control Center:

Chapter 11. Nickname statistics 157

1. Select the nicknames for which you want to retrieve current statistics.

2. If a DB2 tools catalog does not exist, a window appears from which you can

create the DB2 tools catalog. Create the tools catalog when you want to

schedule the update to the nickname statistics.

3. Specify the settings for the update.

Retrieving statistics for multiple nicknames (DB2 Control

Center)

You can update statistics for multiple nicknames from the DB2 Control Center or

the DB2 command line.

Procedure

To update nickname statistics for multiple nicknames from the DB2 Control Center:

1. Select the required nicknames:

v Nicknames with server definition:
a. Expand the Federated Database Objects folder. Select the wrapper folder

that you want to work with.

b. Expand the Server definitions folder. Select the server folder that contains

the nicknames that you want to work with.

c. Double-click the Nicknames folder.

d. Right-click the names of the nicknames and select Statistics.

e. Select Update. The Statistics Update notebook for multiple nicknames

opens.

v To update the statistics for multiple nicknames that are associated with a

specific database definition:
a. Expand the Databases folder. Select the Database folder that contains the

nickname definitions that you want to work with.

b. Double-click the Nicknames folder.

c. Right-click the names of the nicknames that you want to update and select

Statistics.

d. Select Update. The Statistics Update notebook for multiple nicknames

opens.

2. Specify the settings for the update:

v Statistics Update page:
a. View the nicknames in the Statistics Update window and ensure that these

are the nicknames that you want to update statistics for. You can uncheck

nicknames that you do not want to update.

b. Select Details <uicontrol> to choose column-level and index-level statistics

to update. The Details notebook opens.
v Details page:
a. Select all columns of the nickname for update or select specific columns for

update.

b. Select all indexes of the nickname for update or select specific indexes for

update.

c. Select an existing log file or type the fully qualified path for a new log file.

v Method page, choose one of the following methods for statistics collection:
a. Catalog-based method, valid for relational nicknames

b. Data-based method, valid for relational and nonrelational nicknames

158 Administration Guide for Federated Systems

c. Both methods, the default
v Optional: On the Schedule page, specify when you want the update for the

nickname statistics to run.

Retrieving statistics for a single nickname (DB2 Control

Center)

You can retrieve statistics for a single nickname associated with a server definition.

You can update nickname statistics from the DB2 Control Center or the DB2

command line.

Procedure

To update nickname statistics for a single nickname from the DB2 Control Center:

1. Select the required nicknames.

v Nicknames with server definitions:
a. Expand the Federated Database Objects folder. Select the wrapper folder

that you want to work with.

b. Expand the Server definitions folder. Select the server folder that contains

the nickname that you want to work with.

c. Double-click the Nicknames folder.

d. Right-click the name of the nickname and select Statistics.

e. Select Update. The Statistics Update notebook for a single nickname opens.

v Nicknames with database definition:
a. Expand the Databases folder. Select the Database folder that contains the

nickname definitions that you want to work with.

b. Double-click the Nicknames folder.

c. Right-click the name of the nickname that you want to update and select

Statistics.

d. Select Update. The Statistics Update notebook for a single nickname opens.

2. Specify the settings for the update:

v Statistics Update page:
a. Select all columns of the nickname for update or select specific columns for

update.

b. Select all indexes of the nickname for update or select specific indexes for

update.

c. Select an existing log file or type the fully qualified path for a new log file.

v Method page, choose one of the following methods for statistics collection:
a. Catalog-based method, valid for relational nicknames.

b. Data-based method, valid for relational and nonrelational nicknames.

c. Both methods, the default.
v Optional: On the Schedule page, specify when you want the update for the

nickname statistics to run.

Retrieving nickname statistics from the command line -

examples

These examples show how to retrieve nickname statistics from the command line

by using the SYSPROC.NNSTAT stored procedure.

Example: Retrieving all statistics

Chapter 11. Nickname statistics 159

The federated server retrieves the statistics for the nicknames on the DB2SERV

server and does not create a log.

CALL SYSPROC.NNSTAT(’DB2SERV’,NULL,NULL,NULL,NULL,0,NULL,?)

Retrieving all statistics for a schema and returning a log

Example: Retrieving statics with the catalog-based method

The federated server retrieves the statistics for the nickname STAFF in the ADMIN

schema. Statistics are gathered for columns 1 through 5 and indexes 1 and 2. The

catalog-based method is used to collect statistics. The federated server writes the

log to the /home/iiuser/reportlogs/log1.txt file.

CALL SYSPROC.NNSTAT(

 NULL, ’ADMIN’,’STAFF’,’COL1, COL2, COL3, COL4, COL5’,’IND1, IND2’,1,

 ’/home/iiuser/reportlogs/log1.txt’,?)

In this example, the federated server retrieves the statistics for all the nicknames on

the DB2Serv server in the admin schema. The federated server writes the log to the

/home/iiuser/stats/recent.log file.

CALL SYSPROC.NNSTAT(

 ’DB2Serv’, ’admin’, NULL, NULL, NULL, 0, ’/home/iiuser/stats/recent.log’, ?)

Creating a DB2 tools catalog

When you update the statistics for a nickname, you can use a DB2 tools catalog to

schedule subsequent updates to nickname statistics. If you lack a DB2 tools catalog,

you are prompted to create a catalog. You can create a DB2 tools catalog from DB2

Control Center or the command line prompt, but you only can schedule the update

with the DB2 Control Center.

Before you begin

The DB2 administration server must be installed.

Procedure

To create a DB2 tools catalog from the DB2 Control Center:

1. The Statistics Update window opens when you update nickname statistics.

2. Select the system that you want to create a database on for the DB2 tools

catalog.

The database must be on a cataloged system that has no metadata storage. If the

system you want is not cataloged, you must catalog the system before you create

the database for the DB2 tools catalog.

Viewing the status of the updates to nickname statistics (DB2 Control

Center)

After you request an update to the statistics for a nickname, you can view the

status of the update. You can view the status of updates to nickname statistics

from the DB2 Control Center or the DB2 command line.

Procedure

To view the status of updates to nickname statistics from the DB2 Control Center:

160 Administration Guide for Federated Systems

1. Select Update Statistics.

2. Select View Results and review the status information.

Viewing the status of the updates to nickname statistics (DB2

command line)

After you request an update to the statistics for a nickname, you can view the

status of the update. You can view the status of updates to nickname statistics

from the DB2 Control Center or the DB2 command line.

Procedure

To view the status of updates to nickname statistics from the DB2 command line,

look in the SYSPROC.FED_STATS table.

The following example shows a describe of the table: SYSPROC.FED_STATS (The

actual length of the columns is reduced to simplify the example.):

db2 describe table sysproc.fed_stats

Column Type Type

name schema name Length Scale Nulls

------------------------------ --------- ------------------ -------- ----- ------

SERVER SYSIBM VARCHAR 128 0 Yes

SCHEMA SYSIBM VARCHAR 128 0 Yes

NICKNAME SYSIBM VARCHAR 128 0 Yes

STATS_UPDATE_TIME SYSIBM TIMESTAMP 10 0 No

LOG_FILE_PATH SYSIBM VARCHAR 1000 0 Yes

SQLCODE SYSIBM INTEGER 4 0 Yes

SQLSTATE SYSIBM CHARACTER 5 0 Yes

STATUS SYSIBM VARCHAR 1000 0 Yes

8 record(s) selected.

db2 "select * from sysproc.fed_stats"

SERVER SCHEMA NICKNAME STATS_UPDATE_TIME LOG_FILE_PATH SQLCODE

------ ------- -------- -------------------------- ------------- ----------

ORA8 HAROLDL NICK1 2006-05-02-12.03.24.927112 - 1791 42704

SQLSTATE STATUS

-------- --

SQL1791N The specified server definition, schema, or nickname does not exist.

1 record(s) selected.

.

SYSPROC.NNSTAT stored procedure

Retrieve currently available statistics on one or more nicknames. The statistics are

saved in the system catalog on the federated database.

Authorization

SYSPROC.NNSTAT is a fenced procedure. The privileges for the fenced user ID of

the federated instance must include the privilege to create the log file in the

specified location.

Syntax

Chapter 11. Nickname statistics 161

CALL SYSPROC.NNSTAT(

 SERVER VARCHAR(128)

 SCHEMA VARCHAR(128)

 NICKNAME VARCHAR(128)

 COLNAMES CLOB(2M)

 INDEXNAMES CLOB(2M)

 METHOD SMALLINT

 LOG_FILE_PATH VARCHAR(1000)

 OUT_SQLCODE INTEGER

 OUT_TRACE VARCHAR(2000)

)

Parameters

Server The server on which the federated server gathers the nickname statistics.

This server is what the user registers to define a data source in the

federated database. If you specify one nickname, you can specify NULL for

this parameter.

Schema

If NULL is specified, the federated server retrieves all the nicknames under

the given server. If the Server parameter is NULL, the federated server

retrieves the statistics of the nickname under the given schema. If the

Schema parameter and Nickname parameter are NULL and you specify a

server, the federated server retrieves statistics on the given server.

Nickname

The name of the nickname. If you specify a nickname, you must also

specify a schema.

Colnames

The names of the columns that are specified as column-name identifiers.

 You can specify this parameter for a single nickname only. If you specify

column names, you must also specify a schema and a nickname.

 If NULL is specified, statistics are collected for all columns. NULL is the

default.

 Only the specified columns are processed. If an empty string (″) is

specified, columns are not processed.

Indexnames

The names of the indexes that are specified as index-name identifiers.

 You can specify this parameter for a single nickname only. If you specify

index names, you must also specify a schema and a nickname. Only the

specified indexes are processed.

 If NULL is specified , statistics are collected for all indexes. NULL is the

default.

 If an empty string (″) is specified, indexes are not processed.

Method

The method for collecting statistics information from the data source.

0 or NULL

The catalog-based method is used first. If this method fails, then

the data-based method is used. This is the default.

1 Catalog-based statistics collection. The catalog-based method maps

information from remote catalogs to local statistics for the

nickname. This method is valid for relational nicknames only.

162 Administration Guide for Federated Systems

2 Data-based statistics collection. The data-based method queries

data from the remote table to calculate the values for local

statistics. This method is valid for both relational and nonrelational

nicknames.

 This method is the default for relational nicknames if the

catalog-based method fails for a given nickname. Typically, the

reason that statistics cannot be collected is because nicknames are

defined for remote views. In this case, statistics are not available at

the remote source.

Log_File_Path

The path name and file name for the log file. The federated server creates

the log file on the server. The directories that you list in the path must

exist. On Windows, use two backslashes to specify the log path. For

example: c:\\temp\\nnstat.log. If you specify NULL, the federated server

does not create a log.

Output parameters

out_SQLCode

The SQL error as a result of the statistics.

out_Trace

The trace.

Example 1: In this example, the federated server retrieves the statistics for the

nickname STAFF in the ADMIN schema. Statistics are gathered for columns 1, 3, 4,

6, 7, and 10 and indexes 1 through 3. The data-based method is used to collect

statistics. The federated server writes the log to the /home/iiuser/reportlogs/
log1.txt file.

CALL SYSPROC.NNSTAT(

 NULL, ’ADMIN’,’STAFF’,’COL1, COL3, COL4, COL6, COL7, COL10’,

 ’IND1, IND2, IND3’,2,’/home/iiuser/reportlogs/log1.txt’,?)

Example 2: In this example, the federated server retrieves the statistics for all the

nicknames on the DB2SERV server in the ADMIN schema. The federated server

writes the log to the c:\\reports\\log1.txt file.

CALL SYSPROC.NNSTAT(

 ’DB2SERV’,’ADMIN’,NULL,NULL,NULL,0,’c:\\reports\\log1.txt’,?)

Example 3: In this example, the federated server retrieves the statistics for all the

nicknames on the DB2SERV server and does not create a log.

CALL SYSPROC.NNSTAT(

 ’DB2SERV’,NULL,NULL,NULL,NULL,0,NULL,?)

Chapter 11. Nickname statistics 163

164 Administration Guide for Federated Systems

Chapter 12. Importing and exporting data for nicknames

You can use the IMPORT command to import data into a nickname and the

EXPORT command to export data from a query that references a nickname.

You can only use the IMPORT commands with the following data sources:

v DB2 family

v Informix

v Microsoft SQL Server

v Oracle

v Sybase

v Teradata

Restrictions for importing data into nicknames

There are restrictions on using the IMPORT command to import data into a

nickname.

The following restrictions apply when you use the IMPORT command to import

data into a nickname:

v The remote object on which the nickname is defined must be a table. You cannot

import data into a nickname that is defined on a view or synonym.

v The supported file types are IXF, ASC and DEL.

v The ALLOW WRITE ACCESS clause must be specified. This clause invokes the

online import mode. The ALLOW WRITE ACCESS clause allows concurrent

applications both read and write access to the import target table.

v You cannot use the COMMITCOUNT AUTOMATIC mode with nicknames.

v The COMMITCOUNT n must be specified with n being a valid, nonzero

number.

v Only the INSERT and INSERT_UPDATE operations are supported with

nicknames.

v The column types that are not supported with nicknames are LOBs and

generated columns. To import LOB data to a remote table, the corresponding

nickname column must be a VARCHAR data type.

v The following filetype modifiers are not supported with nicknames:

dldelfiletype

generatedignore

generatedmissing

identityignore

identitymissing

indexixf

indexschema

lobsinfile

nodefaults

no_type_idfiletype

usedefaults

v Hierarchy (typed table) is not supported with nicknames.

If you submit an IMPORT command that does not adhere to these restrictions, the

SQL error code -27999N is returned. For example:

© Copyright IBM Corp. 1998, 2006 165

SQL27999N The requested IMPORT operation into a remote target (nickname) cannot be

 performed. Reason code = "reason_code"

IMPORT command with nicknames - examples

The examples show you how to import data into nicknames from different file

types.

DEL file type

This example uses the INSERT_UPDATE option to import data from a DEL file

type:

IMPORT FROM import_file_1.del OF DEL

 ALLOW WRITE ACCESS

 COMMITCOUNT 50

 INSERT_UPDATE INTO NICKNAME_1;

IXF file type

This example uses the INSERT option to import data from an IXF file type:

IMPORT FROM import_file_1.ixf OF IXF

 ALLOW WRITE ACCESS

 COMMITCOUNT 20

 INSERT INTO NICKNAME_1;

ASC file type

This example uses the INSERT option to import data from an ASC file type. The

example includes the STRIPTBLANKS file modifier to truncate any trailing blank

spaces in the data. The METHOD L parameter specifies the start and end of the

column numbers.

IMPORT FROM import_file_1.asc OF ASC MODIFIED BY STRIPTBLANKS

 METHOD L(1 6, 8 32, 34 44, 46 48)

 ALLOW WRITE ACCESS

 COMMITCOUNT 20

 INSERT INTO NICKNAME_1;

Restrictions for exporting data using nicknames

There are restrictions on using the EXPORT command to export data from a query

that references a nickname.

The following restrictions apply when you use the EXPORT command to export

data using a nickname:

v The description of the target table that is necessary to perform the import

CREATE operation is not saved in the IXF file format. Use the db2look utility to

collect the information that you need to recreate the table.

v You can export data into the IXF and DEL file types. The ASC file type is not

supported for exporting data from nicknames.

166 Administration Guide for Federated Systems

Chapter 13. Error tolerance in nested table expressions

Error tolerance is a mechanism that allows query execution to continue while

tolerating certain SQL errors in nested table expressions. With error tolerance,

instead of receiving an error for a part of a query and terminating the entire query,

you can obtain maximum query results from available data.

When the federated server encounters an allowable error, the server allows the

error and continues processing the remainder of the query rather than returning an

error for the entire query. The result set that the federated server returns can be a

partial or an empty result.

When the federated server tolerates errors, it returns query results even when the

data sources that the query accesses are not available. This mechanism is useful

when you need to return as much information as is available, despite incomplete

query results. For example, consider a doctor who needs data about a particular

type of medical condition. A query is run to gather information from remote data

sources at several different hospitals. If one or more hospital databases are not

available, the results from only the available databases are still very valuable to the

doctor.

Queries that contain UNION ALL branches can benefit from error tolerance.

Without this mechanism, if processing of one branch of the query encounters an

error, the federated server stops processing the query. With this mechanism, when

you specify the error to tolerate on that same branch of the query, the federated

server tolerates the error and continues to navigate to the rest of the available

branches. The UNION ALL operation returns the results from any available data

sources.

Example: The following query selects data from three nicknames on three different

servers:

SELECT c1 from nickname1_on_server1

UNION ALL

SELECT c1 from nickname2_on_server2

UNION ALL

SELECT c1 from nickname3_on_server3

When nickname2_on_server2 is not available, or when the remote server server2 is

not available during query processing, you can obtain the result set from

nickname1_on_server1 and from nickname3_on_server3 by tolerating the errors

with nickname2 and server2. A result set from two of the three query branches is

equivalent to running the following query:

SELECT c1 from nickname1_on_server1

UNION ALL

SELECT c1 from nickname3_on_server3

You can specify the SQL errors that you want to allow in a nested table expression

during query processing. The types of errors that the federated server tolerates are

errors with remote connections, authorization, and authentication.

© Copyright IBM Corp. 1998, 2006 167

Specifying nested table expressions for error tolerance

You specify the errors to tolerate in a nested table expression with the RETURN

DATA UNTIL clause.

About this task

When you use the RETURN DATA UNTIL clause, you must specify the error codes

that you want to tolerate. The following table lists the errors that are allowed in

the specific-condition-value clause. You must specify an SQLSTATE, or an SQLSTATE

and SQLCODE, that matches a permissible error code. The SQLCODEs listed in

the table are required.

 Table 17. Errors allowed in the specific-condition-value clause

SQLSTATE Error code SQLCODE

08001 SQL30080N -30080

08001 SQL30081N -30081

08001 SQL30082N -30082

08001 SQL1336N -1336

08004 Any Any

28000 Any Any

42501 Any Any

42512 Any Any

42704 SQL0204N -204

42720 Any Any

Procedure

To specify nested table expressions for error tolerance, create an SQL statement that

contains the RETURN DATA UNTIL clause.

RETURN DATA UNTIL specific-condition-value

RETURN DATA UNTIL

Any rows that are returned from the fullselect, before the specified

condition is encountered, are returned in the result set from the fullselect.

specific-condition-value

Specifies the condition and values for error tolerance.

FEDERATED

Required keyword. The specific condition that you specify must

only include errors that occur at a federated data source.

SQLSTATE VALUE string-constant

You can specify a specific condition as an SQLSTATE value. The

length of the string constant must be 5 when VALUE is specified.

An SQLSTATE value can be narrowed down to a particular

SQLCODE value. You can specify multiple SQLCODE values that

share the same SQLSTATE in one specific-condition-value.

Nested table expressions for error tolerance - example

The following examples illustrate how to use the RETURN DATA UNTIL clause to

return query results when one or more federated data sources are not available.

168 Administration Guide for Federated Systems

Example: The following SQL statement selects data from three different servers:

SQLServer, Oracle, and Sybase.

SELECT c1 FROM

TABLE RETURN DATA UNTIL

FEDERATED SQLSTATE ’08001’ SQLCODE -30080, -30082

WITHIN(SELECT c1 FROM n1_from_SQLServer) etq1

UNION ALL

SELECT c1 FROM

TABLE RETURN DATA UNTIL

FEDERATED SQLSTATE ’08001’ SQLCODE -30080, -30082

WITHIN (SELECT c1 FROM n2_from_Oracle) etq2

UNION ALL

SELECT c1 FROM

TABLE RETURN DATA UNTIL

FEDERATED SQLSTATE ’08001’ SQLCODE -30080, -30082

WITHIN(SELECT c1 FROM n3_from_Sybase) etq3;

Scenario 1: One server is not available.

In this scenario, the Oracle server is not available. The SQLServer server and

Sybase server are available. In this situation, the query in the second branch of the

UNION ALL operation returns an empty result set with the 30080 error, which is

specified to be tolerated. The query returns the results from n1_from_SQLServer

and from n3_from_Sybase. Warning sqlwarn5=’E’ is issued.

The result set is equivalent to running the following query:

SELECT c1 FROM n1_from_SQLServer

UNION ALL

SELECT c1 FROM n3_from_Sybase;

Scenario 2: All servers are not available.

In this scenario, all servers (SQLServer, Oracle, and Sybase) are unavailable. In this

situation, the UNION ALL operation returns an empty result set. Warning

sqlwarn5=’E’ is issued.

Scenario 3: All servers are available.

If all of the servers are available, the result set of the query is equivalent to

running the same query without specifying the RETURN DATA UNTIL clause.

Data source support for nested-table-expressions for error tolerance

Error tolerance is supported for several relational data sources and for

nonrelational nicknames.

Error tolerance in nested-table-expressions is supported for the following relational

data sources:

v DB2 family (DRDA)

v Informix

v Microsoft SQL Server

v ODBC

v Oracle (NET8)

v Sybase (CTLIB)

v Teradata

Chapter 13. Error tolerance in nested table expressions 169

You can use nonrelational nicknames within nested-table-expressions for error

tolerance. The federated server can tolerate the allowable connection,

authentication, or authorization errors when the nonrelational wrappers return a

permissible error code.

Restrictions on nested-table-expressions for error tolerance

Some restrictions apply when you define error tolerant nested-table-expressions.

A query or view is read-only when you define the query or view with an

expression that contains the RETURN DATA UNTIL clause. Cursors that are

declared in expressions with the RETURN DATA UNTIL clause are read-only.

Errors are returned for each of those situations.

170 Administration Guide for Federated Systems

Chapter 14. Monitoring a federated system

Health indicators for federated nicknames and servers

You can use health indicators in the DB2 Health Center to monitor the status of

your federated nicknames and servers.

The health indicator for nicknames is db.fed_nicknames_op_status. The health

indicator for server definitions is db.fed_servers_op_status. The federated health

indicators are installed when the health monitor is installed.

By default, the Health Center does not activate the federated health indicators. You

must activate the indicators.

When the state of a nickname or server is not normal, the health indicators issue

an alert. You can view the results of monitoring by using the Health Center or the

command line.

Federated servers that use AIX, HP-UX, Linux, Microsoft Windows, and Solaris

operating systems support the health indicators.

Table 18 describes the health indicators for federated nicknames and servers.

 Table 18. Nickname and server health indicators

Health indicator Description

db.fed_nicknames_op_status

Indicates the aggregate health of all the relational

nicknames defined in a database on a federated server.

Alerts you if a nickname is invalid. Provides details

about the invalid nicknames and recommends actions

that you can take to repair them.

db.fed_servers_op_status

Indicates the aggregate health of all the federated

servers defined in a database on a federated server.

Alerts you if a server is unavailable. Provides details

about the unavailable servers and recommends actions

that you can take to make them available.

The health indicators can evaluate the following data sources:

v DB2 family (DRDA)

v Excel

v Informix

v Microsoft SQL Server

v ODBC

v Oracle (NET8)

v Sybase (CTLIB)

v Table-structured files

v Teradata

v XML (root nicknames only)

© Copyright IBM Corp. 1998, 2006 171

Activating the federated health indicators

To monitor the health of nicknames and servers, you must activate the federated

health indicators. The health indicator for nicknames is

db.fed_nicknames_op_status. The health indicator for server definitions is

db.fed_servers_op_status.

Procedure

To activate the federated health indicators, you can open the DB2 Health Center

and configure the health indicators or use the command line processor.

Monitoring the health of federated nicknames and servers

Monitoring nickname and server status can help you determine and resolve

problems in your federated system. You can monitor the status of federated

nicknames and servers by using health indicators in the Health Center.

Before you begin

v Ensure that SELECT privileges on the nicknames are defined on the federated

server.

v Set the FEDERATED database manager configuration parameter to YES.

v If the data source requires authentication, the data source must have user

mappings from the Health Monitor’s ID. The Health Monitor uses this mapping

to connect to the data source.

Restrictions

“Health indicators for federated nicknames and servers” on page 171 lists the data

sources that the health indicators can evaluate.

About this task

You can view the results of monitoring by using the Health Center or the

command line. Use the DB2 Control Center or DB2 command line processor to

resolve the problems that are identified by the health indicators.

Procedure

To do this task from the command line, issue the GET HEALTH SNAPSHOT

command.

To do this task from the DB2 Control Center:

1. Open the Health Center.

2. Open the Recommendation Advisor to view recommendations for how to

resolve the invalid nicknames or unavailable servers.

3. To do this task from the command line, issue the GET HEALTH SNAPSHOT

command.

Monitoring the health of federated nicknames and servers -

example

This topic provides an example of the health snapshot of a database.

172 Administration Guide for Federated Systems

The federated health indicator names are db.fed_nicknames_op_status and

db.fed_servers_op_status. You must enable these health indicators by using either

the Health Center or by using the following commands in the CLP:

db2 update alert cfg for databases using db.fed_nicknames_op_status set

 THRESHOLDSCHECKED YES

db2 update alert cfg for databases using db.fed_servers_op_status set

 THRESHOLDSCHECKED YES

The following command retrieves a database health snapshot including the

federated health indicators, if they have been enabled:

db2 get health snapshot for database on <database_name>

In this example, the database name is fedhi. The output of this command indicates

that both health indicators are in normal states. Normal means that the nicknames

and the servers are valid.

 Database Health Snapshot

Snapshot timestamp = 02/10/2006 12:10:55.063004

Database name = FEDHI

Database path = C:\DB2\NODE0000\SQL00006\

Input database alias = FEDHI

Operating system running at database server= NT

Location of the database = Local

Database highest severity alert state = Attention

Health Indicators:

 Indicator Name = db.fed_servers_op_status

 Value = 0

 Evaluation timestamp = 02/10/2006 12:09:10.961000

 Alert state = Normal

 Indicator Name = db.fed_nicknames_op_status

 Value = 0

 Evaluation timestamp = 02/10/2006 12:09:10.961000

 Alert state = Normal

 Indicator Name = db.db_op_status

 Value = 0

 Evaluation timestamp = 02/10/2006 12:08:10.774000

 Alert state = Normal

 Indicator Name = db.sort_shrmem_util

 Value = 0

 Unit = %

 Evaluation timestamp = 02/10/2006 12:08:10.774000

 Alert state = Normal

 Indicator Name = db.spilled_sorts

 Value = 0

 Unit = %

 Evaluation timestamp = 02/10/2006 12:09:10.961000

 Alert state = Normal

Snapshot monitoring of federated systems - Overview

You can use the snapshot monitor to capture information about federated data

sources and any connected applications at a specific time.

Chapter 14. Monitoring a federated system 173

Snapshots are useful for determining the status of a federated system. Taken at

regular intervals, snapshots are also useful for observing trends and foreseeing

potential problems.

The output of the snapshot monitor is available in the following formats:

v In textual form, through the snapshot monitor command-line processor interface.

v As the output of table functions. This output is useful for writing queries that

limit output.

The snapshots that are particularly useful for federated workloads include:

Dynamic SQL statement snapshot

Provides a snapshot of all dynamic SQL statements currently in the

statement cache that includes federated and non-federated statements.

Application snapshot

Provides information about a specific application, including the text of the

currently running SQL statement.

Remote databases snapshot

Provides information about a specific federated system database.

All remote databases snapshot

Provides information about each federated system database that is active.

Remote applications snapshot

Provides application-level information for each federated system

application that is active.

Monitoring federated queries

By monitoring queries, you can determine how your federated system is

performing. To help you understand how your federated system is processing a

query, you can get a snapshot of the remote query.

About this task

The snapshot monitor tracks two aspects of each query processed by the federated

server:

v The entire federated query as submitted by the application, which references

nicknames, local tables, or both.

v For queries involving nicknames, one or more remote fragments. Remote

fragments are the statements that are automatically generated and submitted to

remote data sources in their native dialects on behalf of the federated query.

Monitoring federated queries requires that you consider both the work done

locally at the federated server and work done at remote servers in response to

remote query fragments. The dynamic SQL statement snapshot and the

SNAPSHOT_DYN_SQL table function contain information about individual

federated queries as they are submitted to the federated server, and about remote

query fragments that the federated server, sends to other data sources.

Before you begin

You must set the STATEMENT monitor switch ON for the federated database to

collect snapshot information for remote queries.

Procedure

174 Administration Guide for Federated Systems

To monitor queries on the federated server, while connected to the federated

database, use one of the following methods:

v Textual output:

GET SNAPSHOT FOR DYNAMIC SQL on dbname

where dbname is the name of the federated server database.

v Table function:

CREATE TABLE table snap AS (SELECT * FROM TABLE(SNAPSHOT_DYN_SQL (’dbname’, -1))

 as snaptab) definition only;

INSERT INTO snap (SELECT * FROM TABLE(SNAPSHOT_DYN_SQL (’dbname’, -1))

 as snaptab);

You can then write a query against the snap table that contains one row per

query (federated or non-federated) and one row per query fragment in the

statement cache of the server.

The name of remote query fragments is the server to which they were sent

prepended to the remote query text, in square brackets, in the stmt_text field of

the table function. For example, you can use the following query to look for

long-running remote fragments:

SELECT total_exec_time, rows_read, total_usr_cpu_time, num_executions,

 substr(stmt_text,1,30)

FROM TABLE(SNAPSHOT_DYN_SQL (’dbname’, -1))AS snaptab

-- remote fragments only

WHERE stmt_text LIKE ’[%]%’

ORDER BY total_exec_time;

By comparing the execution time of an entire federated statement with the

execution times of remote fragments sent to other data sources on behalf of the

statement, you can understand where most of the processing time is spent.

To determine which query fragments are sent to remote sources on behalf of a

federated query, consult an EXPLAIN execution plan for the query.

Snapshot monitoring of federated queries - example

This topic provides an example of output for the text-based dynamic SQL snapshot

of a federated query that involves a remote Oracle data source.

The following statement retrieves a snapshot of all statements currently in the

statement cache, including federated statements and remote fragments sent to

other data sources:

GET SNAPSHOT FOR DYNAMIC SQL ON <database_name>

The database name is the name of the local federated database.

The output in the following example is the result of the statement:

GET SNAPSHOT FOR DYNAMIC SQL ON FEDDB

The example shows a federated statement and one remote fragment that is pushed

down by that federated statement. You can identify remote fragments by finding

the remote server name prepended to the remote statement text in square brackets.

In this example, the remote Oracle server is named ORA9. The first entry shows

the federated SQL statement that references nicknames, including its overall

elapsed time. The second entry shows the remote statement sent to the source

[ORA9] that references the remote Oracle table names.

Chapter 14. Monitoring a federated system 175

Dynamic SQL Snapshot Result

 Database name = FEDDB

 Number of executions = 1

 Number of compilations = 1

 Worst preparation time (ms) = 475

 Best preparation time (ms) = 475

 Internal rows deleted = 0

 Internal rows inserted = 0

 Rows read = 5

 Internal rows updated = 0

 Rows written = 0

 Statement sorts = 0

 Statement sort overflows = 0

 Total sort time = 0

 Buffer pool data logical reads = Not Collected

 Buffer pool data physical reads = Not Collected

 Buffer pool temporary data logical reads = Not Collected

 Buffer pool temporary data physical reads = Not Collected

 Buffer pool index logical reads = Not Collected

 Buffer pool index physical reads = Not Collected

 Buffer pool temporary index logical reads = Not Collected

 Buffer pool temporary index physical reads = Not Collected

 Buffer pool xda logical reads = Not Collected

 Buffer pool xda physical reads = Not Collected

 Buffer pool temporary xda logical reads = Not Collected

 Buffer pool temporary xda physical reads = Not Collected

 Total execution time (sec.ms) = 1.816884

 Total user cpu time (sec.ms) = 0.000000

 Total system cpu time (sec.ms) = 0.020000

 Statement text = select count(*) from orat.supplier,

 orat.nation where s_nationkey =

 n_nationkey and n_name <> ’FRANCE’

 Number of executions = 1

 Number of compilations = 1

 Worst preparation time (ms) = 0

 Best preparation time (ms) = 0

 Internal rows deleted = 0

 Internal rows inserted = 0

 Rows read = 1

 Internal rows updated = 0

 Rows written = 0

 Statement sorts = 0

 Statement sort overflows = 0

 Total sort time = 0

 Buffer pool data logical reads = Not Collected

 Buffer pool data physical reads = Not Collected

 Buffer pool temporary data logical reads = Not Collected

 Buffer pool temporary data physical reads = Not Collected

 Buffer pool index logical reads = Not Collected

 Buffer pool index physical reads = Not Collected

 Buffer pool temporary index logical reads = Not Collected

 Buffer pool temporary index physical reads = Not Collected

 Buffer pool xda logical reads = Not Collected

 Buffer pool xda physical reads = Not Collected

 Buffer pool temporary xda logical reads = Not Collected

 Buffer pool temporary xda physical reads = Not Collected

 Total execution time (sec.ms) = 1.337672

 Total user cpu time (sec.ms) = 0.000000

 Total system cpu time (sec.ms) = 0.000000

 Statement text = [ORA9] SELECT COUNT(*) FROM "TPCH"."NATION"

 A0, "TPCH"."SUPPLIER" A1 WHERE

 (A0."N_NAME" <> ’FRANCE ’) AND

 (A1."S_NATIONKEY" = A0."N_NATIONKEY")

176 Administration Guide for Federated Systems

The snapshot did not collect any buffer pool information, because buffer pool

information is not applicable to remote queries.

Federated database systems monitor elements

This topic describes the monitor elements that provide information about federated

systems.

A federated system access to diverse data sources that can reside on different

platforms, both IBM and other vendors, relational and nonrelational. It integrates

access to distributed data and presents a single database image of a heterogeneous

environment to its users.

The following elements list information about the total access to a data source by

applications running in a federated system and information about access to a data

source by a given application running in a federated server instance. They include:

v datasource_name - Data Source Name monitor element

v disconnects - Disconnects monitor element

v insert_sql_stmts - Inserts monitor element

v update_sql_stmts - Updates monitor element

v delete_sql_stmts - Deletes monitor element

v dynamic_sql_stmts - Dynamic SQL Statements Attempted monitor element

v create_nickname - Create Nicknames monitor element

v passthrus - Pass-Through monitor element

v stored_procs - Stored Procedures monitor element

v remote_locks - Remote Locks monitor element

v sp_rows_selected - Rows Returned by Stored Procedures monitor element

v select_time - Query Response Time monitor element

v insert_time - Insert Response Time monitor element

v update_time - Update Response Time monitor element

v delete_time - Delete Response Time monitor element

v create_nickname_time - Create Nickname Response Time monitor element

v passthru_time - Pass-Through Time monitor element

v stored_proc_time - Stored Procedure Time monitor element

v remote_lock_time - Remote Lock Time monitor element

The following example shows the dynamic_sql_statement snapshot:

Statement text = [ORACLE817]SELECT A0.C1,A0.C2 FROM ORA_T A0 WHERE A0.C3 = :H0

For all remote statements, the Statement text starts with the remote data source

name, inside square brackets, followed by the actual text sent to the remote data

source.

Chapter 14. Monitoring a federated system 177

http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003745.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003749.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003753.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003754.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003755.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0001330.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003756.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003757.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003758.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003759.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003764.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003766.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003767.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003768.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003769.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003770.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003779.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003772.htm
http://publib.boulder.ibm.com/infocenter/db2help//topic/com.ibm.db2.udb.doc/admin/r0003773.htm

178 Administration Guide for Federated Systems

Chapter 15. Unicode support for federated data sources

Unicode support for federated systems

Relational and nonrelational wrappers and user-defined functions can run on a

database in the Unicode code page (UTF-8).

The database in the Unicode code page provides federated server environments

that are platform independent. The database can manipulate data that is stored in

various code pages on different data sources.

The wrappers and user-defined functions that support Unicode are:

v Relational wrappers

– DRDA

– Informix

– MS SQL Server

– ODBC

– OLE DB

– Oracle

– Sybase

– Teradata
v Nonrelational wrappers and user-defined functions

– BioRS wrapper

– BLAST wrapper

– Entrez wrapper

– Excel wrapper

– HMMER wrapper

– KEGG user-defined functions

– MQ user-defined functions

– Table-structured file wrapper

– Web services user-defined functions

– Web services wrapper

– WebSphere® Business Integration wrapper

– XML wrapper

In Figure 10 on page 180 a company has branch offices in different countries. Each

branch office stores customer data with its own databases in their own code page.

The Microsoft SQL Server database stores data in code page A. The Oracle

database stores data in code page B. Code page A and code page B are in different

territories. To integrate the data from the different territories, the company can set

the federated database’s code page to Unicode. The company can then join the

tables to see the total number of purchase orders, regardless of territory.

© Copyright IBM Corp. 1998, 2006 179

Specifying the client code page for Unicode support of Microsoft SQL

Server and ODBC data sources

To ensure correct code page conversion for Microsoft SQL Server and ODBC data

sources, you must specify the client code page if the code page differs from the

federated database code page.

Procedure

To specify the client code page, issue a CREATE SERVER statement with the

CODEPAGE option set to the value of the client code page.

Example: If the data source is Microsoft SQL Server and the federated server is on

Windows and the default system locale of the operating system is set to Japanese

(Shift-JIS), the CODEPAGE server option must be set to either 943 (Shift-JIS) or

1202 (UTF-16LE). To specify the 1202 code page for the Microsoft SQL server data

source named FEDSERVERW, issue the following statement:

Wrapper

Nickname A in code page A

Customer A
Customer B
Customer C

Customer name Product ID Product name Purchase
order

1002
1002
1003

Product B
Product B
Product C

100
1000
200

1
2
3

Customer ID

Nickname B in code page B

Customer D
Customer E
Customer F

Customer name Product ID Product name Purchase
order

11
12
13

Customer ID

Customer A
Customer B
Customer C
Customer D
Customer E
Customer F

Customer name Product ID Product name Purchase
order

1002
1002
1003
1001
1002
1003

Product B
Product B
Product C
Product A
Product B
Product C

100
1000
200
50
600
1000

1
2
3
11
12
13

View A (contains both code pages)

Code
page

B

Code
page

A

UTF-8

Customer A
Customer B
Customer C

1
2
3

1002
1002
1003

WebSphere Federation Server

Oracle

MS SQL Server
Customer ID

11
12
13

Customer ID

11
12
13

Product B
Product B
Product C

100
1000
200

Customer D
Customer E
Customer F

Customer name Product ID Product name

1001
1002
1003

Product A
Product B
Product C

Table B in code page B

Customer ID

Table A in code page A

Purchase
order

50
600
1000

Customer name Product IDCustomer ID Product name Purchase
order

1001
1002
1003

Product A
Product B
Product C

50
600
1000

Figure 10. Unicode example

180 Administration Guide for Federated Systems

CREATE SERVER FEDSERVERW TYPE MSSQLSERVER VERSION 2000 WRAPPER MSSQLODBC3

 OPTIONS(NODE ’SAMPLE’, DBNAME ’TESTDB’, CODEPAGE ’1202’);

Example: If the data source is Microsoft SQL Server and the federated server is

running on UNIX and the AppCodePage or IANAAppCodePage setting of the

DataDirect Connect client is 6 (Shift-JIS), the CODEPAGE server option must be set

to either 943 (Shift-JIS) or 1208 (UTF-8). To specify the 1208 code page for the

Microsoft SQL server data source named FEDSERVERU, issue the following

statement:

CREATE SERVER FEDSERVERU TYPE MSSQLSERVER VERSION 2000 WRAPPER MSSQLODBC3

 OPTIONS(NODE ’SAMPLE’, DBNAME ’TESTDB’, CODEPAGE ’1208’);

Supported Unicode code pages for the MSSQL and ODBC wrapper

CODEPAGE option

Valid code page values are those that DB2 Database for Linux, UNIX, and

Windows supports plus those shown in the following table.

 Table 19. Supported Unicode code pages for the MSSQL and ODBC wrapper CODEPAGE

option

CODEPAGE option value Description

1200 Codepage1200 - UCS-2 (big-endian)

1202 Codepage1202 - UCS-2 (little-endian)

1208 Codepage1208 - UTF-8

1232 Codepage1232 - UTF-32 (big-endian)

1234 Codepage1234 - UTF-32 (little-endian)

Specifying the file code page for Unicode support of table-structured

file data sources

To ensure correct code page conversion for table-structured file data sources data

sources, you must specify the file code page if the code page differs from the

federated database code page.

Restrictions

You can use the CODEPAGE option only in a Unicode federated database.

About this task

Valid values are those that DB2 Database for Linux, UNIX, and Windows supports.

The default value is the code page of the federated database.

Procedure

To specify the code page of a table-structured file, issue the CREATE NICKNAME

statement with the CODEPAGE option set to the code page of the data in the

table-structured file.

Example: The code page of the data in a file named DRUGDATA1.TXT is 943. To

specify the code page of a table-structured file as 943, issue the following CREATE

NICKNAME statement:

Chapter 15. Unicode support for federated data sources 181

CREATE NICKNAME DRUGDATA1(Dcode Integer NOT NULL, Drug CHAR(20),

 Manufacutuer CHAR(20))

 FOR SERVER biochem_lab

 OPTIONS(FILE_PATH ’/usr/pat/DRUGDATA1.TXT’,CODEPAGE ’943’,

 COLUMN_DELIMITER ’.’,

 SORTED ’Y’, KEY_COLUMN ’DCODE’, VALIDATE_DATA_FILE ’Y’);

Specifying the file code page for Unicode support of table-structured

file data sources - example

The following example shows you how to specify the code page of a

table-structured file.

The code page of the data in a file named DRUGDATA1.TXT is 943. To specify the

code page of a table-structured file as 943, issue the following CREATE

NICKNAME statement:

CREATE NICKNAME DRUGDATA1(Dcode Integer NOT NULL, Drug CHAR(20),

 Manufacutuer CHAR(20))

 FOR SERVER biochem_lab

 OPTIONS(FILE_PATH ’/usr/pat/DRUGDATA1.TXT’,CODEPAGE ’943’,

 COLUMN_DELIMITER ’.’,

 SORTED ’Y’, KEY_COLUMN ’DCODE’, VALIDATE_DATA_FILE ’Y’);

Errors when remote and federated code point sizes are different

When the code point size differs between the federated database and the remote

data source, you can get truncated data returned or insertion or update failures.

When you select data from the remote data source, that data is truncated if the

character string conversion results in a larger number of bytes than the size of the

nickname column. If the truncated data ends in a dangling character, blanks fill the

remaining bytes. Also, you can insert or update data that is larger than the

nickname column size if the converted data size is smaller than, or equal to, the

remote column size.

If the federated database has a smaller code point size than the remote data source,

insertion or update of data can fail. Insertions or updates fail if the character string

conversion results in a larger number of bytes than the size of the remote data

source column.

Adjust nickname column size or remote table column size to prevent data

truncation or a truncation error.

182 Administration Guide for Federated Systems

Chapter 16. Tuning the performance of a federated system

Publications about federated performance

The following IBM documents contain detailed information about performance

tuning:

v Parallelism in WebSphere Information Integrator V8.2, at http://www-
128.ibm.com/developerworks/db2/library/techarticle/dm-0502harris/

v Data Federation with IBM DB2 Information Integrator V8.1, at

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/
sg247052.html?Open

v ″Using the federated database technology of IBM DB2 Information Integrator″, at

ftp://ftp.software.ibm.com/software/data/pubs/papers/iifed.pdf

v ″DB2 Information Integrator XML Wrapper Performance″, at

ftp://ftp.software.ibm.com/software/data/pubs/papers/db2iixmlwrapper.pdf

Query analysis

An important part of query processing is the analysis that determines how to tune

the query for optimal performance.

To obtain data from data sources, clients (users and applications) submit queries in

SQL to the federated database. The SQL compiler then consults information in the

global catalog and the data source wrapper to help it process the query. This

includes information about connecting to the data source, server attributes,

mappings, index information, and nickname statistics.

As part of the SQL compiler process, the query optimizer analyzes a query. The

compiler develops alternative strategies, called access plans, for processing the

query. The access plans might call for the query to be:

v Processed by the data sources

v Processed by the federated server

v Processed partly by the data sources and partly by the federated server

The federated database evaluates the access plans primarily on the basis of

information about the data source capabilities and attributes of the data. The

wrapper and the global catalog contain this information. The federated database

decomposes the query into segments that are called query fragments. Typically it is

more efficient to pushdown a query fragment to a data source, if the data source

can process the fragment. However, the query optimizer takes into account other

factors such as:

v The amount of data that needs to be processed.

v The processing speed of the data source.

v The amount of data that the fragment will return.

v The communication bandwidth.

Pushdown analysis is only performed on relational data sources. Nonrelational

data sources use the request-reply-compensate protocol.

© Copyright IBM Corp. 1998, 2006 183

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0502harris/?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg247052.html?Open
ftp://ftp.software.ibm.com/software/data/pubs/papers/iifed.pdf
ftp://ftp.software.ibm.com/software/data/pubs/papers/db2iixmlwrapper.pdf

The following figure illustrates the steps performed by the SQL compiler when it

processes a query.

The query optimizer generates local and remote access plans for processing a

query fragment, based on resource cost. The federated database then chooses the

plan it believes will process the query with the least resource cost.

If any of the fragments are to be processed by data sources, the federated server

submits these fragments to the data sources. After the data sources process the

fragments, the results are retrieved and returned to the federated server. If the

federated database performed any part of the processing, it combines its results

with the results retrieved from the data source. The federated server then returns

the results to the client.

The primary task of pushdown analysis is to determine which operations can be

evaluated remotely. Pushdown analysis does this based on the SQL statement it

receives and its knowledge of the capabilities and semantics of the remote data

SQL Query

Visual
Explain

db2exfmt
Tool

db2expln
Tool

SQL Compiler

Check
Semantics

Rewrite
Query

Optimize
Access Plan

Generate
Executable Code

Execute Plan

Query
Graph
Model

Access
Plan

Parse Query

Executable
Plan

Explain
Tables

Pushdown
Analysis

Remote SQL
Generation

Figure 11. SQL compiler query analysis flowchart

184 Administration Guide for Federated Systems

source. Based on this analysis, the query optimizer evaluates the alternatives and

chooses the access plan based on cost. The optimizer might choose to not perform

an operation directly on a remote data source because it is less cost-effective. A

secondary task is to attempt to rewrite the query to compensate for the difference

in semantics and SQL operations between the federated server and the data source

so that the query is better optimized.

The final access plan selected by the optimizer can include operations evaluated at

the remote data sources. For those operations that are performed remotely, the SQL

compiler creates efficient SQL phrased in the SQL dialect of the remote data source

during the generation phase. The process of producing an optimal query plan that

takes all sources into account is called global optimization.

For nonrelational sources, the wrappers use the request-reply-compensate protocol.

Pushdown analysis

Pushdown analysis tells the query optimizer if a remote data source can perform

an operation. An operation can be a function, such as relational operator, system or

user functions, or an SQL operator (GROUP BY, ORDER BY, and so on). The

optimizer then makes a cost-based decision about whether or not to push down

the operator. Even if pushdown analysis determines that a particular operation can

be performed at the remote source, the optimizer might decide to execute it locally

at the federated server, if doing so appears to consume fewer resources.

Pushdown analysis is performed on relational data sources. Nonrelational sources

use the request-reply-compensate protocol.

Functions that cannot be pushed-down, can significantly impact query

performance. Consider the effect of forcing a selective predicate to be evaluated

locally instead of at the remote data source. This approach could require the

federated server to retrieve the entire table from the remote data source, and then

filter the table locally using the predicate. If your network is constrained—and the

table is large—query performance could suffer.

Operators that are not pushed-down can also significantly impact query

performance. For example, having a GROUP BY operator aggregate remote data

locally could, once again, require the federated server to retrieve the entire table

from the remote data source.

For example, suppose that the nickname EMP references the table EMPLOYEE.

This table has 10,000 rows. One column contains the zip codes, and one column

contains the salary for each employee. The following query is sent to the federated

server to count the number of employees per city who earn greater than 50,000

that live in a particular ZIP code range:

SELECT CITY, COUNT(*) FROM EMP

 WHERE ZIP BETWEEN ’CA1’ AND ’CA5’ AND SALARY > 50000

 GROUP BY CITY;

When the SQL compiler receives this statement, it considers several possibilities:

v The collating sequences of the data source and the federated server are the same.

It is likely that both predicates will be pushed down, because they are likely to

reduce the size of the intermediate result set sent from the data source to the

federated server. It is usually more efficient to filter and group results at the data

source instead of copying the entire table to the federated server and performing

Chapter 16. Tuning the performance of a federated system 185

the operations locally. Pushdown analysis determines if operations can be

performed at the data source. Since the collating sequences are the same, the

predicates and the GROUP BY operation can take place at the data source.

v The collating sequences are the same, and the query optimizer knows that the

federated server is very fast. It is possible that the query optimizer will decide

that performing the GROUP BY operation locally is the best (least cost)

approach. The predicates will be pushed-down to the data source for evaluation.

This is an example of pushdown analysis combined with global optimization.

v The collating sequences are not the same. Most likely, the SALARY predicate will

be pushed down to the data source, because numeric columns are sorted the

same, regardless of collating sequence. However, the predicate on ZIP will not

be pushed down because it is order-dependant on a character column. The

GROUP BY will not be pushed down unless the predicates on both ZIP and

SALARY are also pushed down.

The SQL compiler will consider the available access plans, and then choose the

plan that is the most efficient.

In general, the goal is to ensure that the query optimizer considers pushing down

the functions and operators to the data sources for evaluation. Many factors can

affect whether a function or an SQL operator is evaluated at a remote data source.

The key factors which influence the query optimizer are: server characteristics,

nickname characteristics, and query characteristics.

Server characteristics affecting pushdown opportunities

Server characteristics that affect pushdown include SQL support, collating

sequence, federated server options, and type and function mappings.

The factors that affect pushdown opportunities for nonrelational data sources are

different than the factors that affect pushdown opportunities for relational data

sources. The SQL dialect is not a factor for most nonrelational data sources, since

they do not use SQL.

The following topics describe the data source-specific factors that can affect

pushdown opportunities.

SQL differences

SQL characteristics that affect pushdown include SQL capabilities, restrictions,

limitations, and SQL specific to a server.

v SQL capabilities. Each data source supports a variation of the SQL dialect and

different levels of functionality. For example, consider the GROUP BY list. Most

data sources support the GROUP BY operator. However some data sources have

restrictions on the number of items on the GROUP BY list, or restrictions on

whether an expression is allowed on the GROUP BY list. If there is a restriction

at the remote data source, the federated server might perform the GROUP BY

operation locally.

v SQL restrictions. Each data source can have different SQL restrictions. For

example, some data sources require parameter markers to bind in values to

remote SQL statements. Therefore, parameter marker restrictions must be

checked to ensure that each data source can support such a bind mechanism. If

the federated server cannot determine a good method to bind in a value for a

function, this function must be evaluated locally.

186 Administration Guide for Federated Systems

v SQL limitations. The federated server might allow the use of larger integers than

the remote data sources. However, limit-exceeding values cannot be embedded

in statements that are sent to the data sources. Therefore, the function or

operator that operates on this constant must be evaluated locally.

v Server specifics. Several factors fall into this category. One example is sorting

NULL values (highest, or lowest, depending on the ordering). For example, if

the NULL value is sorted at a data source differently from the federated server,

ORDER BY operations on a nullable expression cannot be remotely evaluated.

Collating sequence

If you set the COLLATING_SEQUENCE server option to ’Y’, you are telling the

federated database that the data source collating sequence matches the collating

sequence of the federated server. This setting allows the optimizer to consider

pushing down order-dependent processing to a data source, which can improve

performance.

If the data source collating sequence is not the same as the federated database

collating sequence and you set the COLLATING_SEQUENCE server option to ’Y’,

you can receive incorrect results. For example, if your plan uses merge joins, the

optimizer might push down ordering operations to the data sources. If the data

source collating sequence is not the same, the join results might not have a correct

result set. Set the COLLATING_SEQUENCE server option to ’N’, if you are not

sure that the collating sequence at the data source is identical to the federated

database collating sequence.

Alternatively, you can configure a federated database to use the same collating

sequence that a data source uses. You then set the COLLATING_SEQUENCE

server option to ’Y’. This allows the optimizer to consider pushing down

order-dependent operations on character columns.

To determine if a data source and the federated database have the same collating

sequence, consider the following factors:

v National language support

The collating sequence is related to the language supported on a server.

Compare the federated database NLS information for your operating system to

the data source NLS information.

v Data source characteristics

Some data sources are created using case-insensitive collating sequences, which

can yield different results from the federated database in order-dependent

operations.

v Customization

Some data sources provide multiple options for collating sequences or allow the

collating sequence to be customized.

When a query fragment from a federated server requires sorting, the place where

the sorting is processed depends on several factors. If the federated database’s

collating sequence is the same as the data source collating sequence, the sort can

take place at the data source or at the federated server. The query optimizer can

determine if a local sort or a remote sort is the most efficient way to complete the

query.

Chapter 16. Tuning the performance of a federated system 187

Numeric comparisons, in general, can be performed at either location even if the

collating sequence is different. You can get incorrect results, however, if the

weighting of null characters is different between the federated database and the

data source.

Likewise, for comparison statements, be careful if you are submitting statements to

a case-insensitive data source. The weights assigned to the characters ″I″ and ″i″ in

a case-insensitive data source are the same. For example, in a case-insensitive data

source with an English code page, STEWART, SteWArT, and stewart would all be

considered equal. The federated database, by default, is case-sensitive and would

assign different weights to the characters.

If the collating sequences of the federated database and the data source differ, the

federated server retrieves the data to the federated database, so that it can do the

sorting locally. The reason is that users expect to see the query results ordered

according to the collating sequence defined for the federated server; by ordering

the data locally, the federated server ensures that this expectation is fulfilled.

If your query contains an equality predicate on the character column, it is possible

to push down that portion of the query even if the collating sequences are different

(set to ’N’). For example, the predicate C1 = ’A’ would retrieve the same values

regardless of collating sequence and therefore could be pushed down to a data

source that has a different collating sequence than the federated server. However,

such predicates cannot be pushed down when the collating sequence at the data

source is case-insensitive (COLLATING_SEQUENCE=’I’). When a data source is

case-insensitive, the results from C1= ’A’ and C1 = ’a’ are the same, which is not

consistent with a case-sensitive environment such as DB2 Database for Linux,

UNIX, and Windows.

Administrators can create federated databases with a particular collating sequence

that matches the data source collating sequence. This approach can speed

performance if all data sources use the same collating sequence or if most or all

column functions are directed to data sources that use the same collating sequence.

For example, in DB2 for z/OS, sorts defined by ORDER BY clauses are

implemented by a collating sequence based on an EBCDIC code page. If you want

to use the federated server to retrieve DB2 for z/OS data sorted in accordance with

ORDER BY clauses, it is advisable to configure the federated database so that is

uses a predefined collating sequence based on the EBCDIC code page.

If the collating sequences at the federated database and the data source differ, and

you need to see the data ordered in the data source’s sequence, you can submit

your query in a pass-through session, or define the query in a data source view.

Federated server options

The server options that you set refine the knowledge that the federated server has

about the remote data source.

The previously listed factors that affect pushdown opportunities are characteristics

of the database servers, and you can not change them. By carefully considering the

following server options, it is possible to improve query performance:

v COLLATING_SEQUENCE. If a data source has a collating sequence that differs

from the federated database collating sequence, any order-dependent operations

on character values cannot be remotely evaluated at the data source. An example

is executing MAX column functions on a nickname character column at a data

source with a different collating sequence. Because results might differ if the

188 Administration Guide for Federated Systems

MAX function is evaluated at the remote data source, the federated database

will perform the aggregate operation and the MAX function locally.

v VARCHAR_NO_TRAILING_BLANKS. This option is for varying-length

character strings that contain no trailing blanks. Some data sources, such as

Oracle, do not apply blank-padded comparison semantics like the federated

database does. This padding difference can cause unexpected results.

For example:

’HELLO’ = ’HELLO ’ in DB2

’HELLO’ <> ’HELLO ’ in Oracle!

If trailing blanks are present on VARCHAR columns on an Oracle data source,

you should set this option to ’N’ (the default for Oracle). This option impacts

performance, because the federated server must compensate for the difference in

semantics, but guarantees a consistent result set. Setting this value to ’Y’ when

an Oracle data source column contains trailing blanks can cause inconsistent

results.

If you are certain that all VARCHAR and VARCHAR2 columns at a data source

contain no trailing blanks, consider setting this server option for a data source.

Ensure that you consider all objects that can potentially have nicknames,

including views.

Recommendation: Set this option on a column by column basis using the

VARCHAR_NO_TRAILING_BLANKS column option.

v DB2_MAXIMAL_PUSHDOWN. This option specifies the primary criteria that

the query optimizer uses when choosing an access plan. The query optimizer

can choose access plans based on cost or based on the user requirement that as

much query processing as possible be performed by the remote data sources.

With DB2_MAXIMAL_PUSHDOWN set to ’Y’, reducing network traffic becomes

the overriding criteria for the query optimizer. The query optimizer uses the

access plan that performs the fewest number of ″sends″ to the data sources.

Setting this server option to ’Y’ forces the federated server to use an access plan

that might not be the lowest cost plan. Using an access plan other than the

lowest cost plan can decrease performance. When the

DB2_MAXIMAL_PUSHDOWN server option is set to ’Y’ a query that will result

in a Cartesian product will not be pushed down the remote data sources.

Queries that will result in a Cartesian product will be processed by the federated

database. The DB2_MAXIMAL_PUSHDOWN server option does not need to be

set to ’Y’ for the federated server to pushdown query processing to the remote

data sources. When this server option is set to ’N’ (the default), the query

optimizer will pushdown query processing to the data sources. However, the

primary criteria the optimizer uses when the option is set to ’N’ is cost instead

of network traffic.

“Server characteristics affecting global optimization” on page 197 describes the

COMM_RATE, CPU_RATIO, and IO_RATIO server options that also can affect

query performance.

Type and function mapping factors

Both the default data type mappings and default function mappings are built into

the data source wrappers. Data type mappings describe the relationship between

the data source data type and the federated server data type. You can customize

default data type mappings. Function mappings describe the relationship between

a data source function and a semantically equivalent function at the federated

server. In certain cases, the federated database will compensate for functions

mappings that are not supported by a data source.

Chapter 16. Tuning the performance of a federated system 189

The default data type mappings are designed so that sufficient buffer space is

given to each data source data type to avoid runtime buffer overflow and

truncation. You can customize the type mapping for a specific data source or for a

particular nickname to suit specific applications and in some cases improve

performance. For example, Oracle DATE types can contain both a date and a

timestamp portion and are therefore mapped to DB2 TIMESTAMPs by default. If

you are accessing an Oracle date column, and you know that it contains only date

portions (no timestamps), you can use the ALTER NICKNAME statement to

change the local data type of the nickname from TIMESTAMP to DATE. When

evaluating predicates based purely on a date, such as SalesDate=DATE(’1996-01-
04’), this change bypasses the use of a SCALAR function that is used to extract the

date from the date and timestamp information held in the column, which can

improve performance.

The federated database compensates for functions that are not supported by a data

source. Functional compensation usually involves retrieving the necessary data

from the data source and applying the function locally, which often has a

performance impact. There are several cases where function compensation occurs:

v A function simply does not exist at the data source. Some of the SYSFUN

functions, for example, do not exist on DB2 for z/OS and OS/390 data sources,

and thus require local compensation.

v A function exists at the data source; however, the characteristics of the operand

violate function restrictions. An example is the IS NULL relational operator.

Most data sources support it, but some have restrictions such as only allowing a

column name on the left hand side of the IS NULL operator.

v A function, if evaluated remotely, can return a different result. An example is the

’>’ (greater than) operator. For those data sources with different collating

sequences, the greater than operator can return different results than if it is

evaluated locally by the federated database.

Nickname characteristics affecting pushdown opportunities

Nickname characteristics that affect pushdown include the local data type of a

nickname column, federated column options, and materialized query tables.

There are several nickname-specific factors that can affect pushdown opportunities.

The local data type of a nickname column can affect the number of possibilities in

a joining sequence evaluated by the optimizer. Nicknames can be flagged with a

column option to indicate the columns contain no trailing blanks. This gives the

SQL compiler the opportunity to generate a more efficient form of a predicate for

the SQL statement sent to the data sources.

Local data type of a nickname column

Ensure that the local data type of a column does not prevent a predicate from

being evaluated at the data source.

The default data type mappings are provided to avoid any possible overflow.

However, a joining predicate between two columns of different data types or

lengths will prevent the hash join technique from being considered by the

optimizer. For the optimizer to consider the hash join, both the data types and

lengths of the joining columns must match exactly. For example, Oracle data source

columns that are designed to hold just integer values are often created as

NUMBER within the Oracle database, which defaults to NUMBER (38). A

nickname column for this Oracle data type is given the local data type FLOAT

because the range of a DB2 integer is only roughly equal to NUMBER (9). In this

190 Administration Guide for Federated Systems

case, joins between a DB2 integer column and an Oracle column that is defined as

NUMBER (but only holding integer values) cannot use the hash join technique

because the Oracle column is mapped as a FLOAT type. However, if the domain of

this Oracle NUMBER column can be accommodated by the DB2 INTEGER data

type, you can change its local data type with the ALTER NICKNAME statement.

Then the optimizer can consider the hash join technique, which might improve

performance.

Federated column options

You can define federated column options that the query optimizer uses for

developing access plans.

The column options tell the wrapper to handle the data in a column differently

than it normally would handle it. The SQL complier and query optimizer use the

metadata to develop better plans for accessing the data. The federated database

treats the object that a nickname references as if it is a table. As a result, you can

set column options for any data source object that you create a nickname for.

The ALTER NICKNAME statement can be used to add or change column options

for nicknames. There are two column options:

v NUMERIC_STRING. This column option applies to character type columns

(CHAR and VARCHAR). Suppose that a data source has a collating sequence

that differs from the federated database collating sequence. The federated server

would not sort any columns that contain character data at the data source. It

would return the data to the federated database and perform the sort locally.

However, suppose that the column is a character data type and contains only

numeric characters (’0’,’1’,...,’9’). You can indicate this by assigning a value of ’Y’

to the NUMERIC_STRING column option. This gives the query optimizer the

option of performing the sort at the data source because numerics, even when

represented as character strings, always sort the same, regardless of collating

sequence. If the sort is performed remotely, you can avoid the overhead of

porting the data to the federated server and performing the sort locally.

v VARCHAR_NO_TRAILING_BLANKS. Unlike the server option with the same

name, this column option can be used to identify specific Oracle columns that

contain no trailing blanks. The SQL compiler pushdown analysis step will then

take this information into account when checking all operations performed on

columns which have this setting. Based on the

VARCHAR_NO_TRAILING_BLANKS setting, the SQL compiler can generate a

different but semantically equivalent form of a predicate that is used in the

remote SQL statement sent to the data source. A value of ’Y’ is likely to enable

the use of remote indexes (if available) which can improve query performance.

Query characteristics affecting pushdown opportunities

An SQL operator that references multiple data sources affects pushdown.

A query can reference a SQL operator that involves nicknames from multiple data

sources. When the federated server combines the results from two referenced data

sources by using one operator, the operation must take place at the federated

server. An example of this is a set operator, like UNION. The operator cannot be

evaluated at a remote data source directly.

Chapter 16. Tuning the performance of a federated system 191

Analyzing where a query is evaluated

Detailed query optimizer information is kept in Explain tables separate from the

actual access plan itself. This information allows for in-depth analysis of an access

plan. By examining the SHIP operator of a federated access plan, you can

determine what SQL operations were pushed down to a data source and which

operations were executed at the federated server.

Explain tables are accessible on all supported operating systems, and contain

information for both static and dynamic SQL statements. The following tools are

typically used to obtain access plan information from the explain tables:

v Explain table format tool. Use the db2exfmt tool to present the information from

the explain tables in a predefined format.

v db2expln and dynexpln tools. You can use these tools to understand the access

plan chosen for a particular SQL statement. You can also use the integrated

Explain Facility in the DB2 Control Center in conjunction with Visual Explain to

understand the access plan chosen for a particular SQL statement. Both dynamic

and static SQL statements can be explained using the Explain Facility. One

difference from the Explain tools is that with Visual Explain the Explain

information is presented in a graphical format. Otherwise the level of detail

provided in the two methods is equivalent. To fully use the output of db2expln,

and dynexpln you must understand:

– The different SQL statements supported and the terminology related to those

statements (such as predicates in a SELECT statement)

– The purpose of a package (access plan)

– The purpose and contents of the system catalog tables

– General application tuning concepts

You can also access explain tables using SQL statements. This allows for easy

manipulation of the output, for comparison among different queries, or for

comparisons of the same query over time.

Analyzing where a query is evaluated with the

DB2_MAXIMAL_PUSHDOWN server option

You can use the DB2_MAXIMAL_PUSHDOWN server option in conjunction with

the Explain utilities to determine whether a particular operator was not pushed

down to execute at a data source because of a cost-based optimizer decision or

because pushdown analysis determined it was not possible.

Procedure

To run the Explain tools on a query with the DB2_MAXIMAL_PUSHDOWN server

option:

1. Set the DB2_MAXIMAL_PUSHDOWN server option to ’N’. This is the default

setting for this option. Pushdown analysis determines which parts of the SQL

can be pushed down. Then the query optimizer generates all the alternative

plans that do not violate the criteria set by pushdown analysis. The query

optimizer estimates the cost of each plan, and will select the plan with the

lowest estimated cost. You can analyze the operators that were pushed down to

the data source by viewing the details of the appropriate SHIP operator. If an

operator you expect to be pushed down was not pushed down, proceed to step

2.

192 Administration Guide for Federated Systems

2. Set the DB2_MAXIMAL_PUSHDOWN server option to ’Y’. Use the Explain

tools to analyze the SQL statement again. The plan displayed in the Explain

output shows all of the SQL operations that can be pushed down to the data

source.

v If the operator is pushed down after resetting the option to ’Y’, the optimizer

determined that it was more cost-efficient to execute the operator locally,

rather than remotely. If the operator is not pushed down after resetting the

option to ’Y’, it is likely that pushdown analysis did not allow the operator

to be executed remotely.

v If the optimizer made a cost-based decision not to push down the operator,

consider checking the nickname statistics to ensure that they are accurate. If

pushdown analysis made the decision not to push down the operator,

consider checking server options, data type mappings, and function

mappings.

Understanding access plan evaluation decisions

The topics in this section list typical access plan analysis questions, and areas that

you can investigate to increase pushdown opportunities.

Why isn’t this predicate being evaluated remotely?

This question arises when a predicate is very selective and thus could be used to

filter rows and reduce network traffic. Remote predicate evaluation also affects

whether a join between two tables of the same data source can be evaluated

remotely.

Areas to examine include:

v Server options. How do the settings for the server options

COLLATING_SEQUENCE and VARCHAR_NO_TRAILING_BLANKS affect

where the predicate is evaluated?

v Subquery predicates. Does this predicate contain a subquery that pertains to

another data source? Does this predicate contain a subquery involving an SQL

operator that is not supported by this data source? Not all data sources support

set operators in a predicate.

v Predicate functions. Does this predicate contain a function that cannot be

evaluated by this remote data source? Relational operators are classified as

functions.

v Predicate bind requirements. Does this predicate, if remotely evaluated, require

bind-in of some value? If so, would it violate SQL restrictions at this data

source?

v Global optimization. The optimizer decided that local processing is more

cost-effective.

Why isn’t the GROUP BY operator evaluated remotely?

There are several areas that you can check to determine why a GROUP BY

operator is not evaluated remotely.

The areas that you can check include:

v Is the input to the GROUP BY operator evaluated remotely? If the answer is no,

examine the input.

v Does the data source have any restrictions on this operator? Examples include:

– Limited number of GROUP BY items

Chapter 16. Tuning the performance of a federated system 193

– Limited byte counts of combined GROUP BY items

– Column specification only on the GROUP BY list
v Does the data source support this SQL operator?

v Global optimization. The optimizer decided that local processing is more

cost-effective.

Why isn’t the SET operator evaluated remotely?

You can check the operands and check data source restrictions to determine why

the SET operator is not evaluated remotely.

Considerations:

v Are both of its operands completely evaluated at the same remote data source?

If the answer is no and it should be yes, examine each operand.

v Does the data source have any restrictions on this SET operator? For example,

are large objects or long fields valid input for this specific SET operator?

Why isn’t the ORDER BY operation evaluated remotely?

You can check the input to the operation, what the clause contains, and check data

source restrictions to determine why the ORDER BY operator is not evaluated

remotely.

Considerations:

v Server options. How do the settings for the server options

COLLATING_SEQUENCE and VARCHAR_NO_TRAILING_BLANKS affect

where the predicate is evaluated?

v Is the input to the ORDER BY operation evaluated remotely? If the answer is no,

examine the input.

v Does the ORDER BY clause contain a character expression? If yes, does the

remote data source have a different collating sequence than the federated server

collating sequence?

v Does the data source have any restrictions on this operator? For example, is

there a limited number of ORDER BY items? Does the data source restrict

column specification to the ORDER BY list?

Why is a remote INSERT with a fullselect statement not

completely evaluated remotely?

You can check several elements of the subselect to determine why a remote

INSERT with a fullselect statement is not completely evaluated remotely.

Considerations:

v Could the subselect be completely evaluated on the remote data source? If no,

examine the subselect.

v Does the subselect contain a set operator? If yes, does this data source support

set operators as input to an INSERT?

v Does the subselect reference the target table? If yes, does this data source allow

this syntax?

194 Administration Guide for Federated Systems

Why is a remote INSERT with VALUES clause statement not

completely evaluated remotely?

You can check the VALUES clause and the expression to determine why a remote

INSERT with a VALUES clause statement is not completely evaluated remotely.

Considerations:

v Can the VALUES clause be completely evaluated at the remote data source? In

other words, does an expression contain a function not supported by the remote

data source?

v Does the expression involve a scalar subquery? Is that syntax supported?

v Does the expression reference the target table? Is that syntax supported?

Why is a remote, searched UPDATE statement not completely

evaluated remotely?

You can check elements of the SET clause and search condition to determine why a

remote, searched UPDATE statement is not completely evaluated remotely.

Considerations:

v Can the SET clause be completely evaluated at the remote data source? In other

words, does an update expression contain a function not supported by the

remote data source?

v Does the SET clause involve a scalar subquery? Does the data source allow this

syntax?

v Can the search condition be completely evaluated at the remote data source? If

the answer is no, examine the search condition instead.

v Does the search condition or SET clause reference the target table? Does the data

source allow this syntax?

v Does the search condition or SET clause reference the target table with

correlation? Does the data source allow this syntax?

Why is a positioned UPDATE statement not completely

evaluated remotely?

This happens when the federated database chooses to evaluate the update

expression locally before sending the UPDATE statement to the data source. This

approach should not significantly affect performance.

Considerations:

v Can the SET clause be completely evaluated at the remote data source? In other

words, does an update expression contain a function not supported by the

remote data source?

v Does the SET clause involve a scalar subquery? Does the data source allow this

syntax?

Why is a remote, searched DELETE statement not completely

evaluated remotely?

You can check elements of the search condition to determine why a remote,

searched DELETE statement is not completely evaluated remotely.

Considerations:

Chapter 16. Tuning the performance of a federated system 195

v Can the search condition be completely evaluated at the remote data source? If

the answer is no, examine the search condition instead.

v Does the search condition reference the target table? Does the data source allow

this syntax?

v Does the search condition reference the target table with correlation? Does the

data source allow this syntax?

Data source upgrades and customization

When data sources are upgraded or customized, you need to update global catalog

information.

The SQL compiler relies on information that is stored in the global catalog to

provide it with the SQL capabilities of the data sources. This information

periodically needs to be updated. The SQL capabilities of the data sources might

change in new versions of the data sources. When data sources are upgraded or

customized, update the global catalog information so that the SQL compiler is

using the most current information.

Use SQL DDL statements, such as CREATE FUNCTION MAPPING and ALTER

SERVER, to update the catalog.

Pushdown of predicates with function templates

In a federated system, each remote data source has its own functions. Most of

these functions have semantically equivalent DB2 functions and have associated

function mappings by default. However, some remote source functions might not

have equivalent functions on the federated server. Consequently, only the remote

data source can execute these functions. To write queries that use these functions,

you must create a function template on the federated server.

A function template acts as a local description of the remote function. You create a

function template with the CREATE FUNCTION statement by using the AS

TEMPLATE clause. There is no executable code associated with the function

template at the federated server. When the template is defined, you can use it to

create a function mapping, which maps the function template to its remote

counterpart. Then it is possible to refer to the function template in the SQL

statements that are issued to the federated server and for the function to be

evaluated at the data source.

The query optimizer makes cost-based decisions to determine where a predicate

can be evaluated. When possible, the optimizer generates a plan to evaluate a

predicate with a function template at the corresponding remote server. In some

cases, it might not be possible for the optimizer to generate a plan that evaluates

the function template at the data source. When this occurs you might receive an

SQL0142N error with the following error message:

The SQL statement is not supported.

To avoid this error, the query can be rewritten to enable pushdown while

maintaining the semantics of the original query.

For a function template to be pushed down, it must be defined with the

DETERMINISTIC and NO EXTERNAL ACTION clauses.

196 Administration Guide for Federated Systems

Global optimization

The SQL compiler works in three phases, which help to produce an optimal access

strategy for evaluating a query referencing a remote data source. These phases are

pushdown analysis, global optimization, and remote SQL generation.

For a query submitted to the federated database, the access strategy might involve

breaking down the original query into a set of query fragments and then

combining the results of these query fragments.

Using the output of the pushdown analysis phase as a recommendation, the query

optimizer decides where each operation is evaluated. An operation might be

evaluated locally at the federated server or remotely at the data source. The

decision is based on the output of the sophisticated cost model that the optimizer

uses. This model determines:

v The cost to evaluate the operation

v The cost to transmit the data or messages between the federated server and the

data sources

The goal of global optimization is to produce an access plan that optimizes the

query operations on all data sources globally, across the federated system. An

access plan that is globally optimal has the least overall cost of execution in a

federated system. The remote SQL generation phase reverse translates the globally

optimal plan into query fragments that are executed by individual data sources.

The SQL compiler has a knowledge base that contains characteristics of supported

data sources and metadata about the data at those data sources. The optimizer

does not generate SQL, query fragments, or plan hints that the remote data source

cannot understand or accept.

Many factors can affect the output from global optimization and thus affect query

performance. The key factors are server characteristics and nickname

characteristics.

Relational and nonrelational wrappers differ in the details of how an access plan is

produced, but the concept and final effect are the same.

Server characteristics affecting global optimization

When you create or alter a server definition, some of the options that you choose

can affect query performance.

You provide the query optimizer with information about the data source server

characteristics through the server option settings. The server option settings are

part of the data source server definition. You can set server options in the CREATE

SERVER statement, when you initially establish the server definition. Use the

ALTER SERVER statement to add server options to an existing server definition.

The server option settings are stored in the federated database global catalog.

These options are classified as location options (such as the data source computer

name), security options (such as authentication information), and performance

options (such as the CPU ratio).

Chapter 16. Tuning the performance of a federated system 197

The performance options help the optimizer determine if the evaluation of an

operation can be done at a data source and if the evaluation of an operation on the

data source makes execution faster. The server options affecting performance that

might require your tuning are:

v CPU_RATIO

v IO_RATIO

v COMM_RATE

v COLLATING_SEQUENCE

v PLAN_HINTS

v VARCHAR_NO_TRAILING_BLANKS

Use caution when tuning the CPU_RATIO, IO_RATIO, or COMM_RATE server

options as you can get unexpected errors if the cost calculation for a query causes

overflows or underflows. In most cases, the default values for these options are

sufficient. Typically, ensuring that the statistics about the objects referenced in your

queries are correct is more important than tuning the values of these server

options.

Relative ratio of CPU speed

This value indicates the ratio between the CPU speed of the federated server and

the CPU speed of the server on which the remote data source is located.

This value is defined as the CPU speed of the federated server divided by the CPU

speed of the server for the remote data source. For example, if the CPU speed for

the federated server is twice as fast as the CPU speed for the remote server, then

CPU_RATIO should be set to 2. If the CPU speed for the federated server is only

one third as fast as the CPU speed for the remote server, then CPU_RATIO should

be set to 0.33.

When you do not set the CPU ratio server option explicitly, the federated

optimizer uses a default value of 1, which indicates that the federated CPU speed

and the data source CPU speed are equal.

A low ratio indicates that the data source server CPU is faster than the federated

server CPU. For low ratios, the optimizer will consider pushing-down operations

that are CPU-intensive to the data source. A low ratio is a value that is less than 1.

Relative ratio of I/O speed

This value indicates the ratio between the I/O rate of the federated server and the

I/O rate of the server on which the remote data source is located.

This value is defined as the I/O rate for the federated server divided by the I/O

rate for the remote server. For example, if the I/O rate for the federated server is

twice the I/O rate for the remote server, then IO_RATIO should be set to 2. But if

the I/O rate for the federated server is half that of the remote server, then

IO_RATIO should be set to 0.5.

When you do not set the I/O ratio server option explicitly, the federated optimizer

uses a default value of 1, which indicates that the I/O rates of both the federated

and remote servers are equal.

A low IO_RATIO of less than one indicates that the remote server has a higher I/O

rate than the federated server. In this case, the optimizer will tend to favor pushing

down I/O-intensive operations to the remote data source. A low ratio is a value

that is less than 1.

198 Administration Guide for Federated Systems

Communication rate between the federated server and the data

source

A low communication rate indicates slow network communication between the

federated server and the data source.

The setting of the COMM_RATE server option determines the communication rate.

The COMM_RATE represents the speed of the network connection between the

data source server and the federated server. The rate is measured in megabytes per

second. The default is 2 MBPS.

Lower communication rates encourage the query optimizer to reduce the number

of messages sent to or from this data source. If the COMM_RATE server option is

set to a very small number, the optimizer produces a query requiring minimal

network traffic.

Data source collating sequence

The collating sequence that you choose might affect performance of the federated

database. You can use the COLLATING_SEQUENCE server option to indicate if a

data source collating sequence matches the local federated database collating

sequence.

The federated server can push down order-dependent processing that involves

character data to the data source, if the COLLATING_SEQUENCE server option

indicates that the collating sequence of the data source and the federated database

match. If a data source collating sequence does not match the federated database

collating sequence, the optimizer considers data that is retrieved from this data

source unordered. The federated database will retrieve the relevant data and

perform all order-dependent processing on character data locally, which can slow

down the query and affect performance.

Remote plan hints

Plan hints are statement fragments that provide extra information to data source

optimizers.

Use the PLAN_HINTS server option to generate remote plan hints. This

information can, for certain query types, improve query performance. The plan

hints can help the data source optimizer decide whether to use an index, which

index to use, or which table join sequence to use.

You should run some tests to determine if this server option will improve the

performance of your queries.

You cannot code your own plan hints in a query.

If plan hints are enabled, the query sent to the data source contains additional

information. For example, a statement sent to an Oracle optimizer with plan hints

could look like this:

SELECT /*+ INDEX (table1, tlindex)*/

 col1

 FROM table1

The plan hint is the string /*+ INDEX (table1, t1index)*/

Nickname characteristics affecting global optimization

There are several nickname-specific factors that can affect global optimization,

including the index information and the global catalog statistics.

Chapter 16. Tuning the performance of a federated system 199

It is important that the index information and global catalog statistical data

available to the SQL compiler is current.

Index specifications

The SQL compiler uses index information to optimize queries.

The index information for a data source table is only acquired when the nickname

is created for that table. After the nickname is created, any changes to the index on

that data source table are not updated on the federated server. When the remote

index information changes, you can update the index information stored on the

federated server by dropping the nickname for the table and creating the nickname

again. Alternatively, if a new index is added for the data source table, you can

define an index specification for the nickname on the federated server.

Index information is not gathered for nicknames on objects that do not have

indexes such as views, synonyms, or nonrelational data source objects.

If an object that has a nickname defined for it does not have an index, you can

create an index specification for it. Index specifications build an index definition in

the global catalog. The index specification is not an actual index. Use the CREATE

INDEX statement with the SPECIFICATION ONLY clause to create an index

specification. The syntax for creating an index specification on a nickname is

similar to the syntax for creating an index on a local table.

Consider creating index specifications when:

v A table acquires a new index.

v You create a nickname for a data source object that does not contain indexes

such as a view or a synonym.

When you create an index specification (SPECIFICATION ONLY) on a nickname

and specify that the index is unique, the federated database does not verify that

the column values in the remote table are unique. If the remote column values are

not unique, then queries against the nickname that include that index column

might return incorrect data or result in errors.

Consider your needs before issuing CREATE INDEX...SPECIFICATION ONLY

statements on a nickname for a data source view:

v If the remote view is a simple SELECT statement on a data source table with an

index, creating an index specification on the nickname that matches the index on

the data source table can significantly improve query performance.

v If an index specification is created for a remote view that is not a simple

SELECT statement (for example, a view created by joining two tables), query

performance might suffer.

For example, consider an index specification that is created for a remote view that

is a join of two tables. The optimizer can choose that view as the inner element in

a nested loop join. The query might have poor performance because the join will

be evaluated several times. An alternative is to create nicknames for each of the

tables referenced in the data source view and create a federated view that

references both nicknames.

Global catalog statistics

The global catalog on the federated server contains statistical information that is

used to optimize queries.

200 Administration Guide for Federated Systems

The federated server relies on statistics for data source objects for which nicknames

have been defined to optimize queries that involve those nicknames. These

statistics are retrieved from the data source when you create a nickname for a data

source object using the CREATE NICKNAME statement. The federated database

verifies the presence of the object at the data source, and then attempts to gather

existing data source statistical data. Information useful to the optimizer is read

from the data source catalogs and put into the global catalog on the federated

server. Because some or all of the data source catalog information might be used

by the optimizer, it is advisable to update statistics (using the data source

command equivalent to RUNSTATS) at the data source before you create a

nickname.

Catalog statistics describe the overall size of tables and views, and the range of

values in associated columns. The information retrieved includes, but is not limited

to:

v The number of rows in a nickname object

v The number of pages that a nickname occupies

v The number of distinct values in each column of a table

v The number of distinct values in columns of an index

v The highest/lowest values of a column

While the federated database can retrieve the statistical data held at a data source,

it cannot automatically detect updates to existing statistical data at data sources.

Furthermore, the federated database has no mechanism for handling object

definition or structural changes to objects at the data sources (such as when a

column is added to a table).

If the statistical data or structural characteristics for a remote object on which a

nickname is defined change, you have three choices for updating the statistics:

v Run the equivalent of RUNSTATS at the data source. Then drop the current

nickname and create the nickname again. This is the recommended method for

updating statistics.

An advantage of this method is that in addition to updated statistics, any

information about new indexes or structural changes to the remote object will be

reflected in the new nickname. A disadvantage of this method is that any views

or packages based on the old nickname will be invalidated.

v Use the nickname statistics update facility in the DB2 Control Center.

Alternatively, use the underlying stored procedure SYSPROC.NNSTAT(),

available from the command line processor.

The nickname statistics update facility (or SYSPROC.NNSTAT()) only updates

the nickname statistics; it does not alter the nickname to match any structural

changes to the remote object. For example, if the remote object has a new

column, then updating nickname statistics does not add a column to the

nickname.

v Manually update the statistics in the SYSSTAT.TABLES catalog view. Use this

method only when you know that the statistical information on the remote data

source is incorrect or incomplete.

Updating row changes

If a large number of rows are added to or deleted from an object at the data

source, the federated database is not aware of these changes because the catalog

statistics for the nickname continue to indicate the old number of rows.

Chapter 16. Tuning the performance of a federated system 201

However you might notice degradation in performance because the optimizer

continues to make decisions based on nickname statistics information that is no

longer accurate. After updating statistics for the remote object at the data source,

you can update the statistics for the nickname to ensure that the optimizer can use

accurate statistics when it generates and chooses access plans for processing

queries on the data source.

Updating statistics when columns change

When there are structural changes to a data source object, for example, when a

column is added to a table, you must complete several steps to update the

statistics for that object in the federated database catalog.

About this task

If columns at the data source are added, deleted, or altered, you might notice

incorrect results or receive an error message. For example, assume that the

nickname EUROSALES refers to the europe table in a Sybase database. If a new

column called CZECH is added to the table, the federated database will not be

aware of the CZECH column. Queries that reference that column will result in an

error message.

Procedure

To update the statistics for that object when column changes occur:

1. Run the utility on the data source that is equivalent to DB2 RUNSTATS. This

will update the statistics stored in the data source catalog.

2. Drop the current nickname for the data source object using the DROP

NICKNAME statement.

3. Re-create the nickname using the CREATE NICKNAME statement.

Analyzing global optimization

Detailed information about access plans, including some of the information that

the global optimizer uses to choose the optimal plan, is kept in explain tables

separate from the actual access plan itself.

This information allows for in-depth analysis of an access plan. The explain tables

are accessible on all supported operating systems, and contain information for both

static and dynamic SQL statements. You can access the explain tables using SQL

statements. This allows for easy manipulation of the output, for comparison among

different queries, or for comparisons of the same query over time.

There are multiple ways to get global access plan information from the Explain

tables:

v You can use the Explain table format tool, db2exfmt, to present the information

from the explain tables in a predefined format.

v You can also use the integrated Explain Facility in the DB2 Control Center in

conjunction with Visual Explain to understand the access plan that is chosen for

a particular SQL statement.

Both dynamic and static SQL statements are explained by using the Explain

Facility. One difference between Visual Explain and db2exfmt is that Visual

Explain presents the information in a graphical format while db2exfmt presents

the information in text format. The two methods provide the same level of

detail.

202 Administration Guide for Federated Systems

v You can use the db2expln and dynexpln tools to understand the access plan that

is chosen for a particular SQL statement.

To fully understand the output of db2exfmt, Visual Explain, db2expln, or

dynexpln you must understand:

– The different SQL statements supported and the terminology related to those

statements (such as predicates in a SELECT statement)

– The purpose of a package (access plan)

– The purpose and contents of the system catalog tables

– Basic query processing operators such as joins, group-by, aggregation, and

sorts

Understanding access plan optimization decisions

This section lists typical optimization questions, and areas you can investigate to

improve performance.

Why isn’t a join between two nicknames of the same data source

being evaluated remotely?

You can check elements of the join operation, join predicates, and the number of

rows in the result to evaluate why a join between two nicknames of the same data

source is not evaluated remotely

Areas to examine include:

v Join operations. Can the data source support a join?

v Join predicates. Can the join predicate be evaluated at the remote data source?

v Number of rows in the join result. You can determine the number of rows with

Visual Explain. Does the join produce a much larger set of rows than the two

nicknames combined? Do the numbers match reality? If the answer is no,

consider updating the nickname statistics with the SYSPROC.NNSTAT() stored

procedure.

Why isn’t the GROUP BY operator being evaluated remotely?

Areas to examine include:

v Operator syntax. Verify that the operator can be evaluated at the remote data

source.

v Number of rows. Check the estimated number of rows in the GROUP BY

operator input and output using Visual Explain. Are these two numbers very

close? If the answer is yes, the optimizer considers it more efficient to evaluate

this GROUP BY locally. Also, do these two numbers reflect reality? If the answer

is no, consider updating the nickname statistics using the SYSPROC.NNSTAT()

stored procedure.

Why is the statement not being completely evaluated remotely?

The federated server seeks to ensure that query semantics and results obtained for

federated queries are exactly the same as if they had been completely evaluated by

DB2 Database for Linux, UNIX, and Windows. The pushdown analysis phase of

the query compiler decides whether pushing down processing to remote sources

will maintain DB2 semantics. Thus, federated query operations can be safely

pushed down only if corresponding operations at the remote source have the same

meaning and result. The most common reason for failure to completely push down

processing of a query to a single remote source is the existence of subtle differences

in functionality between the federated server and the remote source for one or

more operations in the query.

Chapter 16. Tuning the performance of a federated system 203

The optimizer performs cost-based optimization. Even if pushdown analysis

indicates that every operator can be evaluated at the remote data source, the

optimizer still relies on its cost estimate to generate a globally optimal plan. There

are many factors that contribute to the decision to choose that plan. Suppose that

the remote data source can process every operation in the original query. However,

its CPU speed is much slower than the CPU speed of the federated server. It might

turn out to be more beneficial to perform the operations at the federated server

instead. If the desired performance is not achieved, verify the server statistics in

the SYSSTAT.SERVEROPTIONS catalog table.

Why does a plan generated by the optimizer and completely

evaluated remotely, have much worse performance than the

original query executed directly at the remote data source?

Areas to examine include:

v The remote SQL statement generated by the query optimizer. In addition to the

replacement of nicknames by corresponding remote table names, the generated

remote SQL statement typically differs from the original federated statement in

the following ways:

– The ordering of predicates in the query might have changed.

– Predicates found in the original query might have been removed, replaced by

equivalent ones, or augmented by additional predicates.

– Subqueries might have been rewritten as joins.

– Additional functions that do conversion or string truncation might have been

added to maintain DB2 semantics

With the exception of the last item listed above, these changes usually have a

favorable impact on performance. However, in a few cases, the changes might

cause the remote query optimizer to generate a different (and slower) plan than

it would have for the original query

A good query optimizer should not be sensitive to the predicate ordering of a

query. Unfortunately, not all DBMS optimizers are identical. It is likely that the

optimizer at the remote data source will generate a different plan based on the

input predicate ordering. If this is true, this is a problem inherent in the remote

optimizer. Consider either modifying the predicate ordering or contacting the

service organization of the remote data source for assistance.

Also, check for predicate replacements. A good query optimizer should not be

sensitive to equivalent predicate replacements. It is possible that the optimizer at

the remote data source will generate a different plan based on the input

predicate. For example, some optimizers cannot generate transitive closure

statements for predicates.

v The number of returned rows. You can get this number from Visual Explain. If

the query returns a large number of rows, network traffic is a potential

bottleneck.

v Additional functions. Does the remote SQL statement contain more functions

than the original query? Some of the extra functions might be generated to

convert data types. Ensure that they are necessary.

System monitor elements affecting performance

The federated database system monitor gathers statistical information regarding

the current state of the database manager, and activity information such as

counters and other measurements of database processing.

204 Administration Guide for Federated Systems

In a federated system, you can use the database system monitor to gather

information about database activity, system performance, and application

performance.

The Timestamp monitor switch is used to track the response times of interactions

that the federated database has with a data source. The federated data elements

tracked by the timestamp switch are:

v Create nickname response time

v Delete response time

v Insert response time

v Pass-through time

v Query response time

v Remote lock time

v Stored procedure time

v Update response time

The default setting for the Timestamp monitor switch is ON.

Recommendation: You can increase performance by changing the setting for the

Timestamp monitor switch to OFF for all applications. If one application has the

Timestamp switch set to ON, the system will continue to collect the response

times. Therefore, you will not increase performance by turning off the timestamp

switch for only some of your applications.

Turning off the switch does have other implications.

v Turning off the Timestamp monitor switch for all applications requires that you

stop and restart the DB2 instance to implement the change.

v Turning off the Timestamp monitor switch disables the gathering of timestamp

information for both federated and non-federated applications. The local

database will not receive timestamp information either.

If you need timestamp information for local non-federated applications, then you

should not turn off the Timestamp monitor switch.

You can set the timestamp switch to OFF for all applications by using this

command:

update dbm cfg using dft_mon_timestamp off

Then issue:

db2stop

db2start

Stopping and starting the federated server will ensure that the switch is off for all

applications.

Specific information about each of the elements tracked by the timestamp switch is

discussed in a separate topic.

Chapter 16. Tuning the performance of a federated system 205

206 Administration Guide for Federated Systems

Chapter 17. Parallelism with queries that reference nicknames

Queries that contain nicknames can participate in three types of intra-query

parallelism.

The three types of intra-query parallelism are:

v Intrapartition query parallelism on single partition, multiprocessor

configurations

v Interpartition query parallelism on multiple partition configurations

v Mixed query parallelism that consists of both intrapartition and interpartition

parallelism where each partition runs on an SMP computer

Intrapartition parallelism with queries that reference nicknames

Intrapartition parallelism refers to the process of dividing a query into multiple

concurrent parts that run in parallel by multiple processes on a single database

partition.

In federated queries, the part of a query that involves local data can run in parallel

while the part that involves nicknames runs serially, using a single agent process.

When multiple processors can work on the local portions of the query, the

performance of queries that reference local tables and nicknames can improve.

The DFT_DEGREE database configuration parameter and the CURRENT DEGREE

special register control the degree of intrapartition parallelism.

Enabling intrapartition parallelism with queries that reference

nicknames

For queries that reference local tables and nicknames in a multiprocessor

environment, you can enable intrapartition parallelism. The federated server can

then process the local tables in parallel.

Restrictions

The federated system can process only the portion of a query that references local

tables in parallel. The coordinator partition processes all operations on the remote

portion of a query in serial.

Procedure

To enable intrapartition parallelism:

1. Set the INTRA_PARALLEL database configuration parameter to YES.

2. Set the MAX_QUERYDEGREE database configuration parameter to a value

greater than 1.

3. Set the DFT_DEGREE database configuration parameter to a value greater than

1, or set the special register CURRENT DEGREE. If you set the DFT_DEGREE

parameter to ANY, the default level of intrapartition parallelism equals the

number of processors on the computer.

© Copyright IBM Corp. 1998, 2006 207

Intrapartition parallelism with queries that reference

nicknames - examples of access plans

You can use the DB2 Explain facility to view the access plan that the optimizer

uses during query processing. The following examples show how the optimizer

accesses nickname data in an intrapartition parallelism environment.

Example 1: Without parallelism support

In this example, the federated server processes the join of the local table, ORDERS,

and nickname, ITEMS, serially. No intrapartition parallelism is used.

SELECT *

FROM ORDERS A, ITEMS B

WHERE A.ID1 = B.ID1 AND B.ITEM = 3

 RETURN

 (1)

 |

 HSJOIN

 (2)

 /----+---\

 TBSCAN SHIP

 (3) (4)

 | |

 TABLE: NEWTON NICKNM: NEWTON

 ORDERS ITEMS

Example 2: With parallelism support

In this example of a join, the query can run faster by having the local table read in

parallel before the serial join with the nickname. The LTQ operator indicates where

parallelism is introduced into the plan.

SELECT *

FROM ORDERS A, ITEMS B

WHERE A.ID1 = B.ID1 AND B.ITEM = 3

 RETURN

 (1)

 |

 HSJOIN

 (2)

 /----+---\

 LTQ SHIP

 (3) (5)

 | |

 TBSCAN NICKNM: NEWTON

 (4) ITEMS

 |

 TABLE: NEWTON

 ORDERS

Example 3: Intrapartition parallelism with aggregation

In this example, the database aggregates the local table data in parallel in the

partition, improving the execution of the aggregation. The join of the local table

and the nickname occurs serially.

SELECT *

FROM ITEMS A

WHERE ID =

 (SELECT MAX(ID)

208 Administration Guide for Federated Systems

FROM ORDERS

 WHERE NUMBER = 10)

 RETURN

 (1)

 |

 NLJOIN

 (2)

 /----+---\

 GRPBY SHIP

 (3) (7)

 | |

 LTQ NICKNM: NEWTON

 (4) ITEMS

 |

 1

 GRPBY

 (5)

 |

 TBSCAN

 (6)

 |

 TABLE: NEWTON

 ORDERS

Interpartition parallelism with queries that reference nicknames

Interpartition parallelism refers to the process of dividing a single query into

multiple parts that run in parallel on different partitions of a partitioned database.

In queries that reference local and remote data, the federated server can distribute

the remote data to each of the local partitions. Figure 12 on page 210 and Figure 13

on page 210 show the concept of interpartition parallelism that involves local and

remote data sources.

Figure 12 on page 210 shows how this type of query is processed without

interpartition parallelism. The remote nickname data and the local partitioned data

are processed serially at the coordinator partition. This technique does not exploit

the parallel power of the database partitions because most processing is performed

on a single partition. If data volumes are very large, this technique is likely to

result in long-running queries.

Chapter 17. Parallelism with queries that reference nicknames 209

Figure 13 shows how processing occurs when the optimizer distributes the

nickname data to the partitions. The coordinator partition fetches the nickname

data and distributes the data to the database partitions for parallel processing.

When parallel processing is complete, the results are sent back to the coordinator

partition for final processing before they are returned to the application.

Figure 14 on page 211 and Figure 15 on page 211 show the concept of interpartition

parallelism that involves only remote data sources.

Nickname data

Partition Partition Partition Partition

Coordinator
partition

Remote dataLocal partitioned data

Figure 12. Query without interpartition parallelism of local and remote data sources

Nickname data

Remote data

Partition Partition Partition Partition

Local partitioned data

Coordinator
partition

Figure 13. Query with interpartition parallelism of local and remote data sources

210 Administration Guide for Federated Systems

Figure 14 shows serial processing of the remote nickname data at the coordinator

partition. The coordinator partition, which also acts as the federated server,

retrieves the nickname data and process it serially.

Figure 15 shows the coordinator partition distributing the data across a

computational partition group. Computational partition groups allow the optimizer

to generate access plans that distribute nickname data across the partitions of a

partitioned database server for processing in parallel.

Nickname data
Partition Partition Partition Partition

Coordinator
partition

Local partitioned data Remote data

Figure 14. Query without interpartition parallelism that references remote data sources only.

Partition Partition Partition Partition

Local partitioned data Remote data

Nickname data

Coordinator
partition

Figure 15. Query with interpartition parallelism that references remote data sources only.

Chapter 17. Parallelism with queries that reference nicknames 211

Regardless of the plan that the optimizer chooses, access to the nickname data

always occurs serially from the coordinator partition.

Enabling interpartition parallelism with queries that reference

nicknames

You can configure a partitioned federated server so that queries involving

nicknames can potentially run in parallel on multiple partitions. Parallel execution

might significantly reduce the elapsed time of federated queries in a partitioned

environment.

Restrictions

Only parts of a query that reference nicknames that use fenced wrappers can run

in parallel. Any parts of a query that reference nicknames that use trusted

wrappers cannot run in parallel.

About this task

In a partitioned database environment, federated queries can run in parallel under

the following conditions:

v They involve a combination of nicknames that are defined by using a fenced

wrapper and local partitioned tables

v They involve nicknames defined using a fenced wrapper, and a computational

partition group is defined.

You do not need to set any database parameters or database configuration

parameters in a partitioned environment to make interpartition parallelism

available for federated queries.

Procedure

To enable interpartition parallelism:

1. Issue the CREATE WRAPPER or ALTER WRAPPER statement with the

DB2_FENCED option set to Y.

2. Optional: Set up a computational partition group, if you are interested in

enabling parallelism for portions of queries that involve only nicknames. If

queries involve a combination of nicknames and local partitioned tables, you

do not need to set up a computational partition group.

Interpartition parallelism with queries that reference

nicknames - examples of access plans

You can use the DB2 Explain facility to view the access plan that the optimizer

uses during query processing. The following examples shows how the optimizer

accesses nickname data in an interpartition parallelism environment.

Example 1: Trusted mode

In this example, the nickname uses a trusted wrapper. The database serially

performs the join between the local table and the nickname at the coordinator

partition. The database brings the local data, which is distributed over two

partitions, to the coordinator partition. The federated server then joins the local

data with the nickname data. The database serially joins nicknames that are

defined by using a trusted wrapper at the coordinator partition. The database

cannot distribute the data across multiple partitions to create a parallel join.

212 Administration Guide for Federated Systems

SELECT *

FROM ORDERS A, ITEMS B

WHERE A.ID1 = B.ID1 AND B.ITEM = 3

 RETURN

 (1)

 |

 HSJOIN

 (2)

 /----+---\

 DTQ SHIP

 (3) (5)

 | |

 TBSCAN NICKNM: NEWTON

 (4) ITEMS

 |

 TABLE: NEWTON

 ORDERS

Example 2: Fenced mode

In this example, the nickname uses a fenced wrapper. The federated server

distributes the nickname data to the other partitions and performs the join with the

local data in parallel. The DTQ (Distributed Table Queue) operator above the SHIP

indicates that the nickname data is distributed to the local partitions using hash

partitioning to achieve a co-located parallel join. In a co-located parallel join,

nickname data is distributed to the local partitions in such a way that matching

nickname and local data for the join will always be located on the same partition.

SELECT *

FROM ORDERS A, ITEMS B

WHERE A.ID1 = B.ID1 AND B.ITEM = 3

 RETURN

 (1)

 |

 DTQ

 (2)

 |

 MSJOIN

 (3)

 /---+---\

 TBSCAN FILTER

 (4) (7)

 | |

 SORT TBSCAN

 (5) (8)

 | |

 TBSCAN SORT

 (6) (9)

 | |

 TABLE: NEWTON DTQ

 ORDERS (10)

 |

 SHIP

 (11)

 |

 NICKNM: NEWTON

 ITEMS

Example 3: Fenced mode without a computational partition group

Chapter 17. Parallelism with queries that reference nicknames 213

In this example, the two nicknames use a fenced wrapper, and a computational

partition group is not defined. The federated server performs the join at the

coordinator partition. The federated server does not distribute the data to the other

partitions for processing. The lack of TQ operators above any of the SHIP

operators indicates that the nickname data is not distributed across the partitions.

SELECT *

FROM ITEMS A, LOCATIONS B

WHERE A.ID1 = B.ID1

 RETURN

 (1)

 |

 MSJOIN

 (2)

 /---+---\

 TBSCAN FILTER

 (3) (7)

 | |

 SORT TBSCAN

 (4) (8)

 | |

 SHIP SORT

 (5) (9)

 | |

 NICKNM: NEWTON SHIP

 LOCATIONS (10)

 |

 NICKNM: NEWTON

 ITEMS

Example 4: Fenced mode with a computational partition group

In this example, the nicknames use fenced wrappers, and a computational partition

group is defined. In this case, the optimizer selects a plan that distributes the data

from the coordinator partition to the other partitions in the computational partition

group. The DTQ operators above both nicknames hash-partition the incoming

remote data so that matching join keys are located on the same partition of the

computational partition group. The join takes place in parallel on each partition,

and the results are then collected at the coordinator partition.

SELECT *

FROM ITEMS A, LOCATIONS B

WHERE A.ID = B.ID

 RETURN

 (1)

 |

 DTQ

 (2)

 |

 MSJOIN

 (3)

 /---+---\

 TBSCAN FILTER

 (4) (9)

 | |

 SORT TBSCAN

 (5) (10)

 | |

 DTQ SORT

 (6) (11)

 | |

214 Administration Guide for Federated Systems

SHIP DTQ

 (7) (12)

 | |

 NICKNM: NEWTON SHIP

 LOCATIONS (13)

 |

 NICKNM: NEWTON

 ITEMS

Computational partition groups

A computational partition group defines a set of database partitions that the

optimizer can use to dynamically redistribute nickname data. A computational

partition group is for the portions of queries that involve only nicknames.

The coordinator partition fetches nickname data serially and then redistributes the

data across the partitions in the computational partition group, at which point

parallel processing occurs. The use of computational partition groups by the

optimizer often results in performance improvements, particularly when large

amounts of nickname data are involved or the queries are complex.

A computational partition group is a database partition group, other than

IBMCATNODEGROUP, that is specified in the system catalog,

SYSCAT.DBPARTITIONGROUPS.

You use the DB2_COMPPARTITIONGROUP registry variable to specify the

computational partition group.

Defining a computational partition group

Defining a computational partition group enables the optimizer to use a plan that

distributes nickname data to the partitions of the computational partition group.

You define a computational partition group to enable interpartition query

parallelism for queries or parts of queries that reference only nicknames.

Before you begin

All partition groups used to represent the computational partition group on all the

databases in the instance must have the same name. You can define these partition

groups differently in each database, but they must have the same name. For

example, three databases called DB1, DB2, and DB3 define a computational

partition group that contains different nodes:

v DB1: CPG contains nodes 1, 2, 3, and 4

v DB2: CPG contains nodes 49, 50, and 53

v DB3: CPG contains nodes 78 and 96

You can set the db2set variable to the name CPG. The name CPG is common to all

databases, but the contents of the CPG are different for each database.

Restrictions

The optimizer uses computational partition groups for only the parts of a query

that reference nicknames without referencing local data.

Procedure

To define a computational partition group, issue the following command at the

DB2 command line.

Chapter 17. Parallelism with queries that reference nicknames 215

db2set DB2_COMPPARTITIONGROUP=partitiongroup_name

partitiongroup_name is the name of the partition group that you want to define as

the computational partition group. The partition group must already be defined.

The following example shows how to define the computational partition group,

FINANCE3, using the DB2_COMPPARTITIONGROUP registry variable.

db2set DB2_COMPPARTITIONGROUP=FINANCE3

Interpartition parallelism with queries that reference

nicknames - performance expectations

For queries that reference a combination of local partitioned tables and nicknames,

the optimizer can choose an execution plan that redistributes nickname data across

appropriate partitions.

Redistribution plans can make queries run faster if the amount of nickname data in

the join is smaller than the amount of local partitioned data. If the amount of

nickname data in the join is considerably larger than the local data, then a parallel

plan with redistribution of the nickname data is unlikely to be used. If the

optimizer does not choose a parallel plan, the federated server performs the joins

serially between nicknames and local tables at the coordinator partition.

For joins between two nicknames, an execution plan that distributes the data

among all partitions of a computational partition group can be beneficial if it

involves a large amount of data. The advantage of processing the large join in

parallel offsets the additional cost of redistributing the data across multiple

partitions. If the amount of nickname data is relatively small, the join is not

expensive enough to merit the extra cost of redistributing the data across

partitions. In general, the optimizer chooses computational partition group plans if

the nicknames involved are large; otherwise, the federated server joins the

nicknames serially at the coordinator partition.

Mixed parallelism with queries that reference nicknames

For queries that contain local tables and nicknames in a partitioned environment,

the optimizer can use both intrapartition and interpartition parallelism.

Interpartition parallelism is an option for the optimizer in a partitioned

environment. Intrapartition parallelism is an option, if it has been enabled in the

database configuration or database manager configuration.

For interpartition parallelism, the federated server can distribute remote data

among partitions and process data in parallel within each partition.

For intrapartition parallelism, multiple subagent processes within a partition are

used to process local data in parallel.

Enabling mixed parallelism with queries that reference

nicknames

You can improve the performance of queries that reference local and remote data

by the use of intrapartition and interpartition parallelism.

Procedure

To enable interpartition parallelism on a partitioned federated server:

216 Administration Guide for Federated Systems

1. Issue the CREATE WRAPPER or ALTER WRAPPER statement with the

DB2_FENCED option set to Y.

2. Optional: Set up a computational partition group to enable parallelism for

nickname-only joins.

To enable intrapartition parallelism on a federated server:

1. Set the MAX_QUERYDEGREE database configuration parameter to a value

greater than 1.

2. Set the DFT_DEGREE database configuration parameter to a value greater than

1, or you must set the special register CURRENT DEGREE. If you set the

DFT_DEGREE parameter to ANY, the default level of intrapartition parallelism

equals the number of SMP processors on the computer.

Mixed parallelism with queries that reference nicknames -

examples of access plans

You can use the DB2 Explain facility to view the access plan that the optimizer

uses during query processing. The following examples shows how the optimizer

accesses nickname data in an environment that uses both intrapartition parallelism

and interpartition parallelism.

Example 1: Trusted mode

The following example shows a join between a local table and a nickname in

trusted mode. The federated server processes the local data in parallel in each

partition before it joins the local data with the nickname data at the coordinator

partition. The federated server does not process the nickname data in parallel

across the partitions or the processors on any given partition.

SELECT *

FROM ORDERS A, ITEMS B

WHERE A.ID1 = B.ID1 AND B.ITEM = 3

 RETURN

 (1)

 |

 HSJOIN

 (2)

 /----+---\

 DTQ SHIP

 (3) (6)

 | |

 LTQ NICKNM: NEWTON

 (4) ITEMS

 |

 TBSCAN

 (5)

 |

 TABLE: NEWTON

 ORDERS

Example 2: Fenced mode

The following example shows a join between a local partitioned table and a

nickname in fenced mode. The federated server serially fetches the nickname data

onto the coordinator partition and then distributes this data to the other partitions

in the database. The data is then joined in parallel with the local data across all

appropriate database partitions. Within each partition, multiple subagents are

reading the local table and joining to the nickname data. This operation is

Chapter 17. Parallelism with queries that reference nicknames 217

intrapartition parallelism, identified in the plan by the LTQ operator. The result is

returned to the coordinator partition for final processing and returned to the

application.

SELECT *

FROM ORDERS A, ITEMS B

WHERE A.ID1 = B.ID1 AND B.ITEM = 3

 RETURN

 (1)

 |

 DTQ

 (2)

 |

 LTQ

 (3)

 |

 MSJOIN

 (4)

 /---+---\

 TBSCAN FILTER

 (5) (8)

 | |

 SORT TBSCAN

 (6) (9)

 | |

 TBSCAN SORT

 (7) (10)

 | |

 TABLE: NEWTON DTQ

 ORDERS (11)

 |

 SHIP

 (12)

 |

 NICKNM: NEWTON

 ITEMS

218 Administration Guide for Federated Systems

Chapter 18. Asynchronous processing of federated queries

Asynchrony is a method of improving query performance by running multiple parts

of an access plan concurrently to reduce the elapsed time for a given query.

In a federated system, data is distributed across systems at multiple data sources,

and each system has its own resources. Asynchrony overlaps the operations that

use those resources so that multiple systems remain active at the same time.

Overlapping operations enables multiple parts of an access plan to run

concurrently rather than serially.

Complex queries that involve time-consuming operations on remote data sources

can benefit from asynchrony. Asynchrony enables the following types of operations

to take place concurrently:

v Two or more operations on remote data sources

v Operations on the federated server and at least one remote data source

As query operations consume resources, asynchrony can benefit systems in which

resources are idle or when only one of the data sources, or the federated system, is

doing work at any point in time.

Asynchronous processing of federated queries - examples

Examples of queries with a union and with a merge join illustrate the difference

between query operations with and without asynchronous processing.

Example: Query with a union operation

A simple query performs a union operation on data from three different data

sources. The computation required to generate the data on each data source is

time-consuming. The access plan looks like this:

 RETURN

 |

 UNION

 / | \

 SHIP SHIP SHIP

 | | |

 Site1 Site2 Site3

Without asynchrony, the union operation reads data from the query branches one

branch at a time, from left to right. When the data from the Site1 server is read,

Site2 server and Site3 server are idle. For this example, each branch of the union

takes about two hours to return the result rows from one site. The total execution

time of the three branches is approximately the sum of the time it takes to process

each branch, in this example, about six hours.

With asynchrony, each branch of the union starts to process at the same time, and

the three remote servers are active concurrently. The run time of the query is

roughly equivalent to the run time of the slowest branch of the union. In this

example, the run time is reduced to approximately two hours (about 66% faster) in

comparison to six hours without asynchrony.

Example: Query with a merge join operation

© Copyright IBM Corp. 1998, 2006 219

A query that joins data from two different data sources uses a merge join operation

(MSJOIN). The optimizer access plan looks like this:

 RETURN

 |

 MSJOIN

 / \

 SCAN FILTER

 | |

 SORT SCAN

 | |

 SHIP SORT

 | |

 Site1 SHIP

 |

 Site2

Without asynchrony, the merge join operator first processes the outer (left) branch

and does not process the inner (right) branch until the left branch starts to return

rows. For this example, each branch executes a complex query and therefore takes

a long time to execute. The approximate total time to execute the merge join is the

sum of the time it takes to execute each branch.

With asynchrony, both branches of the merge join start at the same time, thus

reducing the overall execution time of the query.

Asynchrony optimization

The query optimizer makes decisions about the asynchronous processing of remote

operations in a query execution plan. Asynchrony optimization is the process by

which the optimizer analyzes an existing query execution plan and looks for

opportunities to allow remote operations to execute concurrently.

Access plans without asynchrony

In an execution plan, the SHIP or RPD operator defines a portion of the plan that

is executed at a remote data source.

Without asynchrony, the SHIP or RPD operator becomes active and initiates remote

processing only when its data is required by other operators located above the

SHIP or RPD operator in the execution plan.

Access plans optimized for asynchrony

The optimizer can make the remote operations that the SHIP or RPD operator

defines execute asynchronously.

In an asynchronous operation, a table queue (TQ) operator is inserted directly

above the SHIP or RPD operator in the execution plan. The TQ operator defines a

portion of the plan, called a subplan. A separate process or thread, with its own

memory, runs the subplan. A subplan initiates immediately when the query starts.

You can think of the TQ operator as a pipe between the SHIP or RPD operator

(producer of data) and the operator above it (consumer of data) in the plan. This

pipe decouples the execution of the SHIP in the subplan below it from the main

plan, and allows the asynchronous exchange of data between the two plan

sections.

A TQ operator that appears directly above a SHIP or RPD operator in the plan

enables the remote operations that the SHIP or RPD operator define to initiate at

220 Administration Guide for Federated Systems

the beginning of the query and to deliver results to the federated server

asynchronously. When asynchrony is beneficial for a given remote operation, the

optimizer places a TQ operator directly above the corresponding SHIP or RPD

operator in the plan.

TQ operators occur in execution plans for different purposes. A TQ operator

usually denotes parallel operations in partitioned databases or in databases

enabled for intrapartition parallelism. Another type of TQ operator, that enables

asynchronous execution of a subplan, is called an asynchrony TQ (ATQ).

The optimizer makes a given SHIP or RPD operator asynchronous when:

v Query performance will improve

v The number of ATQs is below the per-server and per-query limits

v The operator is not already asynchronous due to the use of another optimization

technique

v Restrictions on asynchrony are not violated.

v The semantics of the query do not change

Access plans - examples

Examples of access plans illustrate the difference between plan execution with and

without asynchrony optimization.

The first two examples show how the union and merge join plans in

“Asynchronous processing of federated queries - examples” on page 219 look

when asynchrony is enabled.

For simplicity, the examples show plans with SHIP operators only. Asynchrony

optimization transforms the plan the same way for RPD operators as for SHIP

operators. SHIP and RPD operators are interchangeable, unless otherwise noted.

Example 1a: Plan without asynchrony

 RETURN

 |

 UNION

 / | \

 SHIP SHIP SHIP

Example 1b: Plan with asynchrony

 RETURN

 |

 UNION

 / | \

 SHIP ATQ ATQ

 | |

 SHIP SHIP

Example 2a: Plan without asynchrony

 RETURN

 |

 MSJOIN

 / \

 SCAN FILTER

 | |

 SORT SCAN

Chapter 18. Asynchronous processing of federated queries 221

| |

 SHIP SORT

 |

 SHIP

Example 2b: Plan with asynchrony

 RETURN

 |

 MSJOIN

 / \

 SCAN FILTER

 | |

 SORT SCAN

 | |

 SHIP SORT

 |

 ATQ

 |

 SHIP

Example 3a: Plan without asynchrony

 RETURN

 |

 HSJN

 / \

 SHIP SHIP

Example 3b: Plan with asynchrony

 RETURN

 |

 HSJN

 / \

 ATQ SHIP

 |

 SHIP

Example 4a: Plan without asynchrony

 RETURN

 |

 NLJN

 / \

 SHIP SCAN

 |

 TEMP

 |

 SHIP

Example 4b: Plan with asynchrony

 RETURN

 |

 NLJN

 / \

 SHIP SCAN

 |

 TEMP

222 Administration Guide for Federated Systems

|

 ATQ

 |

 SHIP

Example 5a: Plan without asynchrony

 RETURN

 |

 UNION

 / \

 SHIP SHIP

 |

 NLJN

 / \

 SHIP NICK2

 |

 SHIP

 |

 NICK1

RPDs cannot replace the SHIP-SHIP pair in this plan.

Example 5b: Plan with asynchrony

 RETURN

 |

 UNION

 / \

 SHIP SHIP

 |

 NLJN

 / \

 SHIP NICK2

 |

 ATQ

 |

 SHIP

 |

 NICK1

Example 6a: Plan without asynchrony

 RETURN

 |

 MSJOIN

 / \

 SHIP FILTER

 |

 SCAN

 |

 SORT

 |

 HSJN

 / \

 SHIP SHIP

Example 6b: Plan with asynchrony

 RETURN

 |

 MSJOIN

 / \

 SHIP FILTER

 |

Chapter 18. Asynchronous processing of federated queries 223

SCAN

 |

 SORT

 |

 HSJN

 / \

 ATQ ATQ

 | |

 SHIP SHIP

Example 7a: Plan without asynchrony

 RETURN

 |

 UNION

 -

 | | |

 MSJOIN SHIP TQ

 - - - - - - - |

 | | LOCAL

 MSJOIN FILTER

 / \ |

SHIP FILTER SHIP

 |

 SCAN

 |

 SORT

 |

 SHIP

Example 7b: Plan with asynchrony

 RETURN

 |

 UNION

 -

 | | |

 MSJOIN ATQ TQ

 - - - - - - - | |

 | | SHIP LOCAL

 MSJOIN FILTER

 / \ |

SHIP FILTER ATQ

 | |

 SCAN SHIP

 |

 SORT

 |

 ATQ

 |

 SHIP

Controlling resource consumption

In addition to enabling asynchronous execution of a remote query, the ATQ

operator affects the federated server and remote data sources.

Because each ATQ operator creates a new process, and consumes some memory

(for buffering), inserting numerous ATQs into an execution plan might use too

many system resources on the federated server. In addition, if several SHIP or RPD

operators in a query execute on a particular remote data source, making several of

the operators asynchronous opens multiple concurrent cursors on that data source

and can produce an unacceptable load.

224 Administration Guide for Federated Systems

To control resource consumption on the federated system, or on the data sources,

you can set configuration parameters. The parameters define limits on the total

number of ATQs allowed within a query and on the number of ATQs allowed for

each server within a query.

Enabling asynchrony optimization

To enable asynchrony optimization, you specify the number of asynchrony TQ

operators for a given query and set a server option for the data source.

Restrictions

Asynchrony optimization requires:

v A federated system with the database partitioning feature (DPF) that includes

more than one logical database partition.

v Access to data sources through fenced wrappers.

This optimization does not support these objects:

v Nicknames on a data source that are accessed through a trusted wrapper.

v Queries with insert, update, or delete operations.

Procedure

To enable asynchronous processing:

1. Set one or more of the following parameters:

v Set the FEDERATED_ASYNC database manager configuration parameter to a

value between 0 and MAXAGENTS/4 (MAXAGENTS divided by 4) or to

ANY. MAXAGENTS is a database configuration parameter that specifies the

maximum number of ATQs allowed per query. The value ANY allows the

optimizer to determine the number of ATQs for a given access plan. The

default is 0.

v Optionally, set the FEDERATED_ASYNCHRONY bind option for the static

statements in the package to override the configuration parameter setting for

the query. The default is 0.

v Optionally, set the CURRENT FEDERATED ASYNCHRONY special register

to dynamically override the database manager configuration parameter

setting and the bind option for the query.

These parameters form the following hierarchy:

a. Special register

b. Bind option

c. Database manager configuration parameter

The special register value, if specified, takes precedence over the bind option,

which in turn takes precedence over the database manager configuration

parameter.

2. Set the DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option to a

numeric value. This server option specifies the maximum number of

asynchronous requests that the server allows for the query. The default is 1.

Therefore, one SHIP operator or one RPD operator that belongs to a server is

considered for asynchrony in a query.

The range for the server option is -1 to (maxagents / 4).

Chapter 18. Asynchronous processing of federated queries 225

v -1 = ANY. The optimizer determines the number of ATQs to use for the

SHIPs or RPDs for a given data source.

v 0 = Asynchrony is disabled for the SHIPs or RPDs for this server

v 1 is the default.

Setting the server option to a numeric value other than -1 indicates the

maximum ATQs to use for the SHIPs or RPDs for the server provided that

other criteria are satisfied.

The default for the ODBC data source only is 0. Asynchrony requires multiple

cursors per connection. This value should be 0 for the ODBC wrapper unless

the data source supports multiple cursors per connection.

Database manager configuration parameter:

FEDERATED_ASYNC

This parameter determines the maximum number of asynchrony table queues

(ATQs) in the access plan that the federated server supports.

Type: Numeric

You can assign a number to this parameter or use the keyword ’ANY’.

Default: 0

Asynchrony is disabled by default.

Range: 0 to (MAXAGENTS / 4) inclusive, or ANY

MAXAGENTS is the total number of agents (coordinator agents and subagents) in

the system. You specify the total number of agents in the MAXAGENTS database

manager configuration parameter.

When ANY is specified, the optimizer determines the number of ATQs for the

access plan. The optimizer assigns an ATQ to all eligible SHIP or remote

pushdown operators in the plan. The value that is specified for

DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option limits the number of

asynchronous requests.

Usage notes

The FEDERATED_ASYNC configuration parameter supplies the default or starting

value for the special register and the bind option. You can override the value of

FEDERATED_ASYNC configuration parameter by setting the value of the special

register, bind option, or prep option to a higher or a lower number.

If the special register or the bind option do not override the FEDERATED_ASYNC

configuration parameter, the value of the parameter determines the maximum

number of ATQs in the access plan that the federated server allows. If the special

register or the bind option overrides this parameter, the value of special register or

bind option determines the maximum number of ATQs in the plan.

Any changes to the FEDERATED_ASYNC configuration parameter affect dynamic

statements as soon as the current unit of work commits. Subsequent dynamic

statements recognize the new value automatically. A restart of the federated

226 Administration Guide for Federated Systems

database is not needed. Embedded SQL packages are not invalidated nor implicitly

rebound when the value of the FEDERATED_ASYNC configuration parameter

changes.

If you want the new value of the FEDERATED_ASYNC configuration parameter to

affect static SQL statements, you need to rebind the package.

Bind and precompile options: FEDERATED_ASYNCHRONY

The FEDERATED_ASYNCHRONY option is used with the BIND and

PRECOMPILE commands to specify the maximum number of asynchrony table

queues (ATQs).

Bind option: FEDERATED_ASYNCHRONY

The FEDERATED_ASYNCHRONY bind option specifies the maximum number of

ATQs that the federated server supports in the access plan for programs that use

embedded SQL. You use the FEDERATED_ASYNCHRONY option in the BIND

command.

�� BIND filename �

�
FEDERATED_ASYNCHRONY

+

ANY

number_of_asynchrony_table_queues_in_the_plan

 ��

Type: Numeric

You can assign a number to this parameter or use the keyword ’ANY’.

Range: 0 to (MAXAGENTS / 4) inclusive, or ANY

MAXAGENTS is the total number of agents (coordinator agents and subagents) in

the system. You specify the total number of agents in the MAXAGENTS database

manager configuration parameter.

When ANY is specified, the optimizer determines the number of ATQs for the

access plan. The optimizer assigns an ATQ to all eligible SHIP or remote

pushdown operators in the plan. The value that is specified for

DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option limits the number of

asynchronous requests.

Usage notes

For an embedded SQL program, if the bind option is not explicitly specified the

static statements in the package are bound using the FEDERATED_ASYNC

configuration parameter. If the FEDERATED_ASYNCHRONY bind option is

specified explicitly, that value is used for binding the packages and is also the

initial value of the special register. Otherwise, the value of the database manager

configuration parameter is used as the initial value of the special register. The

FEDERATED_ASYNCHRONY bind option influences dynamic SQL only when it is

explicitly set.

The value of the FEDERATED_ASYNCHRONY bind option is recorded in the

FEDERATED_ASYNCHRONY column in the SYSCAT.PACKAGES catalog table.

Chapter 18. Asynchronous processing of federated queries 227

When the bind option is not explicitly specified, the value of FEDERATED_ASYNC

configuration parameter is used and the catalog shows a value of ’-2’ for the

FEDERATED_ASYNCHRONY column.

If the FEDERATED_ASYNCHRONY bind option is not explicitly specified when a

package is bound, and if this package is implicitly or explicitly rebound, the

package is rebound using the current value of the FEDERATED_ASYNC

configuration parameter.

Precompile option: FEDERATED_ASYNCHRONY

The FEDERATED_ASYNCHRONY precompile option specifies the maximum

number of ATQs that the federated server supports in the access plan for programs

that use embedded SQL. You use the FEDERATED_ASYNCHRONY option in the

PRECOMPILE command.

�� PRECOMPILE filename �

�
FEDERATED_ASYNCHRONY

+

ANY

number_of_asynchrony_table_queues_in_the_plan

 ��

Type: Numeric

You can assign a number to this parameter or use the keyword ’ANY’.

Range: 0 to (MAXAGENTS / 4) inclusive, or ANY

MAXAGENTS is the total number of agents (coordinator agents and subagents) in

the system. You specify the total number of agents in the MAXAGENTS database

manager configuration parameter.

When ANY is specified, the optimizer determines the number of ATQs for the

access plan. The optimizer assigns an ATQ to all eligible SHIP or remote

pushdown operators in the plan. The value that is specified for

DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option limits the number of

asynchronous requests.

Usage notes

For an embedded SQL program, if the FEDERATED_ASYNCHRONY precompile

option is not explicitly specified the static statements in the package are bound

using the FEDERATED_ASYNC configuration parameter. If the

FEDERATED_ASYNCHRONY option is specified explicitly, that value is used for

binding the packages and is also the initial value of the special register. Otherwise,

the value of the database manager configuration parameter is used as the initial

value of the special register. The FEDERATED_ASYNCHRONY precompile option

influences dynamic SQL only when it is explicitly set.

Server option: DB2_MAX_ASYNC_REQUESTS_PER_QUERY

This server option applies to all relational and nonrelational data sources. You can

specify this option in the CREATE SERVER or ALTER SERVER statements.

Type: Numeric

You can assign a number to this parameter or use the keyword ’ANY’.

228 Administration Guide for Federated Systems

Default: 1, except for the ODBC wrapper

All of the wrappers, except for ODBC, support multiple cursors per connection.

Because you can use the ODBC wrapper to access a data source that might not

support multiple cursors, the default value for the

DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option for the ODBC wrapper

is 0.

Range: -1 to (maxagents / 4)

v -1 = ANY. The optimizer determines the number of ATQs to use for the SHIPs or

RPDs for a given data source.

v 0 = Asynchrony is disabled for the SHIPs or RPDs for this server

v 1 is the default.

Setting the server option to a numeric value other than -1 indicates the maximum

ATQs to use for the SHIPs or RPDs for the server provided that other criteria are

satisfied.

Usage notes

The DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option specifies the

maximum number of asynchronous requests that the data source server wants

added by the asynchrony optimization (per connection, per query) in addition to

other optimizations. The value of this option translates into how many SHIP or

remote pushdown operators that access the data source server should receive an

ATQ in a query.

This server option specifies an upper limit for the optimizer to use for the number

of ATQs for SHIP or remote pushdown operators accessing the data source server.

The DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option does not account

for requests originating for reasons other than asynchrony optimization that might

result in concurrent requests.

If you change the value for the DB2_MAX_ASYNC_REQUESTS_PER_QUERY

server option, packages can be rebound to the database. If this occurs, performance

degradation might occur during the rebinding.

The DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option applies only when

the FEDERATED_ASYNC database manager configuration parameter is set to a

non-zero value to allow asynchrony.

Tuning considerations for asynchrony optimization

When asynchrony is enabled, you need to consider several factors that affect

performance.

If your system has available process, memory, and CPU resources, enabling

asynchrony can improve the performance of your federated queries. Enabling

asynchrony can also increase the use of remote-source systems by the federated

server, because a remote source can potentially process more than one request at a

time on behalf of a federated query. If your system has resource constraints,

asynchrony might degrade performance.

You can tune your system for asynchrony by changing configuration parameters to

achieve the degree of asynchrony that is best for your system.

Chapter 18. Asynchronous processing of federated queries 229

Each asynchronous TQ that asynchrony optimization introduces into a plan

requires an additional subagent. If enough subagents are available in the system,

consider tuning the MAXAGENTS database manager configuration parameter.

Restrictions on asynchrony optimization

When the optimizer applies asynchrony optimization to a given query, some

restrictions apply to the number of ATQs that can be used in the query execution

plan.

The number of SHIPs or RPDs that are eligible to be coupled with an ATQ in a

plan and benefit from asynchrony might be greater than either the maximum that

is set by the FEDERATED_ASYNC parameter or the per server limit of the

DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option. In this case, the

optimizer chooses SHIPs or RPDs to couple with an ATQ in such a way that:

v The total number of ATQs in the plan is less than or equal to the value set for

the following parameters, in the order listed:

1. FEDERATED ASYNCHRONY special register, if specified

2. FEDERATED_ASYNCHRONY bind or precompile option, if specified

3. FEDERATED_ASYNC parameter
v The total number of ATQs for a given server is less than or equal to the

DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option for that server.

v The eligible SHIPs or RPDs can benefit from being coupled with an ATQ and

improve query performance.

Determining if asynchrony optimization is applied to a query

To determine if asynchrony optimization is applied to a given query, you can use

one of several methods to check the access plan for the query and check for a

specific operator.

You can check any of the following outputs for the query in question:

v db2exfmt output

v Visual explain output

v dynexpln output

Each output shows asynchronous query requests in the access plan as ATQ. The

’origin’ property in the description of the ATQ shows ’Asynchrony’.

The following plan fragment shows how the ATQ operator is used and shows its

detailed properties.

 1.6e+06

 HSJOIN

 (2)

 4213.74

 131

 /--------+--------\

 40000 1000

 HSJOIN SHIP

 (3) (10)

 1122.26 427.733

 117 14

 /------+-----\ |

 1000 1000 1000

 ATQ ATQ NICKNM: NEWTON

 (4) (7) S1_NN07

230 Administration Guide for Federated Systems

511.795 532.669

 16 101

 | |

 1000 1000

 SHIP SHIP

 (5) (8)

 478.773 499.887

 16 101

 | |

 1000 1000

 NICKNM: NEWTON NICKNM: NEWTON

 S2_NN02 S3_NN15

- show the origin of the ATQ as ASYNCHRONY:

 4) TQ : (Table Queue)

 Cumulative Total Cost: 511.795

 Cumulative CPU Cost: 2.79486e+06

 Cumulative I/O Cost: 16

 Cumulative Re-Total Cost: 68.9489

 Cumulative Re-CPU Cost: 1.72372e+06

 Cumulative Re-I/O Cost: 0

 Cumulative First Row Cost: 30.8308

 Cumulative Comm Cost: 18.2176

 Cumulative First Comm Cost: 0

 Estimated Bufferpool Buffers: 16

 Remote communication cost: 538.297

 Arguments:

 JN INPUT: (Join input leg)

 OUTER

 LISTENER: (Listener Table Queue type)

 FALSE

 TQMERGE : (Merging Table Queue flag)

 FALSE

 TQORIGIN: (Table Queue Origin type)

 ASYNCHRONY

 TQREAD : (Table Queue Read type)

 READ AHEAD

 TQSEND : (Table Queue Write type)

 DIRECTED

 UNIQUE : (Uniqueness required flag)

 FALSE

If you do not find any ATQ operators in the access plan for a query, verify that the

following conditions are met:

v The system is a federated system that is enabled for DPF.

v The query accesses nicknames on a data source that is accessed through a fenced

wrapper.

v Asynchrony is enabled using the database manager configuration parameter

FEDERATED_ASYNC, the special register CURRENT FEDERATED

ASYNCHRONY, or the bind option FEDERATED_ASYNCHRONY.

v The server option DB2_MAX_ASYNC_REQUESTS_PER_CONNECTION is set to

a non-zero value for the nicknames at each server.

Chapter 18. Asynchronous processing of federated queries 231

232 Administration Guide for Federated Systems

Chapter 19. Materialized query tables and federated systems

Materialized query tables and federated systems – overview

A materialized query table is a table that caches the results of a query. When you

submit the query again, the database engine can return the data from the

materialized query table instead of repeating the query computation.

You can use materialized query tables with nicknames to improve the performance

of a query and to encapsulate a part of logic. Materialized query tables are used

when you create cache tables.

The SQL optimizer determines if a query will run more efficiently with a

materialized query table than the base tables or nicknames. The optimizer uses the

following factors to select a materialized query table:

v The materialized query table must match part or all of the query.

v The refresh age criterion must be met.

v The access plan that uses a materialized query table must be cheaper than the

access plan that uses the base tables or nicknames.

Materialized query tables that involve nicknames for objects from the following

data sources are supported:

v Relational data sources

– DRDA

– Informix

– ODBC

– Oracle

– Sybase

– MS SQL Server

– Teradata
v Nonrelational data sources

– BioRS

– BLAST

– Entrez

– Excel

– HMMER

– Table-structured files

– Web Services

– WebSphere®Business Integration

– XML

Creating a federated materialized query table

You use materialized query tables to cache data locally and to improve the

performance of your queries. You can use nicknames from relational and

nonrelational data sources to create materialized query tables.

Restrictions

v “Data source specific restrictions for materialized query tables” on page 234

v If a query has a function template in a predicate or a select list, the function

template must be part of the materialized query table.

© Copyright IBM Corp. 1998, 2006 233

v “Restrictions on using materialized query tables with nicknames” on page 236

Procedure

To create a materialized query table, issue a CREATE TABLE statement that

references the nicknames that represent the remote data source objects that you

want to include.

You can populate a user-maintained materialized query table by using an INSERT

statement in a subselect statement. For example:

insert into my_mqt (select ..from n1, n2 where ..)

where the select portion of the query matches the materialized query table

definition. The optimizer might use my_mqt to replace the select portion of the

query. In that case, the statement becomes:

insert into my_mqt (select .. from my_mqt);

In this case, the materialized query table becomes the source of the insert

operation. To prevent this from happening, you can by issue one of the following

commands to temporarily disable the materialized query table:

SET CURRENT REFRESH AGE 0

SET CURRENT MAINTAINED TABLE TYPE FOR OPTIMIZATION SYSTEM

Data source specific restrictions for materialized query tables

When you create materialized query tables, you need to be aware of restrictions for

specific data sources.

This topic describes the restrictions on creating materialized query tables for the

following data sources:

v Bio-RS

v BLAST

v Entrez

v HMMER

v Table-structured files

v Web services

v XML

Bio-RS and Entrez Search restrictions

These wrappers require at least one predicate in the WHERE clause. You must

create a materialized query table that satisfies the predicate requirements of the

wrappers. If you do not specify a predicate, a refresh of the materialized query

table fails.

BLAST and HMMER restrictions

If you use the BLAST and HMMER wrappers, the data source requires predicates

on some columns in a query. The wrapper provides a default value for some

columns, and predicates on these columns can be omitted from the query. For

other columns, you must specify a predicate. If you do not specify a predicate, a

refresh of the materialized query table fails.

The wrapper does not access the data source when a materialized query table is

created. In the following example, the materialized query table is successfully

created.

234 Administration Guide for Federated Systems

CREATE TABLE MY_MQT AS (SELECT * FROM BLAST_NICK)

 DATA INITIALLY DEFERRED REFRESH DEFERRED ENABLE QUERY OPTIMIZATION;

However, when you refresh the table, the BLAST data source is contacted to

retrieve data. The BLAST data source issues an error because it needs a predicate

on the column blast_seq, and such a predicate is not available in the query.

For optional predicates, if you issue a query with non-default values, you must

provide those values when you create the materialized query table. If you do not

specify a predicate, you might get incorrect output.

In the following example, when you create the materialized query table, assume

that the wrapper provides the default values for the optional parameters and that

these default values are provided as IN_ARG1 = 2 and IN_ARG2 < 30.

CREATE TABLE MY_MQT AS (SELECT * FROM BLAST_NICK WHERE BLAST_SEQ = ’12345’)

 DATA INITIALLY DEFERRED REFRESH DEFERRED ENABLE QUERY OPTIMIZATION;

When you issue the following query, the optimizer matches the query to the

materialized query table. If the optimizer chooses the materialized query table

plan, this query yields incorrect results. The query returns incorrect results because

the materialized query table contains data with IN_ARG1 = 2, but the query

requested data with IN_ARG1 = 3.

SELECT * FROM BLAST_NICK WHERE BLAST_SEQ = ’12345’ AND IN_ARG1 = 3;

When you create a materialized query table, you must explicitly specify the values

for some of the predicates even if the wrapper supplies default values. Otherwise,

the optimizer might not route the query to a matching materialized query table.

This can happen because you did not explicitly specify these predicate values

when you created the materialized query table.

The following example shows how the optimizer would fail to select the

materialized query table when the query matches the materialized query table. If

the materialized query table explicitly contains a fixed input column with a default

value and the query does not have this predicate specified, the query will not be

routed to the materialized query table.

CREATE TABLE K55ADMIN.BLAST_NICK1_M1 AS (

 SELECT SCORE, E_VALUE, QUERYSTRANDS

 FROM K55ADMIN.BLAST_NICK1

 WHERE BLASTSEQ=’ATGATCGGATCGAATTCGAT’

 AND E_VALUE < 10) DATA INITIALLY DEFERRED REFRESH DEFERRED;

If you issue the following query, the query is not routed to the materialized query

table. The query is not routed because the optimizer determines that the

materialized query table did not specify E_VALUE < 10.

SELECT SCORE, E_VALUE, QUERYSTRANDS

FROM K55ADMIN.BLAST_NICK1 WHERE BLASTSEQ=’ATGATCGGATCGAATTCGAT’;

Table-structured file restrictions

If you define a nickname for a table-structured file with the DOCUMENT option,

the materialized query table must have a predicate that specifies the file path. If

you do not specify a predicate, a refresh of the materialized query table fails.

Web services restrictions

Chapter 19. Materialized query tables and federated systems 235

You can only create a materialized query table over a flattened view of a hierarchy

of nicknames. You cannot create a materialized query table for each nickname of a

hierarchy.

XML restrictions

You cannot create a materialized table on a child table.

If you define a nickname for an XML table with the DOCUMENT option, the

materialized query table requires a predicate that specifies the file path. If you do

not specify a predicate, a refresh of the materialized query table fails.

Restrictions on using materialized query tables with nicknames

Restrictions on materialized query tables that reference nicknames should be

considered when you are tuning your federated system.

Oracle Label Security for data source objects

Nicknames for data source objects with Oracle Label Security cannot be cached,

and materialized query tables cannot be created on them.

System-maintained materialized query tables

WebSphere Federation Server does not support system-maintained materialized

query tables that reference nicknames in a partitioned database environment.

To work around this restriction, you can use user-maintained materialized query

tables.

For example, for a nonrelational nickname named DEPART, you can issue the

following commands to simulate a system-maintained materialized query table.

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION ALL;

CREATE TABLE AST1(C1, C2)

 AS (SELECT EMPNO, FIRSTNME FROM DEPART WHERE EMPNO>’000000’)

 DATA INITIALLY DEFERRED REFRESH DEFERRED

 ENABLE QUERY OPTIMIZATION MAINTAINED BY USER;

SET INTEGRITY FOR AST1 ALL IMMEDIATE UNCHECKED;

INSERT INTO AST1 (SELECT EMPNO, FIRSTNME FROM DEPART WHERE EMPNO>’000000’);

SET CURRENT REFRESH AGE ANY;

The following SELECT statement can be answered by the materialized query table

defined above:

SELECT EMPNO, FIRSTNME FROM DEPART

 WHERE EMPNO > ’000000’ AND FIRSTNME LIKE ’AN%’;

236 Administration Guide for Federated Systems

Chapter 20. Cache tables

You use cache tables to store data that you access frequently but that does not

change often.

A cache table can improve query performance by storing the data locally instead of

accessing the data directly from the data source.

You can cache data from these data sources:

v DB2 family

v Informix

v Microsoft SQL Server

v Oracle

v Sybase

A cache table consists of these components:

v A nickname on your federated database system. The nickname has the same

column definitions and same data access as the data source table.

v One or more materialized query tables that you define on the nickname. The

type of materialized query tables is FEDERATED_TOOL maintained materialized

query table. The materialized query table usually contains a subset of high-use

data from the data source table.

v A replication schedule for each materialized query table. The replication

schedule keeps the local materialized query tables current with your data source

tables. You define the replication schedule.

The following figure illustrates a cache table.

© Copyright IBM Corp. 1998, 2006 237

The cache table has the same name as the nickname. You can associate a cache

table with only one data source table.

When a cache table is enabled, the query optimizer directs queries to the cache

table if the data that the query requests can be found in the materialized query

table.

Creating cache tables

You use a wizard in the Control Center to create a cache table. The wizard creates

the nickname, the materialized query table, and the replication schedule that are

required for the cache table.

Before you begin

Application

User

Replication

Cache table

Remote data source tableMaterialized query tables

_ _ _
Nickname

Figure 16. Cache table.

238 Administration Guide for Federated Systems

v Set the FEDERATED parameter to YES on the federated server. The

FEDERATED parameter is a database manager configuration parameter.

v To access Informix data sources, install and configure the Informix Client

software development kit (SDK) in the federated server.

v To cache data from DB2 Database for Linux, UNIX, and Windows tables,

configure the DB2 database for archive logging.

v The federated database or the source database must be on the computer from

which you are creating the cache tables. If the federated database or the source

database are not local, you must catalog the databases on the local computer.

The alias name that you use when you catalog the database must be the same

name as the database name.

v The user ID in the user mapping between the databases must have the authority

to create tables in the source database.

Procedure

To create a cache table:

1. In the Control Center, expand the Cache Objects folder.

2. Right-click the Cache Tables folder and click Create.

3. Complete the steps in the Cache Table wizard to create the cache table. You can

create the cache table quickly by only specifying values for the required fields

and using the default settings for the remaining fields. To change the default

settings:

a. On the Materialized Query Table page, click Advanced MQT Settings to

change the default settings or to select a subset of columns for the

materialized query table.

b. On the Replication page, click Advanced Settings to change the default

settings for replicating data from the data source table to the materialized

query table.

In some circumstances, caching is not be enabled when you complete the

wizard. You must enable caching to start the replication Capture and Apply

programs.

The Cache Table wizard creates one materialized query table when you create the

cache table. You can create additional materialized query tables to store other data

from the same data source.

Modifying the settings for materialized query tables

You cannot modify the settings for materialized query tables directly. You must use

alternative methods to change the replication and materialized query table settings.

Procedure

To modify the settings for a materialized query table:

1. Use the Materialized Query Table Details window to view the settings for the

materialized query table and the replication schedule.

a. In the Control Center, expand the Cache Objects folder.

b. Right-click the cache table and click Properties.

c. Select the materialized query table and click Details to view the current

settings.

Chapter 20. Cache tables 239

2. If you need to make changes to the replication settings, use the Replication

Center. You cannot change the replication settings for the materialized query

table from the Materialized Query Table Details window.

3. If you need to change the settings for a materialized query table, drop the

materialized query table and create another materialized query table. For

example, if you need to add another column to the materialized query table,

drop the materialized query table and create a materialized query table with

the new settings.

Adding materialized query tables to a cache table

You can create additional materialized query tables for the same cache table. Use

the additional materialized query tables to store other data from the same data

source table.

About this task

When you create a cache table, the federated server stores data locally from the

data source in a materialized query table. The criteria that you specify in the Cache

Table wizard determines which data to store in the materialized query table.

For example, you have an initial materialized query table that contains information

about customers in Asia. You can create another materialized query table that

contains information about customers in South America.

Procedure

To add a materialized query table to an existing cache table:

1. In the Control Center, expand the Cache Objects folder and the Cache Tables

folder.

2. Right-click the appropriate cache table and click Properties.

3. Click Add.

4. Complete the steps in the Cache Table wizard to create the additional

materialized query table.

You can also access the Cache Table Properties window from a nickname object.

Right-click the nickname and click Caching.

Routing queries to cache tables

You can route queries to the materialized query table for the cache table or to data

source by routing the queries to the nickname.

Before you begin

v A cache table must exist for the nickname that you query.

v Enable caching to the materialized query table.

v Set the following database configuration parameters:

– Materialized table type for optimization (DFT_MTTB_TYPES)

– Query optimization class (DFT_QUERYOPT)

Use the Configure Database notebook in the Control Center or the command

line to set these parameters.

Procedure

240 Administration Guide for Federated Systems

To change the routing for queries:

1. In the Control Center, expand the Cache Objects folder and the Cache Tables

folder.

2. Right-click the appropriate cache table and click Properties.

3. Select the materialized query table and click Check Status.

4. Select where you want the queries to route the queries:

v Select Route to the materialized query table. All queries for the data source

are sent to the materialized query table. If the data in the materialized query

table cannot satisfy the query, the query is then routed to the data source

using the nickname.

v Select Route to the nickname. All queries are sent to the data source by

using the nickname. The materialized query table is changed to a regular

database table. Replication to the materialized query table continues unless

you disable caching.
5. To change the routing immediately, select the Remove all cached dynamic SQL

statements check box. The dynamic SQL statements that are currently in the

package cache are deleted.

6. Click OK.

You can also access the Cache Table Properties window from a nickname object.

Right-click the nickname and click Caching.

Enabling and disabling the replication cache settings

You start and stop data replication for the materialized query table by changing

the cache settings.

Before you begin

For DB2 Database for Linux, UNIX, and Windows data sources, set the type of

database logging to archive logging.

About this task

When you enable caching, the Capture and Apply programs are started if the

programs are not already running. At the same time, the subscription-set member

is enabled. Enabling the subscription-set member tells the Apply program to keep

the data in the materialized query table synchronized with the data in the data

source table.

When you disable caching, the subscription-set member is disabled. The data from

the data source is not replicated to the materialized query table.

Important: If you do not change the routing setting, your queries are routed to the

materialized query table even though the data is not replicated to the

materialized query table.

Procedure

To enable or disable the replication cache settings for a materialized query table:

1. In the Control Center, expand the Cache Objects folder and the Cache Tables

folder.

2. Right-click on the appropriate cache table and click Properties.

Chapter 20. Cache tables 241

3. Select the materialized query table and click Check Status.

4. Select either Enable caching or Disable caching. To view the enable or disable

commands, click Show Statements.

5. Click OK .

You can also access the Cache Table Properties window from a nickname object.

Right-click the nickname and click Caching.

Dropping materialized query tables from a cache table

When you no longer want to store data locally in a materialized query table, you

can drop the materialized query table from the cache table.

About this task

If a cache table has only one materialized query table, dropping the materialized

query table also drops the cache table.

To ensure that the materialized query table is completely removed from your

system, use the Control Center to drop the materialized query table from a cache

table.

Procedure

To drop a materialized query table from a cache table:

1. In the Control Center, expand the Cache Objects folder and the Cache Tables

folder in the object tree.

2. Right-click the appropriate cache table and click Properties.

3. Select the appropriate materialized query table and click Remove.

Dropping cache tables

When you no longer want to store data locally in a cache table, you can drop the

cache table.

About this task

When you drop a cache table, the federated server performs the following actions:

v Drops the materialized query tables that are for the cache table.

v Removes the replication schedule for the data sources and the materialized

query tables.

v Drops the nickname for the data source, if the nickname was created when you

created the cache table. If you used an existing nickname when you created the

cache table, the federated server does not drop the nickname.

Procedure

To drop a cache table:

1. In the Control Center, expand the Cache Objects folder and the Cache Tables

folder in the object tree.

2. Right-click the appropriate cache table and click Drop.

242 Administration Guide for Federated Systems

Chapter 21. How client applications interact with data sources

To client applications, the data sources in a federated system appear as a single

collective database. To obtain data from data sources, applications submit queries

in DB2 SQL to the federated database. The federated database then distributes the

queries to the appropriate data sources, and either returns this data to the

applications or performs the requested action.

The federated database can join data from local tables and remote data sources in

the same SQL statement. For example, you can join data that is located in a local

DB2 table, an Informix table, and a Sybase view in a single SQL statement. By

processing SQL statements as if the data sources were ordinary relational tables or

views within the federated database, the federated system can join relational data

and nonrelational data.

In a federated system, you can access data sources through nicknames. A nickname

is a federated database object that an application uses to reference a data source

object, such as a table or view. To write to a data source—for example, to update a

data source table—an application can use DB2 SQL (with nicknames). Alternatively,

applications can use the SQL dialect of the data source (without nicknames) in a

special session called pass-through to access the data sources directly.

Applications that use DB2 SQL and nicknames can access any data types that the

federated database recognizes.

The federated database catalog contains information about the objects in the

federated database and information about objects at the data sources. Because the

catalog contains information about the entire federated database, it is called a global

catalog.

© Copyright IBM Corp. 1998, 2006 243

244 Administration Guide for Federated Systems

Chapter 22. Nicknames in your applications

Reference data source objects by nicknames in SQL statements

With a federated system, you use the nicknames defined for data source objects to

represent the objects in your SQL statements. The federated system does not

recognize fully-qualified data source, schema, and object names in SQL statements.

Data source objects must have nicknames registered in the federated database

before you can include them in your queries. In general, you can specify

nicknames in an SQL statement where you can specify local tables in a SQL

statement.

Example: Using nicknames in SELECT, INSERT, UPDATE, and DELETE

statements

You define the nickname NFXDEPT to represent a table in an Informix table called

PERSON.DEPT, where:

v PERSON is the data source schema

v DEPT is the data source table name

The statement SELECT * FROM NFXDEPT is allowed from the federated server.

However, the statement SELECT * FROM PERSON.DEPT is not allowed (except in

a pass-through session). The federated server does not have PERSON.DEPT

registered as a nickname.

Example: Using nicknames in the CREATE TABLE statement

You want to create a local table based on a remote table for which you have

defined a nickname. An example of the CREATE TABLE statement is:

CREATE TABLE table_name LIKE nickname

Nicknames in DDL statements

Data source objects must have nicknames registered in the federated database

before you can include them in your DDL statements. This topic provides some

examples of DDL statements that you use with federated systems.

Using nicknames in the COMMENT ON statement

The COMMENT ON statement adds or replaces comments in the federated

database global catalog. The COMMENT ON statement is valid with a nickname

and columns that are defined on a nickname. This statement does not update data

source catalogs.

Using nicknames in the GRANT and REVOKE statements

The GRANT and REVOKE statements are valid with a nickname for certain

privileges and for all users and groups. However, DB2 UDB does not issue a

corresponding GRANT or REVOKE statement on the object on the data source that

the nickname references.

© Copyright IBM Corp. 1998, 2006 245

For example, suppose that user JON creates a nickname for an Oracle table that

had no index. The nickname is ORAREM1. Later, the Oracle DBA defines an index

for this table. User EILEEN now wants the DB2 federated database to know that

this index exists, so that the query optimizer can devise strategies to access the

table more efficiently. EILEEN can inform the federated database that a new index

exists, by creating an index specification for ORAREM1.

The information about the index is stored in the SYSSTAT.INDEXES catalog view.

Use the GRANT statement to give EILEEN the index privilege on this nickname,

so that she can create the index specification.

GRANT INDEX ON NICKNAME ORAREM1 TO USER EILEEN

To revoke user EILEEN’s privileges to create an index specification on nickname

ORAREM1, use the REVOKE statement:

REVOKE INDEX ON ORAREM1 FROM USER EILEEN

Data source statistics impact applications

When a nickname is created for a data source object, the federated database global

catalog is updated with information about that object. The query optimizer uses

this information to plan how to retrieve data from the object.

It is important to make sure that the data source information is current. The

federated database does not automatically detect changes to data source objects.

Database object statistics stored in the global catalog

The information stored in the global catalog about a data source object, depends on

the type of object. For database tables and views, the name of the object, the

column names and attributes, are stored in the global catalog.

In the case of a table or nickname, the information also includes:

v Statistics. For example, the number of rows and the number of pages on which

the rows exist. To ensure that the federated database obtains the latest statistics,

run the data source equivalent of the RUNSTATS command on the table before

you create the nickname.

v Index descriptions. If the table has no indexes, you can supply the catalog with

metadata that an index definition typically contains. For example, assume that a

nickname is created for a remote table, and that an index is subsequently created

on the table at the data source. You can create an index specification at the

federated server that represents this remote index. You create an index

specification by issuing the CREATE INDEX statement and referencing the

nickname for the table. You use the SPECIFICATION ONLY clause with the

CREATE INDEX statement to produce only an index specification. The index

specification informs the federated optimizer that a remote index exists.

However, only metadata is generated. No index is actually created on the

federated server. In addition, no statistical information is supplied to the global

catalog. If you give the index specification exactly the same signature as the

remote index (that is, the same name, and the same columns in the same order),

you can use SYSPROC.NNSTAT to update statistics on the nickname and index

specification.

To determine what data source information is stored in the global catalog, query

the SYSCAT.TABLES and SYSCAT.COLUMNS catalog views. To determine what

246 Administration Guide for Federated Systems

data source index information is stored in the catalog, or what a particular index

specification contains, query the SYSCAT.INDEXES catalog view.

Updating statistics using the SYSSTAT view instead of the SYSCAT view

SYSCAT views are read-only catalog views in the SYSCAT schema. SYSSTAT views

are updatable catalog views that contain statistical information that the optimizer

uses. SYSSTAT views are in the SYSSTAT schema.

If you issue an UPDATE or INSERT operation on a view in the SYSCAT schema, it

will fail. Use the updatable catalog views in the SYSSTAT schema to manually

modify statistics on nicknames.

Defining column options on nicknames

Column options are parameters in the CREATE NICKNAME and ALTER

NICKNAME statements. You can specify column options when you initially create

a nickname or by modifying an existing nickname.

The information that you provide through the column options is stored in the

global catalog.

Nonrelational data sources

Column options are unique for each nonrelational wrapper. These options are

typically set when you issue the CREATE NICKNAME statement.

Relational data sources

There are two column options you can use for relational data sources:

NUMERIC_STRING and VARCHAR_NO_TRAILING_BLANKS.

Setting the NUMERIC_STRING column option

If a data source string column contains only numeric digits, and no other

characters including blanks, set the NUMERIC_STRING column option to ’Y’.

Setting the NUMERIC_STRING column option to ’Y’ allows queries that use this

column to be optimized for sorting operations and comparison operations. For

example:

ALTER NICKNAME nickname

 ALTER COLUMN local_column_name

 OPTIONS (SET NUMERIC_STRING ’Y’)

Setting the VARCHAR_NO_TRAILING_BLANKS column option

If the data source string column does not contain trailing blanks, set the

VARCHAR_NO_TRAILING_BLANKS column option to ’Y’.

Some data sources, such as Oracle, do not use the same blank-padded string

comparison logic that the federated database uses. This applies to data types such

as VARCHAR and VARCHAR2. As a result, predicates that involve these data

types must be rewritten by the query optimizer to ensure consistent query results.

Rewriting query statements can impact performance. Setting this option for a

specific column provides the query optimizer with information about these

columns so that it can generate more efficient SQL statements.

Chapter 22. Nicknames in your applications 247

For example:

ALTER NICKNAME nickname

 ALTER COLUMN local_column_name

 OPTIONS (SET VARCHAR_NO_TRAILING_BLANKS ’Y’)

248 Administration Guide for Federated Systems

Chapter 23. Creating and using federated views

A view in that includes a reference to a nickname in the fullselect is a federated

view. The base tables are referenced in the federated view using nicknames, instead

of using the data source table names.

Restrictions

Federated views that are created from multiple data source objects are read-only

views and cannot be updated.

Federated views that are created from only one data source object might or might

not be read-only views.

v A federated view created from a single nonrelational data source is read-only.

v A federated view created from a single relational data source might allow

updates, depending on what is included in the CREATE VIEW statement.

About this task

The advantages of using federated views are similar to the advantages of using

views defined on local tables in a centralized relational database manager:

v Views provide an integrated representation of the data

v You can exclude table columns that contain confidential or sensitive data from a

view

Procedure

You create a federated view from data source objects that have nicknames. The

action of creating a federated database view of data source data is sometimes

called “creating a view on a nickname”. This phrase reflects the fact that for the

federated view to be created, the CREATE VIEW statement fullselect must

reference the nickname of each data source table and view that the federated view

is to contain.

Creating federated views - examples

This topic provides examples of creating federated views.

Example: Creating a federated view that merges similar data from several data

source objects

You are working with customer data on three separate servers, one in Europe, one

in Asia, and one in South America. The Europe customer data is in an Oracle table.

The nickname for that table is ORA_EU_CUST. The Asia customer data is in a

Sybase table. The nickname for that table is SYB_AS_CUST. The South America

customer data resides in an Informix table. The nickname for that table is

INFMX_SA_CUST. Each table has columns containing the customer number

(CUST_NO), the customer name (CUST_NAME), the product number (PROD_NO),

and the quantity ordered (QUANTITY). The syntax to create a view from these

three nicknames that merges this customer data is:

© Copyright IBM Corp. 1998, 2006 249

CREATE VIEW FV1

 AS SELECT * FROM ORA_EU_CUST

 UNION

 SELECT * FROM SYB_AS_CUST

 UNION

 SELECT * FROM INFMX_SA_CUST

Example: Joining data to create a federated view

You are working with customer data on one server and sales data on another

server. The customer data is in an Oracle table. The nickname for that table is

ORA_EU_CUST. The sales data is in a Sybase table. The nickname for that table is

SYB_SALES. You want to match up the customer information with the purchases

made by those customers. Each table has a column containing the customer

number (CUST_NO). The syntax to create a federated view from these two

nicknames that joins this data is:

CREATE VIEW FV4

 AS SELECT A.CUST_NO, A.CUST_NAME, B.PROD_NO, B.QUANTITY

 FROM ORA_EU_CUST A, SYB_SALES B

 WHERE A.CUST_NO=B.CUST_NO

250 Administration Guide for Federated Systems

Chapter 24. Maintain data integrity with isolation levels

The isolation level defines the degree of isolation for an application process from

other application processes that are running concurrently.

You can maintain data integrity for a data source table by requesting that the table

rows be locked at a specific isolation level.

Locking occurs at the base table row at the data source. The database manager,

however, can replace multiple row locks with a single table lock. This action is

called lock escalation. An application process is guaranteed at least the minimum

requested lock level.

The isolation levels for the federated database are as follows:

RR Repeatable read

RS Read stability

CS Cursor stability (default)

UR Uncommitted read

The types of isolation are the statement level isolation and connection level

isolation.

You can set the isolation when you perform the following actions:

v Precompile or bind an application. You can specify isolation levels when you

prepare or bind an application. The isolation level specified in the BIND and

PREP command is the default isolation level when the federated server connects

to the remote data source.

v Use the WITH clause in an SQL statement. This action is called statement level

isolation. You can use the WITH clause in the SELECT, UPDATE, INSERT, and

DELETE statements.

If the federated server does not find an isolation level for a statement, the

federated server uses the isolation level that was established when the federated

server connected to the data source.

The following table lists the data sources that use connection level isolation, the

isolation levels that they use, and the equivalent isolation levels on the federated

server.

 Table 20. Data sources and isolation levels

Data sources

Most restrictive

isolation level

More restrictive

isolation level

Less restrictive

isolation level

Least restrictive

isolation level

Federated

database

Repeatable read Read stability Cursor stability Uncommitted

read

DB2 family of

products

Repeatable read Read stability* Cursor stability Uncommitted

read

Microsoft SQL

Server

Serializable Repeatable read Read committed Read

Uncommitted

Informix Repeatable read Repeatable read Cursor stability Dirty read

© Copyright IBM Corp. 1998, 2006 251

Table 20. Data sources and isolation levels (continued)

Data sources

Most restrictive

isolation level

More restrictive

isolation level

Less restrictive

isolation level

Least restrictive

isolation level

ODBC Serializable Repeatable read Read committed Read

Uncommitted

Oracle Serializable Serializable Read committed Read committed

Sybase Level 3 Level 3 Level 1 Level 0

*For DB2 UDB for VM and VSE Server data sources, the isolation level is repeatable read.

The CURRENT ISOLATION special register is not used by the federated server

when it connects to a data source.

The nonrelational data sources do not have a concept like isolation levels. The OLE

DB and Teradata do have the concept of isolation levels but are not supported by

the federated server. There is no isolation-level mapping between the federated

database isolation levels and the OLE DB, Teradata, and nonrelational data sources.

Statement level isolation in a federated system

For federated data sources, you must use the WITH isolation clause to specify the

isolation of a statement.

You must use the WITH isolation clause in your statement if you want to use

statement level isolation. If you use attributes with the Call Level Interface (CLI) or

other application API for statement level isolation, it does not affect statement

isolation.

The data sources that support statement level isolation in a federated system are

the DB2 family of products and Microsoft SQL server. The statement isolation is

sent to remote data sources for the DB2 family of products and SQL server.

Use the DB2_STATEMENT_ISOLATION server option to turn on or off statement

level isolation. You can specify this option in the CREATE SERVER and ALTER

SERVER statements. The server option is automatically set to ’Y’.

You can use the WITH isolation clause in these statements:

 SELECT

 SELECT INTO

 Searched DELETE

 INSERT

 Searched UPDATE

 DECLARE CURSOR

Lock request clause

You can use the lock request clause in a SELECT or SELECT INTO statement. The

federated data sources that support the lock request clause are the DB2 UDB for

Linux, UNIX, and Windows, and the DB2 UDB for z/OS.

252 Administration Guide for Federated Systems

Limitations using the WITH clause to set the isolation level

The following conditions apply to isolation levels that are specified for statements:

v The WITH clause cannot be used in subqueries.

v The UR isolation level applies only if the result table of the fullselect or the

SELECT INTO statement is read-only. In other cases, the UR isolation level for

the statement is changed from UR to CS for the DB2 family of data sources. For

the SQL server data source, the UR isolation level is upgraded to Read

committed.

v If you specify the lock request clause for the following data sources, the clause is

ignored by the federated server.

– DB2 for iSeries

– DB2 for VM

– Microsoft SQL server

Connection level isolation in a federated system

The federated server maps your isolation level to a corresponding one at the data

source.

For each connection to the data source, the wrapper determines the isolation level.

When the federated server connects to the data source, the isolation level at the

remote data source is set to a level that is equivalent to the level of the federated

server. If there is no exact equivalent, then the federated server sets the isolation

level to the next restrictive level. After a connection is made to a data source, the

isolation level for the duration of the connection cannot be changed.

All wrappers except Teradata keep track of the connection isolation level. When

setting up a connection, the wrappers set the connection isolation level to the

equivalent of the current DB2 isolation level. The current DB2 isolation level is the

isolation level of the current section (first federated statement to a data source).

The Teradata wrapper is always in the READ isolation level, the default, because

the Teradata wrapper does not have a way to change the connection isolation level.

Chapter 24. Maintain data integrity with isolation levels 253

254 Administration Guide for Federated Systems

Chapter 25. Federated LOB support

With a federated database system, you can access and manipulate large objects

(LOBs) at remote data sources.

A federated system supports SELECT operations on LOBs at DRDA, Informix,

Microsoft SQL Server, Oracle, and Sybase data sources. For example:

SELECT empname, picture FROM infmx_emp_table

 WHERE empno = ’01192345’

Where picture represents a LOB column and infmx_emp_table represents a

nickname referencing an Informix table containing employee data.

A federated system supports SELECT, INSERT, UPDATE, and DELETE operations

on LOBs at the following data sources, using the DRDA wrapper:

v DB2 for z/OS (Version 7 or higher)

v DB2 for iSeries (Version 5)

v DB2 UNIX, and Windows (Version 7 or higher)

The read and write operations supported by DB2 Database for Linux, UNIX, and

Windows, Version 9 are listed in the following table:

 Table 21. Read and write support for LOBs

Data source Type of operations

DB2 for z/OS, DB2 for iSeries, DB2 Database

for Linux, UNIX, and Windows1

read and write

BioRS read only

BLAST read and bind-in

Entrez read only

HMMER read and bind-in

Informix read only

Microsoft SQL Server read only

Oracle (NET8 wrapper)

2 read only

ODBC read only

Sybase read only

Teradata read only

Web services read only and bind-out for CLOB only

WebSphere Business Integration read only and bind-out for CLOB only

XML read only

Note:

1. DB2 for iSeries Version 5 (or later) is required for LOB support. DB2 Information

Integrator Version 8 cannot access DB2 UDB for Linux, UNIX, and Windows Version 7

LOB data.

2. To run insert, update, and delete operations on Oracle LONG columns, you need to

migrate the remote columns from LONG to LOBs and recreate the nicknames.

© Copyright IBM Corp. 1998, 2006 255

Teradata LOBs

Teradata LOBs are slightly different than DB2 LOBs. Teradata does not

have any data types as large as the LOBs supported in DB2 UDB.

However, there are some Teradata data types that can be up to 64000 bytes

long. These data types are CHAR, VARCHAR, BYTE, VARBYTE,

GRAPHIC, and VARGRAPHIC. These Teradata data types are mapped to

DB2 LOB data types when the length of the Teradata data type exceeds the

limits of the corresponding DB2 data type.

LOB lengths

Some data sources, such as Oracle and Informix, do not store the lengths

of LOB columns in their system catalogs. When you create a nickname on

a table, information from the data source system catalog is retrieved

including column length. Since no length exists for the LOB columns, the

federated database assumes that the length is the maximum length of a

LOB column in DB2 Database for Linux, UNIX, and Windows. The

federated database stores the DB2 Database for Linux, UNIX, and

Windows maximum length in the federated database catalog as the length

of the nickname column.

LOB locators

Applications can request LOB locators for LOBs that are stored in remote data

sources. A LOB locator is a 4-byte value stored in a host variable. An application

can use the LOB locator to refer to a LOB value (or LOB expression) held in the

database system.

Using a LOB locator, an application can manipulate the LOB value as if the LOB

value was stored in a regular host variable. When you use LOB locators, there is

no need to transport the LOB value from the data source server to the application

(and possibly back again).

The federated database can retrieve LOBs from remote data sources, store them at

the federated server, and then issue a LOB locator on the stored LOB. LOB locators

are released when:

v Applications issue FREE LOCATOR SQL statements

v Applications issue COMMIT statements

v The DB2 federated instance is restarted

Restrictions on LOBs

Federated systems impose some restrictions on LOBs.

The following restrictions apply to LOBs:

v The federated database is unable to bind remote LOBs to a file reference variable

v LOBs are not supported in pass-through sessions

Performance considerations for LOB processing

When developing federated applications that fetch and process LOB data,

application designers and database administrators need to understand how LOB

processing affects performance.

When an application fetches data from a federated data source, the federated

server must fetch the data into its own application buffers before sending the data

256 Administration Guide for Federated Systems

to the application. Because LOBs are not processed in a buffer pool, the LOB data

must first pass through a temporary table space defined for the federated server.

To help improve performance and reduce resource consumption, application

designers should only materialize LOB data when necessary.

Similarly, when the federated server updates remote LOB data, the data must pass

through a temporary table space assigned to the federated server before it is

passed to the data source.

Transient LOBs use the temporary table space assigned to the federated server.

Therefore, database administrators might need to increase the size of this

temporary table space to ensure that the working area is sufficient for processing

the LOBs.

Recommendation: To maximize performance when working with LOBs, define the

temporary table space as System Managed (SMS) and ensure that the temporary

table space is located on disks with a high I/O bandwidth.

Using the DB2 Call Level Interface to access federated LOBs

The federated server supports two DB2 CLI APIs for selecting LOB data:

v The SQLFetch API fetches the LOB from the federated server or data source into

the application buffers in a single operation.

v The SQLGetData API fetches the LOB a chunk at a time and can require

repeated calls to the API to fetch the entire LOB into the application buffers.

Recommendation: For optimal performance, use the SQLGetData API when

fetching LOBs through a federated server.

The federated server supports the SQLExecute and SQLPutData APIs for updating

LOB data. The SQLExecute API updates the LOB data in a single operation,

whereas the SQLPutData API can require repeated calls to send all of the LOB data

from the application buffers to the server. Each API performs at the same level in a

federated environment.

Trusted and fenced wrappers

Nicknames created for wrappers defined as trusted or fenced perform equally

when fetching or updating LOBs.

Chapter 25. Federated LOB support 257

258 Administration Guide for Federated Systems

Chapter 26. Distributed requests

Distributed requests for querying data sources

Queries submitted to the federated database can request results from a single data

source, but typically are requests that include multiple data sources. Because a

typical query is distributed to multiple data sources, it is called a distributed

request..

In general, a distributed request uses one or more of three SQL conventions to

specify where data is to be retrieved from subqueries, set operators, and join

subselects..

Distributed requests for querying data sources - examples

In this example, the federated server is configured to access a DB2 for z/OS data

source, a DB2 for iSeries data source, and an Oracle data source. Stored in each

data source is a table that contains employee information. The federated server

references these tables by nicknames that point to where the tables reside.

zOS_EMPLOYEES

Nickname for a table on a DB2 for z/OS data source that contains

employee information.

iSERIES_EMPLOYEES

Nickname for a table on a DB2 for iSeries data source that contains

employee information.

ORA_EMPLOYEES

Nickname for a table on an Oracle data source that contains employee

information.

ORA_REGIONS

Nickname for a table on an Oracle data source that contains information

about the regions that the employees live in.

The following examples illustrate the three SQL conventions used with distributed

requests, using the nicknames defined for each of the tables.

Example: A distributed request with a subquery

iSERIES_EMPLOYEES contains the phone numbers of employees who live in Asia.

It also contains the region codes associated with these phone numbers, but it does

not list the regions that the codes represent. ORA_REGIONS lists both codes and

regions. The following query uses a subquery to find the region code for China.

Then it uses the region code to return a list of those employees in

iSERIES_EMPLOYEES who have a phone number in China.

SELECT name, telephone FROM db2admin.iSERIES_employees

 WHERE region_code IN

 (SELECT region_code FROM dbadmin.ora_regions

 WHERE region_name = ’CHINA’)

Example: A distributed request with set operators

© Copyright IBM Corp. 1998, 2006 259

The federated server supports three set operators: UNION, EXCEPT, and

INTERSECT.

v Use the UNION set operator to combine the rows that satisfy any of two or

more SELECT statements.

v Use the EXCEPT set operator to retrieve those rows that satisfy the first SELECT

statement but not the second.

v Use the INTERSECT set operator to retrieve those rows that satisfy both SELECT

statements.

All three set operators can use the ALL operand to indicate that duplicate rows are

not to be removed from the result. This eliminates the need for an extra sort.

The following query retrieves all employee names and region codes that are

present in both iSERIES_EMPLOYEES and zOS_EMPLOYEES, even though each

table resides in a different data source.

SELECT name, region_code

 FROM as400_employees

INTERSECT

SELECT name, region_code

 FROM zOS_employees

Example: A distributed request for a join

A relational join produces a result set that contains a combination of columns

retrieved from two or more tables. You should specify conditions to limit the size

of the rows in the result set.

The query below combines employee names and their corresponding region names

by comparing the region codes listed in two tables. Each table resides in a different

data source.

SELECT t1.name, t2.region_name

 FROM dbadmin.iSERIES_employees t1, dbadmin.ora_regions t2

 WHERE t1.region_code = t2.region_code

Optimizing distributed requests with server options

In a federated system, use parameters called server options to supply the global

catalog with information that applies to a data source as a whole, or to control

how the federated database interacts with a data source.

About this task

Server options describe the capabilities of a particular data source and enhance the

knowledge that the federated server has about that data source. For example, you

can:

v Use the VARCHAR_NO_TRAILING_BLANKS server option to inform the

optimizer that every VARCHAR column residing on the data source server is

free of trailing blanks. This server option is for Oracle data source only. Use this

option only when you are certain that all VARCHAR2 columns for every object

that is referenced by a nickname on the server has no trailing blanks. Otherwise,

use a column option to specify the columns for individual objects on the server

that have no trailing blanks. The column option is also named

VARCHAR_NO_TRAILING_BLANKS.

v Set the PLAN_HINTS server option to a value that enables DB2 to provide

Oracle data sources with statement fragments, called plan hints. Plan hints can

260 Administration Guide for Federated Systems

help a data source optimizer decide which index to use in accessing a table, and

which table join sequence to use in retrieving data for a result set.

Typically, the database administrator sets server options for a federated system.

However, a programmer can make good use of the server options that help

optimize queries. For example, for data sources ORACLE1 and ORACLE2, the

PLAN_HINTS server option is set to the default, ’N’ (no, do not furnish this data

source with plan hints). You write a distributed request that selects data from

ORACLE1 and ORACLE2. You expect that plan hints would help the optimizers at

these data sources improve their strategies for accessing this data. You could

override the default with a setting of ’Y’ (yes, furnish the plan hints) while your

application is connected to the federated database. When the connection to the

data sources is terminated, the setting will automatically revert back to ’N’.

Procedure

To set server options:

1. Use the SET SERVER OPTION statement to set or change server options. To

ensure that the setting takes effect, specify the SET SERVER OPTION statement

immediately following the CONNECT statement. The server option is set for

the duration of a connection to the federated database.

2. Recommendation: Prepare the statement dynamically. The SET SERVER

OPTION statement affects only dynamic SQL statements.

Chapter 26. Distributed requests 261

262 Administration Guide for Federated Systems

Chapter 27. Using pass-through sessions within applications

Querying data sources directly with pass-through

This topic describes when and how to use pass-through sessions.

About this task

Pass-through sessions are useful when:

v Applications must create objects at the data source or perform INSERT,

UPDATE, or DELETE operations.

v The federated database does not support a unique data source operation.

Procedure

To query data sources directly with pass-through:

v Use the SET PASSTHRU statement to start a pass-through session and access a

server directly. This statement can be issued dynamically. An example of this

statement is: SET PASSTHRU ORACLE1 This SET PASSTHRU statement opens a

pass-through session to the data source using the server name ORACLE1.

ORACLE1 is the name you registered for the data source server when you

created the server definition.

v When the pass-through session is opened, ensure that you use the true name of

the object and not the nickname when you reference objects in a pass-through

session. You must use the SQL dialect of the data source, unless the federated

database is the data source that is being referenced.

v If a static statement is submitted in a pass-through session, it is sent to the

federated server for processing. If you want to submit an SQL statement to a

data source for processing, you must prepare it dynamically in the pass-through

session and have it executed while the session is still open. To prepare

statements dynamically in a pass-through session:

– To submit a SELECT statement, use the PREPARE statement with it, and then

use the OPEN, FETCH, and CLOSE statements to access the results of your

query.

– For a supported statement other than SELECT, you have two options. You can

use the PREPARE statement to prepare the supported statement, and then the

EXECUTE statement to execute it. Alternatively, you can use the EXECUTE

IMMEDIATE statement to prepare and execute the statement.

If you issue the COMMIT or ROLLBACK command during a pass-through session,

this command will complete the current unit of work, but does not end the

pass-through session.

Federated pass-through considerations and restrictions

This topic explains the considerations and restrictions you need to be aware of

when you use a pass-through session.

The following considerations and restrictions apply to all data sources:

v Statements prepared within a pass-through session must be executed within the

same pass-through session. Statements prepared within a pass-through session,

© Copyright IBM Corp. 1998, 2006 263

but executed outside of the same pass-through session, will fail and result in a

SQLSTATE 56098 error. Statements prepared outside of a pass-through session,

but executed within a pass-through session, are handled as a SET PASSTHRU

statement.

v An application can issue multiple SET PASSTHRU statements, however only the

last session is active. When a new SET PASSTHRU statement is invoked, it

terminates the previous SET PASSTHRU statement. You cannot pass through to

more than one data source in the same pass-through session.

v If multiple pass-through sessions are used in an application, be sure to issue a

COMMIT before you open another pass-through session. This will conclude the

unit of work for the current session.

v Parameter markers are not supported in pass-through sessions. Use host

variables instead of parameter markers.

v You can use the WITH HOLD semantics on a cursor defined in a pass-through

session. However, you will receive an error if you try to use the semantics (with

a COMMIT) and the data source does not support the WITH HOLD semantics.

v Host variables defined in SQL statements within a pass-through session must

take the form :Hn where H is uppercase and n is a unique whole number. The

values of n must be numbered consecutively beginning with zero.

v Pass-through does not support LOBs.

v Pass-through does not support stored procedure calls.

v Pass-through does not support the SELECT INTO statement.

v Pass-through does not support SQL or external user-defined functions.

v You cannot execute dynamic SQL COMMIT or ROLLBACK statements during a

pass-through session.

v When performing update or delete operations during a pass-through session,

you cannot use the WHERE CURRENT OF CURSOR condition.

v In pass-through mode, dynamic SQL statements are executed remotely, whereas

static SQL statements are sent to the federated server for processing. If you want

to submit an SQL statement to a data source for processing, you must prepare it

dynamically in the pass-through session and it must be executed while the

session is still open.

v Static SET PASSTHRU statements in SQL-bodied stored procedures are blocked

when stored procedures are created, and error SQL0104N is issued. To get into

and out of pass-through mode, use the EXECUTE IMMEDIATE statement.

Example:

create procedure stp()

dynamic result sets 1

language sql

modifies sql data

begin

declare stmt varchar(100);

DECLARE cur1 CURSOR WITH RETURN TO CALLER

FOR SELECT * FROM t1 ;

set stmt = ’set passthru mvs7’;

execute immediate stmt;

set stmt = ’insert into t1 values (20, ’’passthru_insert’’)’;

execute immediate stmt;

commit;

insert into t1 values (20, ’stp_insert’);

commit;

264 Administration Guide for Federated Systems

OPEN cur1;

end

DB20000I The SQL command completed successfully.

call stp()

Result set 1

10 local

20 stp_insert

2 record(s) selected.

Return Status = 0

select * from t1

C1 C2

10 remote

20 passthru_insert

2 record(s) selected.

set passthru reset

DB20000I The SQL command completed successfully.

select * from t1

C1 C2

10 local

20 stp_insert

2 record(s) selected.

v The return from a stored procedure or compound SQL statement does not

terminate pass-through mode automatically. To exit from pass-through mode, the

SET PASSTHRU RESET statement must be called explicitly, as shown in the

example above.

Pass-through sessions to Oracle data sources

This topics identifies some SQL considerations to be aware of before you submit

SQL statements to Oracle data sources in a pass-through session.

v When a remote client issues a SELECT statement from a command line

processor (CLP) in pass-through mode and the client code is an SDK before DB2

Universal Database Version 5, the SELECT will elicit an SQLCODE -30090 with

reason code 11. To avoid this error, remote clients must use an SDK that is at

Version 5 or higher.

v Any DDL statement issued on an Oracle server is performed at parse time and

is not subject to transaction semantics. The operation, when complete, is

automatically committed by Oracle. If a rollback occurs, the DDL is not rolled

back.

v When you issue a SELECT statement from raw data types, use the RAWTOHEX

function to receive the hexadecimal values. When you perform an INSERT into

raw data types, provide the hexadecimal representation.

Chapter 27. Using pass-through sessions within applications 265

266 Administration Guide for Federated Systems

Chapter 28. Federated system security

Overview of the user mapping plugin for external repositories

You can develop a plugin that retrieves user mappings from an external repository

instead of storing the user mappings on the federated server.

The plugin that you develop must retrieve the user mappings from the repository

and pass the authentication information to the federated server. Federation

includes a sample plugin that is designed for a Lightweight Directory Access

Protocol (LDAP) server repository. To work with other types of external

repositories, you can develop your own plugin or extend the sample LDAP plugin.

After you create the plugin, you must configure the federated server to use the

plugin by specifying an option on the wrapper or server definition.

Advantages of using an external repository to store user mappings

Storing user mappings in an external repository can provide improved security

and reduced maintenance. An external repository can be shared by many federated

servers.

By default, user mappings are stored in the catalog table on the federated server.

You can query the catalog view SYSCAT.USEROPTIONS for details. The remote

passwords that are stored in the database catalog use the encryption algorithm that

is provided by the federated server. Because the remote passwords expire on a

regular basis, and you store the user mappings on each federated server, the

routine maintenance of updating passwords can become time consuming.

With an external repository, you can store user mappings in a central repository

that many federated servers can use to retrieve user mappings.

An external repository such as a Lightweight Directory Access Protocol (LDAP)

server, offers increased security. On an LDAP server, you can encrypt the remote

passwords with an encryption algorithm and a secret key. If you choose to enable

secure communication using secure sockets layer (SSL), you can protect the

information that is passed between the federated server and the external

repository. The external repository must support SSL communications to use this

functionality.

You must develop your own plugin that matches the security and encryption

settings of your external repository.

Relationship between the federated server and the user mapping

plugin

The user mapping plugin allows the federated server to retrieve user mappings

from an external repository. When DB2_UM_PLUGIN option is set and the

federated server tries to establish a connection to the data source, the server uses

the plugin to retrieve the user mapping for that data source.

© Copyright IBM Corp. 1998, 2006 267

The plugin acts as a gateway between the federated server and the external

repository. When the federated server needs to access the repository for user

mappings, the federated server provides the following information to the plugin:

v Local instance name

v Local database name

v Remote server name

v Local user ID

The plugin uses this information to locate the appropriate user mapping in the

external repository. For example, the plugin finds the appropriate user entry in a

Lightweight Directory Access Protocol (LDAP) server and requests that the LDAP

server return the remote user ID and remote password.

Other types of external repositories will store and return the user mappings using

other methods. You must develop a plugin that contains the code to allow the

federated server to interface with the external repository.

268 Administration Guide for Federated Systems

User mapping plugin architecture

You can develop your own plugin for retrieving user mappings from an external

repository. The UserMappingRepository, UserMappingCrypto, UserMappingEntry,

UserMappingOption, and UserMappingException classes provide the interface and

utilities to develop a plugin to return the user mappings from the external

repository to the federated server.

Data source

Wrapper

Federated client

User mapping plugin

Federated server

External repository

1

32 4

Figure 17. Relationship between the federated server, the user mapping plugin, the external repository and the data

source.. When a DB2 client requests a connection through the federated server to data that resides on the remote

data source, the local user ID of the client is sent to the federated server (1). If the DB2_UM_PLUGIN option is set for

a wrapper, the federated server loads the user mapping plugin and provides the plugin with the local instance name,

local database name, remote server name, and local user ID. The plugin uses this information to locate (2) the user

mapping in the repository. The plugin retrieves the remote user mapping and performs any necessary decryption (3).

The plugin returns the remote user ID and remote password to the federated server. The federated server tries to

connect to the data source through the wrapper (4). The remote user ID and remote password that was retrieved from

the external repository is used to connect to the data source.

Chapter 28. Federated system security 269

The following table lists the interface classes and utility classes that comprise the

user mapping plugin architecture. You must extend the interface classes to work

with your external repository. The utility classes can be used without modification.

 Table 22. Interface classes and utility classes

Interface classes Utility classes

UserMappingCrypto class UserMappingEntry class

UserMappingRepository class UserMappingOption class

UserMappingException class

Some functions or methods that are in the interface classes act as utility functions.

For example, you can use the getChars() function and getBytes() function in the

UserMappingCrypto class without modification.

UserMappingRepository class

The UserMappingRepository class is an abstract class that does not have a

constructor. You must create a subclass of the UserMappingRepository class or

modify the subclass in the LDAP sample plugin.

The UserMappingRepository class contains the following public methods:

getVersionNumber(), getCrypto(), connect(), disconnect(), fetchUM(), and

lookupUM(). You must create your own subclass of the UserMappingRepository

User mapping plugin architecture

UserMappingOption

StringOption BinaryOption

UserMappingException

UserMappingEntry

UserMappingCryptoLDAP

UserMappingCrypto

UserMappingRepository

UserMappingRepositoryLDAP

1

1

0..n

1

0..n

1

1

1

Figure 18. Diagram of the classes for the architecture of the user mapping plugin. The diagram shows the relationship

of the classes to each other. The 0..n term, means there can be multiple zero or more of those objects. For example,

a UserMappingEntry object can have multiple UserMappingOption objects but there can be only be a single

UserMappingRepository object. The UserMappingCryptoLDAP class and UserMappingRepositoryLDAP class are

darker to show that they are extended from their parent classes.

270 Administration Guide for Federated Systems

that contains these functions. In these functions, write the code that allows the

plugin to interact with your external repository.

Public methods

int getVersionNumber()

Returns the version number of the plugin development kit that is used by the

plugin.

UserMappingCrypto getCrypto()

Returns the UserMappingCrypto object that is associated with this

UserMappingRepository object.

abstract void connect()

You must implement your own method for connecting to your repository

within this function.

abstract void disconnect()

You must implement your own method for disconnecting from your repository

within this function.

abstract void fetchUM(UserMappingEntry um)

You must implement your own method for retrieving the user mapping from

your repository within this function. The um parameter contains the detailed

query information that is used to determine which user mapping to retrieve.

UserMappingEntry lookupUM(UserMappingRepository repository, String

iiInstanceName, String iiDatabaseName, String iiRemoteServerName, String

iiAuthid)

This function is used primarily for testing the plugin. The function uses the

iiInstanceName, iiDatabaseName, iiRemoteServerName, and iiAuthid

parameters as input to create and initialize the UserMappingEntry class. The

function calls the connect, fetchUM, and disconnect methods.

Sample plugin files

You can view the implementation of these functions in a sample plugin that

retrieves user mappings from an LDAP server. The files are in the

sqllib/samples/federated/umplugin/ldap/ directory. The functions from this class

are used in the UserMappingRepositoryLDAP.java and

UserMappingLookupLDAP.java files.

UserMappingCrypto class

If your external repository encrypts or encodes your remote passwords, you must

create your own subclass of the UserMappingCrypto class. The constructor of the

subclass that you create is used to construct the cryptography object. The methods

of the cryptography class are called by other classes when the user mapping

passwords need to be encrypted, decrypted, encoded, or decoded.

The UserMappingCrypto class contains the following public methods: encrypt(),

decrypt(), encode(), and decode(). In these functions, you must write your code for

encrypting, decrypting, encoding, and decoding the remote password. The

getBytes() and getChars() functions are utility functions that are inherited and can

be used without modification.

Your encryption, decryption, encoding, and decoding methods must match the

encryption and encoding methods that are used by your external repository for

protecting the stored passwords.

Chapter 28. Federated system security 271

iiyfldapplugentry.dita

Public methods

abstract byte[] encrypt(byte[] plainValue)

Implement the encryption algorithm that matches the encryption algorithm

that is used by your external repository.

abstract byte[] decrypt(byte[] encryptedValue)

Implement the decryption algorithm that reverses the encryption algorithm

that is used by your external repository and returns the password.

abstract string encode(byte[] bytes)

Write or implement a function that encodes the bytes parameter into a string.

This function encodes the encrypted value, which is in bytes, into a string.

abstract byte[] decode(String[] string)

Write or implement a function that decodes the string parameter into bytes.

This function is used to decode the retrieved password, which is a string, into

bytes so that the value can be decrypted.

byte[] getBytes(char[] chars)

This function is inherited and can be used without modification. The function

transforms each character of a string into a byte.

char[] getChars(byte[] bytes)

This function is inherited and can be used without modification. The function

transforms each byte into a character.

Protected attributes

SecretKey key

The secret key that is used to encrypt and decrypt the remote passwords.

Cipher cipher

The algorithm that is used to encrypt the password by using the secret key.

Sample plugin files

You can view the implementation of these functions in a sample plugin that

retrieves user mappings from an LDAP server. The files are located in the

sqllib/samples/federated/umplugin/ldap/ directory. The functions from this class

are used in the UserMappingRepositoryLDAP.java and

UserMappingSetupLDAP.java sample files.

UserMappingEntry class

The UserMappingEntry class is a utility class that creates and holds the user

mapping options. The methods in the UserMappingEntry class are called by the

fetchUM() and lookupUM() functions from the UserMappingRepository class.

The UserMappingEntry class contains the following public methods:

UserMappingEntry(), getRepository(), getIIInstanceName(), getIIDatabaseName(),

getIIRemoteServerName(), getIIAuthID(), getFirstOption(), and addOption().

Public methods

UserMappingEntry(UserMappingRepository repository, String iiInstanceName,

String iiDatabaseName, String iiRemoteServerName, String iiAuthID)

This constructor is used to instantiate the UserMappingEntry object with the

following input parameters:

v iiInstance - Instance name of the federated server

272 Administration Guide for Federated Systems

v iiDatabase - Database name on the federated server

v iiRemoteServerName - Remote server name for the data source

v iiAuthid - Local user ID that is associated with the user mapping

UserMappingRepository getRepository()

Returns the UserMappingRepository object that is associated with this

UserMappingEntry.

string getIIInstanceName()

Returns the name of the instance.

string getIIDatabaseName()

Returns the name of the database.

string getIIRemoteServerName()

Returns the name of the remote server.

string getIIAuthID()

Returns the name of the local user ID that is associated with the user mapping.

UserMappingOption getFirstOption()

Returns the first UserMappingOption object that belongs to this

UserMappingEntry object.

void addOption(UserMappingOption newOption)

Adds a new UserMappingOption object to this UserMappingEntry object.

Sample plugin files

You can view the use of these functions in a sample plugin that retrieves user

mappings from an LDAP server. The files are in the sqllib/samples/federated/
umplugin/ldap/ directory. The functions from this class are used in the

UserMappingRepositoryLDAP.java and UserMappingLookupLDAP.java files.

UserMappingOption class

The UserMappingOption class is a utility class that contains the functions for

providing the federated server with the two components of the user mapping: the

remote user ID and the remote password.

The UserMappingOption class contains the following public methods: getEntry(),

getName(), setName(), getNextOption(), setNextOption(), and getValue(). The

sqllib/samples/federated/umplugin/ldap/UserMappingRepositoryLDAP.java

sample file, contains a sample of using the UserMappingOption object in an LDAP

sample plugin.

Public methods

UserMappingEntry getEntry()

Returns the UserMappingEntry object that is associated with this

UserMappingOption object.

string getName()

Returns the name of the option.

void setName()

Sets the name of the option.

UserMappingOption getNextOption()

Returns the next option.

Chapter 28. Federated system security 273

void setNextOption(UserMappingOption nextOption)

Sets the next option.

abstract object getValue()

Returns the value of the option. This function must be implemented to return

either a string value or binary value. See the StringOption and BinaryOption

methods that are listed below.

abstract object setValue()

Sets the value of the option. This function must be implemented to set either a

string value or binary value. See the StringOption and BinaryOption methods

that are listed below.

StringOption class that is extended from the UserMappingOption

class

The StringOption class contains the following public methods: getValue() and

setValue().

Public methods

object getValue()

Returns the value of the string option when the option is a string.

void setValue(string value)

Sets the value of the string option.

BinaryOption class that is extended from the UserMappingOption

class

The BinaryOption class contains the following public methods: getValue() and

setValue().

Public methods

object getValue()

Returns the value of the binary option.

void setValue(byte[] value)

Sets the value of the binary option.

Sample plugin files

You can view the use of these functions in a sample plugin that retrieves user

mappings from an LDAP server. The files are in the sqllib/samples/federated/
umplugin/ldap/ directory. The functions from this class are used in the

UserMappingRepositoryLDAP.java and UserMappingLookupLDAP.java files.

UserMappingException class

The UserMappingException class is a subclass of the java.lang.Exception class and

is used by the plugin to report errors.

The UserMappingRepository class contains the following public methods:

UserMappingException(), getErrorNumber(), and getErrorMessage().

Public methods

UserMappingException(int errorNumber)

The constructor that is used for instantiating the UserMappingException object

274 Administration Guide for Federated Systems

that is used for reporting errors. The errorNumber parameter that is sent to the

UserMappingException object defines the type of error that is reported.

getErrorNumber()

Returns the error number of the exception.

 The UserMappingRepositoryLDAP.java file, contains this function for catching

and reporting errors for testing an LDAP plugin.

getErrorMessage()

Returns the error message of the exception.

 The UserMappingRepositoryLDAP.java file, contains a method for catching and

reporting errors for testing an LDAP plugin.

Error messages

Possible error numbers, constant names, and error messages are listed in the

following table.

 Table 23. Error numbers and messages

Error

number Constant name Error message

1 INITIALIZE_ERROR The plugin failed to initialize.

2 CONNECTION_ERROR Unable to connect to the repository.

3 AUTHENTICATION_ERROR Unable to authenticate with the

repository.

4 LOOKUP_ERROR Lookup on the repository failed.

5 DECRYPTION_ERROR Decryption failed.

6 DISCONNECT_ERROR Unable to disconnect from the

repository.

7 INVALID_PARAMETER_ERROR Invalid parameter.

8 UNAUTHORIZED_CALLER The caller is not authorized to call the

plugin.

Sample plugin files

You can view the use of these functions in a sample plugin that retrieves user

mappings from an LDAP server. The files are in the sqllib/samples/federated/
umplugin/ldap/ directory. The functions from this class are used in each of the

sample Java™ files.

LDAP sample plugin

A sample plugin for retrieving user mappings from a Lightweight Directory Access

Protocol (LDAP) server is provided in the sqllib/samples/federated/umplugin/
ldap/ directory. Before you can use the sample plugin, you must modify the

plugin to match the settings of your LDAP server.

By default, user mappings are stored locally on each federated server for a data

source. An LDAP server stores objects (for example, user entries) in a directory

tree. These objects can have attributes (for example, passwords). The LDAP server

is often used store information about users and their related information such as

the e-mail address of a user.

Chapter 28. Federated system security 275

The LDAP plugin is used to retrieve user mapping information from an LDAP

server. Many user mappings can be stored on one LDAP server and be accessed by

many federated servers. The LDAP system administrators can choose the level of

security that they want to protect the user attributes, such as passwords or other

sensitive information that should not be transmitted as plain text.

Because the directory structure and security settings can vary on each server, you

must modify the sample plugin to match the settings of your LDAP server.

Description of files for the LDAP sample plugin

The sample plugin contains Java source code that allows the plugin to connect to a

Lightweight Directory Access Protocol (LDAP) server, retrieve the user mappings,

and decrypt the remote password. Because server settings can vary, you must

develop your own LDAP plugin to match your server’s encryption settings,

directory structure, and other settings.

By using the files that are described below, you can develop a plugin for retrieving

user mappings from an LDAP server or you can extend the sample to use with

any external repository. The sample code is in the sqllib/samples/federated/
umplugin/ldap/ directory. Before you begin to develop your plugin, copy the

sample files to an empty working directory.

The sample plugin

You can develop your own LDAP plugin by using the sample code as a starting

point. You can also find instructions in the sample folder for the LDAP plugin for

testing the sample code with sample LDAP directory entries.

The sample plugin consists of four Java source files and two LDAP Lightweight

Directory Interchange Format (LDIF) files. The following table contains a

description of each file.

 Table 24. Description of the files in the sample plugin

File name Description

README.txt This file contains a condensed version of the

instructions and documentation for using the

sample plugin.

UserMappingCryptoLDAP.java This Java class contains the code that implements

the security measures for encrypting, decrypting,

encoding, and decoding the user mappings that

are retrieved from the LDAP server. This file must

be modified to work with your LDAP server.

UserMappingSetupLDAP.java This Java class creates the configuration file that

stores the LDAP connection information and other

configuration parameters, including: IP address or

host name, SSL or non-SSL, user ID, and

password.

UserMappingRepositoryLDAP.java This Java class contains the code for connecting,

disconnecting, and fetching user mappings from

the LDAP server. The code for this file uses the

schema that is defined in the schema.ldif file. If

you want to change the schema, you must also

change a section in this file.

276 Administration Guide for Federated Systems

Table 24. Description of the files in the sample plugin (continued)

File name Description

UserMappingLookupLDAP.java This Java class contains the code to perform a

LDAP lookup test. You can test your plugin using

this file before testing the plugin on the federated

server.

schema.ldif This file is loaded into your LDAP server to define

the schema. The Lightweight Directory Interchange

Format (LDIF) file contains objects and attributes

that are added to the LDAP server.

entry.ldif The entry.ldif file adds user entries to the LDAP

server. The user entries use the objects and

attributes from the schema.ldif file to store the

user mappings.

You can develop the plugin to use the settings that are appropriate for your LDAP

server. For example, the encryption and encoding settings in the plugin must

match the encryption and encoding settings on your LDAP server.

Developing a plugin for retrieving user mappings from an external

repository

By using the sample code from the Lightweight Directory Access Protocol (LDAP)

plugin as a starting point, you can develop a plugin for retrieving user mappings

from an external repository. The sample files are located in the

/sqllib/samples/federated/umplugin/ldap/ directory.

You should restrict access to the code for the encryption and decryption algorithms

to protect the security of your repository and your remote passwords.

Before you begin

To develop a plugin you must have the following installed:

v The Java Development Kit (JDK) version 1.4 or later

v The db2umplugin.jar file. This Java Archive (JAR) file is installed with the DB2

server installation or the DB2 Application Development client installation.

v The LDAP sample files, which are installed in the /sqllib/samples/federated/
umplugin/ldap/ directory. The sample files are installed with the DB2

Application Development Client installation.

About this task

The plugin that you develop must be able to connect to your repository, retrieve

the user mappings, and decrypt the remote passwords. The repository that you are

using might change the functions that you include in your plugin, for example, if

you repository stores passwords as plain text then you would not need a

decryption function. A sample plugin that you can reference is in the

/sqllib/samples/federated/umplugin/ldap/ directory. The following procedure is

a general guide for developing your plugin.

Procedure

To develop your plugin, the following steps are required:

Chapter 28. Federated system security 277

Extending the sample LDAP plugin files to other external

repositories

A sample plugin is provided for retrieving user mappings from a Lightweight

Directory Access Protocol (LDAP) server. You can modify the plugin to retrieve

user mappings from other repositories. The sample plugin provides a starting

point to help you reduce your development time.

Each of the sample files accomplishes a different task in the process of retrieving

user mappings. Many of the functions and classes in the sample code will need to

be modified to work with a different repository. Refer to the user mapping plugin

architecture when you develop your plugin. The important functions are listed in

the following table.

 Table 25. Functions and classes that must be modified in the sample plugin to extend the plugin to other repositories.

File name Function or class name Class to reference

UserMappingCryptoLDAP.java UserMappingCryptoLDAP()

encrypt()

decrypt()

getKey()

decode()

encode()

UserMappingCrypto class

UserMappingException class

UserMappingRepositoryLDAP.java class UserMappingRepositoryLDAP(String configFilePath)

connect()

disconnect()

fetchUM()

UserMappingRepository class

UserMappingEntry class

UserMappingOption class

UserMappingException class

UserMappingSetupLDAP.java You will need to modify the file to create a configuration file

that stores the values that your plugin requires for connecting

to and retrieving user mappings from the external repository.

If you choose to manually create a configuration file, ensure

that any passwords that you store in the file are encrypted.

The configuration file name should match the name of the

repository class (for example, UserMappingRepositoryXXXX

class and UserMappingRepositoryXXXX.cfg file).

Security considerations for the user mapping plugin

When developing and using your plugin, you are sending sensitive user IDs and

passwords between multiple sources. You can protect your information by

restricting access to code, auditing plugin usage, and encrypting communication.

You must develop your plugin to use security settings that match the security

settings that are used by your external repository. You should choose an external

repository that allows you to encrypt sensitive information that is stored. The user

mapping cryptography class must contain the encryption schema and secret key

that allows for decrypting and decoding the passwords. You should restrict access

to the source code of the plugin so that this information stays secure.

If auditing is turned on, any attempt to access a user mapping through plugin by

the federated server has a VALIDATE audit record. You can configure the db2audit

tool to capture VALIDATE records: db2audit configure scope VALIDATE.

You can also protect the communication between the federated server and the

external repository by using a secure socket layer (SSL). When you create your

configuration file for the user mapping plugin, you can specify that the plugin uses

SSL to protect communications.

278 Administration Guide for Federated Systems

iiyfldapplugcrypto.dita
iiyfldapplugexcep.dita
iiyfldapplugrep.dita
iiyfldapplugentry.dita
iiyfldapplugoption.dita
iiyfldapplugexcep.dita

Modifying the UserMappingCryptoLDAP sample file

You need to modify the code that is in the UserMappingCryptoLDAP.java file to

match the encryption or encoding that is used on your Lightweight Directory

Access Protocol (LDAP) server. Because the encryption methods should be secret

and unique, this task only directs you to the sections or functions that you must

modify.

You should restrict access to the code for the encryption and decryption algorithms

to protect the security of your repository and your remote passwords.

Before you begin

To use the user mapping plugin for LDAP servers, you need to know how the

passwords are protected in the LDAP server.

About this task

You will need to write the code for implementing your security measures that

match your LDAP configuration. The UserMappingCryptoLDAP.java file provides

the functions for encrypting, decrypting, encoding, and decoding the remote

passwords for the data sources.

Procedure

To modify the security functions in the UserMappingCryptoLDAP file:

1. Open the UserMappingCryptoLDAP.java file with a text editor.

2. Below the IBM copyright and legal disclaimer, import the packages that your

code will reference. The sample plugin uses the javax.crypto and

javax.crypto.spec Java packages. These packages provide the classes for the

cipher (encrypting and decrypting) and the key and algorithm parameters.

If you choose to use your own packages, replace these packages with your

packages.

3. Update the following functions:

public UserMappingCryptoLDAP()

Replace the code for the cipher with the code for the cipher that

matches the password encryption that is used by your LDAP server.

public byte[] encrypt(byte[] plainValue)

This function provides the code that encrypts the passwords so that

they can be stored on the LDAP server. This function also encrypts the

LDAP connection password that is stored in the configuration file.

 Replace this function’s code with your own code that encrypts the

plainValue parameter.

public byte[] decrypt(byte[] encryptedValue)

Replace this function’s code with your own code that decrypts the

encryptedValue parameter.

private SecretKey getKey()

 Replace this function’s code with the code to provide the plugin with

the key that is used to encrypt and decrypt your passwords.

public byte[] decode(String string)

The passwords are first encrypted and then encoded. This function

provides the code for decoding the passwords before the passwords are

Chapter 28. Federated system security 279

decrypted. The encrypted passwords are encoded to transform the

binary output of the encrypted password into ASCII characters.

 Replace this function’s code with your own code that decodes the

string parameter.

public String encode(byte[] bytes)

The passwords are first encrypted and then encoded. This function

provides the code for encoding the binary output of the encrypted

passwords. The encrypted passwords are encoded to transform the

binary output of the encrypted password into ASCII characters.

 Replace this function’s code with your own code that encodes the bytes

parameter.

Modifying the UserMappingRepositoryLDAP sample file

The UserMappingRepositoryLDAP.java sample file contains the functions for

connecting to the Lightweight Directory Access Protocol (LDAP) server, retrieving

the user mappings, and disconnecting. You need to modify the sample code to

match the object classes that are defined in the directory structure of your LDAP

server.

About this task

To retrieve the user mappings from the LDAP server, the plugin must search the

directory for the user entries that have the attributes that define the user mapping

entry. The following information is stored as attributes of a user:

v Remote server name

v Instance name

v Database name

v Remote user name

v Remote user password

The sample code assumes that the user entry will be identified by the

inetOrgPerson object class and that the user mapping entry will be identified by the

IIUserMapping object class. The Lightweight Directory Interchange Format (LDIF)

sample files (schema.ldif and entry.ldif) are used to load the sample schema and

sample entries into the LDAP server.

The code in the UserMappingRepositoryLDAP.java file assumes that the

schema.ldif file contains the LDIF code for objects and attributes with the following

names:

v IIUserMapping object

– IIRemoteServerName attribute

– IIInstanceName attribute

– IIDatabaseName attribute

– IIRemotePassword attribute

– uid attribute

You must modify the UserMappingRepositoryLDAP.java file to match the schema

in your LDAP server. The UserMappingRepositoryLDAP.java file must search for

and retrieve the user mapping entries from the LDAP server. The LDIF files are

provided as a sample schema and method of storing user mapping entries.

Procedure

280 Administration Guide for Federated Systems

To modify the schema that is used by the UserMappingRepositoryLDAP.java file:

1. Locate the code: private String UserObjectClassName = "inetOrgPerson" and

replace the inetOrgPerson value with the name of the object class for user

entries that is used by your LDAP server.

2. Optional: Change the attribute names that are used by the plugin. Replace the

values for the IIRemoteServerAttrName, IIInstanceAttrName, IIDatabaseAttrName,

and IIRemotePasswordAttrName variables with the attribute names that you

choose.

3. If you choose to use the LDIF files, ensure that the schema in the LDIF files

matches the structure that is searched by the UserMappingRepositoryLDAP.java

file.

Compiling the user mapping plugin files

When you finish modifying your source files for your user mapping plugin, you

must compile the Java source files.

About this task

In the commands below, if your full path contains spaces, then the full path must

be enclosed in quotation marks, for example, ″C:\program files\sqllib\java\
db2umplugin.jar″. %DB2PATH% is the path to your Windows DB2 sqllib folder.

$DB2PATH is the path to your the sqllib folder on UNIX.

The commands below assume that you are using the file naming convention that is

based on the names of the classes. Replace the XXXX with the name that you

chose.

Procedure

To compile the Java source files:

1. Issue the compile command:

Windows:

javac -classpath %DB2PATH%\sqllib\java\db2umplugin.jar; ^

 "%CLASSPATH%" -d . ^

 .\UserMappingRepositoryXXXX.java ^

 .\UserMappingCryptoXXXX.java ^

 .\UserMappingSetupXXXX.java ^

 .\UserMappingLookupXXXX.java

UNIX:

javac -classpath $DB2PATH/java/db2umplugin.jar: \

 $CLASSPATH -d . \

 ./UserMappingRepositoryXXXX.java \

 ./UserMappingCryptoXXXX.java \

 ./UserMappingSetupXXXX.java \

 ./UserMappingLookupXXXX.java

2. Archive the Java class files into a single Java Archive (JAR) file: The period

symbol after the output file name, directs the command to find and place the

files in the same directory. If you change the directory, use the appropriate file

path for your operating system (for example, /home/user/folder or

C:\test\folder).

jar -cfM0 UserMappingRepositoryXXXX.jar .

Chapter 28. Federated system security 281

Creating the configuration file for the user mapping plugin

The configuration file for the sample LDAP plugin stores the connection

information for your LDAP server. After compiling the Java source files, you can

run the configuration program that prompts you to enter your LDAP connection

information.

About this task

The application uses your input to create the UserMappingRepositoryLDAP.cfg file

to store the configuration information. If a password is required to connect to your

LDAP server, the password is stored in the configuration file. The password is

encrypted with the algorithm that you provided in the

UserMappingCryptoLDAP.java file.

In the commands below, if your full path contains spaces, then the full path must

be enclosed in quotation marks, for example, ″C:\program files\sqllib\java\
db2umplugin.jar″. %DB2PATH% is the path to your Windows DB2 sqllib folder.

$DB2PATH is the path to your the sqllib folder on UNIX.

The application prompts you to enter the following configuration information:

v Host name or IP address of the LDAP server

v Port number (default is 389) of the LDAP server

v Distinguished Name of the LDAP subtree (for example, ou=ii,o=ibm,c=us)

v User ID for connecting to the LDAP server

v Password for connecting to the LDAP server

v SSL configuration

Procedure

To create the configuration file for the sample LDAP plugin:

Windows:

java -classpath %DB2PATH%\sqllib\java\db2umplugin.jar; ^

 .\UserMappingRepositoryLDAP.jar;"%CLASSPATH%" UserMappingSetupLDAP

UNIX:

java -classpath $DB2PATH/sqllib/java/db2umplugin.jar: \

 ./UserMappingRepositoryLDAP.jar:$CLASSPATH UserMappingSetupLDAP

Testing the user mapping plugin

You can test the functionality of your user mapping plugin outside of the federated

server. To test outside of the federated server, you can develop an application that

attempts to connect to and retrieve user mappings from your external repository.

About this task

You can develop a simple program that calls the lookupUM() method that your

UserMappingRepositoryXXXX class inherited from the UserMappingRepository

class to connect and retrieve user mappings from your external repository. You can

view the UserMappingLookupLDAP.java file that is located in the

sqllib/samples/federated/umplugin/ldap/ directory.

282 Administration Guide for Federated Systems

In the commands below, if your full path contains spaces, then the full path must

be enclosed in quotation marks, for example, ″C:\program files\sqllib\java\
db2umplugin.jar″. %DB2PATH% is the path to your Windows DB2 sqllib folder.

$DB2PATH is the path to your the sqllib folder on UNIX.

The test program must take the parameters that are required for identifying the

user mapping:

v remoteServerName - Remote server name for the data source

v iiAuthid - Local user ID that is associated with the user mapping

v iiInstance - Instance name of the federated server

v iiDatabase - Database name on the federated server

Procedure

To test the user mapping plugin:

Windows:

java -classpath %DB2PATH%\sqllib\java\db2umplugin.jar; ^

 .\UserMappingRepositoryXXXX.jar;"%CLASSPATH%" ^

 UserMappingLookupXXXX -server remoteServerName ^

 -authid iiAuthid ^

 -instance iiInstance -database iiDatabase

UNIX:

java -classpath $DB2PATH/sqllib/java/db2umplugin.jar: ^

 ./UserMappingRepositoryXXXX.jar:$CLASSPATH \

 UserMappingLookupXXXX -server remoteServerName \

 -authid iiAuthid \

 -instance iiInstance -database iiDatabase

Installing the user mapping plugin files

After compiling and testing the Java files for your user mapping plugin, you must

install the files on the federated server.

About this task

In the commands below, sqllib is the full path to your DB2 installation.

The commands below assume that you are using the file naming convention that is

based on the names of the classes. Replace the XXXX with the name that you

chose.

Procedure

To install the compiled files:

Copy your UserMappingRepositoryXXXX.jar and

UserMappingRepositoryXXXX.cfg files into the sqllib/function/directory.

Placing the files in this directory allows the federated server to load and call the

classes contained in those files.

You can now configure the wrapper or server option on your federated server to

use the user mapping plugin to retrieve the user mappings from your repository.

Chapter 28. Federated system security 283

Configuring access to the user mapping plugin

You must set the DB2_UM_PLUGIN option to configure the federated server to

access the user mappings in the external repository.

Before you begin

Before you configure the federated server to access the user mappings in an

external repository, you must:

v Develop a user mapping plugin

v Install the plugin on the federated server

v Update your database manager configuration:

db2 update dbm cfg using JDK_PATH <your_jdk_path>

db2 terminate

db2stop

db2start

About this task

The DB2_UM_PLUGIN option must contain the full path of the class, including the

package name. If you develop a package, you must include the package name

before the class name for example, ’package.classname’. If you use the LDAP

sample plugin, specify the value ’UserMappingRepositoryLDAP’ in the

DB2_UM_PLUGIN option. The sample plugin is not developed as a package.

Where you specify the DB2_UM_PLUGIN option impacts how the federated server

uses the user mapping plugin:

v If you specify the DB2_UM_PLUGIN option on a wrapper, all of the servers that

use the wrapper will use the value in that DB2_UM_PLUGIN wrapper option.

v If you specify the DB2_UM_PLUGIN option on a server definition, that server

will use the value in that DB2_UM_PLUGIN server option.

v If you specify the DB2_UM_PLUGIN option on both a wrapper and server

definition, the value that is specified on the server definition takes precedence

over the value that is specified on the wrapper. A warning message, SQL20351W,

is returned that indicates that the server option is not overwritten by the

wrapper option.

v If the DB2_UM_PLUGIN is specified for a wrapper or server option, you can

still use DDL to create a user mapping. A warning message, SQL20352W, is

returned that indicates that the user mapping is stored in the federated database

catalog but will not be used to access the remote server.

Procedure

To configure the federated server to access the user mapping external repository:

Choose how you want to implement the user mapping plugin:

 Method SQL statement

Specify the user mapping

plugin when you create a

wrapper

CREATE WRAPPER net8

 OPTIONS (

 DB2_UM_PLUGIN ’UserMappingRepositoryLDAP’

);

284 Administration Guide for Federated Systems

Method SQL statement

Alter an existing wrapper to

specify the user mapping

plugin

ALTER WRAPPER drda (

 ADD DB2_UM_PLUGIN ’UserMappingRepositoryLDAP’

);

Specify the user mapping

plugin when you create a

server definition

CREATE SERVER server_name

 TYPE date_source_type

 VERSION version_number

 WRAPPER net8 OPTIONS (

 DB2_UM_PLUGIN ’UserMappingRepositoryLDAP’

);

Alter an existing server

definition to specify the user

mapping plugin

ALTER SERVER server_name

 OPTIONS (

 ADD DB2_UM_PLUGIN ’UserMappingRepositoryLDAP’

);

After you set the DB2_UM_PLUGIN option, the federated server uses the plugin to

retrieve user mappings from the external repository server by using the connection

information that you specify in the UserMappingRepositoryXXXX.cfg file. XXXX is

the name of the plugin.

To alter the wrapper to use a different plugin

ALTER WRAPPER drda (

 SET DB2_UM_PLUGIN ’com.package_name.um.UserMappingRepositoryXXXX’

);

To alter a server definition to use a different plugin

ALTER SERVER server_name

 OPTIONS (

 SET DB2_UM_PLUGIN ’UserMappingRepositoryXXXX’

);

Troubleshoot the user mapping plugin

After you configure the federated server to use the user mapping plugin, there are

several ways that you can troubleshoot problems.

Before you test the plugin in the federated server, you should develop a Java

application to test if the plugin can connect to and retrieve user mappings from the

external repository. If the test is successful, then you can try to integrate the plugin

with the federated server.

JAVA_HEAP_SZ parameter

The JAVA_HEAP_SZ parameter determines the maximum size of the heap that is

used by the Java interpreter to service Java stored procedures and user defined

functions.

If you encounter memory problems, try setting the heap size to 1024 or higher.

Error messages

If an error message is returned when using the plugin, the information in the error

message can help you to determine the problem. There are reason codes and user

responses in the error messages that should help you determine the problem.

SQL20349N

The federated server cannot access the user mappings that are in the

external repository. One reason why you might receive this error is that the

Chapter 28. Federated system security 285

user mapping plugin is not in the correct location. If you use the sample

LDAP plugin on a UNIX federated server, ensure that

UserMappingRepositoryLDAP.jar file and the

UserMappingRepositoryLDAP.cfg file are in sqllib/function directory.

SQL20350N

The authentication at the user mapping repository failed. The proper

credentials, such as passwords or certificates, to retrieve the user mappings

were not communicated to the user mapping repository.

SQL20351W

You specified the DB2_UM_PLUGIN option on a wrapper and the

DB2_UM_PLUGIN option is already specified on a server definition that

uses the wrapper. The value that is set on the server definition takes

precedence over the value that you set on the wrapper.

SQL20352W

You specified DB2_UM_PLUGIN option for the server. User mappings for

this server are read from the external user mapping repository. The

CREATE USER MAPPING, ALTER USER MAPPING, and DROP USER

MAPPING statements only affect user mappings in the federated catalog

table.

db2diag.log file

The diagnostic log is a file that contains text information that is logged by the

federated database. This information is used for problem determination and is

intended for IBM customer support.

You can view the file with a text editor. You can also use the db2diag tool can help

you to analyze the information that is contained in the db2diag.log file to

troubleshoot problems with your user mapping plugin.

Example 1

In the db2diag.log file, search for the term JNI_Env::check_exception. This

term marks the first error record for the user mapping plugin. The record

indicates the line in the plugin source code where an error has occurred. In

the following example, the line in the code that is in error is line 119 of the

UserMappingRepositoryLDAP.java file.

2006-02-18-19.05.43.966176-480 I6780A253 LEVEL: Severe

PID : 3932214 TID : 2828 PROC : db2fmp (Java)

INSTANCE: einstein NODE : 000

FUNCTION: DB2 UDB, Query Gateway, Sqlqg_JNI_Env::check_exception, probe:150

2006-02-18-19.05.43.966953-480 I7034A388 LEVEL: Error

PID : 3932214 TID : 2828 PROC : db2fmp (Java)

INSTANCE: einstein NODE : 000

FUNCTION: DB2 UDB, Query Gateway, Sqlqg_JNI_Env::check_exception, probe:190

DATA #1 : String, 108 bytes

com.ibm.ii.um.UserMappingException

 at UserMappingRepositoryLDAP.<init>(UserMappingRepositoryLDAP.java:119)

Example 2

In the db2diag.log file, search for the term Error fetching user mappings.

The record for this error includes the plugin name, the instance name, the

database name, the remote server name, and the local authentication ID.

These values are passed from the federated server to the plugin as input.

Ensure that the values , including the case sensitivity, are correct.

2006-02-18-19.05.43.967308-480 I7423A371 LEVEL: Severe

PID : 3932214 TID : 2828 PROC : db2fmp (Java)

INSTANCE: einstein NODE : 000

286 Administration Guide for Federated Systems

MESSAGE : Error fetching user mappings through plugin:

DATA #1 : String, 110 bytes

 plugin=UserMappingRepositoryLDAP,instance=EINSTEIN,database=SAMPLE,

 remote_server=DRDASERVER1,local_authid=NEWTON

db2trc - trace command

If you are unable to troubleshoot the problem. you can use db2trc command to

generate a trace. You will need to send the trace record to IBM for analysis.

Oracle Label Security and federated systems

When you create nicknames against data source objects with Oracle Label Security,

the nicknames are not cached and materialized query tables cannot be created on

them. The secure data remains on the Oracle system and only users with the

appropriate authority can see it.

Administrators can use Oracle Label Security to apply security policies to each row

in a table. The security policies determine a user’s level of access to the data in the

table that is based on the authorities that are granted to their user ID or session ID.

See the documentation about Oracle Label Security from the Oracle Corporation

for detailed information about configuring and managing security policies and

labels.

Federated access to tables with Oracle Label Security

When you create a nickname on an Oracle data source object, the federated server

automatically detects whether the data source uses Oracle Label Security. If Oracle

Label Security is being used, the nickname is not cached. You can use the ALTER

NICKNAME statement to allow or disallow caching. For example, if you created a

nickname on a data source object with Oracle Label Security before federated

support for the feature was available, you can alter the nickname to disallow

caching. If you created a nickname on a data source object with Oracle Label

Security and Oracle Label Security is removed, you can alter the nickname to allow

caching.

A database administrator can choose to hide a label to prevent some users from

knowing that it exists. In this case, the Label column is hidden in the table.

Nicknames with hidden label columns are not cached.

Chapter 28. Federated system security 287

288 Administration Guide for Federated Systems

Chapter 29. Federated system and data source configuration

parameters

Views in the global catalog table containing federated information

Most of the catalog views in a federated database are the same as the catalog

views in any other DB2 Version 9.1 for Linux, UNIX, and Windows database.

There are several unique views that contain information pertinent to a federated

system, such as the SYSCAT.WRAPPERS view.

The DB2 Version 8 SYSCAT views are read-only. If you issue an UPDATE or

INSERT operation on a view in the SYSCAT schema, it will fail. Using the

SYSSTAT views is the recommended way to update the system catalog. Change

applications that reference the SYSCAT view to reference the updatable SYSSTAT

view instead.

The following table lists the SYSCAT views which contain federated information.

These are read-only views.

 Table 26. Catalog views typically used with a federated system

Catalog views Description

SYSCAT.CHECKS Contains check constraint information that

you defined.

SYSCAT.COLCHECKS Contains columns referenced by a check

constraint.

SYSCAT.COLUMNS Contains column information about the data

source objects (tables and views) that you

created nicknames for.

SYSCAT.COLOPTIONS Contains information about column option

values that you set for a nickname.

SYSCAT.CONSTDEP Contains the dependency of an informational

constraint that you defined.

SYSCAT.DATATYPES Contains data type information about local

built-in and user-defined DB2 data types.

SYSCAT.DBAUTH Contains the database authorities held by

individual users and groups.

SYSCAT.FUNCMAPOPTIONS Contains information about option values

that you have set for a function mapping.

SYSCAT.FUNCMAPPINGS Contains the function mappings between the

federated database and the data source

objects.

SYSCAT.INDEXCOLUSE Contains columns that participate in an

index.

SYSCAT.INDEXES Contains index specifications for data source

objects.

SYSCAT.INDEXOPTIONS Contains information about index options.

© Copyright IBM Corp. 1998, 2006 289

Table 26. Catalog views typically used with a federated system (continued)

Catalog views Description

SYSCAT.KEYCOLUSE Contains columns that participate in a key

defined by a unique key, primary key, or

foreign key constraint.

SYSCAT.NICKNAMES Contains information about nicknames that

you created.

SYSCAT.REFERENCES Contains information about referential

constraints that you defined.

SYSCAT.ROUTINES Contains local DB2 user-defined functions, or

function templates. Function templates are

used to map to a data source function.

SYSCAT.REVTYPEMAPPINGS This view is not used. All data type

mappings are recorded in the

SYSCAT.TYPEMAPPINGS view.

SYSCAT.ROUTINEOPTIONS Contains information about federated routine

option values.

SYSCAT.ROUTINEPARMOPTIONS Contains information about federated routine

parameter option values.

SYSCAT.ROUTINEPARMS Contains a parameter or the result of a

routine defined in SYSCAT.ROUTINES.

SYSCAT.ROUTINESFEDERATED Contains information about federated

routines that you defined.

SYSCAT.SERVERS Contains server definitions that you create

for data source servers.

SYSCAT.TABCONST Each row represents a table and nickname

constraints of type CHECK, UNIQUE,

PRIMARY KEY, or FOREIGN KEY.

SYSCAT.TABLES Contains information about each local DB2

table, federated view, and nickname that you

create.

SYSCAT.TYPEMAPPINGS Contains forward data type mappings and

reverse data type mappings. The mapping is

to local DB2 data types from data source

data types. These mappings are used when

you create a nickname on a data source

object.

SYSCAT.USEROPTIONS Contains user authorization information that

you set when you create user mappings

between the federated database and the data

source servers.

SYSCAT.VIEWS Contains information about local federated

views that you create.

SYSCAT.WRAPOPTIONS Contains information about option values

that you have set for a wrapper.

SYSCAT.WRAPPERS Contains the name of the wrapper and

library file for each data source that you

create a wrapper for.

The following table lists the SYSSTAT views which contain federated information.

These are read-write views that contain statistics you can update.

290 Administration Guide for Federated Systems

Table 27. Federated updatable global catalog views

Catalog views Description

SYSSTAT.COLUMNS Contains statistical information about each

column in the data source objects (tables and

views) that you have created nicknames for.

Statistics are not recorded for inherited

columns of typed tables.

SYSSTAT.INDEXES Contains statistical information about each

index specification for data source objects.

SYSSTAT.ROUTINES Contains statistical information about each

user-defined function. Does not include

built-in functions. Statistics are not recorded

for inherited columns of typed tables.

SYSSTAT.TABLES Contains information about each base table.

View, synonym, and alias information is not

included in this view. For typed tables, only

the root table of a table hierarchy is included

in the view. Statistics are not recorded for

inherited columns of typed tables.

Nickname column options for federated systems

You can specify column information in the CREATE NICKNAME or ALTER

NICKNAME statements using parameters called nickname column options.

The following table lists the nickname column options for data source. Table two

contains a complete listing of nickname column options.

 Table 28. Nickname column options for relational data sources

Data source DOCUMENT

ESCAPE_

INPUT

FOREIGN_

KEY

NUMERIC_

STRING

PRIMARY_

KEY

TEMPLATE XPATH

DB2 UDB for iSeries X

DB2 UDB for z/OS and

OS/390

X

DB2 for VM and VSE X

DB2 Version 9.1 for

Linux, UNIX, and

Windows

X

Informix X

Microsoft SQL Server X

ODBC X

OLE DB

Oracle X

Sybase X

Teradata X

 Table 29. Nickname column options for nonrelational data sources

Options BLAST Script

Table-
structured

files

WebSphere

Business

Integration

Web

services

XML

DELIMITER X

DOCUMENT X X

Chapter 29. Federated system and data source configuration parameters 291

Table 29. Nickname column options for nonrelational data sources (continued)

Options BLAST Script

Table-
structured

files

WebSphere

Business

Integration

Web

services

XML

ESCAPE_INPUT X X

FINAL_XDROPOFF X

FOREIGN_KEY X X X

INDEX X

INPUT_MODE X

MASK_LOWER_CASE X

POSITION X

PRIMARY_KEY X X X

QUERY_GENETIC_CODE X

SWITCH X

SWITCH_ONLY X

TEMPLATE X X

VALID_VALUES X

XDROPOFF_GAPPED X

XDROPOFF_UNGAPPED X

XPATH X X X

 Table 30. Column options and their settings

Option Description and valid settings Default setting

DEFAULT Specifies a new default value for the following input fixed

columns:

v E_value

v QueryStrands

v GapAlign

v NMisMatchPenalty

v NMatchReward

v Matrix

v FilterSequence

v NumberOfAlignments

v GapCost

v ExtendedGapCost

v WordSize

v ThresholdEx

This new value overrides the preset default values. The

new default value must be of the same type as the

indicated value for a given column.

292 Administration Guide for Federated Systems

Table 30. Column options and their settings (continued)

Option Description and valid settings Default setting

DELIMITER

The delimiter characters to be used to determine the end

point of the definition line information for the column on

which this option appears. If more than one character

appears in this option’s value, then the first occurrence of

any one of the characters signals the end of this field’s

information. The default is end of line. This option is

required, unless you want the last specified column to

contain the remainder of the definition line.

The default delimiter is end

of line.

Chapter 29. Federated system and data source configuration parameters 293

Table 30. Column options and their settings (continued)

Option Description and valid settings Default setting

DOCUMENT For table-structured files: Specifies the kind of

table-structured file. This wrapper supports only the value

FILE for this option. Only one column can be specified with

the DOCUMENT option per nickname. The column that is

associated with the DOCUMENT option must be a data

type of VARCHAR or CHAR.

Using the DOCUMENT nickname column option instead of

the FILE_PATH nickname option implies that the file that

corresponds to this nickname will be supplied when the

query runs. If the DOCUMENT option has the FILE value,

the value that is supplied when the query runs is the full

path of the file whose schema matches the nickname

definition for this nickname.

For XML: Specifies that this column is a DOCUMENT

column. The value of the DOCUMENT column indicates

the type of XML source data that is supplied to the

nickname when the query runs. This option is accepted

only for columns of the root nickname (the nickname that

identifies the elements at the top level of the XML

document). Only one column can be specified with the

DOCUMENT option per nickname. The column that is

associated with the DOCUMENT option must be a

VARCHAR data type.

If you use a DOCUMENT column option instead of the

FILE_PATH or DIRECTORY_PATH nickname option the

document that corresponds to this nickname is supplied

when the query runs.

The valid values for the DOCUMENT option are:

FILE Specifies that the value of the nickname column is

bound to the path name of a file. The data from

this file is supplied when the query runs.

DIRECTORY

Specifies that the value of the nickname column is

bound to the path name of a directory that

contains multiple XML data files. The XML data

from multiple files is supplied when the query

runs. The data is in XML files in the specified

directory path. The XML wrapper uses only the

files with an .xml extension that are located in the

directory that you specify. The XML wrapper

ignores all other files in this directory.

URI Specifies that the value of the nickname column is

bound to the path name of a remote XML file to

which a URI refers. The URI address indicates the

remote location of this XML file on the Web.

 The URI can contain a colon-separated IPv6

address if it is enclosed in square brackets (for

example, http://[1080:0:0:0:8:800:200C:417A]).

COLUMN

Specifies that the XML document is stored in a

relational column.

294 Administration Guide for Federated Systems

Table 30. Column options and their settings (continued)

Option Description and valid settings Default setting

ELEMENT_NAME Specifies the BioRS element name. The case sensitivity of

this name depends on the case sensitivity of the BioRS

server and on the value of the CASE_SENSITIVE server

option. You must specify the BioRS element name only if it

is different from the column name.

ESCAPE_INPUT Specifies whether XML special characters are replaced in

XML input values or not. Use this option to include XML

fragments as input, such as XML fragments with repeating

elements. The TEMPLATE column option must be defined

on columns that use the ESCAPE_INPUT column option.

The column data type must be VARCHAR or CHAR.

Valid values are:

Y If the XML input contains special characters these

are replaced with their counterpart characters that

XML uses to represent the input characters.

N Input characters are preserved exactly as they

appear.

Y

FINAL_XDROPOFF The X dropoff value for the final gapped alignment,

measured in bits. The value 0 invokes the default behavior.

50 bits for blastn and

megablast queries. 0 bits for

tblastx queries. 25 bits

(INTEGER data types) for

all other query types.

FOREIGN_KEY Indicates that this nickname is a child nickname and

specifies the name of the corresponding parent nickname. A

nickname can have at most one FOREIGN_KEY column

option. The value for this option is case sensitive. The table

that is designated with this option holds a key that is

generated by the wrapper. The XPATH option must not be

specified for this column. The column can be used only to

join parent nicknames and child nicknames.

A CREATE NICKNAME statement with a FOREIGN_KEY

option will fail if the parent nickname has a different

schema name.

Unless the nickname that is referred to in a FOREIGN_KEY

clause was explicitly defined as lowercase or mixed case by

enclosing it in quotation marks in the corresponding

CREATE NICKNAME statement, then when you refer to

this nickname in the FOREIGN_KEY clause, you must

specify the nickname in uppercase.

When this option is set on a column, no other option can be

set on the column.

INDEX The ordinal number of the column on which this option

appears in the group of definition line columns. This option

is required.

INPUT_MODE Specifies the input mode for a column. Valid values are

CONFIG or FILE_INPUT. The wrapper passes the specified

value to the script daemon.

Chapter 29. Federated system and data source configuration parameters 295

Table 30. Column options and their settings (continued)

Option Description and valid settings Default setting

IS_INDEXED

Indicates whether the corresponding column is indexed

(whether the column can be referenced in a predicate). The

valid values are Y and N. The value Y can be specified only

for columns whose corresponding element is indexed by

the BioRS server.

When a nickname is

created, this option is

automatically added with

the value Y to any columns

that correspond to a BioRS

indexed element.

MASK_LOWER_CASE Use lowercase filtering with a FASTA sequence.

NUMERIC_STRING Specifies whether a column contains strings of numeric

characters.

Y This column contains strings of numeric characters

’0’, ’1’, ’2’, ’9’. It does not contain blanks. If this

column contains only numeric strings followed by

trailing blanks, do not specify Y.

 When you set NUMERIC_STRING to Y for a

column, you are informing the optimizer that this

column contains no blanks that could interfere

with sorting of the column’s data. Use this option

when the collating sequence of a data source is

different from the collating sequence that the

federated server uses. Columns that use this

option are not excluded from remote evaluation

because of a different collating sequence.

N This column is either not a numeric string column

or is a numeric string column that contains blanks.

N

POSITION An integer value for positional parameters. This option

applies only to input columns. If the positional value is set

to an integer, then this input must be in this position in the

command line. If this option is set, the switch is inserted

into the appropriate location when the query is run. If

POSITION is set to -1, the option is added as the last

command line option. POSITION integer values cannot be

duplicated in a nickname. This option is not required.

PRIMARY_KEY Indicates that this nickname is a parent nickname. The

column data type must be VARCHAR(16). A nickname can

have at most one PRIMARY_KEY column option. YES is the

only valid value. The column that is designated with this

option holds a key that is generated by the wrapper. The

XPATH option must not be specified for this column. The

column can be used only to join parent nicknames and

child nicknames.

When this option is set on a column, no other option can be

set on the column.

QUERY_GENETIC_CODE Query genetic code uses default = 1.

REFERENCED_OBJECT This option is valid only for columns whose BioRS data

type is Reference. This option specifies the name of the

BioRS databank that is referenced by the current column.

The case sensitivity of this name depends on the case

sensitivity of the BioRS server and on the value of the

CASE_SENSITIVE server option.

296 Administration Guide for Federated Systems

Table 30. Column options and their settings (continued)

Option Description and valid settings Default setting

SOAPACTIONCOLUMN A column to dynamically specify the URI SOAPACTION

attribute from the Web Service Description Language

(WSDL) format. This option is specified on only the root

nickname.

When this option is set on a column, no other option can be

set on the column.

The URL can contain a colon-separated IPv6 address if it is

enclosed in square brackets (for example,

http://[1080:0:0:0:8:800:200C:417A]).

SWITCH A character string to specify a parameter for the script on

the command line. This option applies only to input

columns.

SWITCH_ONLY Enables the use of switches without a command line

argument. If the SWITCH_ONLY option is specified with a

value of Y, then valid input values are Y or N. For an input

value of Y, only the switch is added to the command line.

For an input value of N, no value is added to the command

line.

TEMPLATE The column template fragment to use to construct the XML

input document. The fragment must conform to the

specified template syntax.

URLCOLUMN A column to dynamically specify the URL for the Web

service endpoint when you run a query. This option is

specified on only the root nickname.

When this option is set on a column, no other option can be

set on the column.

The URL can contain a colon-separated IPv6 address if it is

enclosed in square brackets (for example,

http://[1080:0:0:0:8:800:200C:417A]).

VALID_VALUES A semicolon-separated set of valid values for a column.

Chapter 29. Federated system and data source configuration parameters 297

Table 30. Column options and their settings (continued)

Option Description and valid settings Default setting

VARCHAR_NO_

TRAILING_BLANKS

This option applies to data sources that have variable

character data types that do not pad the length with trailing

blanks during comparison.

Some data sources, such as Oracle, do not have

blank-padded character comparison semantics that return

the same results as the DB2 for Linux, UNIX, and Windows

comparison semantics. Set this option when you want it to

apply only to a specific VARCHAR or VARCHAR2 column

in a data source object.

Y Trailing blanks are absent from these VARCHAR

columns, or the data source has blank-padded

character comparison semantics that are similar to

the semantics on the federated server.

 The federated server sends character comparison

operations to the data source for processing.

N Trailing blanks are present in these VARCHAR

columns, and the data source has blank-padded

character comparison semantics that are different

than the federated server.

 The federated server processes character

comparison operations if it is not possible to

compensate for equivalent semantics. For example,

rewriting the predicate.

N for affected data sources

XDROPOFF_GAPPED The X dropoff value for gapped alignment, measured in

bits. The value 0 invokes the default behavior.

30 bits for blastn queries. 20

bits for megablast queries.

15 bits INTEGER data

types) for all other query

types.

XDROPOFF_UNGAPPED The X dropoff value for ungapped extension measured in

bits. The value 0.0 invokes the default behavior. For blastn

queries, the default is 20 bits. For megablast queries, the

default is 10 bits. For all other query types, the default is 7

bits (REAL data types).

20 bits for blastn queries. 10

bits for megablast queries. 7

bits (REAL data types) for

all other query types.

XPATH Specifies the XPath expression in the XML document that

contains the data that corresponds to this column. The

wrapper evaluates the XPath expression after the CREATE

NICKNAME statement applies this XPath expression from

this XPATH nickname option.

Function mapping options for federated systems

The primary purpose of function mapping options, is to provide information about

the potential cost of executing a data source function at the data source.

WebSphere Federation Server supplies default mappings between existing built-in

data source functions and built-in DB2 functions. For most data sources, the

default function mappings are in the wrappers. To use a data source function that

the federated server does not recognize, you must create a function mapping

between a data source function and a counterpart function at the federated

database.

298 Administration Guide for Federated Systems

Pushdown analysis determines if a function at the data source is able to execute a

function in a query. The query optimizer decides if pushing down the function

processing to the data source is the least cost alternative.

The statistical information provided in the function mapping definition helps the

query optimizer compare the estimated cost of executing the data source function

with the estimated cost of executing the DB2 function.

 Table 31. Function mapping options and their settings

Option Valid settings Default

setting

DISABLE Disable a default function mapping. Valid values are ’Y’

and ’N’.

’N’

INITIAL_INSTS Estimated number of instructions processed the first

and last time that the data source function is invoked.

’0’

INITIAL_IOS Estimated number of I/Os performed the first and last

time that the data source function is invoked.

’0’

IOS_PER_ARGBYTE Estimated number of I/Os expended for each byte of

the argument set that’s passed to the data source

function.

’0’

IOS_PER_INVOC Estimated number of I/Os per invocation of a data

source function.

’0’

INSTS_PER_ARGBYTE Estimated number of instructions processed for each

byte of the argument set that’s passed to the data

source function.

’0’

INSTS_PER_INVOC Estimated number of instructions processed per

invocation of the data source function.

’450’

PERCENT_ARGBYTES Estimated average percent of input argument bytes that

the data source function will actually read.

’100’

REMOTE_NAME Name of the data source function. local

name

Nickname options for federated systems

Some nickname options are required and cannot be dropped. Other nickname

options cannot be added if specific nickname options are already set.

Table 32 on page 300 list the nickname options for each data source. Table 33 on

page 300 describes each nickname option and lists the valid and default values.

Chapter 29. Federated system and data source configuration parameters 299

Table 32. Available nickname options

Data source

B

U

S

O

B

J_

N

A

M

E

C

O

L

U

M

N_

D

E

L

I

M

I

T

E

R

D

A

T

A

S

O

U

R

C

E

F

I

L

E_

P

A

T

H

N

A

M

E

S

P

A

C

E

S

R

E

M

O

T

E_

O

B

J

E

C

T

R

E

Q

U

I

R

E_

P

R

E

D

I

C

A

T

E

R

E

S

U

L

T

S

E

T_

S

I

Z

E

S

T

R

E

A

M

I

N

G

T

E

M

P

L

A

T

E

T

I

M

E

O

U

T

V

A

L

I

D

A

T

E

X

P

A

T

H

BioRS X

BLAST X X

Entrez X

Excel X

HMMER X X

Script X X X X X X

Table- structured files X X

Web services X X X X

WebSphere Business

Integration

X X X X X X

XML X X X X

Table 33 describes each nickname option and lists the valid and default settings.

 Table 33. Nickname options and their settings

Option Description and valid settings Default setting

BUSOBJ_NAME The name of the XML schema definition file (.xsd) that represents the business

object. For example sap_bapi_customer_get_detail2 . This option must be

specified in a parent nickname.

COLUMN_

DELIMITER

The delimiter that is used to separate columns of a table-structured file,

enclosed in single quotation marks. The column delimiter can be more than

one character in length. If no column delimiter is defined, the default

delimiter is a comma. A single quotation mark cannot be used as a delimiter.

The column delimiter must be consistent throughout the file. A null value is

represented by two delimiters next to each other or a delimiter followed by a

line terminator, if the NULL field is the last one on the line. The column

delimiter cannot exist as valid data for a column.

The default

delimiter is a

comma.

300 Administration Guide for Federated Systems

Table 33. Nickname options and their settings (continued)

Option Description and valid settings Default setting

DATASOURCE For BLAST: The name of the data source on which the BLAST search will run.

The same string that is used here must be present in the configuration file of

the BLAST daemon. This option is required.

For HMMER (type PFAM): The name of the HMM Profile database that is to

be searched by HMMPFAM. The same string that is used here must be

present in the configuration file of the HMMER daeamon. This option is

required.

For HMMER (type SEARCH): The name of the sequence file that is to be

searched by HMMSEARCH. The same string that is used here must be

present in the configuration file of the HMMER daeamon. This option is

required.

DIRECTORY_PATH Specifies the path name of a directory that contains one or more XML files.

Use this option to create a single nickname over multiple XML source files.

The XML wrapper uses only the files with an .xml extension that are located

in the directory that you specify. The XML wrapper ignores all other files in

this directory. If you specify this nickname option, do not specify a

DOCUMENT column. This option is accepted only for the root nickname (the

nickname that identifies the elements at the top level of the XML document).

FILE_PATH

For Microsoft Excel: Specifies the fully qualified directory path and file name

of the Excel spreadsheet that you want to access. This option is required.

For table-structured files: The fully qualified path to the table-structured file

to be accessed, enclosed in single quotation marks. The data file must be a

standard file or a symbolic link, rather then a pipe or another non-standard

file type. Either the FILE_PATH or the DOCUMENT nickname column option

must be specified. If the FILE_PATH nickname option is specified, then no

DOCUMENT nickname column option can be specified.

For XML: Specifies the file path of the XML document. If you specify this

nickname option, do not specify a DOCUMENT column. This option is

accepted only for the root nickname (the nickname that identifies the elements

at the top level of the XML document).

HMMTYPE Optional: The alphabet that is used in both models and gene sequences. The

value can be either NUCLEIC or PROTEIN and is not case sensitive.

PROTEIN

INSTANCE_

PARSE_TIME

Specifies the time (in milliseconds) to parse the data in one row of the XML

source document. You can modify the INSTANCE_PARSE_TIME,

XPATH_EVAL_TIME, and NEXT_TIME options to optimize queries of large or

complex XML source structures. This option is accepted only for columns of

the root nickname (the nickname that identifies the elements at the top level

of the XML document). The number that you specify can be an integer or a

decimal value.

7

KEY_COLUMN The name of the column in the file that forms the key on which the file is

sorted, enclosed in single quotation marks. Use this option for sorted files

only. A column that is designated with the DOCUMENT nickname column

option must not be specified as the key column.

Only single-column keys are supported. Multi-column keys are not allowed.

The value must be the name of a column that is defined in the CREATE

NICKNAME statement. The column must be sorted in ascending order. The

key column must be designated not nullable by adding the NOT NULL

option to its definition in the nickname statement.

This option is case-sensitive. However, DB2 changes column names to

uppercase unless the column is defined with double quotation marks.

If the value is

not specified

for a sorted

nickname, the

value is the

name of the

first column in

the nicknamed

file.

Chapter 29. Federated system and data source configuration parameters 301

Table 33. Nickname options and their settings (continued)

Option Description and valid settings Default setting

NAMESPACES The namespaces that are associated with the namespace prefixes that is used

in the XPATH and TEMPLATE options for each column. The syntax is:

NAMESPACES ’prefix1=

"actual_namespace1",

prefix2="actual_namespace2" ’

Separate each namespace with a comma. For example:

NAMESPACES ’

c="http://www.myweb.com/cust",

i="http://www.myweb.com/cust/id",

n="http://www.myweb.com/cust/name"’

NEXT_TIME Specifies the time (in milliseconds) that is required to locate subsequent

source elements from the XPath expression. You can modify the NEXT_TIME,

XPATH_EVAL_TIME, and INSTANCE_PARSE_TIME options to optimize

queries of large or complex XML source structures. This option is accepted for

root nicknames and non-root nicknames.

1

PARENT Specified only for a child nickname whose parent was renamed through the

REMOTE_OBJECT option. The PARENT option associates a child with a

parent when multiple nickname families are defined within a DB2 schema.

This name is case-sensitive.

PROCESSORS Specifies the number of processors to be used when a BLAST query is

evaluated. This option corresponds to the blastall -a option.

1

RANGE Specifies a range of cells to be used in the data source.

REMOTE_OBJECT For BioRS: Specifies the name of the BioRS databank that is associated with

the nickname. This name determines the schema and the BioRS databank for

the nickname. This name also specifies the relationship of the nickname to

other nicknames. The case sensitivity of this name depends on the case

sensitivity of the BioRS server and on the value of the CASE_SENSITIVE

server option. You cannot use the ALTER NICKNAME statement to change or

delete this name. If the name of the BioRS databank that is used in this option

changes, you must delete and then create the entire nickname again.

For Entrez and OMIM: Specifies the name of the object type that is associated

with the nickname. This name determines the schema and NCBI database for

the nickname and its relationship to other nicknames. This name is case

insensitive.

REQUIRE_

PREDICATE

Specify Y to require an equality predicate on at least one input column in all

queries on the nickname hierarchy, which can limit the size of the result set. If

you know that the size of the result set that returns on a query with no

predicate will not exceed the JVM memory limit, you can set the value of the

REQUIRE_PREDICATE nickname option to N.

RESULTSET_SIZE Specifies how many business objects the adapter should return to the

wrapper. Specify any other value to have the adapter return the specified

number of business objects. You must enable result sets in the wrapper

(RESULTSET_ENABLED set to Yes) for the RESULTSET_SIZE option to work.

If you specify a nonzero value for RESULTSET_SIZE, an incomplete result

might be returned. Any rows that exceed the specified number are discarded,

and the wrapper issues a warning message that indicates that an incomplete

result set was returned to the application.

0, which

specifies that

all business

objects that

match the

query should

be returned.

SOAPACTION The URI SOAPACTION attribute from the Web Service Description Language

(WSDL) format. This option is required for the root nickname. This option is

not allowed with nonroot nicknames. The URL can contain a colon-separated

IPv6 address if it is enclosed in square brackets (for example,

http://[1080:0:0:0:8:800:200C:417A])

302 Administration Guide for Federated Systems

Table 33. Nickname options and their settings (continued)

Option Description and valid settings Default setting

SORTED Specifies whether the data source file is sorted or unsorted. This option

accepts either Y, y, n, or N.

Sorted data sources must be sorted in ascending order according to the

collation sequence for the current locale, as defined by the settings in the

LC_COLLATE National Language Support category.

If you specify that the data source is sorted, set the VALIDATE_DATA_FILE

option to Y.

N

STREAMING Specifies whether the XML source document should be separated into logical

fragments for processing. The fragments correspond to the node that matches

the XPath expression of the nickname. The wrapper then parses and processes

the XML source data fragment by fragment. This type of parsing minimizes

memory usage. This option is specified on only the root nickname.

You can specify streaming for any XML source document (FILE, DIRECTORY,

URI, or COLUMN). This option is accepted only for columns of the root

nickname (the nickname that identifies the elements at the top level of the

XML document).

Valid values are:

Y Streaming mode is enabled.

N Streaming mode is disabled.

Do not set the STREAMING parameter to YES if you set the VALIDATE

parameter to YES. If you set both parameters to YES, you will receive an error

message.

N

TEMPLATE For WebSphere Business Integration: The nickname template fragment to use

to construct an XML input document. The fragment must conform to the

specified template syntax.

For Web Services: The nickname template fragment to use to construct a

SOAP request. The fragment must conform to the specified template syntax.

TIMEOUT For BLAST and HMMER: The maximum time, in minutes, that the wrapper

waits for results from the daemon.

For BLAST and

HMMER: 60.

URL The URL for the Web service endpoint. This option is required for the root

nickname. This option is not allowed with nonroot nicknames. Supported

protocols are HTTP and HTTPS. The URL can contain a colon-separated IPv6

address if it is enclosed in square brackets (for example, http://
[1080:0:0:0:8:800:200C:417A]).

VALIDATE Specifies whether the XML source document is validated before the XML data

is extracted. If this option is set to YES, the nickname option verifies that the

structure of the source document conforms to an XML schema or to a

document type definition (DTD). This option is accepted only for columns of

the root nickname (the nickname that identifies the elements at the top level

of the XML document).

The XML source document is not validated if the XML wrapper cannot locate

the XML schema file or DTD file (.xsd or .dtd). DB2 does not issue an error

message if the validation does not occur. Therefore, ensure that the XML

schema file or DTD file exists in the location that is specified in the XML

source document.

Do not set the VALIDATE parameter to YES if you set the STREAMING

parameter to YES. If you set both parameters to YES, you will receive an error

message.

NO

Chapter 29. Federated system and data source configuration parameters 303

Table 33. Nickname options and their settings (continued)

Option Description and valid settings Default setting

VALIDATE_

DATA_FILE

For sorted files, this option specifies whether the wrapper verifies that the key

column is sorted in ascending order and checks for null keys. The only valid

values for this option are Y or N. The check is done once at registration time.

This option is not allowed if the DOCUMENT nickname column option is

used for the file path.

N

XPATH Specifies the XPATH expression that identifies the elements that represent the

individual tuples. The XPATH nickname option for a child nickname is

evaluated in the context of the path that is specified by the XPATH nickname

option of its parent. This XPATH expression is used as a context for

evaluating column values that are identified by the XPATH nickname column

options.

XPATH_EVAL_

TIME

Specifies the time (in milliseconds) to evaluate the XPath expression of the

nickname and to locate the first element. You can modify the

XPATH_EVAL_TIME, INSTANCE_PARSE_TIME, and NEXT_TIME options to

optimize queries of large or complex XML source structures. This option is

accepted for root nicknames and nonroot nicknames. The number that you

specify can be an integer or a decimal value.

1

Server options for federated systems

Server options are used to describe a data source server.

Server options specify data integrity, location, security, and performance

information. Some server options are available for all data sources, and other

server options are data source specific.

The common federated server options for relational data sources are:

v Compatibility options. COLLATING_SEQUENCE, IGNORE_UDT

v Data integrity options. IUD_APP_SVPT_ENFORCE

v Data and time options. DATEFORMAT, TIMEFORMAT, TIMESTAMPFORMAT

v Location options. CONNECTSTRING, DBNAME, IFILE

v Security options. FOLD_ID, FOLD_PW, INFORMIX_LOCK_MODE

v Performance options. COMM_RATE, CPU_RATIO,

DB2_MAXIMAL_PUSHDOWN, IO_RATIO, LOGIN_TIMEOUT, PACKET_SIZE,

PLAN_HINTS, PUSHDOWN, TIMEOUT, VARCHAR_NO_TRAILING_BLANKS

The following table lists the server definition server options applicable for each

relational data source.

304 Administration Guide for Federated Systems

Table 34. Server options for relational data sources

Data

Source

 C

O

D

E

P

A

G

E

C

O

L

L

A

T

I

N

G

_

S

E

Q

U

E

N

C

E

C

O

M

M

_

R

A

T

E

C

O

N

N

E

C

T

S

T

R

I

N

G

C

O

N

V

_

E

M

P

T

Y

_

S

T

R

I

N

G

C

P

U

_

R

A

T

I

O

D

A

T

E

F

O

R

M

A

T

D

B

2

_

M

A

X

I

M

A

L

_

P

U

S

H

D

O

W

N

D

B

2

_

P

R

E

S

E

R

V

E

_

C

U

R

_

O

N

_

C

O

N

N

E

C

T

I

O

N

D

B

2

_

U

M

_

P

L

U

G

I

N

D

B

2

_

T

W

O

_

P

H

A

S

E

_

C

O

M

M

I

T

D

B

N

A

M

E

F

O

L

D

_

I

D

F

O

L

D

_

P

W

I

F

I

L

E

I

N

F

O

R

M

I

X

_

C

L

I

E

N

T

_

L

O

C

A

L

E

I

N

F

O

R

M

I

X

_

D

B

M

O

D

E

I

N

F

O

R

M

I

X

_

L

O

C

K

M

O

D

E

I

O

_

R

A

T

I

O

I

U

D

_

A

P

P

_

S

V

P

T

_

E

N

F

O

R

C

E

L

O

G

I

N

_

T

I

M

E

O

U

T

N

O

D

E

P

A

C

K

E

T

_

S

I

Z

E

P

A

S

S

W

O

R

D

P

L

A

N

_

H

I

N

T

S

P

U

S

H

D

O

W

N

T

I

M

E

O

U

T

T

I

M

E

F

O

R

M

A

T

T

I

M

E

S

T

A

M

P

F

O

R

M

A

T

V

A

R

C

H

A

R

_

N

O

_

T

R

A

I

L

I

N

G

_

B

L

A

N

K

S

DB2 UDB

for iSeries

X X X X X X X X X X X X X X

DB2 UDB

for z/OS

and

OS/390

X X X X X X X X X X X X X X

DB2 for

VM and

VSE

X X X X X X X X X X X X X

DB2 for

Linux,

UNIX,

and

Windows

X X X X X X X X X X X X X X

Informix X X X X X X X X X X X X X X X X X

Microsoft

SQL

Server

X X X X X X X X X X X X X X X X

ODBC X X X X X X X X X X X X X X X X X X

OLE DB X X X

Oracle X X X X X X X X X X X X X X

Sybase X X X X X X X X X X X X X X X X X X X

Teradata X X X X X X X X X

Chapter 29. Federated system and data source configuration parameters 305

The following table lists the server definition server options applicable for each

nonrelational data source, except WebSphere Business Integration. The server

definition server options for WebSphere Business Integration are listed in Table 36

on page 307.

 Table 35. Server options for nonrelational data sources.

Data Source

D

A

E

M

O

N

_

P

O

R

T

D

B

2

_

U

M

_

P

L

U

G

I

N

M

A

X

_

R

O

W

S

N

O

D

E

P

R

O

X

Y

_

A

U

T

H

I

D

P

R

O

X

Y

_

P

A

S

S

W

O

R

D

P

R

O

X

Y

_

S

E

R

V

E

R

_

N

A

M

E

P

R

O

X

Y

_

S

E

R

V

E

R

_

P

O

R

T

P

R

O

X

Y

_

T

Y

P

E

S

S

L

_

C

L

I

E

T

_

C

E

R

T

I

F

I

C

A

T

E

_

L

A

B

E

L

S

S

L

_

K

E

Y

S

T

O

R

E

_

F

I

L

E

S

S

L

_

K

E

Y

S

T

O

R

E

_

P

A

S

S

W

O

R

D

S

S

L

_

V

E

R

I

F

Y

_

S

E

R

V

E

R

_

C

E

R

T

I

F

I

C

A

T

E

S

O

C

K

E

T

_

T

I

M

E

O

U

T

T

I

M

E

O

U

T

U

S

E

_

C

L

O

B

_

S

E

Q

U

E

N

C

E

BioRS X X X X

BLAST X X X X X X X X X X X X

Entrez X X X X X X X

Excel

HMMER X X X X X X X X X X X X

SCRIPT X X X X X X X X X X X

Table-structured files

Web services X X X X X X

XML X X X X X X X X X X

The following table lists the server definition server options applicable for

WebSphere Business Integration data sources.

306 Administration Guide for Federated Systems

Table 36. Server options for WebSphere Business Integration data sources.

Data Source

A

P

P

_

T

Y

P

E

F

A

U

L

T

_

Q

U

E

U

E

M

Q

_

C

O

N

N

_

N

A

M

E

M

Q

_

M

A

N

A

G

E

R

M

Q

_

R

E

S

P

O

N

S

E

_

T

I

M

E

O

U

T

M

Q

_

S

V

R

C

O

N

N

_

C

H

A

N

N

E

L

N

A

M

E

R

E

Q

U

E

S

T

_

Q

U

E

U

E

R

E

S

P

O

N

S

E

_

Q

U

E

U

E

WebSphere Business Integration X X X X X X X X

The following table describes each server option and lists the valid and default

settings.

 Table 37. Server options and their settings

Option Description and valid settings Default setting

APP_TYPE The type of remote application. Valid values are

’PSOFT’, ’SAP’, and ’SIEBEL’. This option is

required.

None.

Chapter 29. Federated system and data source configuration parameters 307

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

CASE_SENSITIVE Specifies whether the BioRS server treats names in

a case sensitive manner. Valid values are Y or N.

’Y’ The BioRS server treats names in a case

sensitive manner.

’N’ The BioRS server does not treat names in

a case sensitive manner

In the BioRS product, a configuration parameter

controls the case sensitivity of the data that is

stored on the BioRS server. The CASE_SENSITIVE

option is the federated server counterpart to that

BioRS system configuration parameter. You must

synchronize the BioRS server case sensitivity

configuration settings in your BioRS system and in

the federated server. If you do not keep the case

sensitivity configuration settings synchronized

between BioRS and the federated server, errors will

occur when you attempt to access BioRS data

through federated server.

You cannot change or delete the CASE_SENSITIVE

option after you create a new BioRS server in

federated server. If you need to change the

CASE_SENSITIVE option, you must drop and then

create the entire server again. If you drop the

BioRS server, you must also create all of the

corresponding BioRS nicknames again. Federated

server automatically drops all nicknames that

correspond to a dropped server.

Y

CODEPAGE Specifies the DB2 code page identifier

corresponding to the coded character set of the

data source client configuration. You must specify

the client’s code page if the client’s code page and

the federated database code page do not match.

For data sources that support Unicode, the

CODEPAGE option can be set to the DB2 code

page identifier corresponding to the supported

Unicode encoding of the data source client.

On UNIX or Windows

systems with a non-Unicode

federated database: The

federated database code page.

On UNIX systems with a

Unicode federated database:

1208

On Windows systems with a

Unicode federated database:

1202

308 Administration Guide for Federated Systems

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

COLLATING_ SEQUENCE Specifies whether the data source uses the same

default collating sequence as the federated

database, based on the NLS code set and the

country/region information.

’Y’ The data source has the same collating

sequence as the DB2 federated database.

’N’ The data source has a different collating

sequence than the DB2 federated database

collating sequence.

’I’ The data source has a different collating

sequence than the DB2 federated database

collating sequence, and the data source

collating sequence is insensitive to case

(for example, ’STEWART’ and ’StewART’

are considered equal).

’N’

COMM_RATE Specifies the communication rate between the

federated server and the data source server.

Expressed in megabytes per second.

Valid values are greater than 0 and less than

1x1023. Values can be expressed in any valid REAL

notation.

’2’

CONNECTSTRING Specifies initialization properties needed to connect

to an OLE DB provider.

None.

CONNECTSTRING Specifies initialization properties needed to connect

to an OLE DB provider.

None.

CONV_EMPTY_STRING Use for Sybase wrapper that works with

replication tasks. When you set the

CONV_EMPTY_STRING option into Y, the Sybase

wrapper converts an empty string into a space. Set

this option to Y when a source data server has a

non-nullable character column that stores an empty

string and the target data server is Sybase.

N

CPU_RATIO Indicates how much faster or slower a data source

CPU runs than the federated server CPU.

Valid values are greater than 0 and less than

1x1023. Values can be expressed in any valid REAL

notation.

A setting of 1 indicates that the DB2 federated

CPU speed and the data source CPU speed have

the same CPU speed, a 1:1 ratio. A setting of 0.5

indicates that the DB2 federated CPU speed is 50%

slower than the data source CPU speed. A setting

of 2 indicates that the DB2 federated CPU speed is

twice as fast as the data source CPU speed.

’1.0’

DATEFORMAT The date format used by the data source. Enter the

format using ’DD’, ’MM’, and ’YY’ or ’YYYY’ to

represent the numeric form of the date. You should

also specify the delimiter such as a space or

comma. For example, to represent the date format

for ’2003-01-01’, use ’YYYY-MM-DD’. This field is

nullable.

None.

Chapter 29. Federated system and data source configuration parameters 309

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

DAEMON_PORT

Specifies the port number on which the daemon

will listen for BLAST or HMMER job requests. The

port number must be the same number specified in

the DAEMON_PORT option of the daemon

configuration file.

BLAST: 4007

HMMER: 4098

DB2_MAXIMAL_ PUSHDOWN Specifies the primary criteria that the query

optimizer uses when choosing an access plan. The

query optimizer can choose access plans based on

cost or based on the user requirement that as much

query processing as possible be performed by the

remote data sources.

’Y’ The query optimizer chooses an access

plan that pushes down more query

operations to the data source than other

plans. When several access plans provide

the same amount of pushdown, the query

optimizer then chooses the plan with the

lowest cost.

 If a materialized query table (MQT) on

the federated server can process part or

all of the query, then an access plan that

includes the materialized query table

might be used. The federated database

does not push down queries that result in

a Cartesian product.

’N’ The query optimizer chooses an access

plan based on cost.

’N’

DB2_PRESERVE_CUR_ON_

CONNECTION

Specifies the behavior of cursors for committed or

rolled back transactions. If value is set to Y, cursors

can remain open on Microsoft SQL Server even if

COMMIT or ROLLBACK is sent. If this option is

not set or the value is set to N, cursors are closed

if COMMIT or ROLLBACK is sent. This option is

optional.

None

DB2_TWO_PHASE_COMMIT Specify to allow or disallow federated two-phase

commit for each data source using the CREATE

SERVER or ALTER SERVER statements. Set to Y to

configure and activate two-phase commit at the

database level. Set to N to configure but not

activate federated two-phase commit at the

database level. Applications can activate or

deactivate this option with the SET SERVER

OPTION statement.

DB2_UM_PLUGIN If you use a plugin for retrieving user mappings

from an external repository, specify the class name

including package (for example,

’com.ibm.ii.um.ldap.UserMappingRepository’). If

you are using the Lightweight Directory Access

Protocol (LDAP) sample plugin, you can use just

the class name (for example,

UserMappingRepository).

None.

310 Administration Guide for Federated Systems

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

DBNAME Name of the data source database that you want

the federated server to access. For DB2 database,

this value corresponds to a specific database for

the initial remote DB2 database connection. This

specific database is the database alias for the

remote DB2 database that is cataloged at the

federated server using the CATALOG DATABASE

command or the DB2 Configuration Assistant.

Does not apply to Oracle data sources because

Oracle instances contain only one database. Does

not apply to Teradata.

None.

FAULT_QUEUE The name of the fault queue that delivers error

messages from the adapter to the wrapper. The

name must conform to the specifications for queue

names for WebSphere MQ. This is a required

option.

None.

FOLD_ID

(See notes 1 and 4 at the end of

this table.)

Applies to user IDs that the federated server sends

to the data source server for authentication. Valid

values are:

’U’ The federated server folds the user ID to

uppercase before sending it to the data

source. This is a logical choice for DB2

family and Oracle data sources (See note 2

at end of this table.)

’N’ The federated server does nothing to the

user ID before sending it to the data

source. (See note 2 at end of this table.)

’L’ The federated server folds the user ID to

lowercase before sending it to the data

source.

If this option is not specified, the federated server

tries to send the user ID to the data source in

uppercase (unchanged) and in lowercase.

None.

FOLD_PW

(See notes 1, 3 and 4 at the end

of this table.)

Applies to passwords that the federated server

sends to data sources for authentication. Valid

values are:

’U’ The federated server folds the password

to uppercase before sending it to the data

source. This is a logical choice for DB2

family and Oracle data sources.

’N’ The federated server does nothing to the

password before sending it to the data

source.

’L’ The federated server folds the password

to lowercase before sending it to the data

source.

If this option is not specified, the federated server

tries to send the user ID to the data source in

uppercase (unchanged) and in lowercase.

None.

Chapter 29. Federated system and data source configuration parameters 311

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

HMMPFAM_OPTIONS Specifies hmmpfam options such as --null2, --pvm,

and --xnu that have no corresponding column

name in a reference table that maps options to

column names.

For example:

HMMPFAM_OPTIONS ’--xnu --pvm’

In this example, the daemon runs the HMMPFAM

program with options from the WHERE clause of

the query, plus the additional options --xnu --pvm.

HMMSEARCH_ OPTIONS Allows the user to provide additional command

line options to the hmmsearch command. Only

valid with type SEARCH. See the HMMER User’s

Guide for more information.

None.

IFILE Use to specify the path and name of the Sybase

Open Client interfaces file if you do not want to

use the default interface file. On Windows NT

federated servers, the default is

%SYBASE%\ini\sql.ini. On UNIX federated

servers, the default is $SYBASE%/interfaces.

None.

INFORMIX_CLIENT_LOCALE Specifies the CLIENT_LOCALE to use for the

connection between the federated server and the

data source server. If the

INFORMIX_CLIENT_LOCALE option is not

specified, the Informix CLIENT_LOCALE

environment variable is set to the value specified

in the db2dj.ini file (if any). If db2dj.ini does not

specify CLIENT_LOCALE, the Informix

CLIENT_LOCALE environment variable is set to

the Informix locale that most closely matches the

code page and territory of the federated database.

Any valid Informix locale is a valid value. This

option is optional.

None.

INFORMIX_DB_LOCALE Specifies the DB_LOCALE to use for the

connection between the federated server and the

data source server. If the INFORMIX_DB_LOCALE

option is not specified, the Informix DB_LOCALE

environment variable is set to the value specified

in the db2dj.ini file (if any). If db2dj.ini does not

specify DB_LOCALE, the Informix DB_LOCALE

environment variable is not set. Any valid Informix

locale is a valid value. This option is optional.

None.

312 Administration Guide for Federated Systems

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

INFORMIX_LOCK_ MODE Specifies the lock mode to be set for an Informix

data source. The Informix wrapper issues the ’SET

LOCK MODE’ command immediately after

establishing the connection to an Informix data

source. Valid values are:

’W’ Sets the Informix lock mode to WAIT. If

the wrapper tries to access a locked table

or row, Informix waits until the lock is

released.

’N’ Sets the Informix lock mode to NOWAIT.

If the wrapper tries to access a locked

table or row, Informix returns an error.

’n’ Sets the Informix lock mode to WAIT n

seconds. If the wrapper tries to access a

locked table or row and the lock is not

released within the specified number of

seconds, Informix returns an error.

If a deadlock or timeout error occurs when a

federated server attempts to connect to an Informix

data source, changing the lock mode setting on the

federated server can often resolve the error. Use

the ALTER SERVER statement to change the lock

mode setting on the federated server.

For example:

ALTER SERVER TYPE informix VERSION 9 WRAPPER

 informix

 OPTIONS (ADD informix_lock_mode ’60’)

’W’

IO_RATIO Denotes how much faster or slower a data source

I/O system runs than the federated server I/O

system.

Valid values are greater than 0 and less than 1x1023

. Values can be expressed in any valid REAL

notation.

A setting of 1 indicates that the DB2 federated I/O

speed and the data source I/O speed have the

same I/O speed, a 1:1 ratio. A setting of .5

indicates that the DB2 federated I/O speed is 50%

slower than the data source I/O speed. A setting of

2 indicates that the DB2 federated I/O speed is

twice as fast as the data source I/O speed.

’1.0’

Chapter 29. Federated system and data source configuration parameters 313

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

IUD_APP_SVPT_ ENFORCE Specifies whether the DB2 federated system should

enforce detecting or building of application

savepoint statements. When set using the SET

SERVER OPTION statement, this server option will

have no effect with static SQL statements.

’Y’ The federated server rolls back insert,

update, or delete transactions if an error

occurs in an insert, update, or delete

operation and the data source does not

enforce application savepoint statements.

SQL error code SQL1476N is returned.

’N’ The federated server will not roll back

transactions when an error is encountered.

Your application must handle the error

recovery.

’Y’

LOGIN_TIMEOUT Specifies the number of seconds for the DB2

federated server to wait for a response from Sybase

Open Client to the login request. If you specify 0,

the federated server will wait indefinitely for a

response.

’0’

MAX_ROWS For Entrez: Specifies the number of rows that the

federated server returns for a query.

For OMIM: Limits to the number of records for the

root nickname that a query can return. For

example, if the MAX_ROWS server option is set to

25, a maximum of 25 records for the root nickname

and all of the records for the child-related

nicknames are returned.

You can specify only positive numbers and zero.

When you set the option to be zero, you enable

queries to retrieve an unlimited number of rows

from the NCBI Web site. However, setting the

MAX_ROWS server option to zero or to a very

high number can impact your query performance.

The MAX_ROWS server option is not required.

Microsoft Windows operating

systems: 2000 rows.

UNIX-based operating

systems: 5000 rows.

MQ_CONN_NAME The hostname or network address of the computer

where the Websphere MQ server is running. An

example of a connection name is: 9.30.76.151(1420)

where 1420 is the port number. If the port number

is excluded a default value of 1414 will be used.

This option is optional. If it is omitted, the

MQSERVER environment variable (if sepcified in

db2dj.ini file) is used to select the channel

definition. If MQSERVER is not set, the client

channel table is used.

The wrapper uses the

MQSERVER environment

variable, if specified in the

db2dj.ini file, to select the

channel definition. If the

MQSERVER environment

variable is not set, the

wrapper uses the client

channel table.

MQ_MANAGER The name of the WebSphere MQ manager. Any

valid WebSphere MQ manager name. This option

is required.

None.

314 Administration Guide for Federated Systems

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

MQ_RESPONSE_ TIMEOUT The amount of time that the wrapper should wait

for a response message from the response queue.

The value is in milliseconds. You can specify a

special value of -1 to indicate that there is no

timeout period. This option is optional.

10000

MQ_SVRCONN_

CHANNELNAME

The name of the server-connection channel on the

Webspehere MQ Manager that the wrapper should

try to connect to. This parameter can be specified

only if the MQ_CONN_NAME server option is

specified. The default server-connection channel,

SYSTEM.DEF.SVRCONN, is used if this option is

omitted.

SYSTEM.DEF.SVRCONN

NODE

Relational data sources: Name by which a data

source is defined as an instance to its RDBMS.

BLAST: Specifies the host name or IP address of

the system on which the BLAST daemon process is

running. The IP address can be an IPv4 address

(for example, 192.168.1.1) or it can be a

colon-separated IPv6 address (for example,

1080:0:0:0:8:800:200C:417A). This option is required.

HMMER: Specifies the host name or IP address of

the server on which the HMMER daemon process

runs. The IP address can be an IPv4 address or it

can be a colon-separated IPv6 address. This option

is required.

BioRS: Specifies the host name of the system on

which the BioRS query tool is available. The IP

address can be an IPv4 address or it can be a

colon-separated IPv6 address. This option is

optional.

BioRS: localhost

PACKET_SIZE Specifies the byte size of the packet that the

Client-Library uses when sending special packets.

If the Sybase wrapper needs to send or receive

large amounts of text or image data, a larger

packet size might improve efficiency.

PASSWORD Specifies whether passwords are sent to a data

source.

’Y’ Passwords are sent to the data source and

validated.

’N’ Passwords are not sent to the data source

and not validated.

’Y’

Chapter 29. Federated system and data source configuration parameters 315

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

PLAN_HINTS Specifies whether plan hints are to be enabled.

Plan hints are statement fragments that provide

extra information for data source optimizers. This

information can, for certain query types, improve

query performance. The plan hints can help the

data source optimizer decide whether to use an

index, which index to use, or which table join

sequence to use.

’Y’ Plan hints are to be enabled at the data

source if the data source supports plan

hints.

’N’ Plan hints are not to be enabled at the

data source.

This option is only available for Oracle and Sybase

data sources.

’N’

PORT Specifies the number of the port the wrapper uses

to connect to the BioRS server. This option is

optional.

’5014’

PROCESSORS Specifies the number of processors that the

HMMER program uses. This option is equivalent

to the --cpu option of the hmmpfam command.

None.

PROXY_AUTHID Specifies the user name to use when the proxy

server requires authentication. Contact your

network administrator for the user name.

None.

PROXY_PASSWORD Specifies the password to use when the proxy

server requires authentication. Contact your

network administrator for the password.

None.

PROXY_SERVER_ NAME Specifies the proxy server name or the IP address.

This field is required if the value of PROXY_TYPE

is ’HTTP’ or ’SOCKS’. Contact your network

administrator for the server name or IP address of

the proxy server. The IP address can be an IPv4

address (for example, 192.168.1.1) or it can be a

colon-separated IPv6 address (for example,

1080:0:0:0:8:800:200C:417A).

None.

PROXY_SERVER_ PORT Specifies the proxy server port number. This field

is required if the value of PROXY_TYPE is ’HTTP’

or ’SOCKS’. Contact your network administrator

for the port number of the proxy server.

None.

PROXY_TYPE Specifies the type of proxy type that is used to

access the Internet when behind a firewall. The

valid values are ’NONE’, ’HTTP’, or ’SOCKS’. The

default value is ’NONE’. Contact your network

administrator for the type of proxy that is used.

BLAST, HMMER, and SCRIPT do not support

HTTP proxies.

’NONE’

316 Administration Guide for Federated Systems

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

PUSHDOWN

’Y’ DB2 will consider letting the data source

evaluate operations.

’N’ DB2 will send the data source SQL

statements that include only SELECT with

column names. Predicates (such as

WHERE=), column and scalar functions

(such as MAX and MIN), sorts (such as

ORDER BY or GROUP BY), and joins will

not be included in any SQL sent to the

data source.

 Default for the ODBC wrapper.

’Y’

RESPONSE_QUEUE The name of the response queue that delivers

query results from the adapter to the wrapper. The

name must conform to the specifications for queue

names for WebSphere MQ. This option is required.

None.

REQUEST_QUEUE The name of the request queue that delivers query

requests from the wrapper to the adapter. The

name must conform to the specifications for queue

names for WebSphere MQ. This option is required.

None.

SOCKET_TIMEOUT Specifies the maximum time in minutes that the

DB2 federated server will wait for results from the

proxy server. A valid value is any number that is

greater than or equal to zero. The default is zero

’0’. A value of zero denotes an unlimited amount

of time to wait.

0

SSL_CLIENT_CERTIFICATE_

LABEL

Specifies the client certificate that is sent during

SSL authentication. If the value is not specified, the

current DB2 authorization ID will be sent.

None.

SSL_KEYSTORE_FILE Specifies the name of the certificate storage file to

use for SSL/TLS communications. The value that

you specify must be a full path that is accessible

by the DB2 agent or FMP process.

Optional: You can specify the value

’GSK_MS_CERTIFICATE_STORE’ to use the native

Microsoft certificate storage.

None.

SSL_KEYSTORE_PASWORD Specifies the password that is used to access the

SSL certificate storage. This password is encrypted

when it is stored in the DB2 catalog.

None.

SSL_VERIFY_SERVER_

CERTIFICATE

Specifies if the server certificate should be verified

during SSL authenticate. The values are not case

sensitive. To authenticate, use one of the following

values: ’Y’, ’YES’, ’T’, or ’TRUE’. To disable, use

’F’, ’FALSE’, ’N’, or ’NO’.

’NO’

TIMEFORMAT The time format used by the data source. Enter the

format using ’hh12’, ’hh24’, ’mm’, ’ss’, ’AM’, or

’A.M’. For example, to represent the time format of

’16:00:00’, use ’hh24:mm:ss’. To represent the time

format of ’8:00:00 AM’, use ’hh12:mm:ss AM’. This

field is nullable.

None.

Chapter 29. Federated system and data source configuration parameters 317

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

TIMESTAMPFORMAT The timestamp format used by the data source.

The format follows that for date and time, plus ’n’

for tenth of a second, ’nn’ for hundredth of a

second, ’nnn’ for milliseconds, and so on, up to

’nnnnnn’ for microseconds. For example, to

represent the timestamp format of

’2003-01-01-24:00:00.000000’, use

’YYYY-MM-DD-hh24:mm:ss.nnnnnn’. This field is

nullable.

None.

TIMEOUT

The timeout value that you specify depends on

which wrapper that you are using. If you specify 0,

DB2 will wait indefinitely for a response.

Sybase: Specifies the number of seconds that the

DB2 federated server will wait for a response from

the Sybase server for any SQL statement. The value

of seconds is a positive whole number.

BioRS: Specifies the time, in minutes, that the

BioRS wrapper should wait for a response from

the BioRS server. The default value is 10. This

option is optional.

Web services: Specifies the time, in minutes, that

DB2 should wait for a network transfer and the

computation of a result.

Sybase: 0

BioRS: 10

USE_CLOB_ SEQUENCE This option specifies the data type the federated

server uses for the BlastSeq or HmmQSeq column.

The values can be ’Y’ or ’N’. You can use the

CREATE NICKNAME or ALTER NICKNAME

statement. to override the default data type for the

BlastSeq or HmmQSeq column.

v If you specify a value of N, the data type is

VARCHAR(32000).

v If you specify a value of Y, the data type is

CLOB(5M). The default value is N, not Y.

’Y’

318 Administration Guide for Federated Systems

Table 37. Server options and their settings (continued)

Option Description and valid settings Default setting

VARCHAR_NO_

TRAILING_BLANKS

This option applies to data sources which have

variable character data types that do not pad the

length with trailing blanks during comparison.

Some data sources, such as Oracle, do not have

blank-padded character comparison semantics that

return the same results as the DB2 for Linux,

UNIX, and Windows comparison semantics. Set

this option when you want it to apply to all the

VARCHAR and VARCHAR2 columns in the data

source objects that will be accessed from the

designated server. This includes views.

Y Trailing blanks are absent from these

VARCHAR columns, or the data source

has blank-padded character comparison

semantics that are similar to the semantics

on the federated server.

 The federated server pushes down

character comparison operations to the

data source for processing.

N Trailing blanks are present in these

VARCHAR columns and the data source

has blank-padded character comparison

semantics that are different than the

federated server.

 The federated server processes character

comparison operations if it is not possible

to compensate for equivalent semantics.

For example, rewriting the predicate.

N for affected data sources.

Notes on this table:

1. This field is applied regardless of the value specified for authentication.

2. Because DB2 stores user IDs in uppercase, the values ’N’ and ’U’ are logically

equivalent to each other.

3. The setting for FOLD_PW has no effect when the setting for password is ’N’.

Because no password is sent, case cannot be a factor.

4. Avoid null settings for either of these options. A null setting can seem attractive

because DB2 will make multiple attempts to resolve user IDs and passwords;

however, performance might suffer (it is possible that DB2 will send a user ID

and password up to nine times before successfully passing data source

authentication).

Valid server types in SQL statements

Server types indicate the kind of data source that the server definition represents.

Server types vary by vendor, purpose, and operating system. Supported values

depend on the wrapper being used.

For most data sources, you must specify a valid server type in the CREATE

SERVER statement.

Chapter 29. Federated system and data source configuration parameters 319

BioRS wrapper

A server type specification is optional for BioRS data sources.

 Server Type Data Source

Not required in the CREATE SERVER

statement.

BioRS

BLAST wrapper

A server type specification is required for each type of BLAST search that you

want to run for BLAST data sources supported by the BLAST daemon.

 Server Type Data Source

BLASTN BLAST searches in which a nucleotide

sequence is compared with the contents of a

nucleotide sequence database to find

sequences with regions homologous to

regions of the original sequence.

BLASTP BLAST searches in which an amino acid

sequence is compared with the contents of an

amino acid sequence database to find

sequences with regions homologous to

regions of the original sequence.

BLASTX BLAST searches in which a nucleotide

sequence is compared with the contents of an

amino acid sequence database to find

sequences with regions homologous to

regions of the original sequence.

TBLASTN BLAST searches in which an amino acid

sequence is compared with the contents of a

nucleotide sequence database to find

sequences with regions homologous to

regions of the original sequence.

TBLASTX BLAST searches in which a nucleotide

sequence is compared with the contents of a

nucleotide sequence database to find

sequences with regions homologous to

regions of the original sequence.

CTLIB wrapper

The CTLIB wrapper supports Sysbase data sources. A server type specification is

required for Sybase data sources supported by the CTLIB client software.

 Server Type Data Source

SYBASE Sybase

DRDA wrapper

The DRDA wrapper is used for DB2 family data sources. A server type

specification is required for the DB2 family data sources.

320 Administration Guide for Federated Systems

Table 38. DB2 family data sources

Server Type Data Source

DB2/UDB IBM DB2 Version 9.1 for Linux, UNIX, and

Windows

DB2/ISERIES IBM DB2 UDB for iSeries and AS/400

DB2/ZOS IBM DB2 UDB for z/OS

DB2/VM IBM DB2 for VM

Entrez wrapper

A server type specification is required for Entrez data sources.

 Server Type Data Source

NUCLEOTIDE Entrez

OMIM Entrez

PUBMED Entrez

Excel wrapper

A server type specification is not required for Excel data sources.

 Server Type Data Source

Not required in the CREATE SERVER

statement.

Microsoft Excel

HMMER wrapper

A server type specification is required for each server that you want to run a

HMMER search on for HMMER data sources supported by the HMMER daemon.

 Server Type Data Source

PFAM HMMER

SEARCH HMMER

Informix wrapper

A server type specification is required for Informix data sources supported by

Informix Client SDK software.

 Server Type Data Source

INFORMIX Informix

MSSQLODBC3 wrapper

A server type specification is required for Microsoft SQL Server data sources

supported by the DataDirect Connect ODBC 4.2 (or later) driver or the Microsoft

SQL Server ODBC 3.0 (or later) driver.

Chapter 29. Federated system and data source configuration parameters 321

Server Type Data Source

MSSQLSERVER Microsoft SQL Server

NET8 wrapper

A server type specification is required for Oracle data sources supported by Oracle

NET8 client software.

 Server Type Data Source

ORACLE Oracle Version 8.0. or later

ODBC wrapper

A server type specification is required for ODBC data sources supported by the

ODBC 3.x driver.

 Server Type Data Source

ODBC ODBC

OLE DB wrapper

A server type definition is not required for OLE DB providers compliant with

Microsoft OLE DB 2.0 or later.

 Server Type Data Source

Not required in the CREATE SERVER

statement.

Any OLE DB provider

Table-structured files wrapper

A server type definition is not required for table-structured file data sources.

 Server Type Data Source

Not required in the CREATE SERVER

statement.

Table-structured files

Teradata wrapper

A server type definition is required for Teradata data sources supported by the

Teradata client software.

 Server Type Data Source

TERADATA Teradata

Web services wrapper

A server type definition is not required for Web services data sources.

 Server Type Data Source

Not required in the CREATE SERVER

statement.

Any Web services data source.

322 Administration Guide for Federated Systems

WebSphere Business Integration wrapper

A server type definition is required for business application data sources supported

by the WebSphere Business Integration wrapper.

 Server Type Data Source

WBI WebSphere Business Integration 2.2 or 2.3

XML wrapper

A server type definition is not required for XML data sources.

 Server Type Data Source

Not required in the CREATE SERVER

statement.

XML

User mapping options for federated systems

These options are used with the CREATE USER MAPPING and ALTER USER

MAPPING statements.

 Table 39. User mapping options and their settings

Option Valid settings Default setting

ACCOUNTING DRDA: Used to specify a DRDA accounting string.

Valid settings include any string of length 255 or less.

This option is required only if accounting information

needs to be passed. See the DB2 Connect Users Guide

for more information.

None

GUEST Specifies if the wrapper is to use the guest access mode

to the BioRS server.

Y The wrapper uses the guest access mode to the

BioRS server.

N The wrapper does not use the guest access

mode to the BioRS server.

When set to a value of Y, this option is mutually

exclusive with the REMOTE_AUTHID option and the

REMOTE_PASSWORD option.

Valid for the BioRS data source.

N

REMOTE_AUTHID Indicates the authorization ID used at the data source.

Valid settings include any string of length 255 or less.

Valid for the BioRS and Web services data sources.

The authorization ID you use

to connect to DB2.

PROXY_AUTHID Specifies the password to use when the proxy server

requires authentication. Contact your network

administrator for the password.

Valid for BioRS, Blast, Entrez, HMMER, Script, and Web

services data sources.

PROXY_PASSWORD Specifies the user name to use when the proxy server

requires authentication. Contact your network

administrator for the user name.

Valid for BioRS, Blast, Entrez, HMMER, Script, and Web

services data sources.

Chapter 29. Federated system and data source configuration parameters 323

Table 39. User mapping options and their settings (continued)

Option Valid settings Default setting

REMOTE_PASSWORD Indicates the authorization password used at the data

source. Valid settings include any string of length 32 or

less.

If your server requires a password and you do not set

this option, you must ensure that the following

conditions are met or the connection will fail:

v The database manager configuration parameter

AUTHENTICATON is set to SERVER.

v The server option PASSWORD is omitted or set to Y

(the default).

v When you connected to the DB2 database, you

specified an authorization ID and password. The

password that you specified must be the same as the

password of your remote server.

Valid for the BioRS and Web services data sources.

The password you use to

connect to the DB2 if both

conditions listed in the valid

settings column are met.

SSL_CLIENT_

CERTIFICATE_LABEL

Specifies the client certificate that is sent during SSL

authentication. If the value is not specified, the current

DB2 authorization ID will be sent.

Valid for the Web services data source.

None.

Wrapper options for federated systems

Wrapper options are used to configure the wrapper or to define how the federated

server uses the wrapper. Wrapper options can be set when you create or alter the

wrapper.

All relational and nonrelational data sources use the DB2_FENCED wrapper

option. The ODBC and Teradata wrappers support the

DB2_SOURCE_CLIENT_MODE wrapper option. The Entrez data source uses the

EMAIL wrapper option. The ODBC data source uses the MODULE wrapper

option. BioRS, BLAST, Entrez, HMMER, web services, and XML data sources can

use the wrapper options for proxies. The SSL options are supported by the BLAST,

HMMER, SCRIPT, web services, and XML wrappers.

 Table 40. Wrapper options and their settings

Option Valid settings Default setting

DB2_FENCED Specifies whether the wrapper runs in fenced or

trusted mode.

Y The wrapper runs in fenced mode.

N The wrapper runs in trusted mode.

Relational wrappers:

N.

Nonrelational

wrappers from IBM:

N.

Nonrelational

wrappers from third

parties: Y.

324 Administration Guide for Federated Systems

Table 40. Wrapper options and their settings (continued)

Option Valid settings Default setting

DB2_SOURCE_

CLIENT_MODE

Specifies that the data source client is 32-bit and

that the database instance on the federated

server is 64-bit. When you specify this option,

you must also set the DB2_FENCED wrapper

option to Y.

This option applies only to ODBC and Teradata

data sources, and is currently supported only

on AIX or Solaris operating systems.

The only valid value is 32BIT. The value is not

case sensitive.

32BIT The data source client that is installed

on the federated server is 32-bit.

None.

DB2_UM_PLUGIN If you use a plugin for retrieving user

mappings from an external repository, specify

the class name including package (for example,

’com.ibm.ii.um.ldap.UserMappingRepository’).

If you are using the Lightweight Directory

Access Protocol (LDAP) sample plugin, you can

use the class name (for example,

UserMappingRepository).

None.

EMAIL Specifies an e-mail address when you register

the Entrez wrapper. This e-mail address is

included with all queries and allows NCBI to

contact you if there are problems, such as too

many queries overloading the NCBI servers.

This option is required.

MODULE Specifies the full path of the library that

contains the ODBC Driver Manager

implementation or the SQL/CLI

implementation. Required for the ODBC

wrapper on UNIX federated servers.

On Windows, the

default value is

odbc32.dll

PROXY_SERVER_

NAME

Specifies the proxy server name or the IP

address. This field is required if the value of

PROXY_TYPE is ’HTTP’ or ’SOCKS’. The IP

address can be an IPv4 address (for example,

192.168.1.1) or it can be a colon-separated IPv6

address (for example,

1080:0:0:0:8:800:200C:417A). Contact your

network administrator for the server name or

IP address of the proxy server.

None.

PROXY_SERVER_

PORT

Specifies the proxy server port number. This

field is required if the value of PROXY_TYPE is

’HTTP’ or ’SOCKS’. Contact your network

administrator for the port number of the proxy

server.

Specifying the PROXY_SERVER_PORT option

in a CREATE SERVER statement overrides the

PROXY_SERVER_PORT option in a CREATE

WRAPPER statement overrides the the

None.

Chapter 29. Federated system and data source configuration parameters 325

Table 40. Wrapper options and their settings (continued)

Option Valid settings Default setting

PROXY_TYPE Specifies the type of proxy type that is used to

access the Internet when behind a firewall. The

valid values are ’NONE’, ’HTTP’, or ’SOCKS’.

The default value is ’NONE’. Contact your

network administrator for the type of proxy

that is used.

The BLAST, HMMER, and SCRIPT wrappers do

not support HTTP proxies.

’NONE’

SSL_KEYSTORE_

FILE

Specifies the name of the certificate storage file

to use for SSL/TLS communications. The value

that you specify must be a full path that is

accessible by the DB2 agent or FMP process.

Optional: You can specify the value

’GSK_MS_CERTIFICATE_STORE’ to use the

native Microsoft certificate storage.

None.

SSL_KEYSTORE_

PASWORD

Specifies the password that is used to access the

SSL certificate storage. This password is

encrypted when it is stored in the DB2 catalog.

None.

SSL_VERIFY_

SERVER_

CERTIFICATE

Specifies if the server certificate should be

verified during SSL authenticate. The values are

not case sensitive. To authenticate, use one of

the following values: ’Y’, ’YES’, ’T’, or ’TRUE’.

To disable, use ’F’, ’FALSE’, ’N’, or ’NO’.

’NO’

326 Administration Guide for Federated Systems

Chapter 30. Federated system and data source mappings

Default forward data type mappings

The two kinds of mappings between data source data types and federated

database data types are forward type mappings and reverse type mappings. In a

forward type mapping, the mapping is from a remote type to a comparable local

type.

You can override a default type mapping, or create a new type mapping with the

CREATE TYPE MAPPING statement.

These mappings are valid with all the supported versions, unless otherwise noted.

For all default forward data types mapping from a data source to the federated

database, the federated schema is SYSIBM.

The following tables show the default forward mappings between federated

database data types and data source data types.

DB2 Database for Linux, UNIX, and Windows data sources

The following table lists the forward default data type mappings for DB2 Database

for Linux, UNIX, and Windows data sources.

 Table 41. DB2 Database for Linux, UNIX, and Windows forward default data type mappings (Not all columns shown)

REMOTE_

TYPE

NAME

REMOTE_

LOWER

_LEN

REMOTE_

UPPER_

LEN

REMOTE_

LOWER_

SCALE

REMOTE_

UPPER_

SCALE

REMOTE_

BIT_

DATA

REMOTE_

DATA_

OPERATORS

FEDERATED_

TYPE NAME

FEDERATED_

LENGTH

FEDERATED_

SCALE

FEDERATED_

BIT_

DATA

BIGINT - - - - - - BIGINT - 0 -

BLOB - - - - - - BLOB - - -

CHAR - - - - - - CHAR - 0 N

CHAR - - - - Y - CHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - - - - - - DOUBLE - - -

FLOAT - - - - - - DOUBLE - - -

GRAPHIC - - - - - - GRAPHIC - 0 N

INTEGER - - - - - - INTEGER - 0 -

LONGVAR - - - - N - CLOB - - -

LONGVAR - - - - Y - BLOB - - -

LONGVARG - - - - - - DBCLOB - - -

REAL - - - - - - REAL - - -

SMALLINT - - - - - - SMALLINT - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR - - - - - - VARCHAR - 0 N

© Copyright IBM Corp. 1998, 2006 327

Table 41. DB2 Database for Linux, UNIX, and Windows forward default data type mappings (Not all columns

shown) (continued)

REMOTE_

TYPE

NAME

REMOTE_

LOWER

_LEN

REMOTE_

UPPER_

LEN

REMOTE_

LOWER_

SCALE

REMOTE_

UPPER_

SCALE

REMOTE_

BIT_

DATA

REMOTE_

DATA_

OPERATORS

FEDERATED_

TYPE NAME

FEDERATED_

LENGTH

FEDERATED_

SCALE

FEDERATED_

BIT_

DATA

VARCHAR - - - - Y - VARCHAR - 0 Y

VARGRAPH - - - - - - VARGRAPHIC - 0 N

VARGRAPHIC - - - - - - VARGRAPHIC - 0 N

DB2 for iSeries data sources

The following table lists the forward default data type mappings for DB2 for

iSeries data sources.

 Table 42. DB2 for iSeries forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BLOB - - - - - - BLOB - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT 4 - - - - - REAL - - -

FLOAT 8 - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

GRAPHIC 128 16336 - - - - VARGRAPHIC - 0 N

INTEGER - - - - - - INTEGER - 0 -

NUMERIC - - - - - - DECIMAL - - -

SMALLINT - - - - - - SMALLINT - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR 1 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

VARG 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

DB2 for VM and VSE data sources

The following table lists the forward default data type mappings for DB2 for VM

and VSE data sources.

328 Administration Guide for Federated Systems

Table 43. DB2 Server for VM and VSE forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BLOB - - - - - - BLOB - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBAHW - - - - - - SMALLINT - 0 -

DBAINT - - - - - - INTEGER - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT 4 - - - - - REAL - - -

FLOAT 8 - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

INTEGER - - - - - - INTEGER - - -

SMALLINT - - - - - - SMALLINT - - -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR 1 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPH 1 16336 - - - - VARGRAPHIC - 0 N

DB2 for z/OS data sources

The following table lists the forward default data type mappings for DB2 for z/OS

data sources.

 Table 44. DB2 for z/OS forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated Bit

Data

BLOB - - - - - - BLOB - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT 4 - - - - - REAL - - -

FLOAT 8 - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

INTEGER - - - - - - INTEGER - 0 -

ROWID - - - - Y - VARCHAR 40 - Y

Chapter 30. Federated system and data source mappings 329

Table 44. DB2 for z/OS forward default data type mappings (Not all columns shown) (continued)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated Bit

Data

SMALLINT - - - - - - SMALLINT - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR 1 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

VARG 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

Informix data sources

The following table lists the forward default data type mappings for Informix data

sources.

 Table 45. Informix forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BLOB - - - - - - BLOB 2147483647 - -

BOOLEAN - - - - - - CHARACTER 1 - -

BYTE - - - - - - BLOB 2147483647 - -

CHAR 1 254 - - - - CHARACTER - - -

CHAR 255 32672 - - - - VARCHAR - - -

CLOB - - - - - - CLOB 2147483647 - -

DATE - - - - - - DATE 4 - -

DATETIME 0 4 0 4 - - DATE 4 - -

DATETIME 6 10 6 10 - - TIME 3 - -

DATETIME 0 4 6 15 - - TIMESTAMP 10 - -

DATETIME 6 10 11 15 - - TIMESTAMP 10 - -

DECIMAL 1 31 0 31 - - DECIMAL - - -

DECIMAL 32 130 - - - - DOUBLE 8 - -

FLOAT - - - - - - DOUBLE 8 - -

INTEGER - - - - - - INTEGER 4 - -

INTERVAL - - - - - - VARCHAR 25 - -

INT8 - - - - - - BIGINT 19 0 -

LVARCHAR 1 32672 - - - - VARCHAR - - -

MONEY 1 31 0 31 - - DECIMAL - - -

MONEY 32 32 - - - - DOUBLE 8 - -

NCHAR 1 254 - - - - CHARACTER - - -

NCHAR 255 32672 - - - - VARCHAR - - -

NVARCHAR 1 32672 - - - - VARCHAR - - -

REAL - - - - - - REAL 4 - -

SERIAL - - - - - - INTEGER 4 - -

SERIAL8 - - - - - - BIGINT - - -

SMALLFLOAT - - - - - - REAL 4 - -

330 Administration Guide for Federated Systems

Table 45. Informix forward default data type mappings (Not all columns shown) (continued)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

SMALLINT - - - - - - SMALLINT 2 - -

TEXT - - - - - - CLOB 2147483647 - -

VARCHAR 1 32672 - - - - VARCHAR - - -

Notes:

v For the Informix DATETIME data type, the DB2 UNIX and Windows federated server uses the Informix high-level qualifier as the

REMOTE_LENGTH and the Informix low-level qualifier as the REMOTE_SCALE.

The Informix qualifiers are the ″TU_″ constants defined in the Informix Client SDK datatime.h file. The constants are:

0 = YEAR 8 = MINUTE 13 = FRACTION(3)

2 = MONTH 10 = SECOND 14 = FRACTION(4)

4 = DAY 11 = FRACTION(1) 15 = FRACTION(5)

6 = HOUR 12 = FRACTION(2)

Microsoft SQL Server data sources

The following table lists the forward default data type mappings for Microsoft SQL

Server data sources.

 Table 46. Microsoft SQL Server forward default data type mappings

Remote Typename Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

bigint

2 - - - - - - BIGINT - - -

binary 1 254 - - - - CHARACTER - - Y

binary 255 8000 - - - - VARCHAR - - Y

bit - - - - - - SMALLINT 2 - -

char 1 254 - - - - CHAR - - N

char 255 8000 - - - - VARCHAR - - N

datetime - - - - - - TIMESTAMP 10 - -

datetimen - - - - - - TIMESTAMP 10 - -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 38 0 38 - - DOUBLE - - -

decimaln 1 31 0 31 - - DECIMAL - - -

decimaln 32 38 0 38 - - DOUBLE - - -

DUMMY2000

1 1 38 -84 127 - - DOUBLE - - -

float - 8 - - - - DOUBLE 8 - -

floatn - 8 - - - - DOUBLE 8 - -

float - 4 - - - - REAL 4 - -

floatn - 4 - - - - REAL 4 - -

image - - - - - - BLOB 2147483647 - Y

int - - - - - - INTEGER 4 - -

intn - - - - - - INTEGER 4 - -

money - - - - - - DECIMAL 19 4 -

moneyn - - - - - - DECIMAL 19 4 -

nchar 1 127 - - - - CHAR - - N

nchar 128 4000 - - - - VARCHAR - - N

Chapter 30. Federated system and data source mappings 331

Table 46. Microsoft SQL Server forward default data type mappings (continued)

Remote Typename Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

numeric 1 31 0 31 - - DECIMAL - - -

numeric 32 38 0 38 - - DOUBLE 8 - -

numericn 32 38 0 38 - - DOUBLE - - -

numericn 1 31 0 31 - - DECIMAL - - -

ntext - - - - - - CLOB 2147483647 - Y

nvarchar 1 4000 - - - - VARCHAR - - N

real - - - - - - REAL 4 - -

smallint - - - - - - SMALLINT 2 - -

smalldatetime - - - - - - TIMESTAMP 10 - -

smallmoney - - - - - - DECIMAL 10 4 -

smallmoneyn - - - - - - DECIMAL 10 4 -

SQL_BIGINT - - - - - - DECIMAL - - -

SQL_BIGINT

2 - - - - - - BIGINT - - -

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 8000 - - - - VARCHAR - - Y

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 8000 - - - - VARCHAR - - N

SQL_DATE - - - - - - DATE 4 - -

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_DECIMAL 32 32 0 31 - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

SQL_FLOAT - - - - - - DOUBLE 8 - -

SQL_GUID 1 4000 - - Y - VARCHAR 16 - Y

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_

LONGVARCHAR

- - - - - - CLOB 2147483647 - N

SQL_

LONGVARBINARY

- - - - - - BLOB - - Y

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_REAL - - - - - - DOUBLE 8 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_TIME - - - - - - TIME 3 - -

SQL_TIMESTAMP - - - - - - TIMESTAMP 10 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_VARBINARY 1 8000 - - - - VARCHAR - - Y

SQL_VARCHAR 1 8000 - - - - VARCHAR - - N

text - - - - - - CLOB - - N

timestamp - - - - - - VARCHAR 8 Y

tinyint - - - - - - SMALLINT 2 - -

uniqueidentifier 1 4000 - - Y - VARCHAR 16 - Y

varbinary 1 8000 - - - - VARCHAR - - Y

varchar 1 8000 - - - - VARCHAR - - N

332 Administration Guide for Federated Systems

Table 46. Microsoft SQL Server forward default data type mappings (continued)

Remote Typename Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

Note:

1. This type mapping is valid only with Windows 2000 operating systems.

2. This type mapping is valid only with Microsoft SQL Server Version 2000.

ODBC data sources

The following table lists the forward default data type mappings for ODBC data

sources.

 Table 47. ODBC forward default data type mappings (Not all columns shown)

Remote Typename Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

SQL_BIGINT - - - - - - BIGINT 8 - -

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 32672 - - - - VARCHAR - - Y

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 32672 - - - - VARCHAR - - N

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

SQL_FLOAT - - - - - - DOUBLE 8 - -

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_

LONGVARCHAR

- - - - - - CLOB 2147483647 - N

SQL_

LONGVARBINARY

- - - - - - BLOB - - Y

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_NUMERIC 32 32 0 31 - - DOUBLE 8 - -

SQL_REAL - - - - - - REAL 4 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_TYPE_DATE - - - - - - DATE 4 - -

SQL_TYPE_TIME - - - - - - TIME 3 - -

SQL_TYPE_

TIMESTAMP

- - - - - - TIMESTAMP 10 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_VARBINARY 1 32672 - - - - VARCHAR - - Y

SQL_VARCHAR 1 32672 - - - - VARCHAR - - N

SQL_WCHAR 1 127 - - - - CHAR - - N

SQL_WCHAR 128 16336 - - - - VARCHAR - - N

SQL_WVARCHAR 1 16336 - - - - VARCHAR - - N

SQL_

WLONGVARCHAR

- 1073741823 - - - - CLOB 2147483647 - N

Chapter 30. Federated system and data source mappings 333

Oracle NET8 data sources

The following table lists the forward default data type mappings for Oracle NET8

data sources.

 Table 48. Oracle NET8 forward default data type mappings

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BLOB 0 0 0 0 - \0 BLOB 2147483647 0 Y

CHAR 1 254 0 0 - \0 CHAR 0 0 N

CHAR 255 2000 0 0 - \0 VARCHAR 0 0 N

CLOB 0 0 0 0 - \0 CLOB 2147483647 0 N

DATE 0 0 0 0 - \0 TIMESTAMP 0 0 N

FLOAT 1 126 0 0 - \0 DOUBLE 0 0 N

LONG 0 0 0 0 - \0 CLOB 2147483647 0 N

LONG RAW 0 0 0 0 - \0 BLOB 2147483647 0 Y

NUMBER 10 18 0 0 - \0 BIGINT 0 0 N

NUMBER 1 38 -84 127 - \0 DOUBLE 0 0 N

NUMBER 1 31 0 31 - >= DECIMAL 0 0 N

NUMBER 1 4 0 0 - \0 SMALLINT 0 0 N

NUMBER 5 9 0 0 - \0 INTEGER 0 0 N

NUMBER - 10 0 0 - \0 DECIMAL 0 0 N

RAW 1 2000 0 0 - \0 VARCHAR 0 0 Y

ROWID 0 0 0 NULL - \0 CHAR 18 0 N

TIMESTAMP

1 - - - - - - TIMESTAMP 10 - -

VARCHAR2 1 4000 0 0 - \0 VARCHAR 0 0 N

Note:

1. This type mapping is valid only for Oracle 9i (or later) client and server configurations.

Sybase data sources

The following table lists the forward default data type mappings for Sybase data

sources.

 Table 49. Sybase CTLIB forward default data type mappings

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

binary 1 254 - - - - CHAR - - Y

binary 255 16384 - - - - VARCHAR - - Y

bit - - - - - - SMALLINT - - -

char 1 254 - - - - CHAR - - N

char 255 16384 - - - - VARCHAR - - N

char null (see

varchar)

datetime - - - - - - TIMESTAMP - - -

datetimn - - - - - - TIMESTAMP - - -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 38 0 38 - - DOUBLE - - -

decimaln 1 31 0 31 - - DECIMAL - - -

334 Administration Guide for Federated Systems

Table 49. Sybase CTLIB forward default data type mappings (continued)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

decimaln 32 38 0 38 - - DOUBLE - - -

float - 4 - - - - REAL - - -

float - 8 - - - - DOUBLE - - -

floatn - 4 - - - - REAL - - -

floatn - 8 - - - - DOUBLE - - -

image - - - - - - BLOB - - -

int - - - - - - INTEGER - - -

intn - - - - - - INTEGER - - -

money - - - - - - DECIMAL 19 4 -

moneyn - - - - - - DECIMAL 19 4 -

nchar 1 254 - - - - CHAR - - N

nchar 255 16384 - - - - VARCHAR - - N

nchar null (see

nvarchar)

numeric 1 31 0 31 - - DECIMAL - - -

numeric 32 38 0 38 - - DOUBLE - - -

numericn 1 31 0 31 - - DECIMAL - - -

numericn 32 38 0 38 - - DOUBLE - - -

nvarchar 1 16384 - - - - VARCHAR - - N

real - - - - - - REAL - - -

smalldatetime - - - - - - TIMESTAMP - - -

smallint - - - - - - SMALLINT - - -

smallmoney - - - - - - DECIMAL 10 4 -

sysname 1 254 - - - - CHAR - - N

text - - - - - - CLOB - - -

timestamp - - - - - - VARCHAR 8 - Y

tinyint - - - - - - SMALLINT - - -

unichar1 1 254 - - - - CHAR - - N

unichar1 255 16384 - - - - VARCHAR - - N

unichar null

(see

univarchar)

univarchar1 1 16384 - - - - VARCHAR - - N

varbinary 1 16384 - - - - VARCHAR - - Y

varchar 1 16384 - - - - VARCHAR - - N

Note:

1. Valid for non-Unicode federated databases.

Teradata data sources

The following table lists the forward default data type mappings for Teradata data

sources.

Chapter 30. Federated system and data source mappings 335

Table 50. Teradata forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BYTE 1 254 - - - - CHAR - - Y

BYTE 255 32672 - - - - VARCHAR - - Y

BYTE 32673 64000 - - - - BLOB - - -

BYTEINT - - - - - - SMALLINT - - -

CHAR 1 254 - - - - CHARACTER - - -

CHAR 255 32672 - - - - VARCHAR - - -

CHAR 32673 64000 - - - - CLOB - - -

DATE - - - - - - DATE - - -

DECIMAL 1 18 0 18 - - DECIMAL - - -

DOUBLE

PRECISION

- - - - - - DOUBLE - - -

FLOAT - - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - - -

GRAPHIC 128 16336 - - - - VARGRAPHIC - - -

GRAPHIC 16337 32000 - - - - DBCLOB - - -

INTEGER - - - - - - INTEGER - - -

INTERVAL - - - - - - CHAR - - -

NUMERIC 1 18 0 18 - - DECIMAL - - -

REAL - - - - - - DOUBLE - - -

SMALLINT - - - - - - SMALLINT - - -

TIMESTAMP - - - - - - TIMESTAMP - - -

VARBYTE 1 32762 - - - - VARCHAR - - Y

VARBYTE 32763 64000 - - - - BLOB - - -

VARCHAR 1 32672 - - - - VARCHAR - - -

VARCHAR 32673 64000 - - - - CLOB - - -

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - - -

VARGRAPHIC 16337 32000 - - - - DBCLOB - - -

Default reverse data type mappings

For most data sources, the default type mappings are in the wrappers.

The two kinds of mappings between data source data types and federated

database data types are forward type mappings and reverse type mappings. In a

forward type mapping, the mapping is from a remote type to a comparable local

type. The other type of mapping is a reverse type mapping, which is used with

transparent DDL to create or modify remote tables.

The default type mappings for DB2 family data sources are in the DRDA wrapper.

The default type mappings for Informix are in the INFORMIX wrapper, and so

forth.

When you define a remote table or view to the federated database, the definition

includes a reverse type mapping. The mapping is from a local federated database

336 Administration Guide for Federated Systems

data type for each column, and the corresponding remote data type. For example,

there is a default reverse type mapping in which the local type REAL points to the

Informix type SMALLFLOAT.

Federated databases do not support mappings for LONG VARCHAR, LONG

VARGRAPHIC, DATALINK, and user-defined types.

When you use the CREATE TABLE statement to create a remote table, you specify

the local data types you want to include in the remote table. These default reverse

type mappings will assign corresponding remote types to these columns. For

example, suppose that you use the CREATE TABLE statement to define an

Informix table with a column C2. You specify BIGINT as the data type for C2 in

the statement. The default reverse type mapping of BIGINT depends on which

version of Informix you are creating the table on. The mapping for C2 in the

Informix table will be to DECIMAL in Informix Version 8 and to INT8 in Informix

Version 9.

You can override a default reverse type mapping, or create a new reverse type

mapping with the CREATE TYPE MAPPING statement.

The following tables show the default reverse mappings between federated

database local data types and remote data source data types.

These mappings are valid with all the supported versions, unless otherwise noted.

DB2 Database for Linux, UNIX, and Windows data sources

The following table lists the reverse default data type mappings for DB2 Database

for Linux, UNIX, and Windows data sources.

 Table 51. DB2 Database for Linux, UNIX, and Windows reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Federated

Bit Data

BIGINT - 8 - - - - BIGINT - - -

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHAR - - N

CHARACTER - - - - Y - CHAR - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - DOUBLE - - -

FLOAT - 8 - - - - DOUBLE - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - - - - - - REAL - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - N

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPH - - - - - - VARGRAPHIC - - N

Chapter 30. Federated system and data source mappings 337

Table 51. DB2 Database for Linux, UNIX, and Windows reverse default data type mappings (Not all columns

shown) (continued)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Federated

Bit Data

VARGRAPHIC - - - - - - VARGRAPHIC - - -

DB2 for iSeries data sources

The following table lists the reverse default data type mappings for DB2 for iSeries

data sources.

 Table 52. DB2 for iSeries reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operations

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHARACTER - - N

CHARACTER - - - - Y - CHARACTER - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - NUMERIC - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - FLOAT - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - N

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPHIC - - - - - - VARG - - N

DB2 for VM and VSE data sources

The following table lists the reverse default data type mappings for DB2 for VM

and VSE data sources.

 Table 53. DB2 for VM and VSE reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHAR - - -

CHARACTER - - - - Y - CHAR - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

338 Administration Guide for Federated Systems

Table 53. DB2 for VM and VSE reverse default data type mappings (Not all columns shown) (continued)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

DOUBLE - 8 - - - - FLOAT - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - REAL - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - -

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPH - - - - - - VARGRAPH - - N

DB2 for z/OS data sources

The following table lists the reverse default data type mappings for DB2 for z/OS

data sources.

 Table 54. DB2 for z/OS reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHAR - - N

CHARACTER - - - - Y - CHAR - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - DOUBLE - - –

FLOAT - 8 - - - - DOUBLE - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - REAL - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - N

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPHIC - - - - - - VARGRAPHIC - - N

Informix data sources

The following table lists the reverse default data type mappings for Informix data

sources.

Chapter 30. Federated system and data source mappings 339

Table 55. Informix reverse default data type mappings

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BIGINT

1 - - - - - - DECIMAL 19 - -

BIGINT

2 - - - - - - INT8 - - -

BLOB 1 2147483647 - - - - BYTE - - -

CHARACTER - - - - N - CHAR - - -

CHARACTER - - - - Y - BYTE - - -

CLOB 1 2147483647 - - - - TEXT - - -

DATE - 4 - - - - DATE - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - SMALLFLOAT - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - DATETIME 6 10 -

TIMESTAMP - 10 - - - - DATETIME 0 15 -

VARCHAR 1 254 - - N - VARCHAR - - -

VARCHAR

1 255 32672 - - N - TEXT - - -

VARCHAR - - - - Y - BYTE - - -

VARCHAR

2 255 2048 - - N - LVARCHAR - - -

VARCHAR

2 2049 32672 - - N - TEXT - - -

Note:

1. This type mapping is valid only with Informix server Version 8 (or lower).

2. This type mapping is valid only with Informix server Version 9 (or higher).

For the Informix DATETIME data type, the federated server uses the Informix high-level qualifier as the REMOTE_LENGTH and

the Informix low-level qualifier as the REMOTE_SCALE.

The Informix qualifiers are the ″TU_″ constants defined in the Informix Client SDK datatime.h file. The constants are:

0 = YEAR 8 = MINUTE 13 = FRACTION(3)

2 = MONTH 10 = SECOND 14 = FRACTION(4)

4 = DAY 11 = FRACTION(1) 15 = FRACTION(5)

6 = HOUR 12 = FRACTION(2)

Microsoft SQL Server data sources

The following table lists the reverse default data type mappings for Microsoft SQL

Server data sources.

 Table 56. Microsoft SQL Server reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BIGINT

1 - - - - - - bigint - - -

BLOB - - - - - - image - - -

CHARACTER - - - - Y - binary - - -

CHARACTER - - - - N - char - - -

CLOB - - - - - - text - - -

DATE - 4 - - - - datetime - - -

340 Administration Guide for Federated Systems

Table 56. Microsoft SQL Server reverse default data type mappings (Not all columns shown) (continued)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

DECIMAL - - - - - - decimal - - -

DOUBLE - 8 - - - - float - - -

INTEGER - - - - - - int - - -

SMALLINT - - - - - - smallint - - -

REAL - 4 - - - - real - - -

TIME - 3 - - - - datetime - - -

TIMESTAMP - 10 - - - - datetime - - -

VARCHAR 1 8000 - - N - varchar - - -

VARCHAR 8001 32672 - - N - text - - -

VARCHAR 1 8000 - - Y - varbinary - - -

VARCHAR 8001 32672 - - Y - image - - -

Note:

1. This type mapping is valid only with Microsoft SQL Server Version 2000.

Oracle NET8 data sources

The following table lists the reverse default data type mappings for Oracle NET8

data sources.

 Table 57. Oracle NET8 reverse default data type mappings

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BIGINT 0 8 0 0 N \0 NUMBER 19 0 N

BLOB 0 2147483647 0 0 Y \0 BLOB 0 0 Y

CHARACTER 1 254 0 0 N \0 CHAR 0 0 N

CHARACTER 1 254 0 0 Y \0 RAW 0 0 Y

CLOB 0 2147483647 0 0 N \0 CLOB 0 0 N

DATE 0 4 0 0 N \0 DATE 0 0 N

DECIMAL 0 0 0 0 N \0 NUMBER 0 0 N

DOUBLE 0 8 0 0 N \0 FLOAT 126 0 N

FLOAT 0 8 0 0 N \0 FLOAT 126 0 N

INTEGER 0 4 0 0 N \0 NUMBER 10 0 N

REAL 0 4 0 0 N \0 FLOAT 63 0 N

SMALLINT 0 2 0 0 N \0 NUMBER 5 0 N

TIME 0 3 0 0 N \0 DATE 0 0 N

TIMESTAMP

1 0 10 0 0 N \0 DATE 0 0 N

TIMESTAMP

2 0 10 0 0 N \0 TIMESTAMP 6 0 N

VARCHAR 1 4000 0 0 N \0 VARCHAR2 0 0 N

VARCHAR 1 2000 0 0 Y \0 RAW 0 0 Y

Note:

1. This type mapping is valid only with Oracle Version 8.

2. This type mapping is valid only with Oracle Version 9 and Version 10.

Chapter 30. Federated system and data source mappings 341

Sybase data sources

The following table lists the reverse default data type mappings for Sybase data

sources.

 Table 58. Sybase CTLIB default reverse data type mappings

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BIGINT - - - - - - decimal 19 0 -

BLOB - - - - - - image - - -

CHARACTER - - - - N - char - - -

CHARACTER - - - - Y - binary - - -

CLOB - - - - - - text - - -

DATE - - - - - - datetime - - -

DECIMAL - - - - - - decimal - - -

DOUBLE - - - - - - float - - -

INTEGER - - - - - - integer - - -

REAL - - - - - - real - - -

SMALLINT - - - - - - smallint - - -

TIME - - - - - - datetime - - -

TIMESTAMP - - - - - - datetime - - -

VARCHAR1 1 255 - - N - varchar - - -

VARCHAR1 256 32672 - - N - text - - -

VARCHAR

2 1 16384 - - N - varchar - - -

VARCHAR

2 16385 32672 - - N - text - - -

VARCHAR1 1 255 - - Y - varbinary - - -

VARCHAR1 256 32672 - - Y - image - - -

VARCHAR

2 1 16384 - - Y - varbinary - - -

VARCHAR

2 16385 32672 - - Y - image - - -

Note:

1. This type mapping is valid only for CTLIB with Sybase server version 12.0 (or earlier).

2. This type mapping is valid only for CTLIB with Sybase server version 12.5 (or later).

Teradata data sources

The following table lists the reverse default data type mappings for Teradata data

sources.

 Table 59. Teradata reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BLOB

1 1 64000 - - - - VARBYTE - - -

CHARACTER - - - - - - CHARACTER - - -

CHARACTER - - - - Y - BYTE - - -

CLOB

2 1 64000 - - - VARCHAR - - -

DATE - - - - - - DATE - - -

DBCLOB

3 1 32000 - - - - VARGRAPHIC - - -

DECIMAL 1 18 0 18 - - DECIMAL - - -

DECIMAL 19 31 0 31 - - FLOAT - - -

342 Administration Guide for Federated Systems

Table 59. Teradata reverse default data type mappings (Not all columns shown) (continued)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

DOUBLE - - - - - - FLOAT - - -

GRAPHIC - - - - - - GRAPHIC - - -

INTEGER - - - - - - INTEGER - - -

REAL - - - - - - FLOAT - - -

SMALLINT - - - - - - SMALLINT - - -

TIME - - - - - - TIME - - -

TIMESTAMP - - - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - -

VARCHAR - - - - Y - VARBYTE - - -

VARGRAPHIC - - - - - - VARGRAPHIC - - -

Note:

1. The Teradata VARBYTE data type can contain only the specified length (1 to 64000) of a BLOB data type.

2. The Teradata VARCHAR data type can contain only the specified length (1 to 64000) of a CLOB data type.

3. The Teradata VARGRAPHIC data type can contain only the specified length (1 to 32000) of a DBCLOB data type.

Unicode default data type mappings

Unicode default forward data type mappings - Microsoft SQL

Server wrapper

The following table lists the default forward data type mapping for the Microsoft

SQL Server wrapper when the federated database is a Unicode database.

 Table 60. Unicode default forward data type mappings for the Microsoft SQL Server wrapper

UTF-8 Microsoft SQL Server

Data type Data type Length

CHAR CHAR 1 to 254 bytes

VARCHAR CHAR 255 to 8000 bytes

VARCHAR 1 to 8000 bytes

CLOB TEXT -

GRAPHIC NCHAR 1 to 127 characters

VARGRAPHIC NCHAR 128 to 16336 characters

NVARCHAR 1 to 16336 characters

DBCLOB NTEXT -

Unicode default reverse data type mappings - Microsoft SQL

Server wrapper

The following table lists the default reverse data type mapping for the Microsoft

SQL Server wrapper when the federated database is a Unicode database.

Chapter 30. Federated system and data source mappings 343

Table 61. Unicode default reverse data type mappings for the Microsoft SQL Server wrapper

UTF-8 Microsoft SQL Server

Data type Length Data type

CHAR 1 to 254 bytes CHAR

VARCHAR 1 to 32672 bytes VARCHAR

CLOB 1 to 2 147 483 647 bytes TEXT

GRAPHIC 1 to 127 characters NCHAR

VARGRAPHIC 1 to 16336 characters NVARCHAR

DBCLOB 1 to 1 073 741 823 characters NTEXT

Unicode default forward data type mappings - NET8 wrapper

The following table lists the default forward data type mapping for the NET8

wrapper when the federated database is a Unicode database.

 Table 62. Unicode default forward data type mappings for the NET8 wrapper

UTF-8 Oracle

Data type Data type Length

CHAR CHAR 1 to 254 bytes

VARCHAR CHAR 255 to 2000 bytes

VARCHAR2 1 to 4000 bytes

DBCLOB NCLOB

GRAPHIC NCHAR 1 to 127 characters

VARGRAPHIC NCHAR 128 to 1000 characters

NVARCHAR2 1 to 2000 characters

Unicode default reverse data type mappings - NET8 wrapper

The following table lists the default reverse data type mapping for the NET8

wrapper when the federated database is a Unicode database.

 Table 63. Unicode default reverse data type mappings for the NET8 wrapper

UTF-8 Oracle

Data type Length Data type

CHAR 1 to 254 bytes CHAR

VARCHAR 1 to 4000 bytes VARCHAR2

CLOB 1 to 2 147 483 647 bytes CLOB

GRAPHIC 1 to 127 characters NCHAR

VARGRAPHIC 1 to 2000 characters NVARCHAR2

DBCLOB 1 to 1 073 741 823 characters NCLOB

Unicode default forward data type mappings - ODBC wrapper

The following table lists the default forward data type mapping for the ODBC

wrapper when the federated database is a Unicode database.

344 Administration Guide for Federated Systems

Table 64. Unicode default forward data type mappings for the ODBC wrapper

UTF-8 ODBC

Data type Data type Length

CHAR SQL_CHAR 1 to 254 bytes

VARCHAR SQL_CHAR 255 to 32672 bytes

SQL_VARCHAR 1 to 32672 bytes

CLOB SQL_LONGVARCHAR -

GRAPHIC SQL_WCHAR 1 to 127 characters

VARGRAPHIC SQL_WVARCHAR 128 to 16336 characters

SQL_WVARCHAR 1 to 16336 characters

DBCLOB SQL_WLONGVARCHAR -

Unicode default reverse data type mappings - ODBC wrapper

The following table lists the default reverse data type mapping for the ODBC

wrapper when the federated database is a Unicode database.

 Table 65. Unicode default reverse data type mappings for the ODBC wrapper

UTF-8 ODBC

Data type Length Data type

CHAR 1 to 254 bytes SQL_CHAR

VARCHAR 1 to 32672 bytes SQL_VARCHAR

CLOB 1 to 2 147 483 647 bytes SQL_LONGVARCHAR

GRAPHIC 1 to 127 characters SQL_WCHAR

VARGRAPHIC 1 to 16336 characters SQL_WVARCHAR

DBCLOB 1 to 1 073 741 823 characters SQL_WLONGVARCHAR

Unicode default forward data type mappings - Sybase wrapper

The following table lists the default forward data type mapping for the CTLIB

wrapper when the federated database is a Unicode database.

 Table 66. Unicode default forward data type mappings for the Sybase CTLIB wrapper

UTF-8 Sybase

Data type Data type Length

CHAR char 1 to 254 bytes

nchar 1 to 127 characters

VARCHAR char 255 to 32672 bytes

varchar 1 to 32672 bytes

nchar 128 to 16336 characters

nvarchar 1 to 16336 characters

CLOB text

GRAPHIC unichar 1 to 127 characters

VARGRAPHIC unichar 128 to 16336 characters

univarchar 1 to 16336 characters

Chapter 30. Federated system and data source mappings 345

Unicode default reverse data type mappings - Sybase wrapper

The following table lists the default reverse data type mapping for the CTLIB

wrapper when the federated database is a Unicode database.

 Table 67. Unicode default reverse data type mappings for the Sybase CTLIB wrapper

UTF-8 Sybase

Data type Length Data type

CHAR 1 to 254 bytes char

VARCHAR 1 to 32672 bytes varchar

CLOB 1 to 2 147 483 647 bytes text

GRAPHIC 1 to 127 characters unichar

VARGRAPHIC 1 to 16336 characters univarchar

Data types supported for nonrelational data sources

For most of the nonrelational data sources, you must specify the column

information, including data type, when you create the nicknames to access the data

source.

Some of the nonrelational wrappers create all of the columns required to access a

data source. These are called fixed columns. Other wrappers let you specify some or

all of the data types for the columns in the CREATE NICKNAME statement.

The following sections list the wrappers that you can specify the data types for,

and the data types that the wrapper supports.

Data types supported by the BioRS wrapper

The following table lists the DB2 data types that the BioRS wrapper supports.

 Table 68. BioRS data types that map to DB2 data types

BioRS data types DB2 data type

CHARACTER

CLOB

VARCHAR

Data types supported by the BLAST wrapper

Some of the data types are automatically set for the fixed columns that the BLAST

wrapper creates.

For the definition line fields, you can assign when you create a nickname. If the

data in the definition line column is not compatible with the local column data

type, you will get an error. For example, if you define a definition line column of

type INTEGER and there are values in the column that are not numeric, an error is

returned.

346 Administration Guide for Federated Systems

The following table lists the DB2 data types that the BLAST wrapper supports.

 Table 69. BLAST data types that map to DB2 data types

BLAST data types DB2 data type

definition line CLOB (maximum length is 5 megabytes)

definition line DOUBLE

definition line FLOAT

definition line INTEGER

definition line VARCHAR

Data types supported by the Entrez wrapper

The following table lists the DB2 data types that the Entrez wrapper supports.

 Table 70. Entrez data types that map to DB2 data types

Entrez data types DB2 data type

CHARACTER

CLOB (maximum length is 5 megabytes)

DATE

DECIMAL

DOUBLE

INTEGER

REAL

SMALLINT

TIMESTAMP

VARCHAR

Data types supported by the Excel wrapper

The following table lists the DB2 data types that the Excel wrapper supports.

 Table 71. Excel data types that map to DB2 data types

Excel data types DB2 data type

DATE

FLOAT

INTEGER

VARCHAR

Data types supported by the HMMER wrapper

The following table lists the DB2 data types that the HMMER wrapper supports.

 Table 72. HMMER data types that map to DB2 data types

HMMER data types DB2 data type

CLOB (maximum length is 5 megabytes)

DOUBLE

Chapter 30. Federated system and data source mappings 347

Table 72. HMMER data types that map to DB2 data types (continued)

HMMER data types DB2 data type

FLOAT

INTEGER

VARCHAR

Data types supported by the Script wrapper

The following table lists the DB2 data types that the Script wrapper supports.

 Table 73. Script data types that map to DB2 data types

Script data types DB2 data type

CLOB (maximum length is 5 megabytes)

DATE

DOUBLE

INTEGER

VARCHAR

Data types supported by the table-structured file wrapper

The following table lists the DB2 data types that the table-structured file wrapper

supports.

 Table 74. Table-structured file data types that map to DB2 data types

Table-structured file data types DB2 data type

CHARACTER

CLOB (maximum length is 5 megabytes)

DECIMAL

DOUBLE

FLOAT

INTEGER

REAL

SMALLINT

VARCHAR

Data types supported by the Web services wrapper

The following table lists the DB2 data types that the Web services wrapper

supports. The Web services wrapper uses XML data types.

 Table 75. XML data types that map to DB2 data types for the Web services wrapper

XML data types DB2 data type

BIGINT

CHARACTER

CHARACTER FOR BIT DATA

CLOB (maximum length is 5 megabytes)

348 Administration Guide for Federated Systems

Table 75. XML data types that map to DB2 data types for the Web services

wrapper (continued)

XML data types DB2 data type

DATE

DECIMAL

DOUBLE

FLOAT

INTEGER

REAL

TIME

TIMESTAMP

SMALLINT

VARCHAR

VARCHAR FOR BIT DATA

Data types supported by the WebSphere Business Integration

wrapper

The following table lists the DB2 data types that the WebSphere Business

Integration wrapper supports. The WebSphere Business Integration wrapper uses

XML data types.

 Table 76. XML data types that map to DB2 data types for the WebSphere Business

Integration wrapper

XML data types DB2 data type

BIGINT

CHARACTER

CHARACTER FOR BIT DATA

CLOB (limited to 5 megabytes)

DATE

DECIMAL

DOUBLE

FLOAT

INTEGER

REAL

TIME

TIMESTAMP

SMALLINT

VARCHAR

VARCHAR FOR BIT DATA

Chapter 30. Federated system and data source mappings 349

Data types supported by the XML wrapper

The following table lists the DB2 data types that the XML wrapper supports.

 Table 77. XML data types that map to DB2 data types for the XML wrapper

XML data types DB2 data type

CHARACTER

CHARACTER FOR BIT DATA

CLOB (maximum length is 5 megabytes)

DATE

DECIMAL

DOUBLE

FLOAT

INTEGER

REAL

SMALLINT

VARCHAR

VARCHAR FOR BIT DATA

350 Administration Guide for Federated Systems

Accessing information about IBM

IBM has several methods for you to learn about products and services.

You can find the latest information on the Web at www.ibm.com/software/data/
integration/db2ii/support.html:

v Product documentation in PDF and online information centers

v Product downloads and fix packs

v Release notes and other support documentation

v Web resources, such as white papers and IBM Redbooks™

v Newsgroups and user groups

v Book orders

To access product documentation, go to this site:

publib.boulder.ibm.com/infocenter/db2help/topic/

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at

www.ibm.com/shop/publications/order.

v To order publications by telephone in the United States, call 1-800-879-2755.

To find your local IBM representative, go to the IBM Directory of Worldwide

Contacts at www.ibm.com/planetwide.

Contacting IBM

You can contact IBM by telephone for customer support, software services, and

general information.

Customer support

To contact IBM customer service in the United States or Canada, call

1-800-IBM-SERV (1-800-426-7378).

Software services

To learn about available service options, call one of the following numbers:

v In the United States: 1-888-426-4343

v In Canada: 1-800-465-9600

General information

To find general information in the United States, call 1-800-IBM-CALL

(1-800-426-2255).

Go to www.ibm.com for a list of numbers outside of the United States.

© Copyright IBM Corp. 1998, 2006 351

http://www.ibm.com/software/data/integration/db2ii/support.html
http://www.ibm.com/software/data/integration/db2ii/support.html
http://publib.boulder.ibm.com/infocenter/db2help/topic/
http://www.ibm.com/planetwide
http://www.ibm.com

Accessible documentation

Documentation is provided in XHTML format, which is viewable in most Web

browsers.

XHTML allows you to view documentation according to the display preferences

that you set in your browser. It also allows you to use screen readers and other

assistive technologies.

Syntax diagrams are provided in dotted decimal format. This format is available

only if you are accessing the online documentation using a screen reader.

Providing comments on the documentation

Please send any comments that you have about this information or other

documentation.

Your feedback helps IBM to provide quality information. You can use any of the

following methods to provide comments:

v Send your comments using the online readers’ comment form at

www.ibm.com/software/awdtools/rcf/.

v Send your comments by e-mail to comments@us.ibm.com. Include the name of

the product, the version number of the product, and the name and part number

of the information (if applicable). If you are commenting on specific text, please

include the location of the text (for example, a title, a table number, or a page

number).

352 Administration Guide for Federated Systems

http://www.ibm.com/software/awdtools/rcf/

Notices and trademarks

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2006 353

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

354 Administration Guide for Federated Systems

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM trademarks and certain non-IBM trademarks are marked at their first

occurrence in this document.

See http://www.ibm.com/legal/copytrade.shtml for information about IBM

trademarks.

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Intel Inside® (logos), MMX and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names might be trademarks or service marks of

others.

Notices and trademarks 355

http://www.ibm.com/legal/copytrade.shtml

356 Administration Guide for Federated Systems

Index

A
access plan 217

access plans 212

asynchrony optimization 221

description 10

evaluation decisions 193

optimization decisions 203

performance 203

viewing 192, 202

accessibility 352

ACCOUNTING_STRING user option
valid settings 323

ALTER NICNAME statement
example

local data type 49

ALTER WRAPPER statement 21

altering 21

long data types 51

application programs 62

applications
nicknames in 243

architecture
federated two-phase commit 105

assignments
federated 136

asynchronous processing
description 219

enabling 225

examples 219

optimization 230

restrictions 230

atomicity 111

preserving in statements 132

B
BioRS

data types, supported 346

BLAST
data types, supported 346

nicknames, valid objects for 15

supported versions 6

built-in functions 17

business applications
data types, supported 346

C
Cache Table wizard 238

wizards 238

cache tables 236

altering 239

archive logging 238

Cache Table wizard 238

creating 238

data sources 238

description 237

disable 241

dropping 242

enable 241

cache tables (continued)
materialized query tables 240

modifying 239

prerequisites 238

replication 237

routing queries 240

schedules, replication 237

view settings 239

caching 233, 234, 245

catalog
See global catalog 289

catalog, tools 160

character sets
description 18

CLP (command line processor)
federated functions 4

code pages 179, 181, 182

description 18

CODEPAGE option 181

collating sequences
description 18

overview 186

planning 18

COLLATING_SEQUENCE server option
example 18

global optimization, affecting 197

pushdown opportunities,

affecting 186

valid settings 304

column options
description 16

pushdown analysis, affecting 190

valid settings 291

COMM_RATE server option
global optimization, affecting 197

valid settings 304

Command Center
using for federated 4

command line processor (CLP)
federated functions 4

comments on documentation 352

compensation, description 11

computational partition groups 215

configuring
federated two-phase commit 114

configuring data sources
nickname options 299

connection level isolation
federated systems 253

CONNECTSTRING server option
valid settings 304

contacting IBM 351

Control Center
interface for federated systems 4

CPU_RATIO server option
global optimization, affecting 197

valid settings 304

CREATE FUNCTION (Sourced or

Template) statement 54, 55

CREATE FUNCTION MAPPING

statement 53, 54, 59

CREATE INDEX statement 18, 65

CREATE NICKNAME statement 45

CREATE PROCEDURE (Sourced)

statement
examples 81

federated procedures 77

CREATE SERVER statement 2

CREATE TYPE MAPPING statement 44,

46, 47

CURRENT FEDERATED ASYNCHRONY

special register 225

D
data access

federated views 145

data access with nicknames 139

data source objects 143

description 14

valid object types 15

data source requirements for federated

two-phase commit 116

data sources 3, 10

collating sequence and

performance 197

communication rate and

performance 197

creating nicknames 144

default wrapper names 13

description 2

I/O speed and performance 197

processor speed and

performance 197

remote plan hints and

performance 197

requirements for federated two-phase

commit 116

valid server types 319

data type mappings
description 17

for a specific data source object 49

for a specific data source type 46

for a specific server 47

for a specific server type and

version 47

forward 327

description 45

in a federated system 43

nonrelational 45

pushdown analysis, affecting 186

reverse 336

description 45

situations requiring new

mappings 44

syntax 45

unsupported data types 43

when to create 43

data types 94

for nonrelational data sources 346

pushdown analysis, affecting 190

unsupported 17

© Copyright IBM Corp. 1998, 2006 357

DATALINK data type
unsupported 17

DATEFORMAT server option
valid settings 304

DB2
tools catalog 160

DB2 for iSeries
default forward type mappings 327

default reverse type mappings 336

default wrapper name 13

federated LOB support 255

nicknames, valid objects for 15

supported versions 6

valid server types 319

DB2 for Linux, UNIX and Windows
default forward type mappings 327

default reverse type mappings 336

default wrapper name 13

federated LOB support 255

supported versions 6

valid server types 319

DB2 for VM and VSE
default forward type mappings 327

default reverse type mappings 336

default wrapper name 13

federated LOB support 255

nicknames, valid objects for 15

supported versions 6

valid server types 319

DB2 for z/OS
default wrapper name 13

nicknames, valid objects for 15

supported versions 6

DB2 for z/OS and OS/390
default forward type mappings 327

default reverse type mappings 336

federated LOB support 255

valid server types 319

DB2 Version 9.1 for Linux, UNIX and

Windows
nicknames, valid objects for 15

DB2_FENCED wrapper option
valid settings 324

DB2_MAX_ASYNC_REQUESTS_PER_

QUERY server option 225, 228

DB2_MAXIMAL_PUSHDOWN server

option
pushdown analysis decisions 192

pushdown opportunities,

affecting 186

valid settings 304

DB2_SOURCE_CLIENT_MODE wrapper

option
valid settings 324

DB2_UM_PLUGIN server option
valid settings 304

DB2_UM_PLUGIN wrapper option
valid settings 324

db2exfmt tool
viewing access plans 192, 202

db2expln tool
viewing access plans 192, 202

DBNAME server option
valid settings 304

DDL
federated two-phase commit 111

DELETE statement 131

DELETE statement (continued)
access plan evaluation decisions 193

DISABLE function mapping option
valid settings 298

distributed database management

system 1

Distributed Relational Database

Architecture (DRDA)
configuring for federated two-phase

commit 117

distributed units of work
tracing across data sources 125

documentation
accessible 352

ordering 351

Web site 351

DUOW
see distributed units of work 125

dynexpln tool
viewing access plans 192, 202

E
EMAIL wrapper option

valid settings 324

enabling
federated two-phase commit 114

Entrez
nicknames, valid objects for 15

supported versions 6

error tolerance
data source support 169

description 167

enabling 168

example 169

restrictions 170

examples 138

CREATE PROCEDURE (Sourced) 81

federated two-phase commit 107

IMPORT command 166

Excel files
data types, supported 346

nicknames, valid objects for 15

supported versions 6

Explain facility 208

explain tools 217

EXPORT command
nicknames, using with 165, 166

F
federated assignment semantics

examples 138

federated database
local objects 139

wrapper modules 3

wrappers 3

federated databases
description 3

system catalog 10

federated procedures
calling 86

calling, authorizations 87

catalog views 85

CREATE PROCEDURE (Sourced)

statement 77

federated procedures (continued)
creating 77

discovering 78

dropping 88

examples, CREATE PROCEDURE

(Sourced) statement 81

overview 73

parameters, data types 80

parameters, input and output 86

parameters, locating 85

privileges, granting 83

privileges, revoking 83

REFCURSOR parameters 81

restrictions 73

troubleshooting 88

federated server 2

description 2

federated statistics
updating 155

federated stored procedures 73

federated systems
connection level isolation 253

isolation levels 251

overview 1

statement level isolation 252

federated two-phase commit
allowed operations 111

architecture 105

atomicity 111

configurations 111

configuring 114

data source requirements 116

DDL 111

enabling 114

examples 107

improving performance 128

overview 104

performance 128

planning 105

transparent DDL 111

federated two-phase commit 111

troubleshooting 123

federated views
create 146

data access 145

FEDERATED_ASYNC configuration

parameter 225, 226

FEDERATED_ASYNCHRONY bind

option 225, 227

flat files
See also table-structured files 6

FOLD_ID server option
valid settings 304

FOLD_PW server option
valid settings 304

forward type mappings
default mappings 327

description 45

Unicode 343, 344, 345

function mappings
creating 59

default mappings 53

description 17, 54

mapping to UDFs 54

options
valid settings 298

pushdown analysis, affecting 186

358 Administration Guide for Federated Systems

function templates
description 55

predicate pushdown 196

G
global catalog 43

description 10

updating statistics 196

views containing federated

information 289

global optimization 196

description 197

server characteristics, affecting 197

GROUP BY operator
access plan evaluation decisions 193

access plan optimization

decisions 203

H
Health Center

health indicators 171

health snapshot 173

heuristic operations
resolving indoubt transactions

federated systems 124

HMMER data source
data types, supported 346

nicknames, valid objects for 15

supported versions 6

I
IFILE server option

valid settings 304

IGNORE_UDT server option
valid settings 304

IMPORT command
nicknames, examples 166

nicknames, restrictions 165

nicknames, using with 165

index specifications
description 18

federated 65

indoubt transactions
recovering 123

resolving
federated systems 124

resynchronizing for federated

systems 123

tracing distributed units of work 125

informational constraints
nicknames 150, 152

informational constraints on

nicknames 151

Informix
configuring for federated two-phase

commit 119

default forward type mappings 327

default reverse type mappings 336

default wrapper name 13

federated LOB support 255

nicknames, valid objects for 15

supported versions 6

valid server types 319

INFORMIX_CLIENT_LOCALE server

option
valid settings 304

INFORMIX_DB_LOCALE server option
valid settings 304

INFORMIX_LOCK_MODE server option
valid settings 304

INITIAL_INSTS function mapping option
valid settings 298

INITIAL_IOS function mapping option
valid settings 298

INSERT statement 131

access plan evaluation decisions 193

INSTS_PER_ARGBYTE function mapping

option
valid settings 298

INSTS_PER_INVOC function mapping

option
valid settings 298

inter-partition parallelism 207

federated 209, 212, 215, 216

intra-partition parallelism 207

federated 207

federated access plans 208

IO_RATIO server option
global optimization, affecting 197

valid settings 304

IOS_PER_ARGBYTE function mapping

option
valid settings 298

IOS_PER_INVOC function mapping

option
valid settings 298

isolation levels
federated systems 251

IUD_APP_SVPT_ENFORCE server option
examples 132

valid settings 304

J
joins

access plan optimization

decisions 203

K
KEGG data source

supported versions 6

L
large object (LOB) data types

locators 256

performance considerations 256

restrictions 256

update operations 132

legal notices 353

LOB (large object) data types
locators 256

restrictions 256

update operations 132

local catalog
See global catalog 10

local objects 139

local updates 102

lock request clause 252

LOGIN_TIMEOUT server option
valid settings 304

LONG data types 51

M
materialized query tables

adding to cache tables 240

cache tables 237

dropping, from cache tables 242

materialized query tables (MQTs) 234,

245

federated
overview 233

nickname restrictions 236

on nicknames 190

Microsoft Excel
See Excel files 6

Microsoft SQL Server
configuring for federated two-phase

commit 120

default forward type mappings 327

default reverse type mappings 336

default wrapper names 13

federated LOB support 255

nicknames, valid objects for 15

supported versions 6

Unicode support 181

valid server types 319

mixed parallelism
federated data sources

access plan 217

data processing 216

overview 207

MODULE wrapper option
valid settings 324

monitor switches
federated 205

MQTs (materialized query tables)
federated

overview 233

nickname restrictions 236

Oracle Label Security (OLS) 236

on nicknames 190

multisite update, federated
see federated two-phase commit 104

N
nested table expressions

error tolerance 167

nickname
retrieval methods 156

nickname column options
description 16

nicknames
accessing data sources 243

cache tables 237

changing
local data type, example 49

constraints 132

creating 144

data access 139, 143

description 14

EXPORT command, restrictions 166

Index 359

nicknames (continued)
EXPORT command, using 165

IMPORT command, examples 166

IMPORT command, restrictions 165

IMPORT command, using 165

informational constraints 150, 151

informational constraints on

nicknames 150

local and remote objects 139

nickname on nickname 147

Oracle Label Security 155

SQL statements 140

statistics 157, 159

multiple nickname 158

single nickname 159

status, updates
DB2 Control Center 160

triggers 139

updating statistics 161

valid data source objects 15

WITH HOLD syntax 139

NODE server option, valid settings 304

nonrelational data sources
specifying data type mappings 17

supported data types 346

NUMERIC_STRING column option
pushdown opportunities,

affecting 190

valid settings 291

O
ODBC

default forward type mappings 327

default wrapper name 13

federated LOB support 255

nicknames, valid objects for 15

supported versions 6

Unicode support 181

valid server types 319

OLE DB
default wrapper name 13

supported versions 6

valid server types 319

OLS (Oracle Label Security)
nickname restrictions

materialized query tables

(MQTs) 236

one-phase commit operations
defined 101

optimization
asynchronous queries 229

server characteristics, affecting 197

optimizer
description 10

options
nicknames 299

Oracle
configuring for federated two-phase

commit 118

default forward type mappings 327

default reverse type mappings 336

default wrapper names 13

federated LOB support 255

nicknames, valid objects for 15

troubleshooting federated two-phase

commit issues 126

Oracle data sources
overloaded procedures 76

Oracle Label Security (OLS)
nickname restrictions

materialized query tables

(MQTs) 236

ORDER BY operator
access plan evaluation decisions 193

overloaded procedures
federated procedures 76

overview
federated two-phase commit 104

P
PACKET_SIZE server option

valid settings 304

parallelism 207, 215, 216

federated 207, 209

parameters
federated procedures 80

pass-through
description 12

LOB support 256

restrictions 12

transaction support for 102

pass-through sessions 145

PASSWORD server option
valid settings 304

PERCENT_ARGBYTES function mapping

option
valid settings 298

performance 150, 185, 191, 215, 216

asynchronous query processing 219

collating sequence 197

collating sequences 186

communication rate 197

CPU speed 197

federated 152, 155, 159, 161, 183

federated two-phase commit 128

improving 128

I/O speed 197

remote plan hints 197

See also - tuning 183

SQL differences 186

PLAN_HINTS server option
global optimization, affecting 197

valid settings 304

planning
federated two-phase commit 105

predicates
access plan evaluation decisions 193

with function templates 196

procedures
federated 73

federated procedures
result sets 73

trusted wrappers 73

federated, creating 77

federated, dropping 88

federated, troubleshooting 88

PROXY_AUTHID user option
valid settings 323

PROXY_PASSWORD user option
valid settings 323

PROXY_SERVER_NAME wrapper option
valid settings 324

PROXY_SERVER_PORT wrapper option
valid settings 324

PROXY_TYPE wrapper option
valid settings 324

pushdown analysis
description 10, 185

nickname characteristics,

affecting 190

predicates with function

templates 196

query characteristics, affecting 191

server characteristics, affecting 186

PUSHDOWN server option
valid settings 304

Q
queries

asynchronous processing 219

cache tables, routing 240

fragments 10

routing, cache tables 240

query optimization
description 10

R
readers’ comment form 352

REFCURSOR parameters
federated procedures 81

referential integrity 132

remote catalog information 10

remote objects, nicknames 139

remote updates 102

REMOTE_AUTHID user option
valid settings 323

REMOTE_DOMAIN user option
valid settings 323

REMOTE_NAME function mapping

option
valid settings 298

REMOTE_PASSWORD user option
valid settings 323

requirements 116

RETURN DATA UNTIL clause 168

reverse type mapping
Unicode 344

reverse type mappings
default mappings 336

description 45

Unicode 344, 345, 346

rules
federated assignment semantic 136

S
savepoints

data source APIs 132

screen readers 352

Script
supported versions 6

server definitions
description 13

server options
asynchrony 225

description 13

360 Administration Guide for Federated Systems

server options (continued)
global optimization, affecting 197

pushdown analysis, affecting 186

temporary 13

valid settings 304

server types
valid federated types 319

set operators
access plan evaluation decisions 193

SET SERVER OPTION statement
setting an option temporarily 13

snapshot monitoring 174

federated nicknames and servers 171

federated query fragments 175

nicknames and servers 173

sorting 18

SQL compiler
flowchart of query analysis 183

in a federated system 10

SQL dialect 145

description 11

pushdown analysis, affecting 186

SQL Explain
viewing access plans 192, 202

SQL statements
nicknames 140

SSL_CLIENT_CERTIFICATE_LABEL user

option
valid settings 323

SSL_KEYSTORE_FILE wrapper option
valid settings 324

SSL_KEYSTORE_PASSWORD wrapper

option
valid settings 324

SSL_VERIFY_SERVER_CERTIFICATE

wrapper option
valid settings 324

statement level isolation
federated systems 252

supported data sources 251

statistics
multiple nicknames 158

nickname 155, 157, 159

retrieval methods 156

single nickname 159

status updates
nicknames 161

stored procedures
nickname statistics 161

strings
collating sequences 18

subscription-set member
cache tables 241

Sybase 126

configuring for federated two-phase

commit 121

default forward type mappings 327

default reverse type mappings 336

default wrapper names 13

federated LOB support 255

nicknames, valid objects for 15

supported versions 6

valid server types 319

syntax, WITH HOLD 139

SYSCAT catalog views 54, 289

SYSPROC.FED_STATS table 161

SYSPROC.NNSTAT stored

procedure 161

SYSSTAT catalog views 289

system monitor switches
federated 205

T
table-structured files

data types, supported 346

nicknames, valid objects for 15

supported versions 6

Unicode support 181, 182

Teradata
default forward type mappings 327

default reverse type mappings 336

default wrapper name 13

federated LOB support 255

nicknames, valid objects for 15

valid server types 319

TIMEFORMAT server option
valid settings 304

TIMEOUT server option
valid settings 304

timestamp monitor switch 205

TIMESTAMPFORMAT server option
valid settings 304

tools catalog, DB2 160

trademarks 355

transactions
overview 101

updates 102

transparent DDL
LOB column lengths 94

transaction support for 102

Triggers 139

troubleshooting
federated two-phase commit 123, 126

troubleshooting federated two-phase

commit issues 126

tuning
catalog statistics 197

collating sequences 186

federated two-phase commit 128

improving performance 128

index specifications 197

materialized query tables 190

nickname column options 190

query processing 183

See also - performance 183

server options 186

two-phase commit
operations 101

two-phase commit for federated

transactions
see federated two-phase commit 104

U
Unicode 179, 181, 182, 343, 344, 345, 346

UPDATE statement 131

access plan evaluation decisions 193

updates
authorizations 131

description 102

local 102

updates (continued)
referential integrity 132

remote 102

restrictions 131

to large objects (LOBs) 132

user mappings
description 14

options 14

valid settings 323

user-defined functions (UDFs) 17

in federated system applications 62

transaction support for 102

user-defined types (UDTs)
unsupported data types 17

V
VARCHAR_NO_TRAILING_ BLANKS

column option
pushdown opportunities,

affecting 190

valid settings 291

VARCHAR_NO_TRAILING_ BLANKS

server option
pushdown opportunities,

affecting 186

valid settings 304

Visual Explain
viewing access plans 192, 202

W
Web services

data types, supported 346

WebSphere Business Integration wrapper
data types, supported 346

WITH HOLD syntax 139

wrapper options
valid settings 324

wrappers
default names 13

description 3

write operations
See updates 102

X
XML

data types, supported 346

nicknames, valid objects for 15

supported versions 6

XML wrapper 183

Index 361

362 Administration Guide for Federated Systems

����

Printed in USA

SC19-1020-00

	Contents
	Chapter 1. Overview of a federated system
	Federated systems
	The federated server
	What is a data source?
	The federated database
	Wrappers and wrapper modules
	How you interact with a federated system
	DB2 command line processor (CLP)
	DB2 Command Center
	DB2 Control Center
	Application programs
	DB2 family tools
	Rational Data Architect
	Web services providers

	Supported data sources
	The federated database system catalog
	The SQL compiler
	The query optimizer
	Compensation
	Pass-through sessions
	Default wrapper names
	Server definitions and server options
	User mappings
	Nicknames and data source objects
	Valid data source objects
	Nickname column options
	Data type mappings
	Function mappings
	Index specifications
	Federated stored procedures
	Collating sequences
	How collating sequences determine sort orders
	Setting the local collating sequence to optimize queries

	Chapter 2. Modifying data source configurations
	Altering a wrapper (DB2 Control Center)
	Altering a wrapper - examples

	Altering a wrapper (DB2 command line)
	Altering server definitions and server options
	Restrictions on altering server definitions
	Altering the data source version in a server definition (DB2 Control Center)
	Altering the data source version in a server definition (DB2 command line)
	Altering all of the server definitions for a specific data source type

	Using server options in server definitions (DB2 Control Center)
	Changing server options temporarily for relational data sources
	The hierarchy of server option settings

	Using server options in server definitions (DB2 command line)
	Altering a user mapping (DB2 Control Center)
	Altering a user mapping (DB2 command line)
	Altering a nickname (DB2 Control Center)
	Restrictions on altering nicknames
	Altering nickname column names (DB2 Control Center)
	Altering nickname column names (DB2 command line)
	Altering nickname options (DB2 Control Center)
	Altering nickname options (DB2 command line)
	Altering nickname column options (DB2 Control Center)
	Altering nickname column options (DB2 command line)

	Altering a nickname (DB2 command line)
	Dropping a wrapper
	Dropping a server definition
	Dropping a user mapping
	Dropping a nickname

	Chapter 3. Data type mappings
	Data type mappings in a federated system
	Data type mappings and the federated database global catalog
	When to create alternative data type mappings
	Data type mappings for nonrelational data sources
	Forward and reverse data type mappings
	Creating data type mappings
	Creating a data type mapping for a data source data type – example
	Creating a type mapping for a data source data type and version – example
	Creating a type mapping for all data source objects on a server – example

	Altering a local type for a data source object (DB2 Control Center)
	Altering a local type for a data source object – examples

	Altering a local type for a data source object (DB2 command line)
	Altering LONG data types to VARCHAR data types

	Chapter 4. Mapping functions and user-defined functions
	Function mappings in a federated system
	When to create your own function mappings
	Why function mappings are important

	How function mappings work in a federated system
	Requirements for mapping user-defined functions (UDFs)
	Function templates
	Creating function templates
	Providing function mapping overhead information to the query optimizer
	Function mapping options that specify function overhead - examples
	Updating overhead information

	Specifying function names in a function mapping
	Mapping functions with the same name
	Mapping functions with different names

	How to create function mappings
	Creating a function mapping for a specific data source type
	Creating a function mapping for a specific data source type and version
	Creating a function mapping for all data source objects on a specific server

	User-defined functions in applications
	Disabling a default function mapping
	Dropping a user-defined function mapping

	Chapter 5. Creating index specifications
	Index specifications in a federated system
	Creating index specifications for data source objects
	Creating index specifications on tables that acquire new indexes
	Creating index specifications on views
	Creating index specifications on Informix synonyms

	Chapter 6. Developing federated procedures
	Federated procedures
	Restrictions on federated procedures
	Overloaded procedures in federated systems

	Creating federated procedures
	Discovering data source procedures
	Input and output parameters for federated procedures
	CREATE PROCEDURE (Sourced) statement - examples

	Granting or revoking authorizations to call federated procedures
	Locating parameter information
	Calling federated procedures
	Authorization to call federated procedures

	Altering or dropping federated procedures
	Federated procedure troubleshooting

	Chapter 7. Transparent DDL
	What is transparent DDL
	Remote LOB columns and transparent DDL
	Creating remote tables and transparent DDL
	Creating new remote tables using transparent DDL
	Creating new remote tables using transparent DDL - examples

	Altering remote tables using transparent DDL
	Dropping remote tables using transparent DDL

	Chapter 8. Transaction support in a federated system
	Understanding federated system transaction support
	What is an update in a federated system?
	What is an update transaction in a pass-through session?
	Data sources that automatically commit DDL statements
	User-defined functions that are pushed down to the data source for processing

	Two-phase commit for federated transactions
	Planning for federated two-phase commit
	Federated architecture for two-phase commit
	Two-phase commit for federated transactions - examples
	How federated two-phase commit transactions are processed

	Enabling two-phase commit for federated transactions
	Data source requirements and configuration for federated two-phase commit transactions
	Configuring DRDA data sources
	Configuring Oracle data sources
	Configuring Informix data sources
	Configuring Microsoft SQL Server data sources
	Configuring Sybase data sources

	Recovering from federated two-phase commit problems
	Resynchronization for federated systems
	Manually recovering indoubt transactions
	Tracing distributed unit of work transaction states across data sources
	Troubleshooting federated two-phase commit issues

	Federated two-phase commit performance
	Improving federated two-phase commit performance

	Chapter 9. Insert, update, and delete operations
	Authorization privileges for INSERT, UPDATE, and DELETE statements
	Federated system INSERT, UPDATE, and DELETE restrictions
	Unsupported data sources

	Referential integrity in a federated system
	INSERT, UPDATE, and DELETE statements and large objects (LOBs)
	Preserving statement atomicity in a federated system
	Modifying data in a federated system
	Inserting data into data source objects
	Updating data in data source objects
	Deleting data from data source objects

	Assignment semantics in a federated system
	Assignment semantics in a federated system - examples

	Chapter 10. Working with nicknames
	Nicknames in a federated system
	WITH HOLD syntax
	Triggers

	Accessing data with nicknames
	The SQL statements you can use with nicknames

	Accessing new data source objects
	Creating nicknames for relational and nonrelational data sources

	Accessing data sources using pass-through sessions
	Accessing heterogeneous data through federated views
	Creating federated views - examples

	Creating a nickname on a nickname
	Selecting data in a federated system
	Selecting data in a federated system - examples

	Informational constraints on nicknames
	Specifying informational constraints on nicknames (DB2 Control Center)
	Specifying informational constraints on nicknames (DB2 command line)
	Specifying informational constraints on nicknames - examples

	Chapter 11. Nickname statistics
	Nickname statistics update facility - overview
	Methods of retrieving nickname statistics
	Retrieving nickname statistics
	Retrieving statistics for multiple nicknames (DB2 Control Center)
	Retrieving statistics for a single nickname (DB2 Control Center)
	Retrieving nickname statistics from the command line - examples

	Creating a DB2 tools catalog
	Viewing the status of the updates to nickname statistics (DB2 Control Center)
	Viewing the status of the updates to nickname statistics (DB2 command line)
	SYSPROC.NNSTAT stored procedure

	Chapter 12. Importing and exporting data for nicknames
	Restrictions for importing data into nicknames
	IMPORT command with nicknames - examples
	Restrictions for exporting data using nicknames

	Chapter 13. Error tolerance in nested table expressions
	Specifying nested table expressions for error tolerance
	Nested table expressions for error tolerance - example
	Data source support for nested-table-expressions for error tolerance
	Restrictions on nested-table-expressions for error tolerance

	Chapter 14. Monitoring a federated system
	Health indicators for federated nicknames and servers
	Activating the federated health indicators
	Monitoring the health of federated nicknames and servers
	Monitoring the health of federated nicknames and servers - example

	Snapshot monitoring of federated systems - Overview
	Monitoring federated queries
	Snapshot monitoring of federated queries - example

	Federated database systems monitor elements

	Chapter 15. Unicode support for federated data sources
	Unicode support for federated systems
	Specifying the client code page for Unicode support of Microsoft SQL Server and ODBC data sources
	Supported Unicode code pages for the MSSQL and ODBC wrapper CODEPAGE option
	Specifying the file code page for Unicode support of table-structured file data sources
	Specifying the file code page for Unicode support of table-structured file data sources - example
	Errors when remote and federated code point sizes are different

	Chapter 16. Tuning the performance of a federated system
	Publications about federated performance
	Query analysis
	Pushdown analysis
	Server characteristics affecting pushdown opportunities
	SQL differences
	Collating sequence
	Federated server options
	Type and function mapping factors

	Nickname characteristics affecting pushdown opportunities
	Local data type of a nickname column
	Federated column options

	Query characteristics affecting pushdown opportunities
	Analyzing where a query is evaluated
	Analyzing where a query is evaluated with the DB2_MAXIMAL_PUSHDOWN server option

	Understanding access plan evaluation decisions
	Why isn't this predicate being evaluated remotely?
	Why isn't the GROUP BY operator evaluated remotely?
	Why isn't the SET operator evaluated remotely?
	Why isn't the ORDER BY operation evaluated remotely?
	Why is a remote INSERT with a fullselect statement not completely evaluated remotely?
	Why is a remote INSERT with VALUES clause statement not completely evaluated remotely?
	Why is a remote, searched UPDATE statement not completely evaluated remotely?
	Why is a positioned UPDATE statement not completely evaluated remotely?
	Why is a remote, searched DELETE statement not completely evaluated remotely?

	Data source upgrades and customization
	Pushdown of predicates with function templates
	Global optimization
	Server characteristics affecting global optimization
	Relative ratio of CPU speed
	Relative ratio of I/O speed
	Communication rate between the federated server and the data source
	Data source collating sequence
	Remote plan hints

	Nickname characteristics affecting global optimization
	Index specifications
	Global catalog statistics
	Updating row changes
	Updating statistics when columns change

	Analyzing global optimization
	Understanding access plan optimization decisions
	Why isn't a join between two nicknames of the same data source being evaluated remotely?
	Why isn't the GROUP BY operator being evaluated remotely?
	Why is the statement not being completely evaluated remotely?
	Why does a plan generated by the optimizer and completely evaluated remotely, have much worse performance than the original query executed directly at the remote data source?

	System monitor elements affecting performance

	Chapter 17. Parallelism with queries that reference nicknames
	Intrapartition parallelism with queries that reference nicknames
	Enabling intrapartition parallelism with queries that reference nicknames
	Intrapartition parallelism with queries that reference nicknames - examples of access plans

	Interpartition parallelism with queries that reference nicknames
	Enabling interpartition parallelism with queries that reference nicknames
	Interpartition parallelism with queries that reference nicknames - examples of access plans
	Computational partition groups
	Defining a computational partition group
	Interpartition parallelism with queries that reference nicknames - performance expectations

	Mixed parallelism with queries that reference nicknames
	Enabling mixed parallelism with queries that reference nicknames
	Mixed parallelism with queries that reference nicknames - examples of access plans

	Chapter 18. Asynchronous processing of federated queries
	Asynchronous processing of federated queries - examples
	Asynchrony optimization
	Access plans without asynchrony
	Access plans optimized for asynchrony
	Access plans - examples
	Controlling resource consumption

	Enabling asynchrony optimization
	Database manager configuration parameter: FEDERATED_ASYNC
	Bind and precompile options: FEDERATED_ASYNCHRONY
	Server option: DB2_MAX_ASYNC_REQUESTS_PER_QUERY

	Tuning considerations for asynchrony optimization
	Restrictions on asynchrony optimization
	Determining if asynchrony optimization is applied to a query

	Chapter 19. Materialized query tables and federated systems
	Materialized query tables and federated systems – overview
	Creating a federated materialized query table
	Data source specific restrictions for materialized query tables
	Restrictions on using materialized query tables with nicknames

	Chapter 20. Cache tables
	Creating cache tables
	Modifying the settings for materialized query tables
	Adding materialized query tables to a cache table
	Routing queries to cache tables
	Enabling and disabling the replication cache settings
	Dropping materialized query tables from a cache table
	Dropping cache tables

	Chapter 21. How client applications interact with data sources
	Chapter 22. Nicknames in your applications
	Reference data source objects by nicknames in SQL statements
	Nicknames in DDL statements
	Data source statistics impact applications
	Defining column options on nicknames
	Setting the NUMERIC_STRING column option
	Setting the VARCHAR_NO_TRAILING_BLANKS column option

	Chapter 23. Creating and using federated views
	Creating federated views - examples

	Chapter 24. Maintain data integrity with isolation levels
	Statement level isolation in a federated system
	Connection level isolation in a federated system

	Chapter 25. Federated LOB support
	LOB locators
	Restrictions on LOBs
	Performance considerations for LOB processing

	Chapter 26. Distributed requests
	Distributed requests for querying data sources
	Distributed requests for querying data sources - examples

	Optimizing distributed requests with server options

	Chapter 27. Using pass-through sessions within applications
	Querying data sources directly with pass-through
	Federated pass-through considerations and restrictions
	Pass-through sessions to Oracle data sources

	Chapter 28. Federated system security
	Overview of the user mapping plugin for external repositories
	Advantages of using an external repository to store user mappings
	Relationship between the federated server and the user mapping plugin
	User mapping plugin architecture
	UserMappingRepository class
	UserMappingCrypto class
	UserMappingEntry class
	UserMappingOption class
	UserMappingException class

	LDAP sample plugin
	Description of files for the LDAP sample plugin

	Developing a plugin for retrieving user mappings from an external repository
	Extending the sample LDAP plugin files to other external repositories
	Security considerations for the user mapping plugin

	Modifying the UserMappingCryptoLDAP sample file
	Modifying the UserMappingRepositoryLDAP sample file
	Compiling the user mapping plugin files
	Creating the configuration file for the user mapping plugin
	Testing the user mapping plugin

	Installing the user mapping plugin files
	Configuring access to the user mapping plugin
	Troubleshoot the user mapping plugin
	Oracle Label Security and federated systems

	Chapter 29. Federated system and data source configuration parameters
	Views in the global catalog table containing federated information
	Nickname column options for federated systems
	Function mapping options for federated systems
	Nickname options for federated systems
	Server options for federated systems
	Valid server types in SQL statements
	BioRS wrapper
	BLAST wrapper
	CTLIB wrapper
	DRDA wrapper
	Entrez wrapper
	Excel wrapper
	HMMER wrapper
	Informix wrapper
	MSSQLODBC3 wrapper
	NET8 wrapper
	ODBC wrapper
	OLE DB wrapper
	Table-structured files wrapper
	Teradata wrapper
	Web services wrapper
	WebSphere Business Integration wrapper
	XML wrapper

	User mapping options for federated systems
	Wrapper options for federated systems

	Chapter 30. Federated system and data source mappings
	Default forward data type mappings
	DB2 Database for Linux, UNIX, and Windows data sources
	DB2 for iSeries data sources
	DB2 for VM and VSE data sources
	DB2 for z/OS data sources
	Informix data sources
	Microsoft SQL Server data sources
	ODBC data sources
	Oracle NET8 data sources
	Sybase data sources
	Teradata data sources

	Default reverse data type mappings
	DB2 Database for Linux, UNIX, and Windows data sources
	DB2 for iSeries data sources
	DB2 for VM and VSE data sources
	DB2 for z/OS data sources
	Informix data sources
	Microsoft SQL Server data sources
	Oracle NET8 data sources
	Sybase data sources
	Teradata data sources

	Unicode default data type mappings
	Unicode default forward data type mappings - Microsoft SQL Server wrapper
	Unicode default reverse data type mappings - Microsoft SQL Server wrapper
	Unicode default forward data type mappings - NET8 wrapper
	Unicode default reverse data type mappings - NET8 wrapper
	Unicode default forward data type mappings - ODBC wrapper
	Unicode default reverse data type mappings - ODBC wrapper
	Unicode default forward data type mappings - Sybase wrapper
	Unicode default reverse data type mappings - Sybase wrapper

	Data types supported for nonrelational data sources

	Accessing information about IBM
	Contacting IBM
	Accessible documentation
	Providing comments on the documentation

	Notices and trademarks
	Notices
	Trademarks

	Index

