
DB2®

Administration Guide: Planning

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4223-00

���

DB2®

Administration Guide: Planning

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4223-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

Contents

About this book vii

Who should use this book viii

How this book is structured viii

Part 1. Database concepts 1

Chapter 1. Basic relational database

concepts 3

About databases 3

Database objects 3

Configuration parameters 12

Environment variables and the profile registry . . . 14

Business rules for data 17

Data security 20

Authentication 20

Authorization 21

Units of work 22

High availability disaster recovery (HADR) feature

overview 23

Developing a backup and recovery strategy . . . 25

Chapter 2. Automatic maintenance . . . 29

About automatic maintenance 29

Automatic features enabled by default 30

Automatic database backup 31

Automatic reorganization 32

Automatic statistics collection by table 33

Automatic statistics profiling using automatic

statistics collection 34

Storage used by automatic statistics collection and

profiling 35

Maintenance windows 35

Offline maintenance 36

Online maintenance 36

Chapter 3. Parallel database systems 37

Parallelism 37

Input/output parallelism 37

Query parallelism 37

Utility parallelism 40

Partitioned database environments 41

Database partition and processor environments . . 42

Single database partition on a single processor . 42

Single database partition with multiple

processors 43

Multiple database partition configurations . . . 44

Summary of parallelism best suited to each

hardware environment 48

Part 2. Database design 51

Chapter 4. Logical database design . . 53

What to record in a database 53

Database relationships 54

One-to-many and many-to-one relationships . . 54

Many-to-many relationships 55

One-to-one relationships 55

Ensure that equal values represent the same

entity 56

Column definitions 56

Primary keys 58

Identifying candidate key columns 59

Identity columns 60

Normalization 61

First normal form 62

Second normal form 62

Third normal form 63

Fourth normal form 64

Constraints 65

Unique constraints 66

Referential constraints 66

Table check constraints 69

Informational constraints 69

Triggers 70

Additional database design considerations 71

Chapter 5. Physical database design 73

Database directories and files 73

Space requirements for database objects 75

Space requirements for system catalog tables . . . 76

Space requirements for user table data 77

Space requirements for long field data 78

Space requirements for large object data 79

Space requirements for indexes 80

Space requirements for log files 82

Space requirements for temporary tables 83

XML storage object overview 84

Guidelines for storage requirements for XML

documents 84

Database partition groups 85

Database partition group design 87

Distribution maps 88

Distribution keys 89

Table collocation 91

Database partition compatibility 91

Data partitions 92

Table partitioning 93

Table partitioning keys 96

Data organization schemes 99

Partitioned tables 104

Data organization schemes in DB2 and Informix

databases 105

Replicated materialized query tables 111

Table space design 112

SYSTOOLSPACE and SYSTOOLSTMPSPACE table

spaces 115

System managed space 117

SMS table spaces 119

© Copyright IBM Corp. 1993, 2006 iii

Database managed space 120

DMS table spaces 123

DMS device considerations 124

Table space maps 125

How containers are added and extended in DMS

table spaces 129

Rebalancing 129

Without rebalancing (using stripe sets) 135

How containers are dropped and reduced in DMS

table spaces 137

Comparison of SMS and DMS table spaces . . . 140

Table space disk I/O 141

Workload considerations in table space design . . 143

Extent size 144

Relationship between table spaces and buffer pools 145

Relationship between table spaces and database

partition groups 146

Storage management view 146

Stored procedures for the storage management tool 147

Storage management view tables 148

Thresholds 160

Temporary table space design 161

Temporary tables in SMS table spaces 162

Catalog table space design 163

Optimizing table space performance when data is

on RAID devices 164

Considerations when choosing table spaces for

your tables 166

DB2 table types 167

Range-clustered tables 168

Range-clustered tables and out-of-range record key

values 171

Range-clustered table locks 172

Multidimensional clustering tables 172

Comparison of regular and MDC tables 173

Block indexes 175

Working with an MDC table 177

Block indexes and query performance 180

Maintaining clustering automatically during

INSERT operations 183

Block maps 185

Deletion from an MDC table 187

Updating an MDC table 187

Load considerations for MDC tables 188

Logging considerations for MDC tables 188

Block index considerations for MDC tables . . . 188

Designing multidimensional clustering (MDC)

tables 189

Multidimensional clustering (MDC) table creation,

placement, and use 197

Chapter 6. Designing partitioned

databases 203

Updating a single database in a transaction . . . 203

Using multiple databases in a single transaction 204

Updating a single database in a multi-database

transaction 204

Updating multiple databases in a transaction 205

DB2 transaction manager 206

DB2 Database transaction manager

configuration 207

Updating a database from a host or iSeries client 210

Two-phase commit 210

Error recovery during two-phase commit 213

Error recovery if autorestart=off 214

Chapter 7. Designing for XA-compliant

transaction managers 215

X/Open distributed transaction processing model 215

Application program (AP) 216

Transaction manager (TM) 217

Resource managers (RM) 218

Resource manager setup 219

Database connection considerations 219

xa_open string formats 221

Updating host or iSeries database servers with an

XA-compliant transaction manager 227

Resolving indoubt transactions manually 227

Indoubt transaction management APIs 230

Security considerations for XA transaction

managers 231

Configuration considerations for XA transaction

managers 232

XA function supported by DB2 Database for Linux,

UNIX, and Windows 233

XA switch usage and location 233

Using the DB2 Database for Linux, UNIX, and

Windows XA switch 234

XA interface problem determination 235

XA transaction manager configuration 236

Configuring IBM WebSphere Application Server 236

Configuring IBM TXSeries CICS 236

Configuring IBM TXSeries Encina 236

Configuring BEA Tuxedo 238

Part 3. Appendixes 241

Appendix A. Incompatibilities between

releases 243

Deprecated and discontinued features 243

Version 9 incompatibilities with previous releases

and changed behaviors 260

Version 8 incompatibilities with previous releases 285

Appendix B. National language

support (NLS) 313

National language versions 313

Supported territory codes and code pages 313

Availability of Asian fonts (Linux) 334

Simplified Chinese locale coding set 335

Displaying Indic characters in the DB2 GUI tools 336

Enabling and disabling euro symbol support . . . 336

Character-conversion guidelines 338

Conversion table files for euro-enabled code pages 339

Conversion tables for code pages 923 and 924 . . 343

Choosing a language for your database 344

Locale setting for the DB2 Administration

Server 345

Enabling bidirectional support 345

Bidirectional-specific CCSIDs 347

iv Administration Guide: Planning

Bidirectional support with DB2 Connect 349

Collating sequences 351

Collating Thai characters 352

Date and time formats by territory code 353

Unicode character encoding 355

UCS-2 355

UTF-8 356

UTF-16 356

Unicode implementation in DB2 Database for

Linux, UNIX, and Windows 357

AIX, UNIX, and Linux distributions and code

pages 358

Code Page/CCSID Numbers 359

Thai and Unicode collation algorithm

differences 360

Unicode handling of data types 360

Creating a Unicode database 362

Converting non-Unicode databases to Unicode . . 362

Unicode literals 364

String comparisons in a Unicode database 364

Installing the previous tables for converting

between code page 1394 and Unicode 366

Alternative Unicode conversion table for the coded

character set identifier (CCSID) 943 366

Replacing the Unicode conversion tables for coded

character set identifier (CCSID) 943 with Microsoft

conversion tables 368

Alternative Unicode conversion table for the coded

character set identifier (CCSID) 954 369

Replacing the Unicode conversion table for coded

character set identifier (CCSID) 954 with the

Microsoft conversion table 370

Alternative Unicode conversion table for the coded

character set identifier (CCSID) 5026 371

Replacing the Unicode conversion table for coded

character set identifier (CCSID) 5026 with the

Microsoft conversion table 371

Alternative Unicode conversion table for the coded

character set identifier (CCSID) 5035 372

Replacing the Unicode conversion table for coded

character set identifier (CCSID) 5035 with the

Microsoft conversion table 373

Alternative Unicode conversion table for the coded

character set identifier (CCSID) 5039 374

Replacing the Unicode conversion table for coded

character set identifier (CCSID) 5039 with the

Microsoft conversion table 375

Appendix C. DB2 Database technical

information 377

Overview of the DB2 technical information . . . 377

Documentation feedback 377

DB2 technical library in hardcopy or PDF format 378

Ordering printed DB2 books 380

Displaying SQL state help from the command line

processor 381

Accessing different versions of the DB2

Information Center 382

Displaying topics in your preferred language in the

DB2 Information Center 382

Updating the DB2 Information Center installed on

your computer or intranet server 383

DB2 tutorials 385

DB2 troubleshooting information 385

Terms and Conditions 386

Appendix D. Notices 387

Trademarks 389

Index 391

Contacting IBM 399

Contents v

vi Administration Guide: Planning

About this book

The Administration Guide: Planning provides information necessary to use and

administer the DB2® relational database management system (RDBMS) products,

and includes information about database planning and design.

Many of the tasks described in this book can be performed using different

interfaces:

v The Command Line Processor, which allows you to access and manipulate

databases from a command-line interface. From this interface, you can also

execute SQL statements and DB2 utility functions. Most examples in this book

illustrate the use of this interface. For more information about using the

command line processor, see the Command Reference.

v The application programming interface, which allows you to execute DB2

utility functions within an application program. For more information about

using the application programming interface, see the Administrative API

Reference.

v The Control Center, which allows you to use a graphical user interface to

manage and administer your data and database components. You can invoke the

Control Center using the db2cc command on a Linux™ or Windows® command

line, or using the Start menu on Windows platforms. The Control Center

presents your database components as a hierarchy of objects in an object tree.

This Control Center tree includes your systems, instances, databases, tables,

views, triggers, and indexes. From the tree you can perform actions on your

database objects, such as creating new tables, reorganizing data, configuring and

tuning databases, and backing up and restoring table spaces. In many cases,

wizards and launchpads are available to help you perform these tasks more

quickly and easily.

The Control Center is available in three views:

– Basic. This view provides you with the core DB2 database functions. From

this view you can work with all the databases to which you have been

granted access, including their related objects such as tables and stored

procedures. It provides you with the essentials for working with your data.

– Advanced. This view provides you with all of the objects and actions

available in the Control Center. Use this view if you are working in an

enterprise environment and you want to connect to DB2 Version 9.1 for

z/OS® (DB2 for z/OS) or IMS.

– Custom. This view provides you with the ability to tailor the Control Center

to your needs. You select the objects and actions that you want to appear in

your view.

For help on using the Control Center, select Getting started from the Help

pull-down on the Control Center window.

There are other tools that you can use to perform administration tasks. They

include:

v The Command Editor which replaces the Command Center and is used to

generate, edit, run, and manipulate SQL statements; IMS and DB2 commands;

work with the resulting output; and to view a graphical representation of the

access plan for explained SQL statements.

© Copyright IBM Corp. 1993, 2006 vii

v The Development Center which provides support for native SQL Persistent

Storage Module (PSM) stored procedures; for Java™ stored procedures for

iSeries™ Version 5 Release 3 and later; user-defined functions (UDFs); and

structured types.

v The Health Center which provides a tool to assist DBAs in the resolution of

performance and resource allocation problems.

v The Tools Settings which you can use to change the settings for the Control

Center, and the Health Center.

v The Memory Visualizer which helps database administrators monitor the

memory-related performance of an instance and all of its databases organized in

a hierarchical tree.

v The Indoubt Transaction Manager window which is used to display indoubt

transactions. That is, the transactions that are waiting to be committed, rolled

back, or forgotten for a selected database and one or more selected partitions.

v The Information Catalog Manager which is used to provide a graphical

representation of data relationships and object definitions when working in a

warehouse environment.

v The Journal which you can use to schedule jobs that are to run unattended.

v The Data Warehouse Center which manages warehouse objects.

Who should use this book

This book is intended primarily for database administrators, system administrators,

security administrators and system operators who need to plan and design

databases that can be accessed by local or remote clients. It can also be used by

programmers and other users who require an understanding of the administration

and operation of the DB2 relational database management system.

How this book is structured

The major subject areas discussed in the chapters of this book are as follows:

Database Concepts

v Chapter 1, “Basic relational database concepts,” presents an overview of

database objects and database concepts.

v Chapter 3, “Parallel database systems,” provides an introduction to the types of

parallelism available with DB2 databases.

Database Design

v Chapter 4, “Logical database design,” discusses the concepts and guidelines for

logical database design.

v Chapter 5, “Physical database design,” discusses the guidelines for physical

database design, including space requirements and table space design.

v Chapter 6, “Designing partitioned databases,” discusses how you can access

multiple databases in a single transaction.

v Chapter 7, “Designing for XA-compliant transaction managers,” discusses how

you can use your databases in a distributed transaction processing environment.

Appendixes

v Appendix A, “Incompatibilities between releases,” presents the incompatibilities

introduced by Version 8 and Version 9, as well as planned future

incompatibilities.

viii Administration Guide: Planning

v Appendix B, “National language support (NLS),” introduces DB2 National

Language Support, including information about territories, languages, and code

pages.

About this book ix

x Administration Guide: Planning

Part 1. Database concepts

© Copyright IBM Corp. 1993, 2006 1

2 Administration Guide: Planning

Chapter 1. Basic relational database concepts

About databases

 A relational database presents data as a collection of tables. A table consists of a

defined set of columns and any number of rows. The data in each table is logically

related, and relationships can be defined between tables. Data can be viewed and

manipulated based on mathematical principles and operations called relations

(such as, INSERT, SELECT, and UPDATE).

A database is self-describing in that it contains, in addition to data, a description of

its own structure. It includes a set of system catalog tables, which describe the

logical and physical structure of the data; a configuration file, which contains the

parameter values associated with the database; and a recovery log, which records

ongoing transactions and transactions that can be archived.

Databases can be local or remote. A local database is physically located on the

workstation in use, while a database on another machine is considered remote.

You can:

v Create a database.

v Add a database to the Control Center.

v Drop a database from the Control Center.

v Back up a database.

v Restore a database.

v Configure a database.

v Catalog a database.

v Uncatalog a database.

v Connect to a database.

v Monitor a database with the event monitor.

v Work with partitioned databases.

v Work with federated systems.

For z/OS and OS/390® systems, the default database, DSNDB04, is predefined in

the DB2 installation process. This database has a default buffer pool (BP0), and a

default DB2 storage group (SYSDEFLT).

 Related concepts:

v “Tables” in SQL Reference, Volume 1

Database objects

 Systems:

 DB2 databases are organized around a hierarchy of database objects. The

highest-level object in the hierarchy is a system. A system represents an installation

of DB2. The Control Center maintains a list of systems that it knows about and

records the information needed to communicate with each system (such as its

network address, operating system, and communication protocol). The Control

Center supports both DB2 and IMS™ systems.

© Copyright IBM Corp. 1993, 2006 3

A system can have one or more DB2 instances, each of which can manage one or

more databases. The databases may be partitioned with their table spaces residing

in database partition groups. The table spaces in turn store table data.

You can:

v Add a system to the Control Center.

v Attach to a system.

v Remove a system from the Control Center.

 Instances:

 An instance (sometimes called a database manager) is DB2 code that manages data. It

controls what can be done to the data, and manages system resources assigned to

it. Each instance is a complete environment. It contains all the database partitions

defined for a given parallel database system. An instance has its own databases

(which other instances cannot access), and all its database partitions share the same

system directories. It also has security separate from other instances on the same

computer (system).

 Databases:

 A relational database presents data as a collection of tables. A table consists of a

defined number of columns and any number of rows. Each database includes a set

of system catalog tables that describe the logical and physical structure of the data,

a configuration file containing the parameter values allocated for the database, and

a recovery log with ongoing transactions and transactions to be archived.

 Database partitions:

 A database partition consists of its own data, indexes, configuration files, and

transaction key. It is sometimes referred to as a node or database node. Tables can

be located in one or more database partitions. When a table’s data is distributed

across multiple partitions, some of its rows are stored in one partition, and other

rows are stored in other partitions. Data retrieval and update requests are

decomposed automatically into sub-requests, and run in parallel among the

applicable database partitions. The fact that a database can be split across database

partitions is transparent to users.

 Database partition groups:

 A database partition group is a set of one or more database partitions. When you

want to create tables for the database, you first create the database partition group

where the table spaces will be stored, then you create the table space where the

tables will be stored.

In earlier versions of DB2 Universal Database™ (UDB), database partition groups

were known as nodegroups.

 Table spaces:

 A database is organized into parts called table spaces. A table space is a place to

store tables. When creating a table, you can decide to have certain objects such as

indexes and large object (LOB) data kept separately from the rest of the table data.

A table space can also be spread over one or more physical storage devices. The

4 Administration Guide: Planning

following diagram shows some of the flexibility you have in spreading data over

table spaces:

 Table spaces reside in database partition groups. Table space definitions and

attributes are recorded in the database system catalog.

Containers are assigned to table spaces. A container is an allocation of physical

storage (such as a file or a device).

A table space can be either system managed space (SMS), or database managed

space (DMS). For an SMS table space, each container is a directory in the file space

of the operating system, and the operating system’s file manager controls the

storage space. For a DMS table space, each container is either a fixed size

pre-allocated file, or a physical device such as a disk, and the database manager

controls the storage space.

Table space 3

Table 3Table 2

Table space 4

Table 3
index

Table space 2

System catalog tables for definitions
of views, packages, functions,
datatypes, triggers, and so on.

Table space 1

Table 1
Table 1
index

Table 2
index

Table space 5

LOB data for Table 2

Table space 6

Space for temporary tables.

LOB

LOB

Figure 1. Table space flexibility

Chapter 1. Basic relational database concepts 5

Figure 2 illustrates the relationship between tables, table spaces, and the two types

of space. It also shows that tables, indexes, and long data are stored in table

spaces.

 Figure 3 on page 7 shows the three table space types: regular, temporary, and large.

Tables containing user data exist in regular table spaces. The default user table

space is called USERSPACE1. The system catalog tables exist in a regular table

space. The default system catalog table space is called SYSCATSPACE.

Tables containing long field data or large object data, such as multimedia objects,

exist in large table spaces or in regular table spaces. The base column data for

these columns is stored in a regular table space, while the long field or large object

data can be stored in the same regular table space or in a specified large table

space.

Indexes can be stored in regular table spaces or large table spaces.

Temporary table spaces are classified as either system or user. System temporary table

spaces are used to store internal temporary data required during SQL operations

such as sorting, reorganizing tables, creating indexes, and joining tables. These

operations require extra space to process the result set. Although you can create

any number of system temporary table spaces, it is recommended that you create

only one, using the page size that the majority of your tables use. The default

system temporary table space is called TEMPSPACE1. Any user and application

may use system temporary table spaces. User temporary table spaces are used to

store declared global temporary tables that store application temporary data. The

tables used within user temporary table spaces are created using the DECLARE

GLOBAL TEMPORARY TABLE statement. User temporary table spaces are not

created by default at database creation time. Access to user temporary table spaces

Instance

System

System-managed
space (SMS)

Database-managed
space (DMS)

Equivalent
physical object

Containers

Database
object or concept

Database

Table spaces
• Tables
• Indexes
• Long data

Figure 2. Table spaces and container types that hold data

6 Administration Guide: Planning

is controlled. Remember to grant the appropriate USE privileges on the user

temporary tables with the GRANT statement.

 Tables:

 A relational database presents data as a collection of tables. A table consists of data

logically arranged in columns and rows. All database and table data is assigned to

table spaces. The data in the table is logically related, and relationships can be

defined between tables. Data can be viewed and manipulated based on

mathematical principles and operations called relations.

Table data is accessed through Structured Query Language (SQL), a standardized

language for defining and manipulating data in a relational database. A query is

used in applications or by users to retrieve data from a database. The query uses

SQL to create a statement in the form of

 SELECT <data_name> FROM <table_name>

 Views:

 A view is an efficient way of representing data without the need to maintain it. A

view is not an actual table and requires no permanent storage. A ″virtual table″ is

created and used.

A view can include all or some of the columns or rows contained in the tables on

which it is based. For example, you can join a department table and an employee

table in a view, so that you can list all employees in a particular department.

Figure 4 on page 8 shows the relationship between tables and views.

Regular
table spaces

Large
table spaces
(optional)

Temporary
table spaces

• System temporary
table spaces

• User temporary
table spaces

Database

Tables:
• User data is
stored here

Tables:
• Multimedia objects
or other large
object data

Figure 3. Types of table spaces

Chapter 1. Basic relational database concepts 7

Indexes:

 As data is added to a table, unless other actions have been carried out on the table

or the data being added, it is simply appended to the bottom of the table. There is

no order to the data. When searching for a particular row of data, each row of the

table from first to last must be checked. Indexes are used as a means to access the

data within the table in an order that might otherwise not be available.

A field or column from within a row of data may be used as a value that can

identify the entire row. One or more columns may be needed to identify the row.

This identifying column or columns is known as a key. A column may be used in

more than one key.

An index is ordered by the values within a key.

keys may be unique or non-unique. Each table should have at least one unique

key; but may also have other, non-unique keys. Each index has exactly one key.

For example, you might use the employee ID number (unique) as the key for one

index and the department number (non-unique) as the key for a different index.

An index is a set of one or more keys, each key pointing to a row in a table. For

example, table A in Figure 5 on page 9 has an index based on the employee

numbers in the table. This key value provides a pointer to the rows in the table.

For example, employee number 19 points to employee KMP. An index allows

efficient access to rows in a table by creating a path to the data through pointers.

The SQL optimizer automatically chooses the most efficient way to access data in

tables. The optimizer takes indexes into consideration when determining the fastest

access path to data.

Column

Row

Database

Table B

19

81

87

93

47

17

85

ABS

QRS

FCP

MLI

CJP

DJS

KMP

Table A

View AB

CREATE VIEW_AB
AS SELECT. . .

FROM TABLE_A, TABLE_B
WHERE. . .

View A

CREATE VIEW_A
AS SELECT. . .

FROM TABLE_A
WHERE. . .

Figure 4. Relationship between tables and views

8 Administration Guide: Planning

Unique indexes can be created to ensure uniqueness of the index key. An index key

is a column or an ordered collection of columns on which an index is defined.

Using a unique index will ensure that the value of each index key in the indexed

column or columns is unique.

Figure 5 shows the relationship between an index and a table.

 Figure 6 illustrates the relationships among some database objects. It also shows

that tables, indexes, and long data are stored in table spaces.

 Schemas:

 A schema is an identifier, such as a user ID, that helps group tables and other

database objects. A schema can be owned by an individual, and the owner can

control access to the data and the objects within it.

A schema is also an object in the database. It may be created automatically when

the first object in a schema is created. Such an object can be anything that can be

17

19

19

47

81 81

85

87 87

93

93

47

17

85

ABC

QRS

FCP

MLI

CJP

DJS

KMP

Column

Row

Table AIndex A

Database

Figure 5. Relationship between an index and a table

Instance

System

Database

Database partition group

Table spaces
• Tables
• Indexes
• Long data

Figure 6. Relationships among selected database objects

Chapter 1. Basic relational database concepts 9

qualified by a schema name, such as a table, index, view, package, distinct type,

function, or trigger. You must have IMPLICIT_SCHEMA authority if the schema is

to be created automatically, or you can create the schema explicitly.

A schema name is used as the first part of a two-part object name. When an object

is created, you can assign it to a specific schema. If you do not specify a schema, it

is assigned to the default schema, which is usually the user ID of the person who

created the object. The second part of the name is the name of the object. For

example, a user named Smith might have a table named SMITH.PAYROLL.

 System catalog tables:

 Each database includes a set of system catalog tables, which describe the logical and

physical structure of the data. DB2 creates and maintains an extensive set of

system catalog tables for each database. These tables contain information about the

definitions of database objects such as user tables, views, and indexes, as well as

security information about the authority that users have on these objects. They are

created when the database is created, and are updated during the course of normal

operation. You cannot explicitly create or drop them, but you can query and view

their contents using the catalog views.

 Containers:

 A container is a physical storage device. It can be identified by a directory name, a

device name, or a file name.

A container is assigned to a table space. A single table space can span many

containers, but each container can belong to only one table space.

Figure 7 on page 11 illustrates the relationship between tables and a table space

within a database, and the associated containers and disks.

10 Administration Guide: Planning

The EMPLOYEE, DEPARTMENT, and PROJECT tables are in the HUMANRES

table space which spans containers 0, 1, 2, 3, and 4. This example shows each

container existing on a separate disk.

Data for any table will be stored on all containers in a table space in a round-robin

fashion. This balances the data across the containers that belong to a given table

space. The number of pages that the database manager writes to one container

before using a different one is called the extent size.

 Buffer pools:

 A buffer pool is the amount of main memory allocated to cache table and index data

pages as they are being read from disk, or being modified. The purpose of the

buffer pool is to improve system performance. Data can be accessed much faster

from memory than from disk; therefore, the fewer times the database manager

needs to read from or write to a disk (I/O), the better the performance. (You can

create more than one buffer pool, although for most situations only one is

required.)

The configuration of the buffer pool is the single most important tuning area,

because you can reduce the delay caused by slow I/O.

Figure 8 on page 12 illustrates the relationship between a buffer pool and

containers.

EMPLOYEE
table

DEPARTMENT
table

PROJECT
table

HUMANRES
table space

E:\DBASE1
Container 1

F:\DBASE1
Container 2

H:\DBASE1
Container 4

G:\DBASE1
Container 3

D:\DBASE1
Container 0

Database

Figure 7. Relationship between a table space and its containers

Chapter 1. Basic relational database concepts 11

Related concepts:

v “Indexes” in SQL Reference, Volume 1

v “Relational databases” in SQL Reference, Volume 1

v “Schemas” in SQL Reference, Volume 1

v “Table spaces and other storage structures” in SQL Reference, Volume 1

v “Tables” in SQL Reference, Volume 1

v “Views” in SQL Reference, Volume 1

Configuration parameters

 When a DB2 database instance or a database is created, a corresponding

configuration file is created with default parameter values. You can modify these

parameter values to improve performance and other characteristics of the instance

or database.

Configuration files contain parameters that define values such as the resources

allocated to the DB2 database products and to individual databases, and the

diagnostic level. There are two types of configuration files:

v The database manager configuration file for each DB2 instance

v The database configuration file for each individual database.

The database manager configuration file is created when a DB2 instance is created.

The parameters it contains affect system resources at the instance level,

independent of any one database that is part of that instance. Values for many of

these parameters can be changed from the system default values to improve

performance or increase capacity, depending on your system’s configuration.

There is one database manager configuration file for each client installation as well.

This file contains information about the client enabler for a specific workstation. A

subset of the parameters available for a server are applicable to the client.

Equivalent
physical object

Database

File

System

Instance

Database
object or concept

Directory

Device

Reserved
Containers

Buffer pool

Table
spaces

Figure 8. Relationship between the buffer pool and containers

12 Administration Guide: Planning

Database manager configuration parameters are stored in a file named db2systm.

This file is created when the instance of the database manager is created. In

UNIX®-based environments, this file can be found in the sqllib subdirectory for

the instance of the database manager. In Windows, the default location of this file

is the instance subdirectory of the sqllib directory. If the DB2INSTPROF variable

is set, the file is in the instance subdirectory of the directory specified by the

DB2INSTPROF variable.

In a partitioned database environment, this file resides on a shared file system so

that all database partition servers have access to the same file. The configuration of

the database manager is the same on all database partition servers.

Most of the parameters either affect the amount of system resources that will be

allocated to a single instance of the database manager, or they configure the setup

of the database manager and the different communications subsystems based on

environmental considerations. In addition, there are other parameters that serve

informative purposes only and cannot be changed. All of these parameters have

global applicability independent of any single database stored under that instance

of the database manager.

A database configuration file is created when a database is created, and resides where

that database resides. There is one configuration file per database. Its parameters

specify, among other things, the amount of resource to be allocated to that

database. Values for many of the parameters can be changed to improve

performance or increase capacity. Different changes may be required, depending on

the type of activity in a specific database.

Parameters for an individual database are stored in a configuration file named

SQLDBCON. This file is stored along with other control files for the database in the

SQLnnnnn directory, where nnnnn is a number assigned when the database was

created. Each database has its own configuration file, and most of the parameters

in the file specify the amount of resources allocated to that database. The file also

contains descriptive information, as well as flags that indicate the status of the

database.

In a partitioned database environment, a separate SQLDBCON file exists for each

database partition. The values in the SQLDBCON file may be the same or different at

each database partition, but the recommendation is that the database configuration

parameter values be the same on all database partitions.

Chapter 1. Basic relational database concepts 13

Related concepts:

v “Configuration parameters that affect query optimization” in Performance Guide

 Related tasks:

v “Configuring DB2 with configuration parameters” in Performance Guide

Environment variables and the profile registry

 Environment and registry variables control your database environment.

You can use the Configuration Assistant (db2ca) to configure configuration

parameters and registry variables.

Prior to the introduction of the DB2 database profile registry, changing your

environment variables on Windows workstations (for example) required you to

change an environment variable and restart. Now, your environment is controlled,

with a few exceptions, by registry variables stored in the DB2 profile registries.

Users on UNIX operating systems with system administration (SYSADM) authority

for a given instance can update registry values for that instance. Windows users do

not need SYSADM authority to update registry variables. Use the db2set command

to update registry variables without restarting; this information is stored

immediately in the profile registries. The DB2 registry applies the updated

information to DB2 server instances and DB2 applications started after the changes

are made.

When updating the registry, changes do not affect the currently running DB2

applications or users. Applications started following the update use the new

values.

Note: There are DB2 environment variables DB2INSTANCE, and DB2NODE which might

not be stored in the DB2 profile registries. On some operating systems the

set command must be used in order to update these environment variables.

These changes are in effect until the next time the system is restarted. On

UNIX platforms, the export command might be used instead of the set

command.

Equivalent
physical object

Database

Database
configuration parameters

Database manager
configuration parameters

Operating system
configuration file

System

Instance

Database
object or concept

Figure 9. Relationship between database objects and configuration files

14 Administration Guide: Planning

Using the profile registry allows for centralized control of the environment

variables. Different levels of support are now provided through the different

profiles. Remote administration of the environment variables is also available when

using the DB2 Administration Server.

There are four profile registries:

v The DB2 Instance Level Profile Registry. The majority of the DB2 environment

variables are placed within this registry. The environment variable settings for a

particular instance are kept in this registry. Values defined in this level override

their settings in the global level.

v The DB2 Global Level Profile Registry. If an environment variable is not set for a

particular instance, this registry is used. This registry is visible to all instances

pertaining to a particular copy of DB2 ESE, one global-level profile exists in the

installation path.

v The DB2 Instance Node Level Profile Registry. This registry level contains

variable settings that are specific to a database partition in a partitioned database

environment. Values defined in this level override their settings at the instance

and global levels.

v The DB2 Instance Profile Registry. This registry contains a list of all instance

names associated with the current copy. Each installation has its own list. You

can see the complete list of all the instances available on the system by running

db2ilist.

DB2 configures the operating environment by checking for registry values and

environment variables and resolving them in the following order:

1. Environment variables set with the set command. (Or the export command on

UNIX platforms.)

2. Registry values set with the instance node level profile (using the db2set -i

<instance name> <nodenum> command).

3. Registry values set with the instance level profile (using the db2set -i

command).

4. Registry values set with the global level profile (using the db2set -g command).

Instance Level Profile Registry

There are a couple of UNIX and Windows differences when working with a

partitioned database environment. These differences are shown in the following

example.

Assume that there is a partitioned database environment with three physical

database partitions that are identified as “red”, “white”, and “blue”. On UNIX

platforms, if the instance owner runs the following from any of the database

partitions:

 db2set -i FOO=BAR

or

 db2set FOO=BAR (’-i’ is implied)

the value of FOO will be visible to all nodes of the current instance (that is, “red”,

“white”, and “blue”).

On UNIX platforms, the instance level profile registry is stored in a text file inside

the sqllib directory. In partitioned database environments, the sqllib directory is

located on the filesystem shared by all physical database partitions.

Chapter 1. Basic relational database concepts 15

On Windows platforms, if the user performs the same command from “red”, the

value of FOO will only be visible on “red” of the current instance. The DB2

database manager stores the instance level profile registry inside the Windows

registry. There is no sharing across physical database partitions. To set the registry

variables on all the physical computers, use the “rah” command as follows:

 rah db2set -i FOO=BAR

rah will remotely run the db2set command on “red”, “white”, and “blue”.

It is possible to use DB2REMOTEPREG so that the registry variables on

non-instance-owning computers are configured to refer to those on the instance

owning computer. This effectively creates an environment where the registry

variables on the instance-owning computer are shared amongst all computers in

the instance.

Using the example shown above, and assuming that “red” is the owning computer,

then one would set DB2REMOTEPREG on “white” and “blue” computers to share

the registry variables on “red” by doing the following:

 (on red) do nothing

 (on white and blue) db2set DB2REMOTEPREG=\\red

The setting for DB2REMOTEPREG must not be changed after it is set.

Here is how REMOTEPREG works:

When the DB2 database manager reads the registry variables on Windows, it first

reads the DB2REMOTEPREG value. If DB2REMOTEPREG is set, it then opens the

registry on the remote computer whose computer name is specified in the

DB2REMOTEPREG variable. Subsequent reading and updating of the registry

variables will be redirected to the specified remote computer.

Accessing the remote registry requires that the Remote Registry Service is running

on the target computer. Also, the user logon account and all DB2 service logon

accounts have sufficient access to the remote registry. Therefore, to use

DB2REMOTEPREG, you should operate in a Windows domain environment so

that the required registry access can be granted to the domain account.

There are Microsoft® Cluster Server (MSCS) considerations. You should not use

DB2REMOTEPREG in an MSCS environment. When running in an MSCS

configuration where all computers belong to the same MSCS cluster, the registry

variables are maintained in the cluster registry. Therefore, they are already shared

between all computers in the same MSCS cluster and there is no need to use

DB2REMOTEPREG in this case.

When running in a multi-partitioned failover environment where database

partitions span across multiple MSCS clusters, you cannot use DB2REMOTEPREG

to point to the instance-owning computer because the registry variables of the

instance-owning computer reside in the cluster registry.

 Related concepts:

v “DB2 registry and environment variables” in Performance Guide

 Related tasks:

v “Declaring, showing, changing, resetting, and deleting registry and environment

variables” in Administration Guide: Implementation

16 Administration Guide: Planning

Business rules for data

 Within any business, data must often adhere to certain restrictions or rules. For

example, an employee number must be unique. DB2 Database for Linux, UNIX,

and Windows provides constraints as a way to enforce such rules. Triggers are also

used to enforce business rules on your data.

DB2 V9.1 provides the following types of constraints:

v NOT NULL constraint

v Unique constraint

v Primary key constraint

v Foreign key constraint

v Check constraint

v Informational constraint

NOT NULL constraint

NOT NULL constraints prevent null values from being entered into a

column.

unique constraint

Unique constraints ensure that the values in a set of columns are unique

and not null for all rows in the table. For example, a typical unique

constraint in a DEPARTMENT table might be that the department number

is unique and not null.

 The following figure shows that a duplicate record is prevented from being

added to a table when a unique constraint exists for the table.

 The database manager enforces the constraint during insert and update

operations, ensuring data integrity.

primary key constraint

Each table can have one primary key. A primary key is a column or

combination of columns that has the same properties as a unique

constraint. You can use a primary key and foreign key constraints to define

relationships between tables.

 Because the primary key is used to identify a row in a table, it should be

unique and have very few additions or deletions. A table cannot have more

than one primary key, but it can have multiple unique keys. Primary keys

Department
number

001

003

002

003

004

005

Invalid record

Figure 10. Unique constraints prevent duplicate data

Chapter 1. Basic relational database concepts 17

are optional, and can be defined when a table is created or altered. They

are also beneficial, because they order the data when data is exported or

reorganized.

 In the following tables, DEPTNO and EMPNO are the primary keys for the

DEPARTMENT and EMPLOYEE tables.

 Table 1. DEPARTMENT Table

DEPTNO (Primary Key) DEPTNAME MGRNO

A00 Spiffy Computer Service

Division

000010

B01 Planning 000020

C01 Information Center 000030

D11 Manufacturing Systems 000060

 Table 2. EMPLOYEE Table

EMPNO

(Primary Key) FIRSTNAME LASTNAME

WORKDEPT

(Foreign Key) PHONENO

000010 Christine Haas A00 3978

000030 Sally Kwan C01 4738

000060 Irving Stern D11 6423

000120 Sean O’Connell A00 2167

000140 Heather Nicholls C01 1793

000170 Masatoshi Yoshimura D11 2890

foreign key constraint

Foreign key constraints (also known as referential integrity constraints)

enable you to define required relationships between and within tables.

 For example, a typical foreign key constraint might state that every

employee in the EMPLOYEE table must be a member of an existing

department, as defined in the DEPARTMENT table.

 To establish this relationship, you would define the department number in

the EMPLOYEE table as the foreign key, and the department number in the

DEPARTMENT table as the primary key.

 The following figure shows how a record with an invalid key is prevented

from being added to a table when a foreign key constraint exists between

two tables.

18 Administration Guide: Planning

check constraint

A check constraint is a database rule that specifies the values allowed in

one or more columns of every row of a table.

 For example, in an EMPLOYEE table, you can define the Type of Job

column to be ″Sales″, ″Manager″, or ″Clerk″. With this constraint, any

record with a different value in the Type of Job column is not valid, and

would be rejected, enforcing rules about the type of data allowed in the

table.

informational constraint

An informational constraint is a rule that can be used by the SQL compiler

but is not enforced by the database manager. The purpose of the constraint

is not to have additional verification of data by the database manager,

rather it is to improve query performance.

 Informational constraints are defined using the CREATE TABLE or ALTER

TABLE statements. You add referential integrity or check constraints but

then associate constraint attributes to them specifying whether the database

manager is to enforce the constraint or not; and, whether the constraint is

to be used for query optimization or not.

Employee table

Department table

Department
number

001

002

003

Invalid
record

Employee
name

John Doe

Barb Smith

Fred Vickers

Jane Doe

Department
number

Department
name

001 Sales

002 Training

003

015

Communications

...

Program
development

Foreign
key

Primary
key

...

027

Figure 11. Foreign and primary key constraints

Chapter 1. Basic relational database concepts 19

In addition to using constraints to enforce business rules on your data, you can

also use triggers in your database. Triggers are more complex and potentially more

powerful than constraints. They define a set of actions that are executed in

conjunction with, or triggered by, an INSERT, UPDATE, or DELETE clause on a

specified base table. You can use triggers to support general forms of integrity or

business rules. For example, a trigger can check a customer’s credit limit before an

order is accepted, or be used in a banking application to raise an alert if a

withdrawal from an account did not fit a customer’s standard withdrawal patterns.

 Related concepts:

v “Constraints” on page 65

v “Triggers” on page 70

Data security

 Two security levels control access to DB2 Database for Linux, UNIX, and Windows

data and functions. Access to DB2 is managed by facilities specific to the operating

environment (authentication), whereas access within DB2 is managed by the

database manager (authorization).

Authentication is the process by which a system verifies a user’s identity. User

authentication is completed by a security facility outside DB2, often part of the

operating system or a separate product.

Once a user is authenticated, the databasemanager determines if that user is

allowed to access DB2 data or resources. Authorization is the process whereby DB2

obtains information about the authenticated user, indicating which database

operations the user can perform, and which data objects the user can access. An

authorization ID designates the authorized user’s access. Authorization can be

broken down into two categories: privileges and authorities.

Privileges enable a user to create or access database resources. Authorities provide

a way both to group privileges, and to control maintenance and utility operations

for instances, databases, and database objects.

 Related concepts:

v “About databases” on page 3

Authentication

 Authentication of a user is completed using a security facility outside of DB2

Database for Linux, UNIX, and Windows. The security facility can be part of the

operating system, a separate product or, in certain cases, may not exist at all. On

UNIX based systems, the security facility is in the operating system itself.

The security facility requires two items to authenticate a user: a user ID and a

password. The user ID identifies the user to the security facility. By supplying the

correct password, information known only to the user and the security facility, the

user’s identity (corresponding to the user ID) is verified.

Once authenticated:

v The user must be identified to DB2 using an SQL authorization name or authid.

This name can be the same as the user ID, or a mapped value. For example, on

20 Administration Guide: Planning

UNIX operating systems, a DB2 authid is derived by transforming to uppercase

letters a UNIX user ID that follows DB2 naming conventions.

v A list of groups to which the user belongs is obtained. Group membership may

be used when authorizing the user. Groups are security facility entities that must

also map to DB2 authorization names. This mapping is done in a method similar

to that used for user IDs.

DB2 V9.1 uses the security facility to authenticate users in one of two ways:

v DB2 uses a successful security system login as evidence of identity, and allows:

– Use of local commands to access local data

– Use of remote connections when the server trusts the client authentication.
v DB2 accepts a user ID and password combination. It uses successful validation

of this pair by the security facility as evidence of identity and allows:

– Use of remote connections where the server requires proof of authentication

– Use of operations where the user wants to run a command under an identity

other than the identity used for login.

DB2 on AIX® can log failed password attempts with the operating system, and

detect when a client has exceeded the number of allowable login tries, as specified

by the LOGINRETRIES parameter.

 Related concepts:

v “Authentication methods for your server” in Administration Guide: Implementation

v “Authorization” on page 21

v “Authorization, privileges, and object ownership” in Administration Guide:

Implementation

Authorization

 Authorization is the process whereby DB2 obtains information about an

authenticated DB2 user, indicating the database operations that user may perform,

and what data objects may be accessed. With each user request, there may be more

than one authorization check, depending on the objects and operations involved.

Authorization is performed using DB2 facilities. DB2 tables and configuration files

are used to record the permissions associated with each authorization name. When

an authenticated user tries to access data, the authorization name of the user, and

those of groups to which the user belongs, are compared with the recorded

permissions. Based on this comparison, DB2 decides whether to allow the

requested access.

There are three types of permissions recorded by DB2 Database for Linux, UNIX,

and Windows: privileges, authority levels, and LBAC credentials.

A privilege defines a single permission for an authorization name, enabling a user

to create or access database resources. Privileges are stored in the database

catalogs.

Authority levels provide a method of grouping privileges and control over

higher-level database manager maintenance and utility operations.

Database-specific authorities are stored in the database catalogs; system authorities

Chapter 1. Basic relational database concepts 21

are associated with group membership, and the group names that are associated

with the authority levels are stored in the database manager configuration file for a

given instance.

LBAC credentials are LBAC security labels and LBAC rule exemptions that allow

access to data protected by label-based access control (LBAC). LBAC credentials

are stored in the database catalogs.

Groups provide a convenient means of performing authorization for a collection of

users without having to grant or revoke privileges for each user individually.

Unless otherwise specified, group authorization names can be used anywhere that

authorization names are used for authorization purposes. In general, group

membership is considered for dynamic SQL and non-database object authorizations

(such as instance level commands and utilities), but is not considered for static

SQL. The exception to this general case occurs when privileges are granted to

PUBLIC: these are considered when static SQL is processed. Specific cases where

group membership does not apply are noted throughout the DB2 documentation,

where applicable.

 Related concepts:

v “Authorization and privileges” in SQL Reference, Volume 1

v “Authorization, privileges, and object ownership” in Administration Guide:

Implementation

v “Label-based access control (LBAC) overview” in Administration Guide:

Implementation

Units of work

 A transaction is commonly referred to in DB2 Database for Linux, UNIX, and

Windows as a unit of work. A unit of work is a recoverable sequence of operations

within an application process. It is used by the database manager to ensure that a

database is in a consistent state. Any reading from or writing to the database is

done within a unit of work.

For example, a bank transaction might involve the transfer of funds from a savings

account to a checking account. After the application subtracts an amount from the

savings account, the two accounts are inconsistent, and remain so until the amount

is added to the checking account. When both steps are completed, a point of

consistency is reached. The changes can be committed and made available to other

applications.

A unit of work is started implicitly when the first SQL statement is issued against

the database. All subsequent reads and writes by the same application are

considered part of the same unit of work. The application must end the unit of

work by issuing either a COMMIT or a ROLLBACK statement. The COMMIT

statement makes permanent all changes made within a unit of work. The

ROLLBACK statement removes these changes from the database. If the application

ends normally without either of these statements being explicitly issued, the unit

of work is automatically committed. If it ends abnormally in the middle of a unit

of work, the unit of work is automatically rolled back. Once issued, a COMMIT or

a ROLLBACK cannot be stopped. With some multi-threaded applications, or some

operating systems (such as Windows), if the application ends normally without

either of these statements being explicitly issued, the unit of work is automatically

rolled back. It is recommended that your applications always explicitly commit or

roll back complete units of work. If part of a unit of work does not complete

22 Administration Guide: Planning

successfully, the updates are rolled back, leaving the participating tables as they

were before the transaction began. This ensures that requests are neither lost nor

duplicated.

There is no physical representation of a unit of work because it is a series of

instructions (SQL statements).

 Related reference:

v “COMMIT statement” in SQL Reference, Volume 2

v “ROLLBACK statement” in SQL Reference, Volume 2

High availability disaster recovery (HADR) feature overview

 DB2 Database for Linux, UNIX, and Windows high availability disaster recovery

(HADR) is a database replication feature that provides a high availability solution

for both partial and complete site failures. HADR protects against data loss by

replicating data changes from a source database, called the primary, to a target

database, called the standby.

A partial site failure can be caused by a hardware, network, or software (DB2

database or operating system) failure. Without HADR, the database management

system (DBMS) server or the machine where the database resides has to be

rebooted or restarted. This process could take several minutes to complete. With

HADR, the standby database can take over the primary database role in a matter

of seconds.

A complete site failure can occur when a disaster, such as a fire, causes the entire

site to be destroyed. Since HADR uses TCP/IP for communication between the

primary and standby databases, the two databases can be situated in different

locations. For example, your primary database might be located at your head office

in one city, while your standby database is located at your sales office in another

city. If a disaster occurs at the primary site, data availability is maintained by

having the remote standby database take over as the primary database with full

DB2 functionality. After a takeover operation occurs, you can bring the original

primary database back up and return it to its status of primary database; this is

known as failback.

With HADR, you can choose the level of protection you want from potential loss

of data by specifying one of three synchronization modes: synchronous (SYNC),

near synchronous (NEARSYNC), and asynchronous (ASYNC). These modes

indicate how data changes are propagated between the two systems. The

synchronization mode selected will determine how close to being a replica the

standby database will be when compared to the primary database. For example,

using synchronous mode, HADR can guarantee that any transaction committed on

the primary is also committed on the standby.

Synchronization allows you to have failover and failback between the two systems.

Data changes are recorded in database log records which are shipped from the

primary system to the standby system. HADR is tightly-coupled with DB2 logging

and recovery.

HADR requires that both systems have the same hardware, operating system, and

DB2 software. (There may be some minor differences during times when the

systems are being upgraded.)

Chapter 1. Basic relational database concepts 23

The HADR standby database is established either by restoring it from a backup of

the primary database, or by initializing it from a split-mirror copy of the primary

database. Once HADR is started, the standby database will retrieve log records

from the primary database and replay them against its own copy of the database.

The log records are applied to the standby database until the standby database

“catches up” to the in-memory log set of the primary database. At this point, the

HADR pairing transitions to PEER state where the primary database sends new

log pages to the standby database as well as writing the pages to its local disk. The

log pages are replayed on the standby database as they arrive. Through continuous

log replay, the standby database is maintained as a time-delayed replica of the

primary database.

When a failure occurs on the primary database, you can then easily fail over to the

standby database. Once you have failed over to the standby database, it becomes

the new primary database. Because the standby database server is already online,

failover can be completed very quickly. This keeps your time without database

activity to a minimum.

HADR can also be used to maintain database availability across certain hardware

or software release upgrades. You can upgrade your hardware, operating system,

or DB2 FixPak level on the standby while the primary is available to applications.

You can then transfer the applications to the upgraded system while the original

primary is upgraded.

The performance of the new primary database immediately after failover may not

be exactly the same as on the old primary database before the failure. The new

primary database needs some time to populate the statement cache, the buffer

pool, and other memory locations used by the database manager. Although the

replaying of the log data from the old primary partly places data in the buffer pool

and system catalog caches, it is not complete because it is only based on write

activity. Frequently accessed index pages, catalog information for tables that is

queried but not updated, statement caches, and access plans will all be missing

from the caches. However, the whole process is faster than if you were starting up

a new DB2 database.

Once the failed former primary server is repaired, it can be reintegrated as a

standby database if the two copies of the database can be made consistent. After

reintegration, a failback operation can be performed so that the original primary

database is once again the primary database.

The HADR feature is available only on DB2 Enterprise Server Edition (ESE). It is

disabled in other editions such as Personal Edition, and ESE with the database

partitioning feature (DPF).

HADR takes place at the database level, not at the instance level. This means that a

single instance could include the primary database (A), the standby database (B),

and a standard (non-HADR) database (C). However, an instance cannot contain

both the primary and standby for a single database because HADR requires that

each copy of the database has the same database name.

 Related concepts:

v “High availability” in Data Recovery and High Availability Guide and Reference

24 Administration Guide: Planning

Developing a backup and recovery strategy

 A database can become unusable because of hardware or software failure, or both.

You might, at one time or another, encounter storage problems, power

interruptions, or application failures, and each failure scenario requires a different

recovery action. Protect your data against the possibility of loss by having a well

rehearsed recovery strategy in place. Some of the questions that you should answer

when developing your recovery strategy are:

v Will the database be recoverable?

v How much time can be spent recovering the database?

v How much time will pass between backup operations?

v How much storage space can be allocated for backup copies and archived logs?

v Will table space level backups be sufficient, or will full database backups be

necessary?

v Should I configure a standby system, either manually or through high

availability disaster recovery (HADR)?

A database recovery strategy should ensure that all information is available when

it is required for database recovery. It should include a regular schedule for taking

database backups and, in the case of partitioned database environments, include

backups when the system is scaled (when database partition servers or nodes are

added or dropped). Your overall strategy should also include procedures for

recovering command scripts, applications, user-defined functions (UDFs), stored

procedure code in operating system libraries, and load copies.

Different recovery methods are discussed in the sections that follow, and you will

discover which recovery method is best suited to your business environment.

The concept of a database backup is the same as any other data backup: taking a

copy of the data and then storing it on a different medium in case of failure or

damage to the original. The simplest case of a backup involves shutting down the

database to ensure that no further transactions occur, and then simply backing it

up. You can then recreate the database if it becomes damaged or corrupted in some

way.

The recreation of the database is called recovery. Version recovery is the restoration of

a previous version of the database, using an image that was created during a

backup operation. Rollforward recovery is the reapplication of transactions recorded

in the database log files after a database or a table space backup image has been

restored.

Crash recovery is the automatic recovery of the database if a failure occurs before all

of the changes that are part of one or more units of work (transactions) are

completed and committed. This is done by rolling back incomplete transactions

and completing committed transactions that were still in memory when the crash

occurred.

Recovery log files and the recovery history file are created automatically when a

database is created (Figure 12 on page 26). These log files are important if you

need to recover data that is lost or damaged.

Chapter 1. Basic relational database concepts 25

Each database includes recovery logs, which are used to recover from application or

system errors. In combination with the database backups, they are used to recover

the consistency of the database right up to the point in time when the error

occurred.

The recovery history file contains a summary of the backup information that can be

used to determine recovery options, if all or part of the database must be

recovered to a given point in time. It is used to track recovery-related events such

as backup and restore operations, among others. This file is located in the database

directory.

The table space change history file, which is also located in the database directory,

contains information that can be used to determine which log files are required for

the recovery of a particular table space.

You cannot directly modify the recovery history file or the table space change

history file; however, you can delete entries from the files using the PRUNE

HISTORY command. You can also use the rec_his_retentn database configuration

parameter to specify the number of days that these history files will be retained.

 Data that is easily recreated can be stored in a non-recoverable database. This

includes data from an outside source that is used for read-only applications, and

tables that are not often updated, for which the small amount of logging does not

justify the added complexity of managing log files and rolling forward after a

restore operation. If both the logarchmeth1 and logarchmeth2 database configuration

parameters are set to “OFF” then the database is Non-recoverable. This means that

the only logs that are kept are those required for crash recovery. These logs are

known as active logs, and they contain current transaction data. Version recovery

using offline backups is the primary means of recovery for a non-recoverable

database. (An offline backup means that no other application can use the database

when the backup operation is in progress.) Such a database can only be restored

offline. It is restored to the state it was in when the backup image was taken and

rollforward recovery is not supported.

Data that cannot be easily recreated should be stored in a recoverable database.

This includes data whose source is destroyed after the data is loaded, data that is

Equivalent
physical object

Database

Table space
change history file

Recovery
history file

Recovery
log files

System

Instance

Database
object or concept

Figure 12. Database recovery files

26 Administration Guide: Planning

manually entered into tables, and data that is modified by application programs or

users after it is loaded into the database. Recoverable databases have the logarchmeth1

or logarchmeth2 database configuration parameters set to a value other than “OFF”.

Active logs are still available for crash recovery, but you also have the archived logs,

which contain committed transaction data. Such a database can only be restored

offline. It is restored to the state it was in when the backup image was taken.

However, with rollforward recovery, you can roll the database forward (that is, past

the time when the backup image was taken) by using the active and archived logs

to either a specific point in time, or to the end of the active logs.

Recoverable database backup operations can be performed either offline or online

(online meaning that other applications can connect to the database during the

backup operation). Online table space restore and rollforward operations are

supported only if the database is recoverable. If the database is non-recoverable,

database restore and rollforward operations must be performed offline. During an

online backup operation, rollforward recovery ensures that all table changes are

captured and reapplied if that backup is restored.

If you have a recoverable database, you can back up, restore, and roll individual

table spaces forward, rather than the entire database. When you back up a table

space online, it is still available for use, and simultaneous updates are recorded in

the logs. When you perform an online restore or rollforward operation on a table

space, the table space itself is not available for use until the operation completes,

but users are not prevented from accessing tables in other table spaces.

 Automated backup operations:

 Since it can be time-consuming to determine whether and when to run

maintenance activities such as backup operations, you can use the Configure

Automatic Maintenance wizard to do this for you. With automatic maintenance,

you specify your maintenance objectives, including when automatic maintenance

can run. DB2 then uses these objectives to determine if the maintenance activities

need to be done and then runs only the required maintenance activities during the

next available maintenance window (a user-defined time period for the running of

automatic maintenance activities).

Note: You can still perform manual backup operations when automatic

maintenance is configured. DB2 will only perform automatic backup

operations if they are required.

 Related concepts:

v “Crash recovery” in Data Recovery and High Availability Guide and Reference

v “High availability disaster recovery overview” in Data Recovery and High

Availability Guide and Reference

v “Rollforward recovery” in Data Recovery and High Availability Guide and Reference

v “Version recovery” in Data Recovery and High Availability Guide and Reference

 Related reference:

v “logarchmeth1 - Primary log archive method configuration parameter” in

Performance Guide

v “rec_his_retentn - Recovery history retention period configuration parameter” in

Performance Guide

Chapter 1. Basic relational database concepts 27

28 Administration Guide: Planning

Chapter 2. Automatic maintenance

About automatic maintenance

 The DB2 product provides automatic maintenance capabilities for performing

database backups, keeping statistics current and reorganizing tables and indexes as

necessary.

Performing maintenance activities on your databases is essential to ensure that

they are optimized for performance and recoverability. These activities include:

v Backup of the database. DB2 takes a copy of the data in the database and stores

it on a different medium in case of failure or damage to the original. Automatic

database backup provides users with a solution to help ensure their database is

being backed up both properly and regularly, without either having to worry

about when to back up, or having any knowledge of the backup command.

v Data defragmentation (table or index reorganization). This maintenance activity

can increase the efficiency with which the DB2 database manager accesses your

tables. Automatic reorganization manages offline table and index reorganization

without users having to worry about when and how to reorganize their data.

v Data access optimization (running statistics). The DB2 database manager updates

the system catalog statistics on the data in a table, the data in a table’s indexes,

or the data in both a table and its indexes. The optimizer uses these statistics to

determine which path to use to access the data. Automatic statistics collection

attempts to improve the performance of the database by maintaining up-to-date

table statistics. The goal is to allow the optimizer to choose an access plan based

on accurate statistics.

v Statistics profiling. Automatic statistics profiling advises when and how to

collect table statistics by detecting outdated, missing, and incorrectly specified

statistics and by generating statistical profiles based on query feedback.

For users, it can be time-consuming to determine whether and when to run

maintenance activities. Automatic maintenance takes the burden off of users. With

automatic maintenance, you can specify your maintenance objectives, including

when automatic maintenance can run. The DB2 database manager uses the

objectives you have specified to determine if the maintenance activities need to be

done and runs only the required maintenance activities during the next available

maintenance window (a user-defined time period for the running of automatic

maintenance activities).

Enablement of the automatic maintenance features is controlled using the

automatic maintenance database configuration parameters. These are a hierarchical

set of switches to allow for simplicity and flexibility in managing the enablement

of these features. You can automate database maintenance activities to run only

when they are needed using the Configure Automatic Maintenance wizard. The

DB2 database manager uses the objectives you have specified using the Configure

Automatic Maintenance wizard to determine whether the maintenance activities

need to be done. Then the DB2 database manager runs only the required

maintenance activities during the next available maintenance window. The

maintenance window is a time period specified by you for the running of

automatic maintenance activities.

© Copyright IBM Corp. 1993, 2006 29

Related concepts:

v “Maintenance windows” on page 35

v “Offline maintenance” on page 36

v “Online maintenance” on page 36

Automatic features enabled by default

 DB2 includes several automatic features that are enabled by default when you

create a database. These features are designed to assist you in managing your

database system. This means that your system is capable of self-diagnosis and can

anticipate problems before they happen by monitoring real-time data against

historical problem data. In some cases, these tools can be configured to

automatically make changes to your system so that service disruptions are

avoided.

The following automatic features are enabled by default:

Automatic statistics collection

Automatic statistics collection helps to improve database performance by

collecting up-to-date table statistics. DB2 determines which statistics are

required by your workload and which statistics need to be updated. Then,

the RUNSTATS utility is automatically invoked in the background to

ensure the correct statistics are collected and maintained. Statistics are first

collected on the tables that need it the most. The DB2 optimizer can then

choose an access plan based on accurate statistics. You can disable

automatic statistics collection after a database is created by setting the

database configuration parameter AUTO_RUNSTATS to OFF.

Automatic storage

The automatic storage feature simplifies storage management for table

spaces. When you create a database, you specify the storage paths where

DB2 will place your table space data. Then, DB2 will manage the container

and space allocation for the table spaces as they are created and populated.

Configuration Advisor

When you create a database, this tool is automatically invoked to

determine and set the database configuration parameters and the size of

the default buffer pool (IBMDEFAULTBP). The values are selected based

on system resources and the intended use of the system. This initial

automatic tuning means that your database will have better performance

than a database created with the DB2 default values. It also means that

you will spend less time tuning your system after the database has been

created. The Configuration Advisor can be invoked at any time (even after

your databases are populated) to recommend and optionally apply a set of

configuration parameters to optimize DB2 performance based on the

current system characteristics.

Health Monitor

The Health Monitor is a server-side tool that proactively monitors

situations or changes in your database environment that could result in a

performance degradation or a potential outage. A range of health

information is presented without any form of active monitoring on your

part. If a health risk is encountered, DB2 will let you know about it and

will also advise you on how to proceed. The Health Monitor gathers

information about the system by using the snapshot monitor and does not

impose a performance penalty. Further, it does not turn on any snapshot

monitor switches to gather information.

30 Administration Guide: Planning

Self tuning memory (single partition databases only)

This feature simplifies the task of memory configuration by automatically

adjusting the values for several memory configuration parameters based on

the memory requirements of the system’s workload. The memory tuner

dynamically distributes available memory resources among several

memory consumers including sort, the package cache, the lock list, and

buffer pools. The memory tuner is responsive to significant changes in

workload characteristics and iteratively adjusts the values of the memory

configuration parameters and the sizes of the buffer pools to optimize

performance. You can disable self tuning memory after a database is

created by setting the database configuration parameter

SELF_TUNING_MEM to OFF.

Utility throttling

This feature regulates the performance impact of maintenance utilities, so

that they can run concurrently during production periods. While the

impact policy for throttled utilities is defined by default, you must set the

impact priority when a utility is invoked for it to run throttled. The

throttling system will ensure the throttled utilities are run as aggressively

as possible without violating the impact policy. Currently, you can throttle

statistics collection, backup operations, and rebalancing operations.

 Related concepts:

v “Introduction to the health monitor” in System Monitor Guide and Reference

v “Automatic storage databases” in Administration Guide: Implementation

v “Quick-start tips for performance tuning” in Performance Guide

v “Self tuning memory” in Performance Guide

v “Automatic statistics collection” in Performance Guide

 Related reference:

v “db2AutoConfig API - Access the Configuration Advisor” in Administrative API

Reference

v “SET UTIL_IMPACT_PRIORITY command” in Command Reference

v “util_impact_lim - Instance impact policy configuration parameter” in

Performance Guide

v “auto_maint - Automatic maintenance configuration parameter” in Performance

Guide

Automatic database backup

 A database may become unusable due to a wide variety of hardware or software

failures. Automatic database backup simplifies database backup management tasks

for the DBA by always ensuring that a recent full backup of the database is

performed as needed. It determines the need to perform a backup operation based

on one or more of the following measures:

v You have never completed a full database backup

v The time elapsed since the last full backup is more than a specified number of

hours

v The transaction log space consumed since the last backup is more than a

specified number of 4 KB pages (in archive logging mode only).

Chapter 2. Automatic maintenance 31

Protect your data by planning and implementing a disaster recovery strategy for

your system. If suitable to your needs, you may incorporate the automatic

database backup feature as part of your backup and recovery strategy.

If the database is enabled for roll-forward recovery (archive logging), then

automatic database backup can be enabled for either online or offline backup.

Otherwise, only offline backup is available. Automatic database backup supports

disk, tape, Tivoli® Storage Manager (TSM), and vendor DLL media types.

Through the Configure Automatic Maintenance wizard in the Control Center or

Health Center, you can configure:

v The requested time or number of log pages between backups

v The backup media

v Whether it will be an online or offline backup.

If backup to disk is selected, the automatic backup feature will regularly delete

backup images from the directory specified in the Configure Automatic

Maintenance wizard. Only the most recent backup image is guaranteed to be

available at any given time. It is recommended that this directory be kept

exclusively for the automatic backup feature and not be used to store other backup

images.

The automatic database backup feature can be enabled or disabled by using the

auto_db_backup and auto_maint database configuration parameters. In a

partitioned database environment, the automatic database backup runs on each

database partition if the database configuration parameters are enabled on that

database partition.

 Related concepts:

v “Developing a backup and recovery strategy” on page 25

v “Automatic statistics collection” in Performance Guide

v “Catalog statistics” in Performance Guide

v “Table and index management for MDC tables” in Performance Guide

v “Table and index management for standard tables” in Performance Guide

v “Table reorganization” in Performance Guide

v “Health monitor” in System Monitor Guide and Reference

 Related reference:

v “auto_maint - Automatic maintenance configuration parameter” in Performance

Guide

Automatic reorganization

 After many changes to table data, logically sequential data may be on

non-sequential physical pages so the database manager has to perform additional

read operations to access data.

Among other information, the statistical information collected by RUNSTATS

shows the data distribution within a table. In particular, analysis of these statistics

can indicate when and what kind of reorganization is necessary. Automatic

reorganization determines the need for reorganization on tables by using the

REORGCHK formulas. It periodically evaluates tables that have had their statistics

updated to see if reorganization is required. If so, it internally schedules a classic

32 Administration Guide: Planning

reorganization for the table. This requires that your applications function without

write access to the tables being reorganized.

The automatic reorganization feature can be enabled or disabled by using the

auto_reorg, auto_tbl_maint, and auto_maint database configuration parameters.

In a partitioned database environment, the determination to carry out automatic

reorganization and the inititation of automatic reorganization, is done on the

catalog partition. The database configuration parameters need to be enabled on the

catalog partition only. The reorganization runs on all of the database partitions on

which the target tables reside.

If you are unsure about when and how to reorganize your tables and indexes, you

can incorporate automatic reorganization as part of your overall database

maintenance plan.

Tables considered for automatic reorganization are configurable by you using the

Automatic Maintenance wizard from the Control Center or Health Center.

 Related concepts:

v “Table reorganization” in Performance Guide

 Related tasks:

v “Choosing a table reorganization method” in Performance Guide

v “Determining when to reorganize tables” in Performance Guide

v “Enabling automatic table and index reorganization” in Performance Guide

Automatic statistics collection by table

 When the SQL compiler optimizes SQL query plans, its decisions are heavily

influenced by statistical information about the size of the database tables and

indexes. The optimizer also uses information about the distribution of data in

specific columns of tables and indexes if these columns are used to select rows or

join tables. The optimizer uses this information to estimate the costs of alternative

access plans for each query. Having out-of-date or incomplete statistics for a table

or index could lead the optimizer to select a plan that is much more inefficient

than other alternatives, slowing down query execution. In addition, deciding which

statistics to collect for a given workload is complex, and keeping the statistics

up-to-date through running the RUNSTATS utility can be time-consuming.

Once enabled, automatic statistics collection works in the background by

determining the minimum set of statistics that give optimal performance

improvement. The decision to collect or update statistics is taken by observing and

learning how often tables are modified and how much the table statistics have

changed. The automatic statistics collection algorithm learns over time how fast the

statistics change on a per table basis and internally schedules RUNSTATS execution

accordingly.

Normal database maintenance activities such as when you might use the

RUNSTATS utility, the REORG utility, or altering or dropping a table, are not

affected by the enablement of this feature.

Chapter 2. Automatic maintenance 33

If you are unsure about how often to collect statistics for the tables in your

database, you may incorporate the automatic statistics collection feature as part of

your overall database maintenance plan.

The automatic statistics collection feature can be enabled or disabled by using the

auto_runstats, auto_tbl_maint, and auto_maint database configuration parameters.

Or, you can use the Configure Automatic Maintenance wizard from the Control

Center or Health Center to enable automatic statistics collection.

In a partitioned database environment, the determination to carry out automatic

statistics collection and the inititation of automatic statistics collection, is done on

the catalog partition. The auto_runstats configuration parameter needs to be

enabled on the catalog partition only. The actual statistics collection is done by

RUNSTATS and is collected as follows:

1. If the catalog partition has table data, then collect statistics on the catalog

partition. RUNSTATS always collects statistics on the database partition where

it is initiated if that database partition contains table data.

2. Otherwise, collection of statistics is done on the first database partition in the

database partition list.

 Related concepts:

v “Catalog statistics” in Performance Guide

 Related tasks:

v “Collecting catalog statistics” in Performance Guide

Automatic statistics profiling using automatic statistics collection

 Missing or outdated statistics can make the optimizer pick a slower query plan. It

is important to note that not all statistics are important for a given workload. For

example, statistics on columns not appearing in any query predicate are unlikely to

have any impact. Sometimes statistics on several columns (column group statistics)

are needed in order to adjust for correlations between these columns.

Automatic statistics profiling analyzes optimizer behavior by only considering

columns that were used in previous queries and also knowing columns or column

combinations where estimation errors occurred. In order to detect errors and

recommend or change a statistical profile, the statistical profile generator mines

information collected when the query is compiled as well as information

accumulated when the query ran. This approach is reactive as the action is taken

after the query has been seen and eventually after a plan has been chosen and run.

Automatic statistics profiling advises on how to collect statistics using the

RUNSTATS utility by detecting outdated, missing, and incorrectly specified

statistics and generating statistical profiles based on query feedback.

If suitable to your needs, you may incorporate the automatic statistics profiling

feature as part of your overall database maintenance plan.

Automatic statistics profiling interacts with automatic statistics collection and

advises on when to collect statistics.

The automatic statistics profiling feature can be enabled or disabled by using the

auto_stats_prof, auto_tbl_maint and auto_maint database configuration

34 Administration Guide: Planning

parameters. If the auto_prof_upd database configuration parameter is also enabled,

then the statistical profiles generated are used to update the RUNSTATS user

profiles. Automatic statistics profiling is not available for partitioned database

environments or when symmetric multi-processor (SMP) parallelism, also called

intrapartition parallelism, is enabled.

 Related concepts:

v “Catalog statistics” in Performance Guide

 Related tasks:

v “Collecting catalog statistics” in Performance Guide

Storage used by automatic statistics collection and profiling

 The automatic statistics collection and reorganization features store working data

in tables in your database. These tables are created in the SYSTOOLSPACE table

space. The SYSTOOLSPACE table space is created automatically with default

options when the database is activated. Storage requirements for these tables are

proportional to the number of tables in the database and should be calculated as

approximately 1 KB per table. If this is a significant size for your database, you

may want to drop and re-create the table space yourself and allocate storage

appropriately. The automatic maintenance and health monitor tables in the table

space are automatically re-created. Any history captured in those tables is lost

when the table space is dropped.

Maintenance windows

 A maintenance window is a user-defined time period for the running of automatic

maintenance activities. This is different than a task schedule. When a maintenance

window occurs, each automatic maintenance activity is not necessarily run.

Instead, the DB2 database manager evaluates the system based on the need for

each maintenance activity to be run. If the maintenance requirements are not met,

then the maintenance activity is run. If the database is already well maintained, the

maintenance activity is not run.

You may need to think about when you would like the automatic maintenance

activities to be run. The automatic maintenance activities (backup, statistics

collection, statistics profiling, and reorganization) consume resources on your

system and may affect the performance of your database when they are run.

Automatic reorganization and offline database backup also restrict access to the

tables and database when these utilities are run. It is therefore necessary to provide

appropriate periods of time when these maintenance activities can be internally

scheduled to be run by the DB2 database manager. These can be specified as

offline and online maintenance time periods using the automatic maintenance

wizard from the Control Center or Health Center.

Offline database backups and table and index reorganization are run in the offline

maintenance time period. These features run to completion even if they go beyond

the time period specified. The internal scheduling mechanism learns over time and

estimates job completion times. If the offline time period is too small for a

particular database backup or reorganization activity, the scheduler will not start

the job the next time around and relies on the health monitor to provide

notification of the need to increase the offline maintenance time period.

Chapter 2. Automatic maintenance 35

Automatic statistics collection and profiling as well as online database backups are

run in the online maintenance time period. To minimize the impact on the system,

they are throttled by the adaptive utility throttling mechanism. The internal

scheduling mechanism uses the online maintenance time period to start the online

jobs. These features run to completion even if they go beyond the time period

specified.

 Related concepts:

v “About automatic maintenance” on page 29

v “Offline maintenance” on page 36

v “Online maintenance” on page 36

Offline maintenance

 Offline maintenance activities are maintenance activities that can occur only when

there is some interruption of user access to the database. The extent to which user

access is affected depends on which maintenance activity is running.

v During an offline backup, no applications can connect to the database. Any

currently connected applications will be forced off.

v During an offline data defragmentation (table or index reorganization),

applications can access the data in tables in the database but cannot make

updates.

Note: Data access optimization maintenance activities (running statistics) can only

be performed online.

 Related concepts:

v “About automatic maintenance” on page 29

v “Maintenance windows” on page 35

v “Online maintenance” on page 36

Online maintenance

 Online maintenance activities are maintenance activities that can occur while users

are connected to the database. When online maintenance activities run, any

currently connected applications are allowed to remain connected, and new

connections can be established.

 Related concepts:

v “About automatic maintenance” on page 29

v “Maintenance windows” on page 35

v “Offline maintenance” on page 36

36 Administration Guide: Planning

Chapter 3. Parallel database systems

This chapter discusses different ways of dividing and retrieving data to improve

the speed of data access and the resulting response times for applications.

Information about data distribution, table partitioning, parallelism and the use of

single and multiple processors is included.

Parallelism

 Components of a task, such as a database query, can be run in parallel to

dramatically enhance performance. The nature of the task, the database

configuration, and the hardware environment, all determine how the DB2 database

product will perform a task in parallel. These considerations are interrelated, and

should be considered together when you work on the physical and logical design

of a database. The following types of parallelism are supported by the DB2

database system:

v I/O

v Query

v Utility

Input/output parallelism

When there are multiple containers for a table space, the database manager can

exploit parallel I/O. Parallel I/O refers to the process of writing to, or reading from,

two or more I/O devices simultaneously; it can result in significant improvements

in throughput.

Query parallelism

There are two types of query parallelism: interquery parallelism and intraquery

parallelism.

Interquery parallelism refers to the ability of the database to accept queries from

multiple applications at the same time. Each query runs independently of the

others, but DB2 runs all of them at the same time. DB2 database products have

always supported this type of parallelism.

Intraquery parallelism refers to the simultaneous processing of parts of a single

query, using either intrapartition parallelism, interpartition parallelism, or both.

Intrapartition parallelism

Intrapartition parallelism refers to the ability to break up a query into multiple parts.

Some DB2 utilities also perform this type of parallelism.

Intrapartition parallelism subdivides what is usually considered a single database

operation such as index creation, database loading, or SQL queries into multiple

parts, many or all of which can be run in parallel within a single database partition.

Figure 13 on page 38 shows a query that is broken into four pieces that can be run

in parallel, with the results returned more quickly than if the query were run in

serial fashion. The pieces are copies of each other. To utilize intrapartition

parallelism, you must configure the database appropriately. You can choose the

© Copyright IBM Corp. 1993, 2006 37

degree of parallelism or let the system do it for you. The degree of parallelism

represents the number of pieces of a query running in parallel.

Interpartition parallelism

Interpartition parallelism refers to the ability to break up a query into multiple parts

across multiple partitions of a partitioned database, on one machine or multiple

machines. The query is run in parallel. Some DB2 utilities also perform this type of

parallelism.

Interpartition parallelism subdivides what is usually considered a single database

operation such as index creation, database loading, or SQL queries into multiple

parts, many or all of which can be run in parallel across multiple partitions of a

partitioned database on one machine or on multiple machines.

Figure 14 on page 39 shows a query that is broken into four pieces that can be run

in parallel, with the results returned more quickly than if the query were run in

serial fashion on a single database partition.

The degree of parallelism is largely determined by the number of database

partitions you create and how you define your database partition groups.

SELECT... FROM...

Database partition

Data

Query

Figure 13. Intrapartition parallelism

38 Administration Guide: Planning

Simultaneous intrapartition and interpartition parallelism

You can use intrapartition parallelism and interpartition parallelism at the same

time. This combination provides two dimensions of parallelism, resulting in an

even more dramatic increase in the speed at which queries are processed.

Database
partition

Database
partition

Database
partition

Data DataData

SELECT... FROM...

Query

Figure 14. Interpartition parallelism

Chapter 3. Parallel database systems 39

Utility parallelism

DB2 utilities can take advantage of intrapartition parallelism. They can also take

advantage of interpartition parallelism; where multiple database partitions exist,

the utilities execute in each of the database partitions in parallel.

The load utility can take advantage of intrapartition parallelism and I/O

parallelism. Loading data is a CPU-intensive task. The load utility takes advantage

of multiple processors for tasks such as parsing and formatting data. It can also

use parallel I/O servers to write the data to containers in parallel.

In a partitioned database environment, the LOAD command takes advantage of

intrapartition, interpartition, and I/O parallelism by parallel invocations at each

database partition where the table resides.

During index creation, the scanning and subsequent sorting of the data occurs in

parallel. The DB2 system exploits both I/O parallelism and intrapartition

parallelism when creating an index. This helps to speed up index creation when a

CREATE INDEX statement is issued, during restart (if an index is marked invalid),

and during the reorganization of data.

Backing up and restoring data are heavily I/O-bound tasks. The DB2 system

exploits both I/O parallelism and intrapartition parallelism when performing

Database
partition

Database
partition

DataData

SELECT... FROM...SELECT... FROM...

SELECT... FROM...SELECT... FROM...

Query

Figure 15. Simultaneous interpartition and intrapartition parallelism

40 Administration Guide: Planning

backup and restore operations. Backup exploits I/O parallelism by reading from

multiple table space containers in parallel, and asynchronously writing to multiple

backup media in parallel.

 Related concepts:

v “Database partition and processor environments” on page 42

Partitioned database environments

 DB2 Database for Linux, UNIX, and Windows extends the database manager to the

parallel, multi-partition environment. A database partition is a part of a database

that consists of its own data, indexes, configuration files, and transaction logs. A

database partition is sometimes called a node or a database node. A partitioned

database environment is a database installation that supports the distribution of

data across database partitions.

A single-partition database is a database having only one database partition. All data

in the database is stored in that single database partition. In this case database

partition groups, while present, provide no additional capability.

A multi-partition database is a database with two or more database partitions. Tables

can be located in one or more database partitions. When a table is in a database

partition group consisting of multiple database partitions, some of its rows are

stored in one database partition, and other rows are stored in other database

partitions.

Usually, a single database partition exists on each physical machine, and the

processors on each system are used by the database manager at each database

partition to manage its part of the total data in the database.

Because data is distributed across database partitions, you can use the power of

multiple processors on multiple physical machines to satisfy requests for

information. Data retrieval and update requests are decomposed automatically into

sub-requests, and executed in parallel among the applicable database partitions.

The fact that databases are split across database partitions is transparent to users

issuing SQL statements.

User interaction occurs through one database partition, known as the coordinator

partition for that user. The coordinator partition runs on the same database

partition as the application, or in the case of a remote application, the database

partition to which that application is connected. Any database partition can be

used as a coordinator partition.

DB2 allows you to store data across several database partitions in the database.

This means that the data is physically stored across more than one database

partition, and yet can be accessed as though it were located in the same place.

Applications and users accessing data in a multi-partition database do not need to

be aware of the physical location of the data.

The data, while physically split, is used and managed as a logical whole. Users can

choose how to distribute their data by declaring distribution keys. Users can also

determine across which and over how many database partitions their data is

distributed by selecting the table space and the associated database partition group

in which the data should be stored. Suggestions for distribution and replication can

be done using the DB2 Design Advisor. In addition, an updatable distribution map

Chapter 3. Parallel database systems 41

is used with a hashing algorithm to specify the mapping of distribution key values

to database partitions, which determines the placement and retrieval of each row

of data. As a result, you can spread the workload across a multi-partition database

for large tables, while allowing smaller tables to be stored on one or more database

partitions. Each database partition has local indexes on the data it stores, resulting

in increased performance for local data access.

You are not restricted to having all tables divided across all database partitions in

the database. DB2 supports partial declustering, which means that you can divide

tables and their table spaces across a subset of database partitions in the system.

An alternative to consider when you want tables to be positioned on each database

partition, is to use materialized query tables and then replicate those tables. You

can create a materialized query table containing the information that you need,

and then replicate it to each database partition.

Database partition and processor environments

 This section provides an overview of the following hardware environments:

v Single database partition on a single processor (uniprocessor)

v Single database partition with multiple processors (SMP)

v Multiple database partition configurations

– Database partitions with one processor (MPP)

– Database partitions with multiple processors (cluster of SMPs)

– Logical database partitions

Capacity and scalability are discussed for each environment. Capacity refers to the

number of users and applications able to access the database. This is in large part

determined by memory, agents, locks, I/O, and storage management. Scalability

refers to the ability of a database to grow and continue to exhibit the same

operating characteristics and response times.

Single database partition on a single processor

This environment is made up of memory and disk, but contains only a single CPU

(see Figure 16 on page 43). It is referred to by many different names, including

stand-alone database, client/server database, serial database, uniprocessor system,

and single node or non-parallel environment.

The database in this environment serves the needs of a department or small office,

where the data and system resources (including a single processor or CPU) are

managed by a single database manager.

42 Administration Guide: Planning

Capacity and scalability

In this environment you can add more disks. Having one or more I/O servers for

each disk allows for more than one I/O operation to take place at the same time.

A single-processor system is restricted by the amount of disk space the processor

can handle. As workload increases, a single CPU may not be able to process user

requests any faster, regardless of other components, such as memory or disk, that

you may add. If you have reached maximum capacity or scalability, you can

consider moving to a single database partition system with multiple processors.

Single database partition with multiple processors

This environment is typically made up of several equally powerful processors

within the same machine (see Figure 17 on page 44), and is called a symmetric

multiprocessor (SMP) system. Resources, such as disk space and memory, are shared.

With multiple processors available, different database operations can be completed

more quickly. DB2 database systems can also divide the work of a single query

among available processors to improve processing speed. Other database

operations, such as loading data, backing up and restoring table spaces, and

creating indexes on existing data, can take advantage of multiple processors.

Database partition

Memory

CPU

Uniprocessor
environment

Disks

Figure 16. Single database partition on a single processor

Chapter 3. Parallel database systems 43

Capacity and scalability

In this environment you can add more processors. However, since the different

processors may attempt to access the same data, limitations with this environment

can appear as your business operations grow. With shared memory and shared

disks, you are effectively sharing all of the database data.

You can increase the I/O capacity of the database partition associated with your

processor by increasing the number of disks. You can establish I/O servers to

specifically deal with I/O requests. Having one or more I/O servers for each disk

allows for more than one I/O operation to take place at the same time.

If you have reached maximum capacity or scalability, you can consider moving to

a system with multiple database partitions.

Multiple database partition configurations

You can divide a database into multiple database partitions, each on its own

machine. Multiple machines with multiple database partitions can be grouped

together. This section describes the following database partition configurations:

v Database partitions on systems with one processor

v Database partitions on systems with multiple processors

v Logical database partitions

Database partitions with one processor

In this environment, there are many database partitions. Each database partition

resides on its own machine, and has its own processor, memory, and disks

(Figure 18 on page 45). All the machines are connected by a communications

facility. This environment is referred to by many different names, including: cluster,

cluster of uniprocessors, massively parallel processing (MPP) environment, and

shared-nothing configuration. The latter name accurately reflects the arrangement

of resources in this environment. Unlike an SMP environment, an MPP

Symmetric multiprocessor
(SMP) environment

Disks

Database partition

Memory

CPU

CPU

CPU

CPU

Figure 17. Single partition database symmetric multiprocessor environment

44 Administration Guide: Planning

environment has no shared memory or disks. The MPP environment removes the

limitations introduced through the sharing of memory and disks.

A partitioned database environment allows a database to remain a logical whole,

despite being physically divided across more than one database partition. The fact

that data is distributed remains transparent to most users. Work can be divided

among the database managers; each database manager in each database partition

works against its own part of the database.

Capacity and scalability: In this environment you can add more database

partitions (nodes) to your configuration. On some platforms, for example the

RS/6000® SP™, the maximum number is 512 nodes. However, there may be

practical limits on managing a high number of machines and instances.

If you have reached maximum capacity or scalability, you can consider moving to

a system where each database partition has multiple processors.

Database partitions with multiple processors

An alternative to a configuration in which each database partition has a single

processor, is a configuration in which each database partition has multiple

processors. This is known as an SMP cluster (Figure 19 on page 46).

This configuration combines the advantages of SMP and MPP parallelism. This

means that a query can be performed in a single database partition across multiple

processors. It also means that a query can be performed in parallel across multiple

database partitions.

Disks DisksDisks

Uniprocessor
environment

Uniprocessor
environment

Uniprocessor
environment

. . .

Communications
facility

Memory MemoryMemory

CPU CPUCPU

Database partition Database partitionDatabase partition

Figure 18. Massively parallel processing (MPP) environment

Chapter 3. Parallel database systems 45

Capacity and scalability: In this environment you can add more database

partitions, and you can add more processors to existing database partitions.

Logical database partitions

A logical database partition differs from a physical partition in that it is not given

control of an entire machine. Although the machine has shared resources, database

partitions do not share the resources. Processors are shared but disks and memory

are not.

Logical database partitions provide scalability. Multiple database managers running

on multiple logical partitions may make fuller use of available resources than a

single database manager could. Figure 20 on page 47 illustrates the fact that you

may gain more scalability on an SMP machine by adding more database partitions;

this is particularly true for machines with many processors. By distributing the

database, you can administer and recover each database partition separately.

CPU

CPU

CPU

CPU

Memory

CPU

CPU

CPU

CPU

Memory

Communications
facility

SMP environment SMP environment

Disks Disks

Database partition Database partition

Figure 19. Several symmetric multiprocessor (SMP) environments in a cluster

46 Administration Guide: Planning

Figure 21 on page 48 illustrates that you can multiply the configuration shown in

Figure 20 to increase processing power.

Disks Disks

Big SMP environment

Database
partition 1

Database
partition 2

Memory Memory

CPU CPU

CPU CPU

Communications
facility

Figure 20. Partitioned database with symmetric multiprocessor environment

Chapter 3. Parallel database systems 47

Note: The ability to have two or more database partitions coexist on the same

machine (regardless of the number of processors) allows greater flexibility in

designing high availability configurations and failover strategies. Upon

machine failure, a database partition can be automatically moved and

restarted on a second machine that already contains another database

partition of the same database.

Summary of parallelism best suited to each hardware

environment

The following table summarizes the types of parallelism best suited to take

advantage of the various hardware environments.

 Table 3. Types of Parallelism Possible in Each Hardware Environment

Hardware Environment I/O Parallelism Intra-Query Parallelism

Intra-Partition

Parallelism

Inter-Partition

Parallelism

Single Database Partition, Single

Processor

Yes No(1) No

Single Database Partition, Multiple

Processors (SMP)

Yes Yes No

Multiple Database Partitions, One

Processor (MPP)

Yes No(1) Yes

Communications
facility

Disks DisksDisks Disks

Big SMP
environment

Big SMP
environment

Database
partition 1

Database
partition 1

Database
partition 2

Database
partition 2

Memory MemoryMemory Memory

CPU CPUCPU CPU

CPU CPUCPU CPU

Communications
facility

Communications
facility

Figure 21. Partitioned database with symmetric multiprocessor environments clustered

together

48 Administration Guide: Planning

Table 3. Types of Parallelism Possible in Each Hardware Environment (continued)

Hardware Environment I/O Parallelism Intra-Query Parallelism

Intra-Partition

Parallelism

Inter-Partition

Parallelism

Multiple Database Partitions,

Multiple Processors (cluster of

SMPs)

Yes Yes Yes

Logical Database Partitions Yes Yes Yes

Note: (1) There may be an advantage to setting the degree of parallelism (using one of the

configuration parameters) to some value greater than one, even on a single processor

system, especially if the queries you execute are not fully utilizing the CPU (for example, if

they are I/O bound).

 Related concepts:

v “Parallelism” on page 37

Chapter 3. Parallel database systems 49

50 Administration Guide: Planning

Part 2. Database design

© Copyright IBM Corp. 1993, 2006 51

52 Administration Guide: Planning

Chapter 4. Logical database design

When designing a database, you want to create an accurate representation of your

environment that will serve as a basis for expansion. In addition, your database

design should maintain the consistency and integrity of your data. You can achieve

this by creating a design that will reduce redundancy and eliminate anomalies that

can occur when updating your database. The topics in this chapter will discuss the

elements of logical database design.

What to record in a database

 The first step in developing a database design is to identify the types of data to be

stored in database tables. A database includes information about the entities in an

organization or business, and their relationships to each other. In a relational

database, entities are represented as tables.

An entity is a person, object, or concept about which you want to store

information. Some of the entities described in the sample tables are employees,

departments, and projects.

In the sample employee table, the entity ″employee″ has attributes, or properties,

such as employee number, name, work department, and job description. Those

properties appear as the columns EMPNO, FIRSTNME, LASTNAME, WORKDEPT,

and JOB.

An occurrence of the entity ″employee″ consists of the values in all of the columns

for one employee. Each employee has a unique employee number (EMPNO) that

can be used to identify an occurrence of the entity ″employee″. Each row in a table

represents an occurrence of an entity or relationship. For example, in the following

table the values in the first row describe an employee named Haas.

 Table 4. Occurrences of Employee Entities and their Attributes

EMPNO FIRSTNME LASTNAME WORKDEPT JOB

000010 Christine Haas A00 President

000020 Michael Thompson B01 Manager

000120 Sean O’Connell A00 Clerk

000130 Dolores Quintana C01 Analyst

000030 Sally Kwan C01 Manager

000140 Heather Nicholls C01 Analyst

000170 Masatoshi Yoshimura D11 Designer

There is a growing need to support non-traditional database applications such as

multimedia. You may want to consider attributes to support multimedia objects

such as documents, video or mixed media, image, and voice.

Within a table, each column of a row is related in some way to all the other

columns of that row. Some of the relationships expressed in the sample tables are:

v Employees are assigned to departments

© Copyright IBM Corp. 1993, 2006 53

– Dolores Quintana is assigned to Department C01
v Employees perform a job

– Dolores works as an Analyst
v Employees manage departments

– Sally manages department C01.

″Employee″ and ″department″ are entities; Sally Kwan is part of an occurrence of

″employee,″ and C01 is part of an occurrence of ″department″. The same

relationship applies to the same columns in every row of a table. For example, one

row of a table expresses the relationship that Sally Kwan manages Department

C01; another, the relationship that Sean O’Connell is a clerk in Department A00.

The information contained within a table depends on the relationships to be

expressed, the amount of flexibility needed, and the data retrieval speed desired.

In addition to identifying the entity relationships within your enterprise, you also

need to identify other types of information, such as the business rules that apply to

that data.

 Related concepts:

v “Column definitions” on page 56

v “Database relationships” on page 54

Database relationships

 Several types of relationships can be defined in a database. Consider the possible

relationships between employees and departments.

One-to-many and many-to-one relationships

An employee can work in only one department; this relationship is single-valued for

employees. On the other hand, one department can have many employees; this

relationship is multi-valued for departments. The relationship between employees

(single-valued) and departments (multi-valued) is a one-to-many relationship.

To define tables for each one-to-many and each many-to-one relationship:

1. Group all the relationships for which the ″many″ side of the relationship is the

same entity.

2. Define a single table for all the relationships in the group.

In the following example, the ″many″ side of the first and second relationships is

″employees″ so an employee table, EMPLOYEE, is defined.

 Table 5. Many-to-One Relationships

Entity Relationship Entity

Employees are assigned to departments

Employees work at jobs

Departments report to (administrative) departments

In the third relationship, ″departments″ is on the ″many″ side, so a department

table, DEPARTMENT, is defined.

54 Administration Guide: Planning

The following tables show these different relationships.

The EMPLOYEE table:

 EMPNO WORKDEPT JOB

000010 A00 President

000020 B01 Manager

000120 A00 Clerk

000130 C01 Analyst

000030 C01 Manager

000140 C01 Analyst

000170 D11 Designer

The DEPARTMENT table:

 DEPTNO ADMRDEPT

C01 A00

D01 A00

D11 D01

Many-to-many relationships

A relationship that is multi-valued in both directions is a many-to-many

relationship. An employee can work on more than one project, and a project can

have more than one employee. The questions ″What does Dolores Quintana work

on?″, and ″Who works on project IF1000?″ both yield multiple answers. A

many-to-many relationship can be expressed in a table with a column for each

entity (″employees″ and ″projects″), as shown in the following example.

The following table shows how a many-to-many relationship (an employee can

work on many projects, and a project can have many employees working on it) is

represented.

The employee activity (EMP_ACT) table:

 EMPNO PROJNO

000030 IF1000

000030 IF2000

000130 IF1000

000140 IF2000

000250 AD3112

One-to-one relationships

One-to-one relationships are single-valued in both directions. A manager manages

one department; a department has only one manager. The questions, ″Who is the

manager of Department C01?″, and ″What department does Sally Kwan manage?″

both have single answers. The relationship can be assigned to either the

DEPARTMENT table or the EMPLOYEE table. Because all departments have

Chapter 4. Logical database design 55

managers, but not all employees are managers, it is most logical to add the

manager to the DEPARTMENT table, as shown in the following example.

The following table shows the representation of a one-to-one relationship.

The DEPARTMENT table:

 DEPTNO MGRNO

A00 000010

B01 000020

D11 000060

Ensure that equal values represent the same entity

You can have more than one table describing the attributes of the same set of

entities. For example, the EMPLOYEE table shows the number of the department

to which an employee is assigned, and the DEPARTMENT table shows which

manager is assigned to each department number. To retrieve both sets of attributes

simultaneously, you can join the two tables on the matching columns, as shown in

the following example. The values in WORKDEPT and DEPTNO represent the

same entity, and represent a join path between the DEPARTMENT and EMPLOYEE

tables.

The DEPARTMENT table:

 DEPTNO DEPTNAME MGRNO ADMRDEPT

D21 Administration

Support

000070 D01

The EMPLOYEE table:

 EMPNO FIRSTNAME LASTNAME WORKDEPT JOB

000250 Daniel Smith D21 Clerk

When you retrieve information about an entity from more than one table, ensure

that equal values represent the same entity. The connecting columns can have

different names (like WORKDEPT and DEPTNO in the previous example), or they

can have the same name (like the columns called DEPTNO in the department and

project tables).

 Related concepts:

v “Column definitions” on page 56

v “What to record in a database” on page 53

Column definitions

 Within a relational table, each row of data in the table is a collection of related data

values. There are characteristics to each piece of data in each row. Columns are

used to identify and classify each piece of data.

Each column in a table must have a name that is unique for that table.

56 Administration Guide: Planning

The data type and length specify the type of data and the maximum length that are

valid for the column. Data types may be chosen from those provided by the

database manager or you may choose to create your own user-defined types.

Examples of data type categories are: numeric, character string, double-byte (or

graphic) character string, date-time, and binary string.

Large object (LOB) data types support multi-media objects such as documents,

video, image and voice. These objects are implemented using the following data

types:

v A binary large object (BLOB) string. Examples of BLOBs are photographs of

employees, voice, and video.

v A character large object (CLOB) string, where the sequence of characters can be

either single- or multi-byte characters, or a combination of both. An example of

a CLOB is an employee’s resume.

v A double-byte character large object (DBCLOB) string, where the sequence of

characters is double-byte characters. An example of a DBCLOB is a Japanese

resume.

A user-defined type (UDT), is a data type that is derived from an existing type. You

may need to define types that are derived from and share characteristics with

existing data types, but that are nevertheless considered to be separate from them

and incompatible with them.

A structured type is a user-defined type whose structure is defined in the database.

It contains a sequence of named attributes, each of which has a data type. A

structured type may be defined as a subtype of another structured type, called its

supertype. A subtype inherits all the attributes of its supertype and may have

additional attributes defined. The set of structured types that are related to a

common supertype is called a type hierarchy, and the supertype that does not have

any supertype is called the root type of the type hierarchy.

A structured type may be used as the type of a table or a view. The names and

data types of the attributes of the structured types, together with the object

identifier, become the names and data types of the columns of this typed table or

typed view. Rows of the typed table or typed view can be thought of as a

representation of instances of the structured type.

A structured type cannot be used as the data type of a column of a table or a view.

There is also no support for retrieving a whole structured type instance into a host

variable in an application program.

A reference type is a companion type to the structured type. Similar to a distinct

type, a reference type is a scalar type that shares a common representation with

one of the built-in data types. This same representation is shared for all types in

the type hierarchy. The reference type representation is defined when the root type

of a type hierarchy is created. When using a reference type, a structured type is

specified as a parameter of the type. This parameter is called the target type of the

reference.

The target of a reference is always a row in a typed table or view. When a

reference type is used, it may have a scope defined. The scope identifies a table

(called the target table) or view (called the target view) that contains the target row

of a reference value. The target table or view must have the same type as the target

Chapter 4. Logical database design 57

type of the reference type. An instance of a scoped reference type uniquely

identifies a row in a typed table or typed view, called its target row.

A user-defined function (UDF) can be used for a number of reasons, including

invoking routines that allow comparison or conversion between user-defined types.

UDFs extend and add to the support provided by built-in SQL functions, and can

be used wherever a built-in function can be used. There are two types of UDFs:

v An external function, which is written in a programming language

v A sourced function, which will be used to invoke other UDFs

For example, two numeric data types are European Shoe Size and American Shoe

Size. Both types represent shoe size, but they are incompatible, because the

measurement base is different and cannot be compared. A user-defined function

can be invoked to convert one shoe size to another.

Some columns cannot have meaningful values in all rows because:

v A column value is not applicable to the row.

For example, a column containing an employee’s middle initial is not applicable

to an employee who has no middle initial.

v A value is applicable, but is not yet known.

For example, the MGRNO column might not contain a valid manager number

because the previous manager of the department has been transferred, and a

new manager has not been appointed yet.

In both situations, you can choose between allowing a NULL value (a special value

indicating that the column value is unknown or not applicable), or allowing a

non-NULL default value to be assigned by the database manager or by the

application.

Primary keys

 A key is a set of columns that can be used to identify or access a particular row or

rows. The key is identified in the description of a table, index, or referential

constraint. The same column can be part of more than one key.

A unique key is a key that is constrained so that no two of its values are equal. The

columns of a unique key cannot contain NULL values. For example, an employee

number column can be defined as a unique key, because each value in the column

identifies only one employee. No two employees can have the same employee

number.

The mechanism used to enforce the uniqueness of the key is called a unique index.

The unique index of a table is a column, or an ordered collection of columns, for

which each value identifies (functionally determines) a unique row. A unique index

can contain NULL values.

The primary key is one of the unique keys defined on a table, but is selected to be

the key of first importance. There can be only one primary key on a table.

A primary index is automatically created for the primary key. The primary index is

used by the database manager for efficient access to table rows, and it allows the

database manager to enforce the uniqueness of the primary key. (You can also

define indexes on non-primary key columns to efficiently access data when

processing queries.)

58 Administration Guide: Planning

If a table does not have a ″natural″ unique key, or if arrival sequence is the method

used to distinguish unique rows, using a time stamp as part of the key can be

helpful.

Primary keys for some of the sample tables are:

Table Key Column

Employee table EMPNO

Department table DEPTNO

Project table PROJNO

The following example shows part of the PROJECT table, including its primary

key column.

 Table 6. A Primary Key on the PROJECT Table

PROJNO (Primary Key) PROJNAME DEPTNO

MA2100 Weld Line Automation D01

MA2110 Weld Line Programming D11

If every column in a table contains duplicate values, you cannot define a primary

key with only one column. A key with more than one column is a composite key.

The combination of column values should define a unique entity. If a composite

key cannot be defined easily, you may consider creating a new column that has

unique values.

The following example shows a primary key containing more than one column (a

composite key):

 Table 7. A Composite Primary Key on the EMP_ACT Table

EMPNO

(Primary Key)

PROJNO

(Primary Key)

ACTNO

(Primary Key) EMPTIME

EMSTDATE

(Primary Key)

000250 AD3112 60 1.0 1982-01-01

000250 AD3112 60 .5 1982-02-01

000250 AD3112 70 .5 1982-02-01

Identifying candidate key columns

To identify candidate keys, select the smallest number of columns that define a

unique entity. There may be more than one candidate key. In Table 8, there appear

to be many candidate keys. The EMPNO, the PHONENO, and the LASTNAME

columns each uniquely identify the employee.

 Table 8. EMPLOYEE Table

EMPNO

(Primary Key) FIRSTNAME LASTNAME

WORKDEPT

(Foreign Key) PHONENO

000010 Christine Haas A00 3978

000030 Sally Kwan C01 4738

000060 Irving Stern D11 6423

000120 Sean O’Connell A00 2167

000140 Heather Nicholls C01 1793

Chapter 4. Logical database design 59

Table 8. EMPLOYEE Table (continued)

EMPNO

(Primary Key) FIRSTNAME LASTNAME

WORKDEPT

(Foreign Key) PHONENO

000170 Masatoshi Yoshimura D11 2890

The criteria for selecting a primary key from a pool of candidate keys should be

persistence, uniqueness, and stability:

v Persistence means that a primary key value for each row always exists.

v Uniqueness means that the key value for each row is different from all the

others.

v Stability means that primary key values never change.

Of the three candidate keys in the example, only EMPNO satisfies all of these

criteria. An employee may not have a phone number when joining a company.

Last names can change, and, although they may be unique at one point, are not

guaranteed to be so. The employee number column is the best choice for the

primary key. An employee is assigned a unique number only once, and that

number is generally not updated as long as the employee remains with the

company. Since each employee must have a number, values in the employee

number column are persistent.

 Related concepts:

v “Identity columns” on page 60

Identity columns

 An identity column provides a way for DB2 Database for Linux, UNIX, and

Windows to automatically generate a unique numeric value for each row in a

table. A table can have a single column that is defined with the identity attribute.

Examples of an identity column include order number, employee number, stock

number, and incident number.

Values for an identity column can be generated always or generated by default.

v An identity column that is defined as generated always prevents the overriding of

values in an SQL statement. Its values are always generated by DB2 database

manager; applications are not allowed to provide an explicit value. There is no

guarantee on the uniqueness of values found within generated always columns.

To guarantee uniqueness of values in the column, a unique index should be

defined on the column.

v An identity column that is defined as generated by default gives applications a

way to explicitly provide a value for the identity column. If a value is not given,

DB2 generates one, but cannot guarantee the uniqueness of the value in this

case. Generated by default is meant to be used for data propagation, in which

the contents of an existing table are copied, or for the unloading and reloading

of a table.

Identity columns are ideally suited to the task of generating unique primary key

values. Applications can use identity columns to avoid the concurrency and

performance problems that can result when an application generates its own

unique counter outside of the database. For example, one common

application-level implementation is to maintain a 1-row table containing a counter.

Each transaction locks this table, increments the number, and then commits; that is,

60 Administration Guide: Planning

only one transaction at a time can increment the counter. In contrast, if the counter

is maintained through an identity column, much higher levels of concurrency can

be achieved because the counter is not locked by transactions. One uncommitted

transaction that has incremented the counter will not prevent subsequent

transactions from also incrementing the counter.

The counter for the identity column is incremented (or decremented)

independently of the transaction. If a given transaction increments an identity

counter two times, that transaction may see a gap in the two numbers that are

generated because there may be other transactions concurrently incrementing the

same identity counter (that is, inserting rows into the same table). If an application

must have a consecutive range of numbers, that application should take an

exclusive lock on the table that has the identity column. This decision must be

weighed against the resulting loss of concurrency. Furthermore, it is possible that a

given identity column can appear to have generated gaps in the number, because a

transaction that generated a value for the identity column has rolled back, or the

database that has cached a range of values has been deactivated before all of the

cached values were assigned.

The sequential numbers that are generated by the identity column have the

following additional properties:

v The values can be of any exact numeric data type with a scale of zero; that is,

SMALLINT, INTEGER, BIGINT, or DECIMAL with a scale of zero. (Single- and

double-precision floating-point are considered to be approximate numeric data

types.)

v Consecutive values can differ by any specified integer increment. The default

increment is 1.

v The counter value for the identity column is recoverable. If a failure occurs, the

counter value is reconstructed from the logs, thereby guaranteeing that unique

values continue to be generated.

v Identity column values can be cached to give better performance.

 Related concepts:

v “Primary keys” on page 58

Normalization

 Normalization helps eliminate redundancies and inconsistencies in table data. It is

the process of reducing tables to a set of columns where all the non-key columns

depend on the primary key column. If this is not the case, the data can become

inconsistent during updates.

This section briefly reviews the rules for first, second, third, and fourth normal

form. The fifth normal form of a table, which is covered in many books on

database design, is not described here.

Form Description

First At each row and column position in the table, there exists one value, never

a set of values.

Second Each column that is not part of the key is dependent upon the key.

Third Each non-key column is independent of other non-key columns, and is

dependent only upon the key.

Chapter 4. Logical database design 61

Fourth No row contains two or more independent multi-valued facts about an

entity.

First normal form

A table is in first normal form if there is only one value, never a set of values, in

each cell. A table that is in first normal form does not necessarily satisfy the criteria

for higher normal forms.

For example, the following table violates first normal form because the

WAREHOUSE column contains several values for each occurrence of PART.

 Table 9. Table Violating First Normal Form

PART (Primary Key) WAREHOUSE

P0010 Warehouse A, Warehouse B, Warehouse C

P0020 Warehouse B, Warehouse D

The following example shows the same table in first normal form.

 Table 10. Table Conforming to First Normal Form

PART (Primary Key)

WAREHOUSE (Primary

Key) QUANTITY

P0010 Warehouse A 400

P0010 Warehouse B 543

P0010 Warehouse C 329

P0020 Warehouse B 200

P0020 Warehouse D 278

Second normal form

A table is in second normal form if each column that is not part of the key is

dependent upon the entire key.

Second normal form is violated when a non-key column is dependent upon part of

a composite key, as in the following example:

 Table 11. Table Violating Second Normal Form

PART (Primary

Key)

WAREHOUSE

(Primary Key) QUANTITY WAREHOUSE_ADDRESS

P0010 Warehouse A 400 1608 New Field Road

P0010 Warehouse B 543 4141 Greenway Drive

P0010 Warehouse C 329 171 Pine Lane

P0020 Warehouse B 200 4141 Greenway Drive

P0020 Warehouse D 278 800 Massey Street

The primary key is a composite key, consisting of the PART and the WAREHOUSE

columns together. Because the WAREHOUSE_ADDRESS column depends only on

the value of WAREHOUSE, the table violates the rule for second normal form.

The problems with this design are:

62 Administration Guide: Planning

v The warehouse address is repeated in every record for a part stored in that

warehouse.

v If the address of a warehouse changes, every row referring to a part stored in

that warehouse must be updated.

v Because of this redundancy, the data might become inconsistent, with different

records showing different addresses for the same warehouse.

v If at some time there are no parts stored in a warehouse, there might not be a

row in which to record the warehouse address.

The solution is to split the table into the following two tables:

 Table 12. PART_STOCK Table Conforming to Second Normal Form

PART (Primary Key)

WAREHOUSE (Primary

Key) QUANTITY

P0010 Warehouse A 400

P0010 Warehouse B 543

P0010 Warehouse C 329

P0020 Warehouse B 200

P0020 Warehouse D 278

 Table 13. WAREHOUSE Table Conforms to Second Normal Form

WAREHOUSE (Primary Key) WAREHOUSE_ADDRESS

Warehouse A 1608 New Field Road

Warehouse B 4141 Greenway Drive

Warehouse C 171 Pine Lane

Warehouse D 800 Massey Street

There is a performance consideration in having the two tables in second normal

form. Applications that produce reports on the location of parts must join both

tables to retrieve the relevant information.

Third normal form

A table is in third normal form if each non-key column is independent of other

non-key columns, and is dependent only on the key.

The first table in the following example contains the columns EMPNO and

WORKDEPT. Suppose a column DEPTNAME is added (see Table 15 on page 64).

The new column depends on WORKDEPT, but the primary key is EMPNO. The

table now violates third normal form. Changing DEPTNAME for a single

employee, John Parker, does not change the department name for other employees

in that department. There are now two different department names used for

department number E11. The inconsistency that results is shown in the updated

version of the table.

Chapter 4. Logical database design 63

Table 14. Unnormalized EMPLOYEE_DEPARTMENT Table Before Update

EMPNO

(Primary Key) FIRSTNAME LASTNAME WORKDEPT DEPTNAME

000290 John Parker E11 Operations

000320 Ramlal Mehta E21 Software

Support

000310 Maude Setright E11 Operations

 Table 15. Unnormalized EMPLOYEE_DEPARTMENT Table After Update. Information in the

table has become inconsistent.

EMPNO

(Primary Key) FIRSTNAME LASTNAME WORKDEPT DEPTNAME

000290 John Parker E11 Installation

Mgmt

000320 Ramlal Mehta E21 Software

Support

000310 Maude Setright E11 Operations

The table can be normalized by creating a new table, with columns for

WORKDEPT and DEPTNAME. An update like changing a department name is

now much easier; only the new table needs to be updated.

An SQL query that returns the department name along with the employee name is

more complex to write, because it requires joining the two tables. It will probably

also take longer to run than a query on a single table. Additional storage space is

required, because the WORKDEPT column must appear in both tables.

The following tables are defined as a result of normalization:

 Table 16. EMPLOYEE Table After Normalizing the EMPLOYEE_DEPARTMENT Table

EMPNO (Primary

Key) FIRSTNAME LASTNAME WORKDEPT

000290 John Parker E11

000320 Ramlal Mehta E21

000310 Maude Setright E11

 Table 17. DEPARTMENT Table After Normalizing the EMPLOYEE_DEPARTMENT Table

DEPTNO (Primary Key) DEPTNAME

E11 Operations

E21 Software Support

Fourth normal form

A table is in fourth normal form if no row contains two or more independent

multi-valued facts about an entity.

Consider these entities: employees, skills, and languages. An employee can have

several skills and know several languages. There are two relationships, one

between employees and skills, and one between employees and languages. A table

is not in fourth normal form if it represents both relationships, as in the following

64 Administration Guide: Planning

example:

 Table 18. Table Violating Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key) LANGUAGE (Primary Key)

000130 Data Modelling English

000130 Database Design English

000130 Application Design English

000130 Data Modelling Spanish

000130 Database Design Spanish

000130 Application Design Spanish

Instead, the relationships should be represented in two tables:

 Table 19. EMPLOYEE_SKILL Table Conforming to Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key)

000130 Data Modelling

000130 Database Design

000130 Application Design

 Table 20. EMPLOYEE_LANGUAGE Table Conforming to Fourth Normal Form

EMPNO (Primary Key) LANGUAGE (Primary Key)

000130 English

000130 Spanish

If, however, the attributes are interdependent (that is, the employee applies certain

languages only to certain skills), the table should not be split.

A good strategy when designing a database is to arrange all data in tables that are

in fourth normal form, and then to decide whether the results give you an

acceptable level of performance. If they do not, you can rearrange the data in

tables that are in third normal form, and then reassess performance.

Constraints

 A constraint is a rule that the database manager enforces.

There are four types of constraints:

v A unique constraint is a rule that forbids duplicate values in one or more columns

within a table. Unique and primary keys are the supported unique constraints.

For example, a unique constraint can be defined on the supplier identifier in the

supplier table to ensure that the same supplier identifier is not given to two

suppliers.

v A referential constraint is a logical rule about values in one or more columns in

one or more tables. For example, a set of tables shares information about a

corporation’s suppliers. Occasionally, a supplier’s name changes. You can define

a referential constraint stating that the ID of the supplier in a table must match a

supplier ID in the supplier information. This constraint prevents insert, update,

or delete operations that would otherwise result in missing supplier information.

Chapter 4. Logical database design 65

v A table check constraint sets restrictions on data added to a specific table. For

example, a table check constraint can ensure that the salary level for an

employee is at least $20,000 whenever salary data is added or updated in a table

containing personnel information.

v An informational constraint is a rule that can be used by the SQL compiler, but

that is not enforced by the database manager.

Referential and table check constraints can be turned on or off. It is generally a

good idea, for example, to turn off the enforcement of a constraint when large

amounts of data are loaded into a database.

Unique constraints

A unique constraint is the rule that the values of a key are valid only if they are

unique within a table. Unique constraints are optional and can be defined in the

CREATE TABLE or ALTER TABLE statement using the PRIMARY KEY clause or

the UNIQUE clause. The columns specified in a unique constraint must be defined

as NOT NULL. The database manager uses a unique index to enforce the

uniqueness of the key during changes to the columns of the unique constraint.

A table can have an arbitrary number of unique constraints, with at most one

unique constraint defined as the primary key. A table cannot have more than one

unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint

is called the parent key.

When a unique constraint is defined in a CREATE TABLE statement, a unique

index is automatically created by the database manager and designated as a

primary or unique system-required index.

When a unique constraint is defined in an ALTER TABLE statement and an index

exists on the same columns, that index is designated as unique and

system-required. If such an index does not exist, the unique index is automatically

created by the database manager and designated as a primary or unique

system-required index.

Note that there is a distinction between defining a unique constraint and creating a

unique index. Although both enforce uniqueness, a unique index allows nullable

columns and generally cannot be used as a parent key.

Referential constraints

Referential integrity is the state of a database in which all values of all foreign keys

are valid. A foreign keyis a column or a set of columns in a table whose values are

required to match at least one primary key or unique key value of a row in its

parent table. A referential constraint is the rule that the values of the foreign key are

valid only if one of the following conditions is true:

v They appear as values of a parent key.

v Some component of the foreign key is null.

The table containing the parent key is called the parent table of the referential

constraint, and the table containing the foreign key is said to be a dependent of that

table.

66 Administration Guide: Planning

Referential constraints are optional and can be defined in the CREATE TABLE

statement or the ALTER TABLE statement. Referential constraints are enforced by

the database manager during the execution of INSERT, UPDATE, DELETE, ALTER

TABLE, ADD CONSTRAINT, and SET INTEGRITY statements.

Referential constraints with a delete or an update rule of RESTRICT are enforced

before all other referential constraints. Referential constraints with a delete or an

update rule of NO ACTION behave like RESTRICT in most cases.

Note that referential constraints, check constraints, and triggers can be combined.

Referential integrity rules involve the following concepts and terminology:

Parent key

A primary key or a unique key of a referential constraint.

Parent row

A row that has at least one dependent row.

Parent table

A table that contains the parent key of a referential constraint. A table can

be a parent in an arbitrary number of referential constraints. A table that is

the parent in a referential constraint can also be the dependent in a

referential constraint.

Dependent table

A table that contains at least one referential constraint in its definition. A

table can be a dependent in an arbitrary number of referential constraints.

A table that is the dependent in a referential constraint can also be the

parent in a referential constraint.

Descendent table

A table is a descendent of table T if it is a dependent of T or a descendent

of a dependent of T.

Dependent row

A row that has at least one parent row.

Descendent row

A row is a descendent of row r if it is a dependent of r or a descendent of

a dependent of r.

Referential cycle

A set of referential constraints such that each table in the set is a

descendent of itself.

Self-referencing table

A table that is a parent and a dependent in the same referential constraint.

The constraint is called a self-referencing constraint.

Self-referencing row

A row that is a parent of itself.

Insert rule

The insert rule of a referential constraint is that a non-null insert value of the

foreign key must match some value of the parent key of the parent table. The

value of a composite foreign key is null if any component of the value is null. This

rule is implicit when a foreign key is specified.

Chapter 4. Logical database design 67

Update rule

The update rule of a referential constraint is specified when the referential

constraint is defined. The choices are NO ACTION and RESTRICT. The update rule

applies when a row of the parent or a row of the dependent table is updated.

In the case of a parent row, when a value in a column of the parent key is

updated, the following rules apply:

v If any row in the dependent table matches the original value of the key, the

update is rejected when the update rule is RESTRICT.

v If any row in the dependent table does not have a corresponding parent key

when the update statement is completed (excluding AFTER triggers), the update

is rejected when the update rule is NO ACTION.

In the case of a dependent row, the NO ACTION update rule is implicit when a

foreign key is specified. NO ACTION means that a non-null update value of a

foreign key must match some value of the parent key of the parent table when the

update statement is completed.

The value of a composite foreign key is null if any component of the value is null.

Delete rule

The delete rule of a referential constraint is specified when the referential

constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, or SET

NULL. SET NULL can be specified only if some column of the foreign key allows

null values.

The delete rule of a referential constraint applies when a row of the parent table is

deleted. More precisely, the rule applies when a row of the parent table is the

object of a delete or propagated delete operation (defined below), and that row has

dependents in the dependent table of the referential constraint. Consider an

example where P is the parent table, D is the dependent table, and p is a parent

row that is the object of a delete or propagated delete operation. The delete rule

works as follows:

v With RESTRICT or NO ACTION, an error occurs and no rows are deleted.

v With CASCADE, the delete operation is propagated to the dependents of p in

table D.

v With SET NULL, each nullable column of the foreign key of each dependent of p

in table D is set to null.

Each referential constraint in which a table is a parent has its own delete rule, and

all applicable delete rules are used to determine the result of a delete operation.

Thus, a row cannot be deleted if it has dependents in a referential constraint with a

delete rule of RESTRICT or NO ACTION, or the deletion cascades to any of its

descendents that are dependents in a referential constraint with the delete rule of

RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and can affect rows

of these tables:

v If table D is a dependent of P and the delete rule is RESTRICT or NO ACTION,

then D is involved in the operation but is not affected by the operation.

v If D is a dependent of P and the delete rule is SET NULL, then D is involved in

the operation, and rows of D can be updated during the operation.

v If D is a dependent of P and the delete rule is CASCADE, then D is involved in

the operation and rows of D can be deleted during the operation.

68 Administration Guide: Planning

If rows of D are deleted, then the delete operation on P is said to be propagated

to D. If D is also a parent table, then the actions described in this list apply, in

turn, to the dependents of D.

Any table that can be involved in a delete operation on P is said to be

delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent

of P, or a dependent of a table to which delete operations from P cascade.

The following restrictions apply to delete-connected relationships:

v When a table is delete-connected to itself in a referential cycle of more than one

table, the cycle must not contain a delete rule of either RESTRICT or SET NULL.

v A table must not both be a dependent table in a CASCADE relationship

(self-referencing or referencing another table) and have a self-referencing

relationship with a delete rule of either RESTRICT or SET NULL.

v When a table is delete-connected to another table through multiple relationships

where such relationships have overlapping foreign keys, these relationships must

have the same delete rule and none of these can be SET NULL.

v When a table is delete-connected to another table through multiple relationships

where one of the relationships is specified with delete rule SET NULL, the

foreign key definition of this relationship must not contain any distribution key

or MDC key column.

v When two tables are delete-connected to the same table through CASCADE

relationships, the two tables must not be delete-connected to each other where

the delete connected paths end with delete rule RESTRICT or SET NULL.

Table check constraints

A table check constraint is a rule that specifies the values allowed in one or more

columns of every row in a table. A constraint is optional, and can be defined using

the CREATE TABLE or the ALTER TABLE statement. Specifying table check

constraints is done through a restricted form of a search condition. One of the

restrictions is that a column name in a table check constraint on table T must

identify a column of table T.

A table can have an arbitrary number of table check constraints. A table check

constraint is enforced by applying its search condition to each row that is inserted

or updated. An error occurs if the result of the search condition is false for any

row.

When one or more table check constraints is defined in the ALTER TABLE

statement for a table with existing data, the existing data is checked against the

new condition before the ALTER TABLE statement completes. The SET

INTEGRITY statement can be used to put the table in set integrity pending state,

which allows the ALTER TABLE statement to proceed without checking the data.

Informational constraints

An informational constraint is a rule that can be used by the SQL compiler to

improve the access path to data. Informational constraints are not enforced by the

database manager, and are not used for additional verification of data; rather, they

are used to improve query performance.

Use the CREATE TABLE or ALTER TABLE statement to define a referential or table

check constraint, specifying constraint attributes that determine whether or not the

database manager is to enforce the constraint and whether or not the constraint is

to be used for query optimization.

Chapter 4. Logical database design 69

Related reference:

v “Interaction of triggers and constraints” in SQL Reference, Volume 1

v “SET INTEGRITY statement” in SQL Reference, Volume 2

Triggers

 A trigger defines a set of actions that are performed in response to an insert,

update, or delete operation on a specified table. When such an SQL operation is

executed, the trigger is said to have been activated.

Triggers are optional and are defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to

enforce data integrity rules. Triggers can also be used to cause updates to other

tables, automatically generate or transform values for inserted or updated rows, or

invoke functions to perform tasks such as issuing alerts.

Triggers are a useful mechanism for defining and enforcing transitional business

rules, which are rules that involve different states of the data (for example, a salary

that cannot be increased by more than 10 percent).

Using triggers places the logic that enforces business rules inside the database. This

means that applications are not responsible for enforcing these rules. Centralized

logic that is enforced on all of the tables means easier maintenance, because

changes to application programs are not required when the logic changes.

The following are specified when creating a trigger:

v The subject table specifies the table for which the trigger is defined.

v The trigger event defines a specific SQL operation that modifies the subject table.

The event can be an insert, update, or delete operation.

v The trigger activation time specifies whether the trigger should be activated before

or after the trigger event occurs.

The statement that causes a trigger to be activated includes a set of affected rows.

These are the rows of the subject table that are being inserted, updated, or deleted.

The trigger granularity specifies whether the actions of the trigger are performed

once for the statement or once for each of the affected rows.

The triggered action consists of an optional search condition and a set of SQL

statements that are executed whenever the trigger is activated. The SQL statements

are only executed if the search condition evaluates to true. If the trigger activation

time is before the trigger event, triggered actions can include statements that select,

set transition variables, or signal SQLstates. If the trigger activation time is after

the trigger event, triggered actions can include statements that select, insert,

update, delete, or signal SQLstates.

The triggered action can refer to the values in the set of affected rows using

transition variables. Transition variables use the names of the columns in the subject

table, qualified by a specified name that identifies whether the reference is to the

old value (before the update) or the new value (after the update). The new value

can also be changed using the SET Variable statement in before, insert, or update

triggers.

70 Administration Guide: Planning

Another means of referring to the values in the set of affected rows is to use

transition tables. Transition tables also use the names of the columns in the subject

table, but specify a name to allow the complete set of affected rows to be treated as

a table. Transition tables can only be used in after triggers, and separate transition

tables can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or activation

time. The order in which the triggers are activated is the same as the order in

which they were created. Thus, the most recently created trigger is the last trigger

to be activated.

The activation of a trigger might cause trigger cascading, which is the result of the

activation of one trigger that executes SQL statements that cause the activation of

other triggers or even the same trigger again. The triggered actions might also

cause updates resulting from the application of referential integrity rules for

deletions that can, in turn, result in the activation of additional triggers. With

trigger cascading, a chain of triggers and referential integrity delete rules can be

activated, causing significant change to the database as a result of a single INSERT,

UPDATE, or DELETE statement.

When multiple triggers have insert, update, or delete actions against the same

object, temporary tables are used to avoid access conflicts, and this can have a

noticeable impact on performance, particularly in partitioned database

environments.

 Related concepts:

v “Triggers in application development” in Developing SQL and External Routines

 Related tasks:

v “Creating triggers” in Administration Guide: Implementation

 Related reference:

v “Interaction of triggers and constraints” in SQL Reference, Volume 1

Additional database design considerations

 When designing a database, it is important to consider which tables users should

be able to access. Access to tables is granted or revoked through authorizations.

The highest level of authority is system administration authority (SYSADM). A

user with SYSADM authority can assign other authorizations, including database

administrator authority (DBADM).

For audit purposes, you may have to record every update made to your data for a

specified period. For example, you may want to update an audit table each time an

employee’s salary is changed. Updates to this table could be made automatically if

an appropriate trigger is defined. Audit activities can also be carried out through

the DB2 Database for Linux, UNIX, and Windows audit facility.

For performance reasons, you may only want to access a selected amount of data,

while maintaining the base data as history. You should include within your design,

the requirements for maintaining this historical data, such as the number of

months or years of data that is required to be available before it can be purged.

You may also want to make use of summary information. For example, you may

have a table that has all of your employee information in it. However, you would

Chapter 4. Logical database design 71

like to have this information divided into separate tables by division or

department. In this case, a materialized query table for each division or

department based on the data in the original table would be helpful.

Security implications should also be identified within your design. For example,

you may decide to support user access to certain types of data through security

tables. You can define access levels to various types of data, and who can access

this data. Confidential data, such as employee and payroll data, would have

stringent security restrictions.

You can create tables that have a structured type associated with them. With such

typed tables, you can establish a hierarchical structure with a defined relationship

between those tables called a type hierarchy. The type hierarchy is made up of a

single root type, supertypes, and subtypes.

A reference type representation is defined when the root type of a type hierarchy is

created. The target of a reference is always a row in a typed table or view.

When working in a High Availability Disaster Recovery (HADR) environment,

there are several recommendations:

v The two instances of the HADR environment should be identical in hardware

and software. This means:

– The host computers for the HADR primary and standby databases should be

identical.

– The operating system on the primary and standby systems should have the

same version including patches. (During an upgrade this may not be possible.

However, the period when the instances are out of step should be kept as

short as possible to limit any difficulties arising from the differences. Those

differences could include the loss of support for new features during a

failover as well as any issues affecting normal non-failover operations.)

– A TCP/IP interface must be available between the two HADR instances.

– A high speed, high capacity network is recommended.
v There are DB2 database requirements that should be considered.

– The database release used by the primary and the standby should be

identical.

– The primary and standby DB2 software must have the same bit size. (That is,

both should be at 32-bit or at 64-bit.)

– The table spaces and their corresponding containers should be identical on

the primary and standby databases. Those characteristics that must be

symmetrical for the table spaces include (but are not limited to): the table

space type (DMS or SMS), table space size, the container paths, the container

sizes, and the container file type (raw device or file system). Relative

container paths may be used, in which case the relative path must be the

same on each instance; they may map to the same or different absolute paths.

– The primary and standby databases need not have the same database path (as

declared when using the CREATE DATABASE command).

– Buffer pool operations on the primary are replayed on the standby, which

suggests the importance of the primary and standby databases having the

same amount of memory.

72 Administration Guide: Planning

Chapter 5. Physical database design

After you have completed your logical database design, there are a number of

issues that you should consider about the physical environment in which your

database and tables reside. These issues include understanding the files that are

created to support and manage your database, understanding how much space is

required to store your data, determining how to use the table spaces that are

required to store your data, and determining the structure of the tables used to

hold the data. This chapter will discuss these issues.

Database directories and files

 When you create a database, information about the database including default

information is stored in a directory hierarchy. The hierarchical directory structure is

created for you at a location that is determined by the information you provide in

the CREATE DATABASE command. If you do not specify the location of the

directory path or drive when you create the database, the default location is used.

It is recommended that you explicitly state where you would like the database

created.

In the directory you specify in the CREATE DATABASE command, a subdirectory

that uses the name of the instance is created. This subdirectory ensures that

databases created in different instances under the same directory do not use the

same path. Below the instance-name subdirectory, a subdirectory named

NODE0000 is created. This subdirectory differentiates database partitions in a

logically partitioned database environment. Below the node-name directory, a

subdirectory named SQL00001 is created. This name of this subdirectory uses the

database token and represents the database being created. SQL00001 contains

objects associated with the first database created, and subsequent databases are

given higher numbers: SQL00002, and so on. These subdirectories differentiate

databases created in this instance on the directory that you specified in the

CREATE DATABASE command.

The directory structure appears as follows:

 <your_directory>/<your_instance>/NODE0000/SQL00001/

The database directory contains the following files that are created as part of the

CREATE DATABASE command.

v The files SQLBP.1 and SQLBP.2 contain buffer pool information. Each file has a

duplicate copy to provide a backup.

v The files SQLSPCS.1 and SQLSPCS.2 contain table space information. Each file

has a duplicate copy to provide a backup.

v The files SQLSGF.1 and SQLSGF.2 contain storage path information associated

with the database’s automatic storage. Each file has a duplicate copy to provide

a backup.

v The SQLDBCON file contains database configuration information. Do not edit

this file. To change configuration parameters, use either the Control Center or

the command-line statements UPDATE DATABASE CONFIGURATION and

RESET DATABASE CONFIGURATION.

© Copyright IBM Corp. 1993, 2006 73

v The DB2RHIST.ASC history file and its backup DB2RHIST.BAK contain history

information about backups, restores, loading of tables, reorganization of tables,

altering of a table space, and other changes to a database.

The DB2TSCHNG.HIS file contains a history of table space changes at a log-file

level. For each log file, DB2TSCHG.HIS contains information that helps to

identify which table spaces are affected by the log file. Table space recovery uses

information from this file to determine which log files to process during table

space recovery. You can examine the contents of both history files in a text

editor.

v The log control files, SQLOGCTL.LFH and SQLOGMIR.LFH, contain information

about the active logs.

Recovery processing uses information from this file to determine how far back in

the logs to begin recovery. The SQLOGDIR subdirectory contains the actual log

files.

Note: You should ensure the log subdirectory is mapped to different disks than

those used for your data. A disk problem could then be restricted to your

data or the logs but not both. This can provide a substantial performance

benefit because the log files and database containers do not compete for

movement of the same disk heads. To change the location of the log

subdirectory, change the newlogpath database configuration parameter.

v The SQLINSLK file helps to ensure that a database is used by only one instance

of the database manager.

At the same time a database is created, a detailed deadlocks event monitor is also

created. The detailed deadlocks event monitor files are stored in the database

directory of the catalog node. When the event monitor reaches its maximum

number of files to output, it will deactivate and a message is written to the

notification log. This prevents the event monitor from consuming too much disk

space. Removing output files that are no longer needed will allow the event

monitor to activate again on the next database activation.

Additional information for SMS database directories

The SQLT* subdirectories contain the default System Managed Space (SMS) table

spaces required for an operational database. Three default table spaces are created:

v SQLT0000.0 subdirectory contains the catalog table space with the system catalog

tables.

v SQLT0001.0 subdirectory contains the default temporary table space.

v SQLT0002.0 subdirectory contains the default user data table space.

Each subdirectory or container has a file created in it called SQLTAG.NAM. This

file marks the subdirectory as being in use so that subsequent table space creation

does not attempt to use these subdirectories.

In addition, a file called SQL*.DAT stores information about each table that the

subdirectory or container contains. The asterisk (*) is replaced by a unique set of

digits that identifies each table. For each SQL*.DAT file there might be one or more

of the following files, depending on the table type, the reorganization status of the

table, or whether indexes, LOB, or LONG fields exist for the table:

v SQL*.BKM (contains block allocation information if it is an MDC table)

v SQL*.LF (contains LONG VARCHAR or LONG VARGRAPHIC data)

v SQL*.LB (contains BLOB, CLOB, or DBCLOB data)

74 Administration Guide: Planning

v SQL*.XDA (contains XML data)

v SQL*.LBA (contains allocation and free space information about SQL*.LB files)

v SQL*.INX (contains index table data)

v SQL*.IN1 (contains index table data)

v SQL*.DTR (contains temporary data for a reorganization of an SQL*.DAT file)

v SQL*.LFR (contains temporary data for a reorganization of an SQL*.LF file)

v SQL*.RLB (contains temporary data for a reorganization of an SQL*.LB file)

v SQL*.RBA (contains temporary data for a reorganization of an SQL*.LBA file)

 Related concepts:

v “Comparison of SMS and DMS table spaces” on page 140

v “Database managed space” on page 120

v “DMS device considerations” on page 124

v “DMS table spaces” on page 123

v “SMS table spaces” on page 119

v “Understanding the recovery history file” in Data Recovery and High Availability

Guide and Reference

 Related reference:

v “CREATE DATABASE command” in Command Reference

Space requirements for database objects

 Estimating the size of database objects is an imprecise undertaking. Overhead

caused by disk fragmentation, free space, and the use of variable length columns

makes size estimation difficult, because there is such a wide range of possibilities

for column types and row lengths. After initially estimating your database size,

create a test database and populate it with representative data.

From the Control Center, you can access a number of utilities that are designed to

assist you in determining the size requirements of various database objects:

v You can select an object and then use the ″Estimate Size″ utility. This utility can

tell you the current size of an existing object, such as a table. You can then

change the object, and the utility will calculate new estimated values for the

object. The utility will help you approximate storage requirements, taking future

growth into account. It provides possible size ranges for the object: both the

smallest size, based on current values, and the largest possible size.

v You can determine the relationships between objects by using the “Show

Related” window.

v You can select any database object on the instance and request “Generate DDL”.

This function uses the db2look utility to generate data definition statements for

the database.

In each of these cases, either the “Show SQL” or the “Show Command” button is

available to you. You can save the resulting SQL statements or commands in script

files to be used later. All of these utilities have online help to assist you.

Keep these utilities in mind as you plan your physical database.

When estimating the size of a database, the contribution of the following must be

considered:

Chapter 5. Physical database design 75

v System Catalog Tables

v User Table Data

v Long Field Data

v Large Object (LOB) Data

v Index Space

v Log File Space

v Temporary Work Space

Space requirements related to the following are not discussed:

v The local database directory file

v The system database directory file

v The file management overhead required by the operating system, including:

– file block size

– directory control space

 Related concepts:

v “Space requirements for indexes” on page 80

v “Space requirements for large object data” on page 79

v “Space requirements for log files” on page 82

v “Space requirements for long field data” on page 78

v “Space requirements for system catalog tables” on page 76

v “Space requirements for temporary tables” on page 83

v “Space requirements for user table data” on page 77

 Related reference:

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

Space requirements for system catalog tables

 System catalog tables are created when a database is created. The system tables

grow as database objects and privileges are added to the database. Initially, they

use approximately 3.5 MB of disk space.

The amount of space allocated for the catalog tables depends on the type of table

space, and the extent size of the table space containing the catalog tables. For

example, if a DMS table space with an extent size of 32 is used, the catalog table

space is initially allocated 20 MB of space.

Note: For databases with multiple partitions, the catalog tables reside only on the

database partition from which the CREATE DATABASE command was

issued. Disk space for the catalog tables is only required for that database

partition.

 Related concepts:

v “Space requirements for database objects” on page 75

v “System catalog tables” in Administration Guide: Implementation

76 Administration Guide: Planning

Space requirements for user table data

 By default, table data is stored on 4 KB pages. Each page (regardless of page size)

contains 68 bytes of overhead for the database manager. This leaves 4028 bytes to

hold user data (or rows), although no row on a 4 KB page can exceed 4005 bytes in

length. A row will not span multiple pages. You can have a maximum of 500

columns when using a 4 KB page size.

Table data pages do not contain the data for columns defined with LONG

VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB data types. The

rows in a table data page do, however, contain a descriptor for these columns.

Rows are usually inserted into a regular table in first-fit order. The file is searched

(using a free space map) for the first available space that is large enough to hold

the new row. When a row is updated, it is updated in place, unless there is

insufficient space left on the page to contain it. If this is the case, a record is

created in the original row location that points to the new location in the table file

of the updated row.

If the ALTER TABLE APPEND ON statement is invoked, data is always appended,

and information about any free space on the data pages is not kept.

If the table has a clustering index defined on it, DB2 Database for Linux, UNIX,

and Windows will attempt to physically cluster the data according to the key order

of that clustering index. When a row is inserted into the table, DB2 will first look

up its key value in the clustering index. If the key value is found, DB2 attempts to

insert the record on the data page pointed to by that key; if the key value is not

found, the next higher key value is used, so that the record is inserted on the page

containing records having the next higher key value. If there is insufficient space

on the “target” page in the table, the free space map is used to search neighboring

pages for space. Over time, as space on the data pages is completely used up,

records are placed further and further from the “target” page in the table. The

table data would then be considered unclustered, and a table reorganization can be

used to restore clustered order.

If the table is a multidimensional clustering (MDC) table, DB2 will guarantee that

records are always physically clustered along one or more defined dimensions, or

clustering indexes. When an MDC table is defined with certain dimensions, a block

index is created for each of the dimensions, and a composite block index is created

which maps cells (unique combinations of dimension values) to blocks. This

composite block index is used to determine to which cell a particular record

belongs, and exactly which blocks or extents in the table contains records

belonging to that cell. As a result, when inserting records, DB2 searches the

composite block index for the list of blocks containing records having the same

dimension values, and limits the search for space to those blocks only. If the cell

does not yet exist, or if there is insufficient space in the cell’s existing blocks, then

another block is assigned to the cell and the record is inserted into it. A free space

map is still used within blocks to quickly find available space in the blocks.

The number of 4 KB pages for each user table in the database can be estimated by

calculating:

 ROUND DOWN(4028/(average row size + 10)) = records_per_page

and then inserting the result into:

 (number_of_records/records_per_page) * 1.1 = number_of_pages

Chapter 5. Physical database design 77

where the average row size is the sum of the average column sizes, and the factor

of ″1.1″ is for overhead.

Note: This formula provides only an estimate. The estimate’s accuracy is reduced

if the record length varies because of fragmentation and overflow records.

You also have the option to create buffer pools or table spaces that have an 8 KB,

16 KB, or 32 KB page size. All tables created within a table space of a particular

size have a matching page size. A single table or index object can be as large as 512

GB, assuming a 32 KB page size. You can have a maximum of 1012 columns when

using an 8 KB, 16 KB, or 32 KB page size. The maximum number of columns is

500 for a 4 KB page size. Maximum row lengths also vary, depending on page size:

v When the page size is 4 KB, the row length can be up to 4005 bytes.

v When the page size is 8 KB, the row length can be up to 8101 bytes.

v When the page size is 16 KB, the row length can be up to 16 293 bytes.

v When the page size is 32 KB, the row length can be up to 32 677 bytes.

A larger page size facilitates a reduction in the number of levels in any index. If

you are working with OLTP (online transaction processing) applications, that

perform random row reads and writes, a smaller page size is better, because it

wastes less buffer space with undesired rows. If you are working with DSS

(decision support system) applications, which access large numbers of consecutive

rows at a time, a larger page size is better because it reduces the number of I/O

requests required to read a specific number of rows. An exception occurs when the

row size is smaller than the page size divided by 255. In such a case, there is

wasted space on each page. (There is a maximum of only 255 rows per page.) To

reduce this wasted space, a smaller page size may be appropriate.

You cannot restore a backup to a different page size.

You cannot import IXF data files that represent more than 755 columns.

Declared temporary tables can be created only in their own “user temporary” table

space type. There is no default user temporary table space. Temporary tables

cannot have LONG data. The tables are dropped implicitly when an application

disconnects from the database, and estimates of the space requirements for their

tables should take this into account.

 Related concepts:

v “Space requirements for database objects” on page 75

Space requirements for long field data

 Long field data is stored in a separate table object that is structured differently

than the storage space for other data types.

Data is stored in 32 KB areas that are broken up into segments whose sizes are

″powers of two″ times 512 bytes. (Hence these segments can be 512 bytes, 1024

bytes, 2048 bytes, and so on, up to 32 768 bytes.)

Long field data types (LONG VARCHAR or LONG VARGRAPHIC) are stored in a

way that enables free space to be reclaimed easily. Allocation and free space

information is stored in 4 KB allocation pages, which appear infrequently

throughout the object.

78 Administration Guide: Planning

The amount of unused space in the object depends on the size of the long field

data, and whether this size is relatively constant across all occurrences of the data.

For data entries larger than 255 bytes, this unused space can be up to 50 percent of

the size of the long field data.

If character data is less than the page size, and it fits into the record along with the

rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data types

should be used instead of LONG VARCHAR or LONG VARGRAPHIC.

 Related concepts:

v “Space requirements for database objects” on page 75

Space requirements for large object data

 Large Object (LOB) data is stored in two separate table objects that are structured

differently than the storage space for other data types.

To estimate the space required by LOB data, you need to consider the two table

objects used to store data defined with these data types:

v LOB Data Objects

Data is stored in 64 MB areas that are broken up into segments whose sizes are

″powers of two″ times 1024 bytes. (Hence these segments can be 1024 bytes,

2048 bytes, 4096 bytes, and so on, up to 64 MB.)

To reduce the amount of disk space used by LOB data, you can specify the

COMPACT option on the lob-options clause of the CREATE TABLE and the

ALTER TABLE statements. The COMPACT option minimizes the amount of disk

space required by allowing the LOB data to be split into smaller segments. This

process does not involve data compression, but simply uses the minimum

amount of space, to the nearest 1 KB boundary. Using the COMPACT option

may result in reduced performance when appending to LOB values.

The amount of free space contained in LOB data objects is influenced by the

amount of update and delete activity, as well as the size of the LOB values being

inserted.

v LOB Allocation Objects

Allocation and free space information is stored in 4 KB allocation pages that are

separated from the actual data. The number of these 4 KB pages is dependent on

the amount of data, including unused space, allocated for the large object data.

The overhead is calculated as follows: one 4 KB page for every 64 GB, plus one

4 KB page for every 8 MB.

If character data is less than the page size, and it fits into the record along with the

rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data types

should be used instead of BLOB, CLOB, or DBCLOB.

 Related concepts:

v “Space requirements for database objects” on page 75

 Related reference:

v “Large objects (LOBs)” in SQL Reference, Volume 1

Chapter 5. Physical database design 79

Space requirements for indexes

 For each index, the space needed can be estimated as:

 (average index key size + 9) * number of rows * 2

where:

v The “average index key size” is the byte count of each column in the index key.

(When estimating the average column size for VARCHAR and VARGRAPHIC

columns, use an average of the current data size, plus two bytes. Do not use the

maximum declared size.)

v The factor of “2” is for overhead, such as non-leaf pages and free space.

Notes:

1. For every column that allows NULLs, add one extra byte for the null indicator.

2. For block indexes created internally for multidimensional clustering (MDC)

tables, the “number of rows” would be replaced by the “number of blocks”.

Indexes created before Version 8 (type-1 indexes) are different from those created at

version 8 (type-2 indexes) and following. To find out what type of index exists for

a table, use the INSPECT command. To convert type-1 indexes to type-2 indexes,

use the REORG INDEXES commmand.

When using the REORG INDEXES command, ensure that you have sufficient free

space in the table space where the indexes are stored. The amount of free space

should be equal to the current size of the index. Additional space may be required

if you choose to reorganize the indexes with the ALLOW WRITE ACCESS option.

The additional space is for the logs of the activity affecting the indexes during the

reorganization of the indexes.

Temporary space is required when creating the index. The maximum amount of

temporary space required during index creation can be estimated as:

 (average index key size + 9) * number of rows * 3.2

where the factor of “3.2” is for index overhead, and space required for sorting

during index creation.

Note: In the case of non-unique indexes, only five bytes are required to store

duplicate key entries. The estimate shown above assumes no duplicates. The

space required to store an index may be over-estimated by the formula

shown above.

The following two formulas can be used to estimate the number of keys per leaf

page (the second provides a more accurate estimate). The accuracy of these

estimates depends largely on how well the averages reflect the actual data.

Note: For SMS table spaces, the minimum required space for leaf pages is 12 KB.

For DMS table spaces, the minimum is an extent.

v A rough estimate of the average number of keys per leaf page is:

 (.9 * (U - (M*2))) * (D + 1)

 K + 7 + (5 * D)

where:

80 Administration Guide: Planning

– U, the usable space on a page, is approximately equal to the page size minus

100. For a page size of 4096, U is 3996.

– M = U / (9 + minimumKeySize)

– D = average number of duplicates per key value

– K = averageKeySize

Remember that minimumKeySize and averageKeysize must have an extra byte for

each nullable key part, and an extra two bytes for the length of each variable

length key part.

If there are include columns, they should be accounted for in minimumKeySize

and averageKeySize.

The .9 can be replaced by any (100 - pctfree)/100 value, if a percent free value

other than the default value of ten percent is specified during index creation.

v A more accurate estimate of the average number of keys per leaf page is:

 L = number of leaf pages = X / (avg number of keys on leaf page)

where X is the total number of rows in the table.

You can estimate the original size of an index as:

 (L + 2L/(average number of keys on leaf page)) * pagesize

For DMS table spaces, add the sizes of all indexes on a table and round up to a

multiple of the extent size for the table space on which the index resides.

You should provide additional space for index growth due to INSERT/UPDATE

activity, from which page splits may result.

Use the following calculation to obtain a more accurate estimate of the original

index size, as well as an estimate of the number of levels in the index. (This may

be of particular interest if include columns are being used in the index

definition.) The average number of keys per non-leaf page is roughly:

 (.9 * (U - (M*2))) * (D + 1)

 K + 13 + (9 * D)

where:

– U, the usable space on a page, is approximately equal to the page size minus

100. For a page size of 4096, U is 3996.

– D is the average number of duplicates per key value on non-leaf pages (this

will be much smaller than on leaf pages, and you may want to simplify the

calculation by setting the value to 0).

– M = U / (9 + minimumKeySize for non-leaf pages)

– K = averageKeySize for non-leaf pages
The minimumKeySize and the averageKeySize for non-leaf pages will be the same

as for leaf pages, except when there are include columns. Include columns are

not stored on non-leaf pages.

You should not replace .9 with (100 - pctfree)/100, unless this value is greater

than .9, because a maximum of 10 percent free space will be left on non-leaf

pages during index creation.

The number of non-leaf pages can be estimated as follows:

 if L > 1 then {P++; Z++}

 While (Y > 1)

 {

 P = P + Y

 Y = Y / N

 Z++

 }

Chapter 5. Physical database design 81

where:

– P is the number of pages (0 initially).

– L is the number of leaf pages.

– N is the number of keys for each non-leaf page.

– Y = L / N

– Z is the number of levels in the index tree (1 initially).
Total number of pages is:

 T = (L + P + 2) * 1.0002

The additional 0.02 percent is for overhead, including space map pages.

The amount of space required to create the index is estimated as:

 T * pagesize

 Related concepts:

v “Indexes” in SQL Reference, Volume 1

v “Index cleanup and maintenance” in Performance Guide

v “Space requirements for database objects” on page 75

Space requirements for log files

 You will require 32 KB of space for log control files.

You will also need at least enough space for your active log configuration, which

you can calculate as

 (logprimary + logsecond) * (logfilsiz + 2) * 4096

where:

v logprimary is the number of primary log files, defined in the database

configuration file

v logsecond is the number of secondary log files, defined in the database

configuration file; in this calculation, logsecond cannot be set to -1. (When

logsecond is set to -1, you are requesting an infinite active log space.)

v logfilsiz is the number of pages in each log file, defined in the database

configuration file

v 2 is the number of header pages required for each log file

v 4096 is the number of bytes in one page.

If the database is enabled for circular logging, the result of this formula will

provide a sufficient amount of disk space.

If the database is enabled for roll-forward recovery, special log space requirements

should be taken into consideration:

v With the logretain configuration parameter enabled, the log files will be archived

in the log path directory. The online disk space will eventually fill up, unless

you move the log files to a different location.

v With the userexit configuration parameter enabled, a user exit program moves

the archived log files to a different location. Extra log space is still required to

allow for:

– Online archived logs that are waiting to be moved by the user exit program

– New log files being formatted for future use

82 Administration Guide: Planning

If the database is enabled for infinite logging (that is, you set logsecond to -1), the

logarchmeth1 configuration parameter must be set to a value other than OFF for

LOGRETAIN to enable archive logging. DB2 Database for Linux, UNIX, and

Windows will keep at least the number of active log files specified by logprimary in

the log path, so you should not use the value of -1 for logsecond in the above

formula. Ensure that you provide extra disk space to allow for the delay caused by

archiving log files.

If you are mirroring the log path, you will need to double the estimated log file

space requirements.

 Related concepts:

v “Space requirements for database objects” on page 75

v “Log mirroring” in Data Recovery and High Availability Guide and Reference

v “Understanding recovery logs” in Data Recovery and High Availability Guide and

Reference

 Related reference:

v “mirrorlogpath - Mirror log path configuration parameter” in Performance Guide

v “logprimary - Number of primary log files configuration parameter” in

Performance Guide

v “logsecond - Number of secondary log files configuration parameter” in

Performance Guide

v “logfilsiz - Size of log files configuration parameter” in Performance Guide

Space requirements for temporary tables

 Some SQL statements require temporary tables for processing (such as a work file

for sorting operations that cannot be done in memory). These temporary tables

require disk space; the amount of space required is dependent upon the size,

number, and nature of the queries, and the size of returned tables. Your work

environment is unique which makes the determination of your space requirements

for temporary tables difficult to estimate. For example, more space may appear to

be allocated for system temporary table spaces than is actually in use due to the

longer life of various system temporary tables. This could occur when

DB2_SMS_TRUNC_TMPTABLE_THRESH is used.

You can use the database system monitor and the query table space APIs to track

the amount of work space being used during the normal course of operations.

You can use the DB2_OPT_MAX_TEMP_SIZE registry variable to limit the amount

of temporary table space used by queries.

 Related concepts:

v “Space requirements for database objects” on page 75

 Related reference:

v “sqlbmtsq API - Get the query data for all table spaces” in Administrative API

Reference

v “Query compiler variables” in Performance Guide

Chapter 5. Physical database design 83

XML storage object overview

 DB2 tables can store well formed XML documents in XML columns, alongside

columns that contain relational data. In much the same way that LONG

VARCHAR and LOB data are stored apart from the other contents of a table, DB2

stores XML data contained in table columns of the type XML in auxilliary XML

storage objects. When stored in system managed space, the files associated with

XML storage objects have the file type extension .xda.

XML storage objects are separate from, but dependent upon their parent table

objects. For each XML value stored in a row of an XML table column, DB2

maintains a record, called an XML data specifier (XDS), which specifies where to

retrieve the XML data stored on disk from the associated XML storage object.

You can store XML documents of up to 2 gigabytes in size in a database. Because

XML data can be quite large, you may want to monitor the buffering activity for

XML data separately from the buffering activity for other data. A number of

monitor elements are available to help you gauge the buffer pool activity for XML

storage objects.

 Related concepts:

v “Preference of database managed table spaces for native XML data store

performance” in Performance Guide

v “Guidelines for storage requirements for XML documents” on page 84

v “Native XML data store overview” in XML Guide

v “XML data specifier” in Data Movement Utilities Guide and Reference

 Related reference:

v “Buffer pool activity monitor elements” in System Monitor Guide and Reference

Guidelines for storage requirements for XML documents

 The amount of space that an XML document occupies in a DB2 database is

determined by the initial size of the document in raw form and by a number of

other properties. The following list includes the most important of these properties:

Document structure

XML documents that contain complex markup tagging require a larger

amount of storage space than documents with simple markup. For

example, an XML document that has many nested elements, each

containing a small amount of text or having short attribute values,

occupies more storage space than an XML document composed primarily

of textual content.

Node names

The length of element names, attribute names, namespace prefixes and

similar, non-content data also affect storage size. Any information unit of

this type that exceeds 4 bytes in raw form is compressed for storage,

resulting in comparatively greater storage efficiency for longer node names.

Ratio of attributes to elements

Typically, the more attributes that are used per element, the lower the

amount of storage space that is required for the XML document.

84 Administration Guide: Planning

Document codepage

XML documents with encoding that uses more than one byte per character

occupy a larger amount storage space than documents using a single-byte

character set.

Document validation

XML documents are annotated after having been validated against an XML

schema. The addition of type information after validation results in an

increased storage requirement.

 Related concepts:

v “XML storage object overview” on page 84

Database partition groups

 A database partition group is a set of one or more database partitions defined as

belongin to a database. When you want to create tables for the database, you first

create the database partition group where the table spaces will be stored, then you

create the table space where the tables will be stored.

You can define named subsets of one or more database partitions in a database.

Each subset you define is known as a database partition group. Each subset that

contains more than one database partition is known as a multipartition database

partition group. Multipartition database partition groups can only be defined with

database partitions that belong to the same instance. A database partition group

can contain as few as one database partition, or span all of the database partitions

in the database.

Figure 22 on page 86 shows an example of a database with five database partitions

in which:

v A database partition group spans all but one of the database partitions (Database

Partition Group 1).

v A database partition group contains one database partition (Database Partition

Group 2).

v A database partition group contains two database partitions. (Database Partition

Group 3).

v The database partition within Database Partition Group 2 is shared (and

overlaps) with Database Partition Group 1.

v There is a single database partition within Database Partition Group 3 that is

shared (and overlaps) with Database Partition Group 1.

Chapter 5. Physical database design 85

You create a new database partition group using the CREATE DATABASE

PARTITION GROUP statement. You can modify it using the ALTER DATABASE

PARTITION GROUP statement. Data is divided across all the database partitions in

a database partition group, and you can add or drop one or more database

partitions from a database partition group. If you are using a multipartition

database partition group, you must look at several database partition group design

considerations.

Each database partition that is part of the database system configuration must

already be defined in a database partition configuration file called db2nodes.cfg. A

database partition group can contain as few as one database partition, or as many

as the entire set of database partitions defined for the database system.

When a database partition group is created or modified, a distribution map is

associated with it. A distribution map, in conjunction with a distribution key and a

hashing algorithm, is used by the database manager to determine which database

partition in the database partition group will store a given row of data.

In a non-partitioned database, no distribution key or distribution map is required.

A database partition is a part of the database, complete with user data, indexes,

configuration files, and transaction logs. Default database partition groups that

were created when the database was created are used by the database manager.

IBMCATGROUP is the default database partition group for the table space

containing the system catalogs. IBMTEMPGROUP is the default database partition

group for system temporary table spaces. IBMDEFAULTGROUP is the default

database partition group for the table spaces containing the user defined tables that

you may choose to put there. A user temporary table space for a declared

temporary table can be created in IBMDEFAULTGROUP or any user-created

database partition group but not in IBMTEMPGROUP.

When working with database partition groups you can:

v Create a database partition group.

v Change the comment associated with a database partition group.

v Add database partitions to a database partition group.

v Drop database partitions from a database partition group.

v Redistribute table data within a database partition group.

Database

Database
partition

Database
partition

Database
partition group 2

Database
partition group 3

Database
partition group 1

Database
partition

Database
partition

Database
partition

Figure 22. Database partition groups in a database

86 Administration Guide: Planning

Related concepts:

v “Database partition group design” on page 87

v “Distribution keys” on page 89

v “Distribution maps” on page 88

 Related reference:

v “ALTER DATABASE PARTITION GROUP statement” in SQL Reference, Volume 2

v “CREATE DATABASE PARTITION GROUP statement” in SQL Reference, Volume

2

Database partition group design

 There are no database partition group design considerations if you are using a

single-partition database.

The DB2 Design Advisor is a tool that can be used to recommend database

partition groups. The DB2 Design Advisor can be accessed from the Control Center

and using db2advis from the command line processor.

If you are using a multiple partition database partition group, consider the

following design points:

v In a multipartition database partition group, you can only create a unique index

if it is a superset of the distribution key.

v Depending on the number of database partitions in the database, you may have

one or more single-partition database partition groups, and one or more

multipartition database partition groups present.

v Each database partition must be assigned a unique number. The same database

partition may be found in one or more database partition groups.

v To ensure fast recovery of the database partition containing system catalog

tables, avoid placing user tables on the same database partition. This is

accomplished by placing user tables in database partition groups that do not

include the database partition in the IBMCATGROUP database partition group.

You should place small tables in single-partition database partition groups, except

when you want to take advantage of collocation with a larger table. Collocation is

the placement of rows from different tables that contain related data in the same

database partition. Collocated tables allow DB2 Database for Linux, UNIX, and

Windows to utilize more efficient join strategies. Collocated tables can reside in a

single-partition database partition group. Tables are considered collocated if they

reside in a multipartition database partition group, have the same number of

columns in the distribution key, and if the data types of the corresponding

columns are compatible. Rows in collocated tables with the same distribution key

value are placed on the same database partition. Tables can be in separate table

spaces in the same database partition group, and still be considered collocated.

You should avoid extending medium-sized tables across too many database

partitions. For example, a 100 MB table may perform better on a 16-partition

database partition group than on a 32-partition database partition group.

You can use database partition groups to separate online transaction processing

(OLTP) tables from decision support (DSS) tables, to ensure that the performance

of OLTP transactions is not adversely affected.

Chapter 5. Physical database design 87

Related concepts:

v “Database partition groups” on page 85

v “Database partition compatibility” on page 91

v “Distribution keys” on page 89

v “Distribution maps” on page 88

v “Replicated materialized query tables” on page 111

v “Table collocation” on page 91

 Related reference:

v “db2advis - DB2 design advisor command” in Command Reference

Distribution maps

 In a partitioned database environment, the database manager must know where to

find the data it needs. The database manager uses a map, called a distribution map,

to find the data.

A distribution map is an internally generated array containing either 4 096 entries

for multiple-partition database partition groups, or a single entry for

single-partition database partition groups. For a single-partition database partition

group, the distribution map has only one entry containing the number of the

database partition where all the rows of a database table are stored. For

multiple-partition database partition groups, the numbers of the database partition

group are specified in a way such that each database partition is used one after the

other to ensure an even distribution across the entire map. Just as a city map is

organized into sections using a grid, the database manager uses a distribution key to

determine the location (the database partition) where the data is stored.

For example, assume that you have a database created on four database partitions

(numbered 0–3). The distribution map for the IBMDEFAULTGROUP database

partition group of this database would be:

 0 1 2 3 0 1 2 ...

If a database partition group had been created in the database using database

partitions 1 and 2, the distribution map for that database partition group would be:

 1 2 1 2 1 2 1 ...

If the distribution key for a table to be loaded into the database is an integer with

possible values between 1 and 500 000, the distribution key is hashed to a number

between 0 and 4 095. That number is used as an index into the distribution map to

select the database partition for that row.

Figure 23 on page 89 shows how the row with the distribution key value (c1, c2,

c3) is mapped to number 2, which, in turn, references database partition n5.

88 Administration Guide: Planning

A distribution map is a flexible way of controlling where data is stored in a

multi-partition database. If you need to change the data distribution across the

database partitions in your database, you can use the data redistribution utility.

This utility allows you to rebalance or introduce skew into the data distribution.

You can use the sqlugtpi API - Get table distribution information) to obtain a

copy of a distribution map that you can view.

 Related concepts:

v “Database partition group design” on page 87

v “Database partition groups” on page 85

v “Distribution keys” on page 89

 Related reference:

v “sqlugtpi API - Get table distribution information” in Administrative API

Reference

Distribution keys

 A distribution key is a column (or group of columns) that is used to determine the

database partition in which a particular row of data is stored. A distribution key is

defined on a table using the CREATE TABLE statement. If a distribution key is not

defined for a table in a table space that is divided across more than one database

partition in a database partition group, one is created by default from the first

column of the primary key. If no primary key is specified, the default distribution

key is the first non-long field column defined on that table. (Long includes all long

data types and all large object (LOB) data types). If you are creating a table in a

table space associated with a single-partition database partition group, and you

want to have a distribution key, you must define the distribution key explicitly.

One is not created by default.

If no columns satisfy the requirement for a default distribution key, the table is

created without one. Tables without a distribution key are only allowed in

single-partition database partition groups. You can add or drop distribution keys

later, using the ALTER TABLE statement. Altering the distribution key can only be

done to a table whose table space is associated with a single-partition database

partition group.

Choosing a good distribution key is important. You should take into consideration:

Figure 23. Data distribution using a distribution map

Chapter 5. Physical database design 89

v How tables are to be accessed

v The nature of the query workload

v The join strategies employed by the database system.

If collocation is not a major consideration, a good distribution key for a table is one

that spreads the data evenly across all database partitions in the database partition

group. The distribution key for each table in a table space that is associated with a

database partition group determines if the tables are collocated. Tables are

considered collocated when:

v The tables are placed in table spaces that are in the same database partition

group

v The distribution keys in each table have the same number of columns

v The data types of the corresponding columns are partition-compatible.

These characteristics ensure that rows of collocated tables with the same

distribution key values are located on the same database partition.

An inappropriate distribution key can cause uneven data distribution. Columns

with unevenly distributed data, and columns with a small number of distinct

values should not be chosen as distribution keys. The number of distinct values

must be great enough to ensure an even distribution of rows across all database

partitions in the database partition group. The cost of applying the distribution

algorithm is proportional to the size of the distribution key. The distribution key

cannot be more than 16 columns, but fewer columns result in better performance.

Unnecessary columns should not be included in the distribution key.

The following points should be considered when defining distribution keys:

v Creation of a multiple-partition table that contains only long data types (LONG

VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB) is not supported.

v The distribution key definition cannot be altered.

v The distribution key should include the most frequently joined columns.

v The distribution key should be made up of columns that often participate in a

GROUP BY clause.

v Any unique key or primary key must contain all of the distribution key

columns.

v In an online transaction processing (OLTP) environment, all columns in the

distribution key should participate in the transaction by using equal (=)

predicates with constants or host variables. For example, assume you have an

employee number, emp_no, that is often used in transactions such as:

 UPDATE emp_table SET ... WHERE

 emp_no = host-variable

In this case, the EMP_NO column would make a good single column

distribution key for EMP_TABLE.

Database partitioning is the method by which the placement of each row in the table

is determined. The method works as follows:

1. A hashing algorithm is applied to the value of the distribution key, and

generates a number between zero (0) and 4095.

2. The distribution map is created when a database partition group is created.

Each of the numbers is sequentially repeated in a round-robin fashion to fill the

distribution map.

90 Administration Guide: Planning

3. The number is used as an index into the distribution map. The number at that

location in the distribution map is the number of the database partition where

the row is stored.

 Related concepts:

v “Database partition group design” on page 87

v “Database partition groups” on page 85

v “Distribution maps” on page 88

v “The Design Advisor” in Performance Guide

 Related reference:

v “ALTER TABLE statement” in SQL Reference, Volume 2

Table collocation

 You may discover that two or more tables frequently contribute data in response to

certain queries. In this case, you will want related data from such tables to be

located as close together as possible. In an environment where the database is

physically divided among two or more database partitions, there must be a way to

keep the related pieces of the divided tables as close together as possible. The

ability to do this is called table collocation.

Tables are collocated when they are stored in the same database partition group,

and when their distribution keys are compatible. Placing both tables in the same

database partition group ensures a common distribution map. The tables may be in

different table spaces, but the table spaces must be associated with the same

database partition group. The data types of the corresponding columns in each

distribution key must be partition-compatible.

DB2 Database for Linux, UNIX, and Windows can recognize, when accessing more

than one table for a join or a subquery, that the data to be joined is located at the

same database partition. When this happens, DB2 can perform the join or subquery

at the database partition where the data is stored, instead of having to move data

between database partitions. This ability has significant performance advantages.

 Related concepts:

v “Database partition group design” on page 87

v “Database partition groups” on page 85

v “Database partition compatibility” on page 91

v “Distribution keys” on page 89

Database partition compatibility

 The base data types of corresponding columns of distribution keys are compared

and can be declared partition-compatible. Partition-compatible data types have the

property that two variables, one of each type, with the same value, are mapped to

the same number by the same partitioning algorithm.

Partition-compatibility has the following characteristics:

v A base data type is compatible with another of the same base data type.

v Internal formats are used for DATE, TIME, and TIMESTAMP data types. They

are not compatible with each other, and none are compatible with CHAR.

Chapter 5. Physical database design 91

v Partition-compatibility is not affected by columns with NOT NULL or FOR BIT

DATA definitions.

v NULL values of compatible data types are treated identically; those of

non-compatible data types may not be.

v Base data types of a user-defined type are used to analyze partition-
compatibility.

v Decimals of the same value in the distribution key are treated identically, even if

their scale and precision differ.

v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or

VARGRAPHIC) are ignored by the hashing algorithm.

v BIGINT, SMALLINT, and INTEGER are compatible data types.

v REAL and FLOAT are compatible data types.

v CHAR and VARCHAR of different lengths are compatible data types.

v GRAPHIC and VARGRAPHIC are compatible data types.

v Partition-compatibility does not apply to LONG VARCHAR, LONG

VARGRAPHIC, CLOB, DBCLOB, and BLOB data types, because they are not

supported as distribution keys.

 Related concepts:

v “Database partition group design” on page 87

v “Database partition groups” on page 85

v “Distribution keys” on page 89

Data partitions

 A data partition is a set of table rows, stored separately from other sets of rows,

and grouped by the specifications provided in the PARTITION BY clause of the

CREATE TABLE statement. If a table is created using the PARTITION BY clause,

then the table is partitioned.

A partitioned table uses a data organization scheme in which table data is divided

across multiple storage objects, called data partitions or ranges, according to values

in one or more table partitioning key columns of the table. Data from a given table

is partitioned into multiple storage objects based on the specifications provided in

the PARTITION BY clause of the CREATE TABLE statement. These storage objects

can be in different table spaces, in the same table space, or a combination of both.

All the table spaces specified must have the same: pagesize, extensize, storage

mechanism (DMS, SMS), and type (REGULAR or LARGE) and all the table spaces

must be in the same database partition group.

A partitioned table simplifies the rolling in and rolling out of table data and a

partitioned table can contain vastly more data than an ordinary table. You can

create a partitioned table with a maximum of 32767 data partitions. Data partitions

can be added to, attached to, and detached from a partitioned table, and you can

store multiple data partition ranges from a table in one table space.

The ranges specified for each data partition can be generated automatically or

manually when creating a table.

Data partitions are referred to in various ways throughout the DB2 library. The

following list represents the most common references:

92 Administration Guide: Planning

v DATAPARTITIONNAME is the permanent name assigned to a data partition for

a given table at create time. This column value is stored in the

SYSCAT.DATAPARTITIONS catalog view. This name is not preserved on an

attach or detach operation.

v DATAPARTITIONID is the permanent identifier assigned to a data partition for

a given table at create time. It is used to uniquely identify a particular data

partition in a given table. This identifier is not preserved on an attach or detach

operation. This value is system generated and may appear in output from

various utilities.

v SEQNO indicates the order of a particular data partition range with regards to

other data partition ranges in the table, with detached data partitions sorting

after all visible and attached data partitions.

 Related concepts:

v “Data organization schemes in DB2 and Informix databases” on page 105

v “Optimization strategies for partitioned tables” in Performance Guide

v “Partitioned tables” on page 104

v “Table partitioning” on page 93

 Related tasks:

v “Adding data partitions to partitioned tables” in Administration Guide:

Implementation

v “Altering partitioned tables” in Administration Guide: Implementation

v “Creating partitioned tables” in Administration Guide: Implementation

v “Dropping a data partition” in Administration Guide: Implementation

v “Approaches to migrating existing tables and views to partitioned tables” in

Administration Guide: Implementation

v “Attaching a data partition” in Administration Guide: Implementation

v “Detaching a data partition” in Administration Guide: Implementation

v “Rotating data in a partitioned table” in Administration Guide: Implementation

v “Approaches to defining ranges on partitioned tables” in Administration Guide:

Implementation

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” in Administration

Guide: Implementation

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” in Administration Guide: Implementation

Table partitioning

 Table partitioning is a data organization scheme in which table data is divided

across multiple storage objects called data partitions or ranges according to values

in one or more table columns. Each data partition is stored separately. These

storage objects can be in different table spaces, in the same table space, or a

combination of both.

Storage objects behave much like individual tables, making it easy to accomplish

fast roll-in by incorporating an existing table into a partitioned table using the

ALTER TABLE ...ATTACH statement. Likewise, easy roll-out is accomplished with

Chapter 5. Physical database design 93

the ALTER TABLE ...DETACH statement. Query processing can also take

advantage of the separation of the data to avoid scanning irrelevant data, resulting

in better query performance for many data warehouse style queries.

Table data is partitioned as specified in the PARTITION BY clause of the CREATE

TABLE statement. The columns used in this definition are referred to as the table

partitioning key columns.

This organization scheme can be used in isolation or in combination with other

organization schemes. By combining the DISTRIBUTE BY and PARTITION BY

clauses of the CREATE TABLE statement, data can be spread across database

partitions spanning multiple table spaces. The DB2 organization schemes include:

v DISTRIBUTE BY HASH

v PARTITION BY RANGE

v ORGANIZE BY DIMENSIONS

Table partitioning functionality is available with DB2 Version 9.1 Enterprise Server

Edition for Linux, UNIX, and Windows.

 Benefits of table partitioning:

 If any of the following circumstances apply to you and your organization, consider

the numerous benefits of table partitioning:

v You have a data warehouse that would benefit from easier roll-in and roll-out of

table data

v You have a data warehouse that includes large tables

v You are considering a migration to a DB2 V9.1 database from a previous release

or a competitive database product

v You need to use Hierarchical Storage Management (HSM) solutions more

effectively

Table partitioning offers easy roll-in and roll-out of table data, easier

administration, flexible index placement and better query processing.

Efficient roll-in and roll-out

Table partitioning allows for the efficient roll-in and roll-out of table data.

You can achieve this by using the ATTACH PARTITION and DETACH

PARTITION clauses of the ALTER TABLE statement. Rolling in partitioned

table data allows a new range to be easily incorporated into a partitioned

table as an additional data partition. Rolling out partitioned table data

allows you to easily separate ranges of data from a partitioned table for

subsequent purging or archiving.

Easier administration of large tables

Table level administration is more flexible because you can perform

administrative tasks on individual data partitions. These tasks include:

detaching and reattaching of a data partition, backing up and restoring

individual data partitions, and reorganizing individual indexes. Time

consuming maintenance operations can be shortened by breaking them

down into a series of smaller operations. For example, backup operations

can work data partition by data partition when the data partitions are

placed in separate table spaces. Thus, it is possible to backup one data

partition of a partitioned table at a time.

94 Administration Guide: Planning

Flexible index placement

Indexes can now be placed in different table spaces allowing for more

granular control of index placement. Some benefits of this new design

include:

v Improved performance of drop index and online index create.

v The ability to use different values for any of the table space

characteristics between each index on the table (for example, different

page sizes for each index may be appropriate to ensure better space

utilization).

v Reduced IO contention providing more efficient concurrent access to the

index data for the table.

v When individual indexes are dropped space will immediately become

available to the system without the need for an index reorganization.

v If you choose to perform index reorganization, an individual index can

be reorganized.

Both DMS and SMS table spaces support the use of indexes in a different

location than the table.

Improved performance for business intelligence style queries

Query processing is enhanced to automatically eliminate data partitions

based on predicates of the query. This functionality, known as Data

Partition Elimination, benefits many decision support queries.

 The following example creates a table customer where rows with l_shipdate >=

’01/01/2006’ and l_shipdate <= ’03/31/2006’ are stored in table space ts1, rows

with l_shipdate >= ’04/01/2006’ and l_shipdate <= ’06/30/2006’ are in table space

ts2, etc.

CREATE TABLE customer (l_shipdate, l_name CHAR(30))

IN ts1, ts2, ts3, ts4, ts5

PARTITION BY RANGE(l_shipdate) (STARTING FROM (’01/01/2006’)

ENDING AT (’12/31/2006’) EVERY (3 MONTHS))

 Related concepts:

v “Data organization schemes” on page 99

v “Data partitions” on page 92

v “Partitioned materialized query table behavior” in Administration Guide:

Implementation

v “Partitioned tables” on page 104

v “Understanding index behavior on partitioned tables” in Performance Guide

v “Optimization strategies for partitioned tables” in Performance Guide

v “Understanding clustering index behavior on partitioned tables” in Performance

Guide

 Related tasks:

v “Altering partitioned tables” in Administration Guide: Implementation

v “Adding data partitions to partitioned tables” in Administration Guide:

Implementation

v “Approaches to defining ranges on partitioned tables” in Administration Guide:

Implementation

v “Approaches to migrating existing tables and views to partitioned tables” in

Administration Guide: Implementation

v “Attaching a data partition” in Administration Guide: Implementation

Chapter 5. Physical database design 95

v “Creating partitioned tables” in Administration Guide: Implementation

v “Detaching a data partition” in Administration Guide: Implementation

v “Dropping a data partition” in Administration Guide: Implementation

v “Rotating data in a partitioned table” in Administration Guide: Implementation

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” in Administration

Guide: Implementation

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “Command Line Processor (CLP) samples” in Samples Topics

Table partitioning keys

 A table partitioning key is an ordered set of one or more columns in a table. The

values in the table partitioning key columns are used to determine in which data

partition each table row belongs.

To define the table partitioning key on a table use the CREATE TABLE statement

with the PARTITION BY clause.

Choosing an effective table partitioning key column is essential to taking full

advantage of the benefits of table partitioning. The following guidelines can help

you to choose the most effective table partitioning key columns for your

partitioned table:

v Define ranges to match the data roll-in size. It is most common to partition data

on a date or time column.

v Define range granularity to match data roll-out. It is most common to use month

or quarter.

v Partition on a column that provides advantages in partition elimination.

 Supported data types:

 The following data types (including synonyms) are supported for use as a table

partitioning key column:

 SMALLINT INTEGER

INT BIGINT

FLOAT REAL

DOUBLE DECIMAL

DEC NUMERIC

NUM CHARACTER

CHAR VARCHAR

DATE TIME

GRAPHIC VARGRAPHIC

CHARACTER VARYING TIMESTAMP

CHAR VARYING CHARACTER FOR BIT DATA

CHAR FOR BIT DATA VARCHAR FOR BIT DATA

CHARACTER VARYING FOR BIT DATA CHAR VARYING FOR BIT DATA

User defined types (distinct)

96 Administration Guide: Planning

Unsupported data types:

 The following data types can appear in a partitioned table, but are not supported

for use as a table partitioning key column:

v User defined types (structured)

v LONG VARCHAR

v LONG VARCHAR FOR BIT DATA

v BLOB

v BINARY LARGE OBJECT

v CLOB

v CHARACTER LARGE OBJECT

v DBCLOB

v LONG VARGRAPHIC

v REF

v Varying length string for C

v Varying length string for Pascal

The following data types are not supported in a partitioned table:

v XML

v DATALINK

If you choose to automatically generate data partitions using the EVERY clause of

the CREATE TABLE statement, only one column can be used as the table

partitioning key. If you choose to manually generate data partitions by specifying

each range in the PARTITION BY clause of the CREATE TABLE statement,

multiple columns can be used as the table partitioning key, as shown in the

following example:

CREATE TABLE sales (year INT, month INT)

 IN tbsp1, tbsp2, tbsp3, tbsp4, tbsp5, tbsp6, tbsp7, tbsp8

 PARTITION BY RANGE(year, month)

 (STARTING FROM (2001, 1) ENDING (2001,3) IN tbsp1,

 ENDING (2001,6) IN tbsp2, ENDING (2001,9)

 IN tbsp3, ENDING (2001,12) IN tbsp4,

 ENDING (2002,3) IN tbsp5, ENDING (2002,6)

 IN tbsp6, ENDING (2002,9) IN tbsp7,

 ENDING (2002,12) IN tbsp8)

This results in eight data partitions, one for each quarter in year 2001 and 2002.

Note:

1. When multiple columns are used as the table partitioning key, they are

treated as a composite key (which are similar to composite keys in an

index), in the sense that trailing columns are dependent on the leading

columns. Each starting or ending value (all of the columns, together)

must be specified in 512 characters or less. This limit corresponds to the

size of the LOWVALUE and HIGHVALUE columns of the

SYSCAT.DATAPARTITIONS catalog view. A starting or ending value

specified with more than 512 characters will result in error SQL0636N,

reason code 9.

2. Table partitioning is multicolumn not multidimension. In table

partitioning, all columns used are part of a single dimension.

Chapter 5. Physical database design 97

Generated columns:

 Generated columns can be used as table partitioning keys. This example creates a

table with twelve data partitions, one for each month. All rows for January of any

year will be placed in the first data partition, rows for February in the second, and

so on.

Example 1

CREATE TABLE monthly_sales (sales_date date,

 sales_month int GENERATED ALWAYS AS (month(sales_date)))

 PARTITION BY RANGE (sales_month)

 (STARTING FROM 1 ENDING AT 12 EVERY 1);

Note:

1. You cannot alter or drop the expression of a generated column that is

used in the table partitioning key. Adding a generated column expression

on a column that is used in the table partitioning key is not permitted.

Attempting to add, drop or alter a generated column expression for a

column used in the table partitioning key results in error (SQL0270N

rc=52).

2. Data partition elimination will not be used for range predicates if the

generated column is not monotonic, or the optimizer can not detect that

it is monotonic. In the presence of non-monotonic expressions, data

partition elimination can only take place for equality or IN predicates.

For a detailed discussion and examples of monotonicity see

Multidimensional clustering (MDC) table creation, placement, and use.

 Related concepts:

v “Table partitioning” on page 93

v “Data partitions” on page 92

v “Optimization strategies for partitioned tables” in Performance Guide

v “Partitioned tables” on page 104

 Related tasks:

v “Approaches to defining ranges on partitioned tables” in Administration Guide:

Implementation

v “Adding data partitions to partitioned tables” in Administration Guide:

Implementation

v “Creating partitioned tables” in Administration Guide: Implementation

v “Dropping a data partition” in Administration Guide: Implementation

v “Approaches to migrating existing tables and views to partitioned tables” in

Administration Guide: Implementation

v “Attaching a data partition” in Administration Guide: Implementation

v “Detaching a data partition” in Administration Guide: Implementation

v “Rotating data in a partitioned table” in Administration Guide: Implementation

 Related reference:

v “SYSCAT.DATAPARTITIONS catalog view” in SQL Reference, Volume 1

v “Examples of rolling in and rolling out partitioned table data” in Administration

Guide: Implementation

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “DESCRIBE command” in Command Reference

98 Administration Guide: Planning

v “DESCRIBE statement” in SQL Reference, Volume 2

Data organization schemes

 With the introduction of table partitioning, a DB2 database offers a three level data

organization scheme. Each clause of the CREATE TABLE statement includes an

algorithm to indicate how the data should be organized. The following three

clauses demonstrate the levels of data organization that can be used together in

any combination:

v DISTRIBUTE BY to spread data evenly across database partitions (to enable

intra-query parallelism and to balance the load across each database

partition)(database partitioning)

v PARTITION BY to group rows with similar values of a single dimension in the

same data partition (table partitioning)

v ORGANIZE BY to group rows with similar values on multiple dimensions in the

same table extent (multidimensional clustering)

This syntax allows consistency between the clauses as well as allowing for future

algorithms of data organization. Each of these clauses can be used in isolation or in

combination with one another. By combining the DISTRIBUTE BY and PARTITION

BY clauses of the CREATE TABLE statement data can be spread across database

partitions spanning multiple table spaces. This approach allows for similar

behavior to the Informix® Dynamic Server and Informix Extended Parallel Server

hybrid functionality.

In a single table, you can combined the clauses used in each data organization

scheme to create more sophisticated partitioning schemes. For example, DB2

Database Partitioning Feature (DPF) is not only compatible, but also

complementary to table partitioning.

Chapter 5. Physical database design 99

Figure 24. Demonstrating the table partitioning organization scheme where a table

representing monthly sales data is partitioned into multiple data partitions. The table also

spans two table spaces (ts1 and ts2).

100 Administration Guide: Planning

The salient distinction between multidimensional clustering (MDC) and table

partitioning is multi-dimension versus single dimension. MDC is suitable to cubes

(that is, tables with multiple dimensions), while table partitioning works well if

there is a single dimension which is central to the database design, such as a DATE

column. MDC and table partitioning are complementary when both of these

conditions are met. This is demonstrated in Figure 26 on page 102.

Figure 25. Demonstrating the complementary organization schemes of database partitioning

and table partitioning. A table representing monthly sales data is partitioned into multiple data

partitions, spanning two table spaces (ts1 and ts2) that are distributed across multiple

database partitions (dbpart1, dbpart2, dbpart3) of a databae partition group (dbgroup1).

Chapter 5. Physical database design 101

There is another data organization scheme which cannot be used in conjunction

with any of those listed above. This scheme is ORGANIZE BY KEY SEQUENCE. It

is used to insert each record into a row that was reserved for that record at the

time of table creation (Range-clustered table).

 Data organization terminology:

Database partitioning

A data organization scheme in which table data is divided across multiple

database partitions based on the hash values in one or more distribution

key columns of the table, and based on the use of a distribution map of the

database partitions. Data from a given table is distributed based on the

specifications provided in the DISTRIBUTE BY HASH clause of the

CREATE TABLE statement.

Figure 26. A representation of the database partitioning, table partitioning and

multi-dimensional organization schemes where data from table SALES is not only distributed

across multiple database partitions, partitioned across table spaces ts1 and ts2, but also

groups rows with similar values on both the date and region dimensions.

102 Administration Guide: Planning

Database partition

A portion of a database on a database partition server consisting of its own

user data, indexes, configuration file, and transaction logs. Database

partitions can be logical or physical.

Table partitioning

A data organization scheme in which table data is divided across multiple

data partitions according to values in one or more partitioning columns of

the table. Data from a given table is partitioned into multiple storage

objects based on the specifications provided in the PARTITION BY RANGE

clause of the CREATE TABLE statement. These storage objects can be in

different table spaces.

Data partition

A set of table rows, stored separately from other sets of rows, grouped by

the specifications provided in the PARTITION BY RANGE clause of the

CREATE TABLE statement.

Multidimensional clustering (MDC)

A table whose data is physically organized into blocks along one or more

dimensions, or clustering keys, specified in the ORGANIZE BY

DIMENSIONS clause.

 Benefits of each data organization scheme:

 Understanding the benefits of each data organization scheme can help you to

determine the best approach when planning, designing, or reassessing your

database system requirements. Table 21 provides a high-level view of common

customer requirements and shows how the various data organization schemes can

help you to meet those requirements.

 Table 21. Using table partitioning with the Database Partitioning Feature

Issue Recommended scheme Explanation

Data roll-out Table partitioning Uses detach to roll-out large

amounts of data with

minimal disruption

Parallel query execution

(query performance)

Database Partitioning Feature Provides query parallelism

for improved query

performance

Data partition elimination

(query performance)

Table partitioning Provides data partition

elimination for improved

query performance

Maximization of query

performance

Both Maximum query performance

when used together: query

parallelism and data partition

elimination are

complementary

Heavy administrator

workload

Database Partitioning Feature Execute many tasks for each

database partition

 Table 22. Using table partitioning with MDC tables

Issue Recommended scheme Explanation

Data availability during

roll-out

Table partitioning Use the DETACH

PARTITION clause to roll out

large amounts of data with

minimal disruption.

Chapter 5. Physical database design 103

Table 22. Using table partitioning with MDC tables (continued)

Issue Recommended scheme Explanation

Query performance Both MDC is best for querying

multiple dimensions. Table

partitioning helps through

data partition elimination.

Minimal reorganization MDC MDC maintains clustering,

which reduces the need to

reorganize.

Note: Table partitioning is now recommended over UNION ALL views.

 Related concepts:

v “Data organization schemes in DB2 and Informix databases” on page 105

v “Data partitions” on page 92

v “Database partition group design” on page 87

v “Designing multidimensional clustering (MDC) tables” on page 189

v “Multidimensional clustering (MDC) table creation, placement, and use” on page

197

v “Multidimensional clustering tables” on page 172

v “Range-clustered tables” on page 168

v “Table partitioning” on page 93

v “Database database partition group impact on query optimization” in

Performance Guide

v “Optimization strategies for partitioned tables” in Performance Guide

v “Examples of range-clustered tables” in Administration Guide: Implementation

v “Guidelines for using range-clustered tables” in Administration Guide:

Implementation

v “Database partitioning across multiple database partitions” in SQL Reference,

Volume 1

 Related tasks:

v “Creating partitioned tables” in Administration Guide: Implementation

v “Creating a table in a partitioned database environment” in Administration Guide:

Implementation

v “Creating a table in multiple table spaces” in Administration Guide: Implementation

v “Attaching a data partition” in Administration Guide: Implementation

v “Detaching a data partition” in Administration Guide: Implementation

v “Rotating data in a partitioned table” in Administration Guide: Implementation

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Partitioned tables

 Partitioned tables use a data organization scheme in which table data is divided

across multiple storage objects, called data partitions or ranges, according to values

in one or more table partitioning key columns of the table. Data from a given table

is partitioned into multiple storage objects based on the specifications provided in

104 Administration Guide: Planning

the PARTITION BY clause of the CREATE TABLE statement. These storage objects

can be in different table spaces, in the same table space, or a combination of both.

Table partitioning functionality is available with DB2 Version 9.1 Enterprise Server

Edition for Linux, UNIX, and Windows.

Table partitioning offers easy roll-in and roll-out of table data, easier

administration, flexible index placement and better query processing.

Partitioned hierarchical or temporary tables, range-clustered tables, and partitioned

views are not supported.

The following column types are not supported for use in partitioned tables:

v XML

v DATALINK

 Related concepts:

v “Table partitioning” on page 93

v “Table partitioning keys” on page 96

v “Data partitions” on page 92

v “Data organization schemes in DB2 and Informix databases” on page 105

 Related tasks:

v “Adding data partitions to partitioned tables” in Administration Guide:

Implementation

v “Altering partitioned tables” in Administration Guide: Implementation

v “Altering a table” in Administration Guide: Implementation

v “Creating partitioned tables” in Administration Guide: Implementation

v “Dropping a data partition” in Administration Guide: Implementation

v “Attaching a data partition” in Administration Guide: Implementation

v “Detaching a data partition” in Administration Guide: Implementation

v “Rotating data in a partitioned table” in Administration Guide: Implementation

v “Approaches to defining ranges on partitioned tables” in Administration Guide:

Implementation

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” in Administration

Guide: Implementation

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “Command Line Processor (CLP) samples” in Samples Topics

Data organization schemes in DB2 and Informix databases

 Table partitioning is a data organization scheme in which table data is divided

across multiple storage objects called data partitions or ranges according to values

in one or more table columns. Each data partition is stored separately. These

storage objects can be in different table spaces, in the same table space, or a

combination of both. Table data is partitioned as specified in the PARTITION BY

clause of the CREATE TABLE statement. The columns used in this definition are

referred to as the table partitioning key columns. DB2 table partitioning maps to

the data fragmentation approach to data organization offered by Informix Dynamic

Server and Informix Extended Parallel Server.

Chapter 5. Physical database design 105

The Informix approach:

 Informix supports several data organization schemes, which are called

fragmentation in the Informix products. One of the more commonly used types of

fragmentation is FRAGMENT BY EXPRESSION. This type of fragmentation works

much like a CASE statement, where there is an expression associated with each

fragment of the table. These expressions are checked in order to determine where

to place a row.

 An Informix and DB2 database system comparison:

 DB2 database provides a rich set of complementary features that map directly to

the Informix data organization schemes, making it relatively easy for customers to

convert from the Informix syntax to the DB2 syntax. The DB2 database manager

handles complicated Informix schemes using a combination of generated columns

and the PARTITION BY RANGE clause of the CREATE TABLE statement. Table 23

compares data organizations schemes used in Informix and DB2 database products.

 Table 23. A mapping of all Informix and DB2 data organization schemes

Data organization scheme Informix syntax DB2 Version 9.1 syntax

v Informix: expression-based

v DB2: table partitioning

FRAGMENT BY

EXPRESSION

PARTITION BY RANGE

v Informix: round-robin

v DB2: default

FRAGMENT BY ROUND

ROBIN

No syntax: DB2 database

manager automatically

spreads data among

containers

v Informix: range

distribution

v DB2: table partitioning

FRAGMENT BY RANGE PARTITION BY RANGE

v Informix: system

defined-hash

v DB2: database partitioning

FRAGMENT BY HASH DISTRIBUTE BY HASH

v Informix: HYBRID

v DB2: database partitioning

with table partitioning

FRAGMENT BY HYBRID DISTRIBUTE BY HASH,

PARTITION BY RANGE

v Informix: n/a

v DB2: Multidimensional

clustering

n/a ORGANIZE BY DIMENSION

 Examples:

 The following examples provide details on how to accomplish DB2 database

equivalent outcomes for any Informix fragment by expression scheme.

 Example 1: The following basic create table statement shows Informix fragmentation

and the equivalent table partitioning syntax for a DB2 database system:

Informix syntax:

 CREATE TABLE demo(a INT) FRAGMENT BY EXPRESSION

 a = 1 IN db1,

 a = 2 IN db2,

 a = 3 IN db3;

DB2 syntax:

106 Administration Guide: Planning

CREATE TABLE demo(a INT) PARTITION BY RANGE(a)

 (STARTING(1) IN db1,

 STARTING(2) IN db2,

 STARTING(3) ENDING(3) IN db3);

Informix XPS supports a two-level fragmentation scheme known as hybrid where

data is spread across co-servers with one expression and within the co-server with

a second expression. This allows all co-servers to be active on a query (that is,

there is data on all co-servers) as well as allowing the query to take advantage of

data partition elimination.

The DB2 database system achieves the equivalent organization scheme to the

Informix hybrid using a combination of the DISTRIBUTE BY and PARTITION BY

clauses of the CREATE TABLE statement.

Example 2:The following example shows the syntax for the combined clauses:

Informix syntax

 CREATE TABLE demo(a INT, b INT) FRAGMENT BY HYBRID HASH(a)

 EXPRESSION b = 1 IN dbsl1,

 b = 2 IN dbsl2;

DB2 syntax

 CREATE TABLE demo(a INT, b INT) IN dbsl1, dbsl2

 DISTRIBUTE BY HASH(a),

 PARTITION BY RANGE(b) (STARTING 1 ENDING 2 EVERY 1);

In addition, you can use multidimensional clustering to gain an extra level of data

organization:

 CREATE TABLE demo(a INT, b INT, c INT) IN dbsl1, dbsl2

 DISTRIBUTE BY HASH(a),

 PARTITION BY RANGE(b) (STARTING 1 ENDING 2 EVERY 1)

 ORGANIZE BY DIMENSIONS(c);

Thus, all rows with the same value of column a are in the same database partition.

All rows with the same value of column b are in the same table space. For a given

value of a and b, all rows with the same value c are clustered together on disk.

This approach is ideal for OLAP-type drill-down operations, because only one or

several extents (blocks)in a single table space on a single database partition must

be scanned to satisfy this type of query.

 Table partitioning applied to common application problems:

 The following sections discuss how to apply the various features of DB2 table

partitioning to common application problems. In each section, particular attention

is given to best practices for mapping various Informix fragmentation schemes into

equivalent DB2 table partitioning schemes.

 Considerations for creating simple data partition ranges:

 One of the most common applications of table partitioning is to partition a large

fact table based on a date key. If you need to create uniformly sized ranges of

dates, consider using the automatically generated form of the CREATE TABLE

syntax.

 Examples:

Chapter 5. Physical database design 107

Example 1: The following example shows the automatically generated form of the

syntax:

CREATE TABLE orders

(

 l_orderkey DECIMAL(10,0) NOT NULL,

 l_partkey INTEGER,

 l_suppkey INTEGER,

 l_linenumber INTEGER,

 l_quantity DECIMAL(12,2),

 l_extendedprice DECIMAL(12,2),

 l_discount DECIMAL(12,2),

 l_tax DECIMAL(12,2),

 l_returnflag CHAR(1),

 l_linestatus CHAR(1),

 l_shipdate DATE,

 l_commitdate DATE,

 l_receiptdate DATE,

 l_shipinstruct CHAR(25),

 l_shipmode CHAR(10),

 l_comment VARCHAR(44))

 PARTITION BY RANGE(l_shipdate)

 (STARTING ’1/1/1992’ ENDING ’12/31/1993’ EVERY 1 MONTH);

This creates 24 ranges, one for each month in 1992-1993. Attempting to insert a row

with l_shipdate outside of that range results in an error.

Example 2: Compare the preceding example to the following Informix syntax:

create table orders

(

 l_orderkey decimal(10,0) not null,

 l_partkey integer,

 l_suppkey integer,

 l_linenumber integer,

 l_quantity decimal(12,2),

 l_extendedprice decimal(12,2),

 l_discount decimal(12,2),

 l_tax decimal(12,2),

 l_returnflag char(1),

 l_linestatus char(1),

 l_shipdate date,

 l_commitdate date,

 l_receiptdate date,

 l_shipinstruct char(25),

 l_shipmode char(10),

 l_comment varchar(44)

) fragment by expression

l_shipdate < ’1992-02-01’ in ldbs1,

l_shipdate >= ’1992-02-01’ and l_shipdate < ’1992-03-01’ in ldbs2,

l_shipdate >= ’1992-03-01’ and l_shipdate < ’1992-04-01’ in ldbs3,

l_shipdate >= ’1992-04-01’ and l_shipdate < ’1992-05-01’ in ldbs4,

l_shipdate >= ’1992-05-01’ and l_shipdate < ’1992-06-01’ in ldbs5,

l_shipdate >= ’1992-06-01’ and l_shipdate < ’1992-07-01’ in ldbs6,

l_shipdate >= ’1992-07-01’ and l_shipdate < ’1992-08-01’ in ldbs7,

l_shipdate >= ’1992-08-01’ and l_shipdate < ’1992-09-01’ in ldbs8,

l_shipdate >= ’1992-09-01’ and l_shipdate < ’1992-10-01’ in ldbs9,

l_shipdate >= ’1992-10-01’ and l_shipdate < ’1992-11-01’ in ldbs10,

l_shipdate >= ’1992-11-01’ and l_shipdate < ’1992-12-01’ in ldbs11,

l_shipdate >= ’1992-12-01’ and l_shipdate < ’1993-01-01’ in ldbs12,

l_shipdate >= ’1993-01-01’ and l_shipdate < ’1993-02-01’ in ldbs13,

l_shipdate >= ’1993-02-01’ and l_shipdate < ’1993-03-01’ in ldbs14,

l_shipdate >= ’1993-03-01’ and l_shipdate < ’1993-04-01’ in ldbs15,

l_shipdate >= ’1993-04-01’ and l_shipdate < ’1993-05-01’ in ldbs16,

l_shipdate >= ’1993-05-01’ and l_shipdate < ’1993-06-01’ in ldbs17,

l_shipdate >= ’1993-06-01’ and l_shipdate < ’1993-07-01’ in ldbs18,

l_shipdate >= ’1993-07-01’ and l_shipdate < ’1993-08-01’ in ldbs19,

108 Administration Guide: Planning

l_shipdate >= ’1993-08-01’ and l_shipdate < ’1993-09-01’ in ldbs20,

l_shipdate >= ’1993-09-01’ and l_shipdate < ’1993-10-01’ in ldbs21,

l_shipdate >= ’1993-10-01’ and l_shipdate < ’1993-11-01’ in ldbs22,

l_shipdate >= ’1993-11-01’ and l_shipdate < ’1993-12-01’ in ldbs23,

l_shipdate >= ’1993-12-01’ and l_shipdate < ’1994-01-01’ in ldbs24,

l_shipdate >= ’1994-01-01’ in ldbs25;

Notice that the Informix syntax provides an open ended range at the top and

bottom to catch dates that are not in the expected range. The DB2 syntax can be

modified to match the Informix syntax by adding ranges that make use of

MINVALUE and MAXVALUE.

Example 3: The following example modifies Example 1 to mirror the Informix

syntax::

CREATE TABLE orders

(

 l_orderkey DECIMAL(10,0) NOT NULL,

 l_partkey INTEGER,

 l_suppkey INTEGER,

 l_linenumber INTEGER,

 l_quantity DECIMAL(12,2),

 l_extendedprice DECIMAL(12,2),

 l_discount DECIMAL(12,2),

 l_tax DECIMAL(12,2),

 l_returnflag CHAR(1),

 l_linestatus CHAR(1),

 l_shipdate DATE,

 l_commitdate DATE,

 l_receiptdate DATE,

 l_shipinstruct CHAR(25),

 l_shipmode CHAR(10),

 l_comment VARCHAR(44)

) PARTITION BY RANGE(l_shipdate)

 (STARTING MINVALUE,

 STARTING ’1/1/1992’ ENDING ’12/31/1993’ EVERY 1 MONTH,

 ENDING MAXVALUE);

This technique allows any date to be inserted into the table.

 Partition by expression using generated columns:

 Although DB2 database does not directly support partitioning by expression,

partitioning on a generated column is supported, making it possible to achieve the

same result.

Consider the following usage guidelines before deciding whether to use this

approach:

v The generated column is a real column that occupies physical disk space. Tables

that make use of a generated column can be slightly larger.

v Altering the generated column expression for the column on which a partitioned

table is partitioned is not supported. Attempting to do so will result in the

message SQL0190. Adding a new data partition to a table that uses generated

columns in the manner described in the next section generally requires you to

alter the expression that defines the generated column. Altering the expression

that defines a generated column is not currently supported.

v There are limitations on when you can apply data partition elimination when a

table uses generated columns.

 Examples:

Chapter 5. Physical database design 109

Example 1: The following uses the Informix syntax, where it is appropriate to use

generated columns. In this example, the column to be partitioned on holds

Canadian provinces and territories. Because the list of provinces is unlikely to

change, the generated column expression is unlikely to change.

 CREATE TABLE customer (

 cust_id INT,

 cust_prov CHAR(2))

 FRAGMENT BY EXPRESSION

 cust_prov = "AB" IN dbspace_ab

 cust_prov = "BC" IN dbspace_bc

 cust_prov = "MB" IN dbspace_mb

 ...

 cust_prov = "YT" IN dbspace_yt

 REMAINDER IN dbspace_remainder;

Example 2: In this example, the DB2 table is partitioned using a generated column:

 CREATE TABLE customer (

 cust_id INT,

 cust_prov CHAR(2),

 cust_prov_gen GENERATED ALWAYS AS (CASE

 WHEN cust_prov = ’AB’ THEN 1

 WHEN cust_prov = ’BC’ THEN 2

 WHEN cust_prov = ’MB’ THEN 3

 ...

 WHEN cust_prov = ’YT’ THEN 13

 ELSE 14 END))

 IN tbspace_ab, tbspace_bc, tbspace_mb, tbspace_remainder

 PARTITION BY RANGE (cust_prov_gen)

 (STARTING 1 ENDING 14 EVERY 1);

Here the expressions within the case statement match the corresponding

expressions in the FRAGMENT BY EXPRESSION clause. The case statement maps

each original expression to a number, which is stored in the generated column

(cust_prov_gen in this example). This column is a real column stored on disk, so

the table could occupy slightly more space than would be necessary if DB2

supported partition by expression directly. This example uses the short form of the

syntax. Therefore, the table spaces in which to place the data partitions must be

listed in the IN clause of the CREATE TABLE statement. Using the long form of

the syntax requires a separate IN clause for each data partition.

Note: This technique can be applied to any FRAGMENT BY EXPRESSION clause.

 Related concepts:

v “Data partitions” on page 92

v “Partitioned database environments” on page 41

v “Partitioned tables” on page 104

v “Table partitioning” on page 93

v “Optimization strategies for partitioned tables” in Performance Guide

v “Understanding clustering index behavior on partitioned tables” in Performance

Guide

v “Understanding index behavior on partitioned tables” in Performance Guide

v “Attributes of detached data partitions” in Administration Guide: Implementation

v “Database partitioning across multiple database partitions” in SQL Reference,

Volume 1

v “Large object behavior in partitioned tables” in SQL Reference, Volume 1

110 Administration Guide: Planning

v “Partitioned materialized query table behavior” in Administration Guide:

Implementation

 Related tasks:

v “Adding data partitions to partitioned tables” in Administration Guide:

Implementation

v “Altering partitioned tables” in Administration Guide: Implementation

v “Creating partitioned tables” in Administration Guide: Implementation

v “Dropping a data partition” in Administration Guide: Implementation

v “Enabling database partitioning in a database” in Administration Guide:

Implementation

v “Approaches to migrating existing tables and views to partitioned tables” in

Administration Guide: Implementation

v “Attaching a data partition” in Administration Guide: Implementation

v “Detaching a data partition” in Administration Guide: Implementation

v “Rotating data in a partitioned table” in Administration Guide: Implementation

v “Approaches to defining ranges on partitioned tables” in Administration Guide:

Implementation

 Related reference:

v “Examples of rolling in and rolling out partitioned table data” in Administration

Guide: Implementation

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “Guidelines and restrictions on altering partitioned tables with attached or

detached data partitions” in Administration Guide: Implementation

Replicated materialized query tables

 A materialized query table is a table that is defined by a query that is also used to

determine the data in the table. Materialized query tables can be used to improve

the performance of queries. If DB2 Database for Linux, UNIX, and Windows

determines that a portion of a query could be resolved using a materialized query

table, the query may be rewritten by the database manager to use the materialized

query table.

In a partitioned database environment, you can replicate materialized query tables

and use them to improve query performance. A replicated materialized query table is

based on a table that may have been created in a single-partition database partition

group, but that you want replicated across all of the database partitions in another

database partition group. To create the replicated materialized query table, invoke

the CREATE TABLE statement with the REPLICATED keyword.

By using replicated materialized query tables, you can obtain collocation between

tables that are not typically collocated. Replicated materialized query tables are

particularly useful for joins in which you have a large fact table and small

dimension tables. To minimize the extra storage required, as well as the impact of

having to update every replica, tables that are to be replicated should be small and

updated infrequently.

Note: You should also consider replicating larger tables that are updated

infrequently: the one-time cost of replication is offset by the performance

benefits that can be obtained through collocation.

Chapter 5. Physical database design 111

By specifying a suitable predicate in the subselect clause used to define the

replicated table, you can replicate selected columns, selected rows, or both.

 Related concepts:

v “Database partition group design” on page 87

v “The Design Advisor” in Performance Guide

 Related tasks:

v “Creating a materialized query table” in Administration Guide: Implementation

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Table space design

 A table space is a storage structure containing tables, indexes, large objects, and

long data. Table spaces reside in database partition groups. They allow you to

assign the location of database and table data directly onto containers. (A container

can be a directory name, a device name, or a file name.) This can provide

improved performance and more flexible configuration.

Since table spaces reside in database partition groups, the table space selected to

hold a table defines how the data for that table is distributed across the database

partitions in a database partition group. A single table space can span several

containers. It is possible for multiple containers (from one or more table spaces) to

be created on the same physical disk (or drive). For improved performance, each

container should use a different disk. Figure 27 illustrates the relationship between

tables and table spaces within a database, and the containers associated with that

database.

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

Figure 27. Table spaces and tables in a database

112 Administration Guide: Planning

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,

which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table

space in container 4. This example shows each container existing on a separate

disk.

The database manager attempts to balance the data load across containers. As a

result, all containers are used to store data. The number of pages that the database

manager writes to a container before using a different container is called the extent

size. The database manager does not always start storing table data in the first

container.

Figure 28 shows the HUMANRES table space with an extent size of two 4 KB

pages, and four containers, each with a small number of allocated extents. The

DEPARTMENT and EMPLOYEE tables both have seven pages, and span all four

containers.

 A database must contain at least three table spaces:

v One catalog table space, which contains all of the system catalog tables for the

database. This table space is called SYSCATSPACE, and it cannot be dropped.

IBMCATGROUP is the default database partition group for this table space.

v One or more user table spaces, which contain all user defined tables. By default,

one table space, USERSPACE1, is created. IBMDEFAULTGROUP is the default

database partition group for this table space.

You should specify a table space name when you create a table, or the results

may not be what you intend.

A table’s page size is determined either by row size, or the number of columns.

The maximum allowable length for a row is dependent upon the page size of

the table space in which the table is created. Possible values for page size are 4

KB, 8 KB, 16 KB, and 32 KB. Before Version 9.1, the default page size was 4 KB.

In Version 9.1 and following, the default page size may be one of the other

supported values. The default page size is declared when creating a new

database. Once the default page size has been declared, you are still free to

create a table space with one page size for the base table, and a different table

space with a different page size for long or LOB data. (Recall that SMS does not

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

Figure 28. Containers and extents in a table space

Chapter 5. Physical database design 113

support tables that span table spaces, but that DMS does.) If the number of

columns or the row size exceeds the limits for a table space’s page size, an error

is returned (SQLSTATE 42997).

v One or more temporary table spaces, which contain temporary tables. Temporary

table spaces can be system temporary table spaces or user temporary table spaces.

System temporary table spaces hold temporary data required by the database

manager while performing operations such as sorts or joins. These types of

operations require extra space to process the results set. A database must have at

least one system temporary table space; by default, one system temporary table

space called TEMPSPACE1 is created at database creation. IBMTEMPGROUP is

the default database partition group for this table space.

User temporary table spaces hold temporary data from tables created with a

DECLARE GLOBAL TEMPORARY TABLE statement. To allow the definition of

declared temporary tables, at least one user temporary table space should be

created with the appropriate USE privileges. USE privileges are granted using

the GRANT statement. A user temporary table spaces is not created by default at

database creation.

If a database uses more than one temporary table space and a new temporary

object is needed, the optimizer will choose an appropriate page size for this

object. That object will then be allocated to the temporary table space with the

corresponding page size. If there is more than one temporary table space with

that page size, then the table space will be chosen in a round-robin fashion. In

most circumstances, it is not recommended to have more than one temporary

table space of any one page size.

If queries are running against tables in table spaces that are defined with page

sizes larger than the default, some of them may fail. This will occur if there are

no temporary table spaces defined with a larger page size. You may need to

create a temporary table space with a larger page size (if the default was 4 KB,

then you would need to create a temporary table space with a page size of 8 KB,

16 KB, or 32 KB). Any DML (Data Manipulation Language) statement could fail

unless there exists a temporary table space with the same page size as the

largest page size in the user table space.

You should define a single SMS temporary table space with a page size equal to

the page size used in the majority of your user table spaces. This should be

adequate for typical environments and workloads.

In a partitioned database environment, the catalog node will contain all three

default table spaces, and the other database partitions will each contain only

TEMPSPACE1 and USERSPACE1.

There are two types of table space, both of which can be used in a single database:

v System managed space, in which the operating system’s file manager controls

the storage space.

v Database managed space, in which the database manager controls the storage

space.

 Related concepts:

v “Catalog table space design” on page 163

v “Comparison of SMS and DMS table spaces” on page 140

v “Database managed space” on page 120

v “Extent size” on page 144

v “Relationship between table spaces and buffer pools” on page 145

114 Administration Guide: Planning

v “Relationship between table spaces and database partition groups” on page 146

v “System managed space” on page 117

v “SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces” on page 115

v “Temporary table space design” on page 161

v “Workload considerations in table space design” on page 143

v “Table space disk I/O” on page 141

v “Table spaces and other storage structures” in SQL Reference, Volume 1

 Related tasks:

v “Optimizing table space performance when data is on RAID devices” on page

164

v “Creating a table space” in Administration Guide: Implementation

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces

 The SYSTOOLSPACE table space is a user data table space used by the DB2

administration tools and some SQL administrative routines for storing historical

data and configuration information. The following tools and SQL administrative

routines use the SYSTOOLSPACE table space:

v Design advisor

v Alter table notebook

v Configure Automatic Maintenance wizard

v Storage management tool

v db2look command

v Automatic statistics collection (including the Statistics Collection Required health

indicator)

v Automatic reorganization (including the Reorganization Required health

indicator)

v GET_DBSIZE_INFO stored procedure

v ADMIN_COPY_SCHEMA stored procedure

v ADMIN_DROP_SCHEMA stored procedure

v SYSINSTALLOBJECTS stored procedure

v ALTOBJ stored procedure

The SYSTOOLSPACE table space is created the first time any of the above are used

(except for DB2LOOK, ALTOBJ, ADMIN_COPY_SCHEMA and

ADMIN_DROP_SCHEMA).

The SYSTOOLSTMPSPACE table space is a user temporary table space used by the

REORGCHK_TB_STATS, REORGCHK_IX_STATS and the ADMIN_CMD stored

procedures for storing temporary data. The SYSTOOLSTMPSPACE table space will

be created the first time any of these stored procedures is invoked (except for

ADMIN_CMD).

Chapter 5. Physical database design 115

Notes:

1. If the DB2 registry variable DB2_WORKLOAD is set to SAP, neither the

SYSTOOLSPACE nor the SYSTOOLSTMPSPACE will be created automatically.

2. The Reorganization Required and Statistics Collection Required health

indicators and the Health Monitor are enabled by default on all new databases.

These two health indicators are evaluated by the Health Monitor approximately

every two hours. This means that the SYSTOOLSPACE and

SYSTOOLSTMPSPACE table spaces are created automatically for new databases

after they have been active for two hours unless the health monitor or these

health indicators are explicitly disabled.

3. The automatic statistics collection feature is enabled by default on all new

databases. This feature is evaluated approximately every two hours. This means

that the SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces are created

automatically for new databases after they have been active for two hours

unless the automatic statistic collection feature is explicitly disabled.

If the default definition for either table space is not preferred, you can create the

table spaces manually (or drop and recreate them if they have already been created

automatically). The table space definitions may vary (for example, you can use a

DMS or SMS table space, or you can enable or disable automatic storage), however

the table spaces must be created in the IBMCATGROUP database partition group.

If you attempt to create them in any other database partition group, error

SQL1258N will be returned.

Following is an example of how to create the SYSTOOLSPACE and

SYSTOOLSTMPSPACE table spaces manually. This example uses the same

definitions that are used when table spaces are created automatically:

If the database is using automatic storage:

 CREATE TABLESPACE SYSTOOLSPACE IN IBMCATGROUP

 MANAGED BY AUTOMATIC STORAGE

 EXTENTSIZE 4

 CREATE USER TEMPORARY TABLESPACE SYSTOOLSTMPSPACE IN IBMCATGROUP

 MANAGED BY AUTOMATIC STORAGE

 EXTENTSIZE 4

If the database is not using automatic storage:

 CREATE TABLESPACE SYSTOOLSPACE IN IBMCATGROUP

 MANAGED BY DATABASE USING (FILE ’SYSTOOLSPACE’ 32 M)

 AUTORESIZE YES

 EXTENTSIZE 4

 CREATE USER TEMPORARY TABLESPACE SYSTOOLSTMPSPACE IN IBMCATGROUP

 MANAGED BY SYSTEM USING (’SYSTOOLSTMPSPACE’)

 EXTENTSIZE 4

By default, the use of SYSTOOLSTMPSPACE will be granted to the PUBLIC group

as long as the database is not created using restricted access.

 Related concepts:

v “The Design Advisor” in Performance Guide

v “Automatic reorganization” on page 32

 Related tasks:

v “Using automatic statistics collection” in Performance Guide

116 Administration Guide: Planning

v “Altering a table” in Administration Guide: Implementation

 Related reference:

v “ADMIN_COPY_SCHEMA procedure – Copy a specific schema and its objects”

in Administrative SQL Routines and Views

v “ADMIN_DROP_SCHEMA procedure – Drop a specific schema and its objects”

in Administrative SQL Routines and Views

v “ALTOBJ procedure” in Administrative SQL Routines and Views

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

v “Health indicators summary” in System Monitor Guide and Reference

v “Storage management view” on page 146

v “GET_DBSIZE_INFO procedure” in Administrative SQL Routines and Views

v “SYSINSTALLOBJECTS procedure” in Administrative SQL Routines and Views

System managed space

 In an SMS (System Managed Space) table space, the operating system’s file system

manager allocates and manages the space where the table is stored. The storage

model typically consists of many files, representing table objects, stored in the file

system space. The user decides on the location of the files, DB2 Database for

Linux, UNIX, and Windows controls their names, and the file system is responsible

for managing them. By controlling the amount of data written to each file, the

database manager distributes the data evenly across the table space containers.

Each table has at least one SMS physical file associated with it.

The data in the table spaces is striped by extent across all the containers in the

system. An extent is a group of consecutive pages defined to the database. The file

extension denotes the type of the data stored in the file. To distribute the data

evenly across all containers in the table space, the starting extents for tables are

placed in round-robin fashion across all containers. Such distribution of extents is

particularly important if the database contains many small tables.

In an SMS table space, space for tables is allocated on demand. The amount of

space that is allocated is dependent on the setting of the multipage_alloc database

configuration parameter. If this configuration parameter is set to YES, then a full

extent (typically made up of two or more pages) will be allocated when space is

required. Otherwise, space will be allocated one page at a time.

Multipage file allocation is enabled by default. The value of the multipage_alloc

database configuration parameter will indicate if multipage file allocation is

enabled.

Note: Multipage file allocation is not applicable to temporary table spaces.

Multi-page file allocation only affects the data and index portions of a table. This

means that the .LF, .LB, and .LBA files are not extended one extent at a time.

When all space in a single container in an SMS table space is allocated to tables,

the table space is considered full, even if space remains in other containers. You

can add containers to an SMS table space only on a database partition that does

not yet have any containers.

Chapter 5. Physical database design 117

Note: SMS table spaces can take advantage of file-system prefetching and caching.

SMS table spaces are defined using the MANAGED BY SYSTEM option on the

CREATE DATABASE command, or on the CREATE TABLESPACE statement. You

must consider two key factors when you design your SMS table spaces:

v Containers for the table space.

You must specify the number of containers that you want to use for your table

space. It is very important to identify all the containers you want to use, because

you cannot add or delete containers after an SMS table space is created. In a

partitioned database environment, when a new database partition is added to

the database partition group for an SMS table space, the ALTER TABLESPACE

statement can be used to add containers to the new database partition.

Each container used for an SMS table space identifies an absolute or relative

directory name. Each of these directories can be located on a different file system

(or physical disk). The maximum size of the table space can be estimated by:

 number of containers * (maximum file system size

 supported by the operating system)

This formula assumes that there is a distinct file system mapped to each

container, and that each file system has the maximum amount of space available.

In practice, this may not be the case, and the maximum table space size may be

much smaller. There are also SQL limits on the size of database objects, which

may affect the maximum size of a table space.

Note: Care must be taken when defining the containers. If there are existing files

or directories on the containers, an error (SQL0298N) is returned.

v Extent size for the table space.

The extent size can be specified only when the table space is created. Because it

cannot be changed later, it is important to select an appropriate value for the

extent size.

If you do not specify the extent size when creating a table space, the database

manager will create the table space using the default extent size, defined by the

dft_extent_sz database configuration parameter. This configuration parameter is

initially set based on information provided when the database is created. If the

dft_extent_sz parameter is not specified on the CREATE DATABASE command,

the default extent size will be set to 32.

To choose appropriate values for the number of containers and the extent size for

the table space, you must understand:

v The limitation that your operating system imposes on the size of a logical file

system.

For example, some operating systems have a 2 GB limit. Therefore, if you want a

64 GB table object, you will need at least 32 containers on this type of system.

When you create the table space, you can specify containers that reside on

different file systems and, as a result, increase the amount of data that can be

stored in the database.

v How the database manager manages the data files and containers associated

with a table space.

The first table data file (SQL00001.DAT) is created in the first container specified

for the table space, and this file is allowed to grow to the extent size. After it

reaches this size, the database manager writes data to SQL00001.DAT in the next

container. This process continues until all of the containers contain SQL00001.DAT

files, at which time the database manager returns to the first container. This

process (known as striping) continues through the container directories until a

118 Administration Guide: Planning

container becomes full (SQL0289N), or no more space can be allocated from the

operating system (disk full error). Striping is also used for index (SQLnnnnn.INX),

long field (SQLnnnnn.LF), LOB (SQLnnnnn.LB and SQLnnnnn.LBA) and XML

(SQLnnnnn.XDA) files.

Note: The SMS table space is full as soon as any one of its containers is full.

Thus, it is important to have the same amount of space available to each

container.

To help distribute data across the containers more evenly, the database manager

determines which container to use first by taking the table identifier

(SQL00001.DAT in the above example) and factoring into account the number of

containers. Containers are numbered sequentially, starting at 0.

 Related concepts:

v “Comparison of SMS and DMS table spaces” on page 140

v “Database managed space” on page 120

v “Table space design” on page 112

 Related reference:

v “db2empfa - Enable multipage file allocation command” in Command Reference

v “multipage_alloc - Multipage file allocation enabled configuration parameter” in

Performance Guide

SMS table spaces

 System Managed Space (SMS) table spaces store data in operating system files. The

data in the table spaces is striped by extent across all the containers in the system.

An extent is a group of consecutive pages defined to the database. The file

extension denotes the type of the data stored in the file. To distribute the data

evenly across all containers in the table space, the starting extents for tables are

placed in round-robin fashion across all containers. Such distribution of extents is

particularly important if the database contains many small tables.

In an SMS table space, space for tables is allocated on demand. The amount of

space that is allocated is dependent on the setting of the multipage_alloc database

configuration parameter. If this configuration parameter is set to YES, then a full

extent (typically made up of two or more pages) will be allocated when space is

required. Otherwise, space will be allocated one page at a time. Multipage file

allocation is enabled by default. Prior to version 8.2, the default setting of the

configuration parameter was NO which caused one page to be allocated at a time.

This default could be changed with the db2empfa tool which allows you to enable

multipage file allocation. When you run db2empfa, the multipage_alloc database

configuration parameter is set to YES.

Note: Multipage file allocation is not applicable to temporary table spaces.

Multi-page file allocation only affects the data and index portions of a table. This

means that the .LF, .LB, and .LBA files are not extended one extent at a time.

When all space in a single container in an SMS table space is allocated to tables,

the table space is considered full, even if space remains in other containers. You

can add containers to an SMS table space only on a database partition that does

not yet have any containers.

Chapter 5. Physical database design 119

Note: SMS table spaces can take advantage of file-system prefetching and caching.

 Related concepts:

v “Comparison of SMS and DMS table spaces” on page 140

v “Table space design” on page 112

 Related tasks:

v “Adding a container to an SMS table space on a database partition” in

Administration Guide: Implementation

 Related reference:

v “db2empfa - Enable multipage file allocation command” in Command Reference

v “multipage_alloc - Multipage file allocation enabled configuration parameter” in

Performance Guide

Database managed space

 In a DMS (Database Managed Space) table space, the database manager controls

the storage space. The storage model consists of a limited number of devices or

files whose space is managed by DB2 Database for Linux, UNIX, and Windows.

The database administrator decides which devices and files to use, and DB2

manages the space on those devices and files. The table space is essentially an

implementation of a special purpose file system designed to best meet the needs of

the database manager.

DMS table spaces are different from SMS table spaces in that space for DMS table

spaces is allocated when the table space is created. For SMS table spaces, space is

allocated as needed. A DMS table space containing user defined tables and data

can be defined as a regular or large table space that stores any table data or index

data.

When designing your DMS table spaces and containers, you should consider the

following:

v The database manager uses striping to ensure an even distribution of data across

all containers.

v The maximum size of a regular table space is 512 GB for 32 KB pages. The

maximum size of a large table space is 16TB. See SQL and XQuery limits for the

maximum size of regular table spaces for other page sizes.

v Unlike SMS table spaces, the containers that make up a DMS table space do not

need to be the same size; however, this is not normally recommended, because it

results in uneven striping across the containers, and sub-optimal performance. If

any container is full, DMS table spaces use available free space from other

containers.

v Because space is pre-allocated, it must be available before the table space can be

created. When using device containers, the device must also exist with enough

space for the definition of the container. Each device can have only one

container defined on it. To avoid wasted space, the size of the device and the

size of the container should be equivalent. If, for example, the device is allocated

with 5 000 pages, and the device container is defined to allocate 3 000 pages,

2 000 pages on the device will not be usable.

v By default, one extent in every container is reserved for overhead. Only full

extents are used, so for optimal space management, you can use the following

formula to determine an appropriate size to use when allocating a container:

120 Administration Guide: Planning

extent_size * (n + 1)

where extent_size is the size of each extent in the table space, and n is the

number of extents that you want to store in the container.

v The minimum size of a DMS table space is five extents. Attempting to create a

table space smaller than five extents will result in an error (SQL1422N).

– Three extents in the table space are reserved for overhead.

– At least two extents are required to store any user table data. (These extents

are required for the regular data for one table, and not for any index, long

field or large object data, which require their own extents.)
v Device containers must use logical volumes with a “character special interface,”

not physical volumes.

v You can use files instead of devices with DMS table spaces. No operational

difference exists between a file and a device; however, a file can be less efficient

because of the run-time overhead associated with the file system. Files are useful

when:

– Devices are not directly supported

– A device is not available

– Maximum performance is not required

– You do not want to set up devices.
v If your workload involves LOBs or LONG VARCHAR data, you may derive

performance benefits from file system caching.

Note: LOBs and LONG VARCHARs are not buffered by the database manager’s

buffer pool.

v Some operating systems allow you to have physical devices greater than 2 GB in

size. You should consider dividing the physical device into multiple logical

devices, so that no container is larger than the size allowed by the operating

system.

Note: Like SMS table spaces, DMS file containers can take advantage of file system

prefetching and caching. However, DMS table spaces that use raw device

containers cannot.

There is one exception to this general statement regarding contiguous placement of

pages in storage. There are two container options when working with DMS table

spaces: raw devices and files. When working with file containers, the database

manager allocates the entire container at table space creation time. A result of this

initial allocation of the entire table space is that the physical allocation is typically,

but not guaranteed to be, contiguous even though the file system is doing the

allocation. When working with raw device containers, the database manager takes

control of the entire device and always ensures the pages in an extent are

contiguous.

When working with DMS table spaces, you should consider associating each

container with a different disk. This allows for a larger table space capacity and the

ability to take advantage of parallel I/O operations.

The CREATE TABLESPACE statement creates a new table space within a database,

assigns containers to the table space, and records the table space definition and

attributes in the catalog. When you create a table space, the extent size is defined

as a number of contiguous pages. The extent is the unit of space allocation within

a table space. Only one table or object, such as an index, can use the pages in any

Chapter 5. Physical database design 121

single extent. All objects created in the table space are allocated extents in a logical

table space address map. Extent allocation is managed through Space Map Pages

(SMP).

The first extent in the logical table space address map is a header for the table

space containing internal control information. The second extent is the first extent

of Space Map Pages (SMP) for the table space. SMP extents are spread at regular

intervals throughout the table space. Each SMP extent is a bit map of the extents

from the current SMP extent to the next SMP extent. The bit map is used to track

which of the intermediate extents are in use.

The next extent following the SMP is the object table for the table space. The object

table is an internal table that tracks which user objects exist in the table space and

where their first Extent Map Page (EMP) extent is located. Each object has its own

EMPs which provide a map to each page of the object that is stored in the logical

table space address map. Figure 29 shows how extents are allocated in a logical

table space address map.

 Related concepts:

v “Comparison of SMS and DMS table spaces” on page 140

v “How containers are added and extended in DMS table spaces” on page 129

v “System managed space” on page 117

v “Table space design” on page 112

v “Table space maps” on page 125

Figure 29. Logical table space address map

122 Administration Guide: Planning

DMS table spaces

 With database-managed space (DMS) table spaces, the database manager controls

the storage space. A list of devices or files is selected to belong to a table space

when the DMS table space is defined. The space on those devices or files is

managed by the DB2 database manager. As with SMS table spaces and containers,

DMS table spaces and the database manager use striping by extent to ensure an

even distribution of data across all containers.

DMS table spaces differ from SMS table spaces in that for DMS table spaces, space

is allocated when the table space is created and not allocated when needed.

Also, placement of data can differ on the two types of table spaces. For example,

consider the need for efficient table scans: it is important that the pages in an

extent are physically contiguous. With SMS, the file system of the operating system

decides where each logical file page is physically placed. The pages may, or may

not, be allocated contiguously depending on the level of other activity on the file

system and the algorithm used to determine placement. With DMS, however, the

database manager can ensure the pages are physically contiguous because it

interfaces with the disk directly.

Note: Like SMS table spaces, DMS file containers can take advantage of file-system

prefetching and caching. However, DMS table spaces cannot.

There is one exception to this general statement regarding contiguous placement of

pages in storage. There are two container options when working with DMS table

spaces: raw devices and files. When working with file containers, the database

manager allocates the entire container at table space creation time. A result of this

initial allocation of the entire table space is that the physical allocation is typically,

but not guaranteed to be, contiguous even though the file system is doing the

allocation. When working with raw device containers, the database manager takes

control of the entire device and always ensures the pages in an extent are

contiguous.

Unlike SMS table spaces, the containers that make up a DMS table space do not

need to be close to being equal in their capacity. However, it is recommended that

the containers are equal, or close to being equal, in their capacity. Also, if any

container is full, any available free space from other containers can be used in a

DMS table space.

When working with DMS table spaces, you should consider associating each

container with a different disk. This allows for a larger table space capacity and the

ability to take advantage of parallel I/O operations.

The CREATE TABLESPACE statement creates a new table space within a database,

assigns containers to the table space, and records the table space definition and

attributes in the catalog. When you create a table space, the extent size is defined

as a number of contiguous pages. The extent is the unit of space allocation within

a table space. Only one table or other object, such as an index, can use the pages in

any single extent. All objects created in the table space are allocated extents in a

logical table space address map. Extent allocation is managed through Space Map

Pages (SMP).

The first extent in the logical table space address map is a header for the table

space containing internal control information. The second extent is the first extent

Chapter 5. Physical database design 123

of Space Map Pages (SMP) for the table space. SMP extents are spread at regular

intervals throughout the table space. Each SMP extent is simply a bit map of the

extents from the current SMP extent to the next SMP extent. The bit map is used to

track which of the intermediate extents are in use.

The next extent following the SMP is the object table for the table space. The object

table is an internal table that tracks which user objects exist in the table space and

where their first Extent Map Page (EMP) extent is located. Each object has its own

EMPs which provide a map to each page of the object that is stored in the logical

table space address map.

 Related concepts:

v “Comparison of SMS and DMS table spaces” on page 140

v “Database directories and files” on page 73

v “Database managed space” on page 120

v “DMS device considerations” on page 124

v “SMS table spaces” on page 119

v “Table space design” on page 112

 Related tasks:

v “Adding a container to a DMS table space” in Administration Guide:

Implementation

 Related reference:

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

DMS device considerations

 If you use Database Managed Storage (DMS) device containers for table spaces,

consider the following factors for effective administration:

v File system caching

File system caching is performed as follows:

– For DMS file containers (and all SMS containers), the operating system might

cache pages in the file system cache

– For DMS device container table spaces, the operating system does not cache

pages in the file system cache.

Note: On Windows, the registry variable DB2NTNOCACHE specifies

whether or not DB2 will open database files with a NOCACHE option.

If DB2NTNOCACHE=ON, file system caching is eliminated. If

DB2NTNOCACHE=OFF, the operating system caches DB2 files. This

applies to all data except for files that contain LONG FIELDS or LOBS.

Eliminating system caching allows more memory to be available to the

database so that the buffer pool or sortheap can be increased.
v Buffering of data

Table data read from disk is usually available in the database buffer pool. In

some cases, a data page might be freed from the buffer pool before the

application has actually used the page, particularly if the buffer pool space is

required for other data pages. For table spaces that use system managed storage

(SMS) or database managed storage (DMS) file containers, file system caching

above can eliminate I/O that would otherwise have been required.

124 Administration Guide: Planning

Table spaces using database managed storage (DMS) device containers do not

use the file system or its cache. As a result, you might increase the size of the

database buffer pool and reduce the size of the file system cache to offset the

fact DMS table spaces that use device containers do not use double buffering.

If system-level monitoring tools show that I/O is higher for a DMS table space

using device containers compared to the equivalent SMS table space, this

difference might be because of double buffering.

v Using LOB or LONG data

When an application retrieves either LOB or LONG data, the database manager

does not cache the data in its buffers, Each time an application needs one of

these pages, the database manager must retrieve it from disk. However, if LOB

or LONG data is stored in SMS or DMS file containers, file system caching

might provide buffering and, as a result, better performance.

Because system catalogs contain some LOB columns, you should keep them in

SMS table spaces or in DMS-file table spaces.

 Related concepts:

v “DMS table spaces” on page 123

v “SMS table spaces” on page 119

v “Database directories and files” on page 73

Table space maps

 A table space map is DB2 V9.1’s internal representation of a DMS table space that

describes the logical to physical conversion of page locations in a table space. The

following information describes why a table space map is useful, and where the

information in a table space map comes from.

In a DB2 Database for Linux, UNIX, and Windows database, pages in a DMS table

space are logically numbered from 0 to (N-1), where N is the number of usable

pages in the table space.

The pages in a DMS table space are grouped into extents, based on the extent size,

and from a table space management perspective, all object allocation is done on an

extent basis. That is, a table might use only half of the pages in an extent but the

whole extent is considered to be in use and owned by that object. By default, one

extent is used to hold the container tag, and the pages in this extent cannot be

used to hold data. However, if the DB2_USE_PAGE_CONTAINER_TAG registry

variable is turned on, only one page is used for the container tag.

The following figure shows the logical address map for a DMS table space.

Chapter 5. Physical database design 125

Within the table space address map there are two types of map pages: extent map

pages (EMP) and space map pages (SMP).

The object table is an internal relational table that maps an object identifier to the

location of the first EMP extent in the table. This EMP extent, directly or indirectly,

maps out all extents in the object. Each EMP contains an array of entries. Each

entry maps an object-relative extent number to a table space-relative page number

where the object extent is located. Direct EMP entries directly map object-relative

addresses to table space-relative addresses. The last EMP page in the first EMP

extent contains indirect entries. Indirect EMP entries map to EMP pages which

then map to object pages. The last 16 entries in the last EMP page in the first EMP

extent contain double-indirect entries.

The extents from the logical table-space address map are striped in round-robin

order across the containers associated with the table space.

Because space in containers is allocated by extent, pages that do not make up a full

extent will not be used. For example, if you have a 205-page container with an

extent size of 10, one extent will be used for the tag, 19 extents will be available for

data, and the five remaining pages are wasted.

If a DMS table space contains a single container, the conversion from logical page

number to physical location on disk is a straightforward process where pages 0, 1,

2, are located in that same order on disk.

It is also a fairly straightforward process when there is more than one container

and each of the containers is the same size. The first extent in the table space,

containing pages 0 to (extent size - 1), is located in the first container, the second

extent will be located in the second container, and so on. After the last container,

the process repeats starting back at the first container. This cyclical process keeps

the data balanced.

Header0

1

2

3
16
20
32

4

5

6

7

8

31968

Object
Table EMP

T1
T2

12
24

Table space (logical) address map

Indirect Entries

Maps object-relative
extent number within
T2 to table space-relative
page number

Object ID for
the table

First
EMP

Reserved

First Extent of SMPs

First Extent of Object Table

Extent Map for T1

First Extent of T1 Data Pages

Second Extent of T1 Data Pages

Extent Map for T2

First Extent of T2 Data Pages

Third Extent of T1 Data Pages

Second Extent of SMPs

...

...

...

...

...

...

Maps object-relative
extent number within
T1 to table space-relative
page number

Double Indirect Entries

Figure 30. DMS table spaces

126 Administration Guide: Planning

For table spaces containing containers of different sizes, a simple approach that

proceeds through each container in turn cannot be used as it will not take

advantage of the extra space in the larger containers. This is where the table space

map comes in – it dictates how extents are positioned within the table space,

ensuring that all of the extents in the physical containers are available for use.

Note: In the following examples, the container sizes do not take the size of the

container tag into account. The container sizes are very small, and are just

used for the purpose of illustration, they are not recommended container

sizes. The examples show containers of different sizes within a table space,

but you are advised to use containers of the same size.

Example 1:

There are 3 containers in a table space, each container contains 80 usable pages,

and the extent size for the table space is 20. Each container therefore has 4 extents

(80 / 20) for a total of 12 extents. These extents are located on disk as shown in

Figure 31.

 To see a table space map, take a table space snapshot using the snapshot monitor.

In Example 1, where the three containers are of equal size, the table space map

looks like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 11 239 0 3 0 3 (0, 1, 2)

A range is the piece of the map in which a contiguous range of stripes all contain

the same set of containers. In Example 1, all of the stripes (0 to 3) contain the same

set of 3 containers (0, 1, and 2) and therefore this is considered a single range.

The headings in the table space map are Range Number, Stripe Set, Stripe Offset,

Maximum extent number addressed by the range, Maximum page number

addressed by the range, Start Stripe, End Stripe, Range adjustment, and Container

list. These will be explained in more detail for Example 2.

Container 0

Extent 0

Extent 3

Extent 6

Extent 9

Container 1

Extent 1

Extent 4

Extent 7

Extent 10

Container 2

Extent 2

Extent 5

Extent 8

Extent 11

Table space

Figure 31. Table space with three containers and 12 extents

Chapter 5. Physical database design 127

This table space can also be diagrammed as shown in Figure 32, in which each

vertical line corresponds to a container, each horizontal line is called a stripe, and

each cell number corresponds to an extent.

 Example 2:

There are two containers in the table space: the first is 100 pages in size, the

second is 50 pages in size, and the extent size is 25. This means that the first

container has four extents and the second container has two extents. The table

space can be diagrammed as shown in Figure 33.

 Stripes 0 and 1 contain both of the containers (0 and 1) but stripes 2 and 3 only

contain the first container (0). Each of these sets of stripes is a range. The table

space map, as shown in a table space snapshot, looks like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 3 99 0 1 0 2 (0, 1)

 [1] [0] 0 5 149 2 3 0 1 (0)

0

0 1 2

1

2

3

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Containers

Stripes

Figure 32. Table space with three containers and 12 extents, with stripes highlighted

0

0 1

1

2

3

Extent 0 Extent 1

Extent 3Extent 2

Extent 4

Extent 5

Containers

Stripes

Range 0

Range 1

Figure 33. Table space with two containers, with ranges highlighted

128 Administration Guide: Planning

There are four extents in the first range, and therefore the maximum extent

number addressed in this range (Max Extent) is 3. Each extent has 25 pages and

therefore there are 100 pages in the first range. Since page numbering also starts at

0, the maximum page number addressed in this range (Max Page) is 99. The first

stripe (Start Stripe) in this range is 0 and the last stripe (End Stripe) in the range is

stripe 1. There are two containers in this range and those are 0 and 1. The stripe

offset is the first stripe in the stripe set, which in this case is 0 because there is only

one stripe set. The range adjustment (Adj.) is an offset used when data is being

rebalanced in a table space. (A rebalance may occur when space is added or

dropped from a table space.) When a rebalance is not taking place, this is always 0.

There are two extents in the second range and because the maximum extent

number addressed in the previous range is 3, the maximum extent number

addressed in this range is 5. There are 50 pages (2 extents * 25 pages) in the second

range and because the maximum page number addressed in the previous range is

99, the maximum page number addressed in this range is 149. This range starts at

stripe 2 and ends at stripe 3.

 Related concepts:

v “Snapshot monitor” in System Monitor Guide and Reference

v “Database managed space” on page 120

v “How containers are added and extended in DMS table spaces” on page 129

v “How containers are dropped and reduced in DMS table spaces” on page 137

 Related reference:

v “GET SNAPSHOT command” in Command Reference

How containers are added and extended in DMS table spaces

 When a table space is created, its table space map is created and all of the initial

containers are lined up such that they all start in stripe 0. This means that data is

striped evenly across all of the table space containers until the individual

containers fill up. (See “Example 1” on page 130.)

The ALTER TABLESPACE statement lets you add a container to an existing table

space or extend a container to increase its storage capacity.

Adding a container that is smaller than existing containers results in a uneven

distribution of data. This can cause parallel I/O operations, such as prefetching

data, to perform less efficiently than they could on containers of equal size.

When new containers are added to a table space or existing containers are

extended, a rebalance of the table space data may occur.

Rebalancing

The process of rebalancing when adding or extending containers involves moving

table space extents from one location to another, and it is done in an attempt to

keep data striped within the table space.

Access to the table space is not restricted during rebalancing; objects can be

dropped, created, populated, and queried as usual. However, the rebalancing

operation can have a significant impact on performance. If you need to add more

than one container, and you plan to rebalance the containers, you should add them

Chapter 5. Physical database design 129

at the same time within a single ALTER TABLESPACE statement to prevent the

database manager from having to rebalance the data more than once.

The table space high-water mark plays a key part in the rebalancing process. The

high-water mark is the page number of the highest allocated page in the table

space. For example, a table space has 1000 pages and an extent size of 10, resulting

in 100 extents. If the 42nd extent is the highest allocated extent in the table space,

then the high-water mark is 42 * 10 = 420 pages. This is not the same as used

pages because some of the extents below the high-water mark may have been

freed up so that they are available for reuse.

Before the rebalance starts, a new table space map is built based on the container

changes made. The rebalancer moves extents from their location determined by the

current map into the location determined by the new map. The rebalancer starts at

extent 0, moving one extent at a time until the extent holding the high-water mark

has been moved. As each extent is moved, the current map is altered, one piece at

a time, to look like the new map. When the rebalance is complete, the current map

and new map should look identical up to the stripe holding the high-water mark.

The current map is then made to look completely like the new map and the

rebalancing process is complete. If the location of an extent in the current map is

the same as its location in the new map, then the extent is not moved and no I/O

takes place.

When adding a new container, the placement of that container within the new map

depends on its size and the size of the other containers in its stripe set. If the

container is large enough such that it can start at the first stripe in the stripe set

and end at (or beyond) the last stripe in the stripe set, then it will be placed that

way (see “Example 2” on page 131). If the container is not large enough to do this,

it will be positioned in the map such that it ends in the last stripe of the stripe set

(see “Example 4” on page 133.) This is done to minimize the amount of data that

needs to be rebalanced.

Note: In the following examples, the container sizes do not take the size of the

container tag into account. The container sizes are very small, and are just

used for the purpose of illustration, they are not recommended container

sizes. The examples show containers of different sizes within a table space,

but you are advised to use containers of the same size.

Example 1:

If you create a table space with three containers and an extent size of 10, and the

containers are 60, 40, and 80 pages respectively (6, 4, and 8 extents), the table space

is created with a map that can be diagrammed as shown in Figure 34 on page 131.

130 Administration Guide: Planning

The corresponding table space map, as shown in a table space snapshot, looks like

this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 11 119 0 3 0 3 (0, 1, 2)

 [1] [0] 0 15 159 4 5 0 2 (0, 2)

 [2] [0] 0 17 179 6 7 0 1 (2)

The headings in the table space map are Range Number, Stripe Set, Stripe Offset,

Maximum extent number addressed by the range, Maximum page number

addressed by the range, Start Stripe, End Stripe, Range adjustment, and Container

list.

Example 2:

If an 80-page container is added to the table space in Example 1, the container is

large enough to start in the first stripe (stripe 0) and end in the last stripe (stripe

7). It is positioned such that it starts in the first stripe. The resulting table space can

be diagrammed as shown in Figure 35 on page 132.

0

0 1 2

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 13

Extent 15

Extent 16

Extent 17

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 12

Extent 14

Containers

Stripes

Figure 34. Table space with three containers and 18 extents

Chapter 5. Physical database design 131

The corresponding table space map, as shown in a table space snapshot, will look

like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 15 159 0 3 0 4 (0, 1, 2, 3)

 [1] [0] 0 21 219 4 5 0 3 (0, 2, 3)

 [2] [0] 0 25 259 6 7 0 2 (2, 3)

If the high-water mark is within extent 14, the rebalancer starts at extent 0 and

moves all of the extents up to and including 14. The location of extent 0 within

both of the maps is the same so this extent does not need to move. The same is

true for extents 1 and 2. Extent 3 does need to move so the extent is read from the

old location (second extent within container 0) and is written to the new location

(first extent within container 3). Every extent after this up to and including extent

14 is moved. Once extent 14 is moved, the current map looks like the new map

and the rebalancer terminates.

If the map is altered such that all of the newly added space comes after the

high-water mark, then a rebalance is not necessary and all of the space is available

immediately for use. If the map is altered such that some of the space comes after

the high-water mark, then the space in the stripes above the high-water mark is

available for use. The rest is not available until the rebalance is complete.

If you decide to extend a container, the function of the rebalancer is similar. If a

container is extended such that it extends beyond the last stripe in its stripe set,

0

0 1 2 3

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 6

Extent 10

Extent 14 Extent 15

Extent 11

Extent 7

Extent 3

Extent 18

Extent 21

Extent 23

Extent 25

Extent 17

Extent 20

Extent 22

Extent 24

Extent 5

Extent 9

Extent 13

Extent 4

Extent 8

Extent 12

Extent 16

Extent 19

Containers

Stripes

Figure 35. Table space with four containers and 26 extents

132 Administration Guide: Planning

the stripe set will expand to fit this and the following stripe sets will be shifted out

accordingly. The result is that the container will not extend into any stripe sets

following it.

Example 3:

Consider the table space from Example 1. If you extend container 1 from 40 pages

to 80 pages, the new table space looks like Figure 36.

 The corresponding table space map, as shown in a table space snapshot, looks like

this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 17 179 0 5 0 3 (0, 1, 2)

 [1] [0] 0 21 219 6 7 0 2 (1, 2)

Example 4:

Consider the table space from “Example 1” on page 130. If a 50-page (5-extent)

container is added to it, the container will be added to the new map in the

following way. The container is not large enough to start in the first stripe (stripe

0) and end at or beyond the last stripe (stripe 7), so it is positioned such that it

ends in the last stripe. (See Figure 37 on page 134.)

0

0 1 2

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 13

Extent 17

Extent 14

Extent 19

Extent 21

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 12

Extent 15 Extent 16

Extent 18

Extent 20

Containers

Stripes

Figure 36. Table space with three containers and 22 extents

Chapter 5. Physical database design 133

The corresponding table space map, as shown in a table space snapshot, will look

like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 8 89 0 2 0 3 (0, 1, 2)

 [1] [0] 0 12 129 3 3 0 4 (0, 1, 2, 3)

 [2] [0] 0 18 189 4 5 0 3 (0, 2, 3)

 [3] [0] 0 22 229 6 7 0 2 (2, 3)

To extend a container, use the EXTEND or RESIZE option on the ALTER

TABLESPACE statement. To add containers and rebalance the data, use the ADD

option on the ALTER TABLESPACE statement. If you are adding a container to a

table space that already has more than one stripe set, you can specify which stripe

set you want to add to. To do this, you use the ADD TO STRIPE SET option on the

ALTER TABLESPACE statement. If you do not specify a stripe set, the default

behavior will be to add the container to the current stripe set. The current stripe

set is the most recently created stripe set, not the one that last had space added to

it.

Any change to a stripe set may cause a rebalance to occur to that stripe set and

any others following it.

You can monitor the progress of a rebalance by using table space snapshots. A

table space snapshot can provide information about a rebalance such as the start

time of the rebalance, how many extents have been moved, and how many extents

need to move.

0

0 1 2 3

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11 Extent 12

Extent 15

Extent 18

Extent 20

Extent 22

Extent 14

Extent 17

Extent 19

Extent 21

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 13

Extent 16

Containers

Stripes

Figure 37. Table space with four containers and 23 extents

134 Administration Guide: Planning

Without rebalancing (using stripe sets)

If you add or extend a container, and the space added is above the table space

high-water mark, a rebalance will not occur.

Adding a container will almost always add space below the high-water mark. In

other words, a rebalance is often necessary when you add a container. There is an

option to force new containers to be added above the high-water mark, which

allows you to choose not to rebalance the contents of the table space. An

advantage of this method is that the new container will be available for immediate

use. The option not to rebalance applies only when you add containers, not when

you extend existing containers. When you extend containers you can only avoid

rebalancing if the space you add is above the high-water mark. For example, if you

have a number of containers that are the same size, and you extend each of them

by the same amount, the relative positions of the extents will not change, and a

rebalance will not occur.

Adding containers to a table space without rebalancing is done by adding a new

stripe set. A stripe set is a set of containers in a table space that has data striped

across it separately from the other containers that belong to that table space. The

existing containers in the existing stripe sets remain untouched, and the containers

you add become part of a new stripe set.

To add containers without rebalancing, use the BEGIN NEW STRIPE SET option

on the ALTER TABLESPACE statement.

Example 5:

If you have a table space with three containers and an extent size of 10, and the

containers are 30, 40, and 40 pages (3, 4, and 4 extents respectively), the table space

can be diagrammed as shown in Figure 38.

 The corresponding table space map, as shown in a table space snapshot, will look

like this:

0

0 1 2

1

2

3

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 10

Extent 4

Extent 7

Extent 9

Extent 3

Extent 6

Containers

Stripes

Figure 38. Table space with three containers and 11 extents

Chapter 5. Physical database design 135

Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 8 89 0 2 0 3 (0, 1, 2)

 [1] [0] 0 10 109 3 3 0 2 (1, 2)

Example 6:

When you add two new containers that are 30 pages and 40 pages (3 and 4 extents

respectively) with the BEGIN NEW STRIPE SET option, the existing ranges are not

affected; instead, a new set of ranges is created. This new set of ranges is a stripe

set and the most recently created one is called the current stripe set. After the two

new containers is added, the table space looks like Figure 39.

 The corresponding table space map, as shown in a table space snapshot, looks like

this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 8 89 0 2 0 3 (0, 1, 2)

 [1] [0] 0 10 109 3 3 0 2 (1, 2)

 [2] [1] 4 16 169 4 6 0 2 (3, 4)

 [3] [1] 4 17 179 7 7 0 1 (4)

If you add new containers to a table space, and you do not use the TO STRIPE SET

option with the ADD clause, the containers are added to the current stripe set (the

highest stripe set). You can use the ADD TO STRIPE SET clause to add containers

to any stripe set in the table space. You must specify a valid stripe set.

0

0 1 2 3 4

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 10

Extent 12

Extent 14

Extent 16

Extent 17

Extent 11

Extent 13

Extent 15

Extent 4

Extent 7

Extent 9

Extent 3

Extent 6

Containers

Stripes

Stripe
set #0

Stripe
set #1

Figure 39. Table space with two stripe sets

136 Administration Guide: Planning

DB2 Database for Linux, UNIX, and Windows tracks the stripe sets using the table

space map, and adding new containers without rebalancing generally causes the

map to grow faster than when containers are rebalanced. When the table space

map becomes too large, you will receive error SQL0259N when you try to add

more containers.

 Related concepts:

v “Table space maps” on page 125

 Related tasks:

v “Adding a container to a DMS table space” in Administration Guide:

Implementation

v “Modifying containers in a DMS table space” in Administration Guide:

Implementation

 Related reference:

v “Table space activity monitor elements” in System Monitor Guide and Reference

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

v “GET SNAPSHOT command” in Command Reference

How containers are dropped and reduced in DMS table spaces

 With a DMS table space, you can drop a container from the table space or reduce

the size of a container. You use the ALTER TABLESPACE statement to accomplish

this.

Dropping or reducing a container will only be allowed if the number of extents

being dropped by the operation is less than or equal to the number of free extents

above the high-water mark in the table space. This is necessary because page

numbers cannot be changed by the operation and therefore all extents up to and

including the high-water mark must sit in the same logical position within the

table space. Therefore, the resulting table space must have enough space to hold all

of the data up to and including the high-water mark. In the situation where there

is not enough free space, you will receive an error immediately upon execution of

the statement.

The high-water mark is the page number of the highest allocated page in the table

space. For example, a table space has 1000 pages and an extent size of 10, resulting

in 100 extents. If the 42nd extent is the highest allocated extent in the table space

that means that the high-water mark is 42 * 10 = 420 pages. This is not the same as

used pages because some of the extents below the high-water mark may have been

freed up such that they are available for reuse.

When containers are dropped or reduced, a rebalance will occur if data resides in

the space being dropped from the table space. Before the rebalance starts, a new

table space map is built based on the container changes made. The rebalancer will

move extents from their location determined by the current map into the location

determined by the new map. The rebalancer starts with the extent that contains the

high-water mark, moving one extent at a time until extent 0 has been moved. As

each extent is moved, the current map is altered one piece at a time to look like the

new map. If the location of an extent in the current map is the same as its location

in the new map, then the extent is not moved and no I/O takes place. Because the

rebalance moves extents starting with the highest allocated one, ending with the

Chapter 5. Physical database design 137

first extent in the table space, it is called a reverse rebalance (as opposed to the

forward rebalance that occurs when space is added to the table space after adding or

extending containers).

When containers are dropped, the remaining containers are renumbered such that

their container IDs start at 0 and increase by 1. If all of the containers in a stripe

set are dropped, the stripe set will be removed from the map and all stripe sets

following it in the map will be shifted down and renumbered such that there are

no gaps in the stripe set numbers.

Note: In the following examples, the container sizes do not take the size of the

container tag into account. The container sizes are very small, and are just

used for the purpose of illustration, they are not recommended container

sizes. The examples show containers of different sizes within a table space,

but this is just for the purpose of illustration; you are advised to use

containers of the same size.

For example, consider a table space with three containers and an extent size of 10.

The containers are 20, 50, and 50 pages respectively (2, 5, and 5 extents). The table

space diagram is shown in Figure 40.

 An X indicates that there is an extent but there is no data in it.

If you want to drop container 0, which has two extents, there must be at least two

free extents above the high-water mark. The high-water mark is in extent 7,

leaving four free extents, therefore you can drop container 0.

The corresponding table space map, as shown in a table space snapshot, will look

like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 5 59 0 1 0 3 (0, 1, 2)

 [1] [0] 0 11 119 2 4 0 2 (1, 2)

0

0 1 2

1

2

3

4

Extent 0 Extent 1 Extent 2

Extent 5

Extent 7

Extent 4

Extent 6

x

x

x

x

Extent 3

Containers

Stripes

Figure 40. Table space with 12 extents, including four extents with no data

138 Administration Guide: Planning

After the drop, the table space will have just Container 0 and Container 1. The

new table space diagram is shown in Figure 41.

 The corresponding table space map, as shown in a table space snapshot, will look

like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 9 99 0 4 0 2 (0, 1)

If you want to reduce the size of a container, the rebalancer works in a similar

way.

To reduce a container, use the REDUCE or RESIZE option on the ALTER

TABLESPACE statement. To drop a container, use the DROP option on the ALTER

TABLESPACE statement.

 Related concepts:

v “Table space maps” on page 125

 Related tasks:

v “Modifying containers in a DMS table space” in Administration Guide:

Implementation

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

v “GET SNAPSHOT command” in Command Reference

v “Table space activity monitor elements” in System Monitor Guide and Reference

0

0 1

1

2

3

4

Extent 0 Extent 1

Extent 3

Extent 5

Extent 7

x x

Extent 2

Extent 4

Extent 6

Containers

Stripes

Figure 41. Table space after a container is dropped

Chapter 5. Physical database design 139

Comparison of SMS and DMS table spaces

 There are a number of trade-offs to consider when determining which type of table

space you should use to store your data.

Advantages of an SMS Table Space:

v Space is not allocated by the system until it is required.

v Creating a table space requires less initial work, because you do not have to

predefine the containers.

v Indexes created on distributed data can be stored in a different table space than

the table data.

Advantages of a DMS Table Space:

v The size of a table space can be increased by adding or extending containers,

using the ALTER TABLESPACE statement. Existing data can be automatically

rebalanced across the new set of containers to retain optimal I/O efficiency.

v A table can be split across multiple table spaces, based on the type of data being

stored:

– Long field and LOB data

– Indexes

– Regular table data
You might want to separate your table data for performance reasons, or to

increase the amount of data stored for a table. For example, you could have a

table with 64 GB of regular table data, 64 GB of index data and 2 TB of long

data. If you are using 8 KB pages, the table data and the index data can be as

much as 128 GB. If you are using 16 KB pages, it can be as much as 256 GB. If

you are using 32 KB pages, the table data and the index data can be as much as

512 GB.

v Indexes created on distributed data can be stored in a different table space than

the table data.

v The location of the data on the disk can be controlled, if this is allowed by the

operating system.

v If all table data is in a single table space, a table space can be dropped and

redefined with less overhead than dropping and redefining a table.

v In general, a well-tuned set of DMS table spaces will outperform SMS table

spaces.

Notes:

1. On the Solaris operating system, DMS table spaces with raw devices are

strongly recommended for performance-critical workloads.

2. For performance-sensitive applications, particularly those involving a large

number of insert operations, it is recommended that you use DMS table spaces.

Also, placement of data can differ on the two types of table spaces. For example,

consider the need for efficient table scans: it is important that the pages in an

extent are physically contiguous. With SMS, the file system of the operating system

decides where each logical file page is physically placed. The pages might be

allocated contiguously depending on the level of other activity on the file system

and the algorithm used to determine placement. With DMS, however, the database

manager can ensure the pages are physically contiguous because it interfaces with

the disk directly.

140 Administration Guide: Planning

In general, small personal databases are easiest to manage with SMS table spaces.

On the other hand, for large, growing databases you will probably only want to

use SMS table spaces for the temporary table spaces and catalog table space, and

separate DMS table spaces, with multiple containers, for each table. In addition,

you will probably want to store long field data and indexes on their own table

spaces.

If you choose to use DMS table spaces with device containers, you must be willing

to tune and administer your environment.

 Related concepts:

v “Database managed space” on page 120

v “System managed space” on page 117

v “Table space design” on page 112

Table space disk I/O

 The type and design of your table space determines the efficiency of the I/O

performed against that table space. Following are concepts that you should

understand before considering further the issues surrounding table space design

and use:

Big-block reads

A read where several pages (usually an extent) are retrieved in a

single request. Reading several pages at once is more efficient than

reading each page separately.

Prefetching The reading of pages in advance of those pages being referenced

by a query. The overall objective is to reduce response time. This

can be achieved if the prefetching of pages can occur

asynchronously to the execution of the query. The best response

time is achieved when either the CPU or the I/O subsystem is

operating at maximum capacity.

Page cleaning As pages are read and modified, they accumulate in the database

buffer pool. When a page is read in, it is read into a buffer pool

page. If the buffer pool is full of modified pages, one of these

modified pages must be written out to the disk before the new

page can be read in. To prevent the buffer pool from becoming full,

page cleaner agents write out modified pages to guarantee the

availability of buffer pool pages for future read requests.

 Whenever it is advantageous to do so, DB2 Database for Linux, UNIX, and

Windows performs big-block reads. This typically occurs when retrieving data that

is sequential or partially sequential in nature. The amount of data read in one read

operation depends on the extent size — the bigger the extent size, the more pages

can be read at one time.

Sequential prefetching performance can be further enhanced if pages can be read

from disk into contiguous pages within a buffer pool. Since buffer pools are

page-based by default, there is no guarantee of finding a set of contiguous pages

when reading in contiguous pages from disk. Block-based buffer pools can be used

for this purpose because they not only contain a page area, they also contain a

block area for sets of contiguous pages. Each set of contiguous pages is named a

Chapter 5. Physical database design 141

block and each block contains a number of pages referred to as blocksize. The size

of the page and block area, as well as the number of pages in each block is

configurable.

How the extent is stored on disk affects I/O efficiency. In a DMS table space using

device containers, the data tends to be contiguous on disk, and can be read with a

minimum of seek time and disk latency. If files are being used, a large file that has

been pre-allocated for use by a DMS table space also tends to be contiguous on

disk, especially if the file was allocated in a clean file space. However, the data

may have been broken up by the file system and stored in more than one location

on disk. This occurs most often when using SMS table spaces, where files are

extended one page at a time, making fragmentation more likely.

You can control the degree of prefetching by changing the PREFETCHSIZE option

on the CREATE TABLESPACE or ALTER TABLESPACE statements. (The default

value for all table spaces in the database is set by the dft_prefetch_sz database

configuration parameter.) The PREFETCHSIZE parameter tells DB2 how many

pages to read whenever a prefetch is triggered. By setting PREFETCHSIZE to be a

multiple of the EXTENTSIZE parameter on the CREATE TABLESPACE statement,

you can cause multiple extents to be read in parallel. (The default value for all

table spaces in the database is set by the dft_extent_sz database configuration

parameter.) The EXTENTSIZE parameter specifies the number of 4 KB pages that

will be written to a container before skipping to the next container.

For example, suppose you had a table space that used three devices. If you set the

PREFETCHSIZE to be three times the EXTENTSIZE, DB2 can do a big-block read

from each device in parallel, thereby significantly increasing I/O throughput. This

assumes that each device is a separate physical device, and that the controller has

sufficient bandwidth to handle the data stream from each device. Note that DB2

may have to dynamically adjust the prefetch parameters at run time based on

query speed, buffer pool utilization, and other factors.

Some file systems use their own prefetching method (such as the Journaled File

System on AIX). In some cases, file system prefetching is set to be more aggressive

than DB2 prefetching. This may cause prefetching for SMS and DMS table spaces

with file containers to appear to outperform prefetching for DMS table spaces with

devices. This is misleading, because it is likely the result of the additional level of

prefetching that is occurring in the file system. DMS table spaces should be able to

outperform any equivalent configuration.

For prefetching (or even reading) to be efficient, a sufficient number of clean buffer

pool pages must exist. For example, there could be a parallel prefetch request that

reads three extents from a table space, and for each page being read, one modified

page is written out from the buffer pool. The prefetch request may be slowed

down to the point where it cannot keep up with the query. Page cleaners should

be configured in sufficient numbers to satisfy the prefetch request.

 Related concepts:

v “Prefetching data into the buffer pool” in Performance Guide

v “Table space design” on page 112

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

142 Administration Guide: Planning

Workload considerations in table space design

 The primary type of workload being managed by DB2 Database for Linux, UNIX,

and Windows in your environment can affect your choice of what table space type

to use, and what page size to specify. An online transaction processing (OLTP)

workload is characterized by transactions that need random access to data, often

involve frequent insert or update activity and queries which usually return small

sets of data. Given that the access is random, and involves one or a few pages,

prefetching is less likely to occur.

DMS table spaces using device containers perform best in this situation. DMS table

spaces with file containers, or SMS table spaces, are also reasonable choices for

OLTP workloads if maximum performance is not required. With little or no

sequential I/O expected, the settings for the EXTENTSIZE and the PREFETCHSIZE

parameters on the CREATE TABLESPACE statement are not important for I/O

efficiency. However, setting a sufficient number of page cleaners, using the

chngpgs_thresh configuration parameter, is important.

A query workload is characterized by transactions that need sequential or partially

sequential access to data, which usually return large sets of data. A DMS table

space using multiple device containers (where each container is on a separate disk)

offers the greatest potential for efficient parallel prefetching. The value of the

PREFETCHSIZE parameter on the CREATE TABLESPACE statement should be set

to the value of the EXTENTSIZE parameter, multiplied by the number of device

containers. This allows DB2 to prefetch from all containers in parallel. If the

number of containers changes, or there is a need to make prefetching more or less

aggressive, the PREFETCHSIZE value can be changed accordingly by using the

ALTER TABLESPACE statement.

A reasonable alternative for a query workload is to use files, if the file system has

its own prefetching. The files can be either of DMS type using file containers, or of

SMS type. Note that if you use SMS, you need to have the directory containers

map to separate physical disks to achieve I/O parallelism.

Your goal for a mixed workload is to make single I/O requests as efficient as

possible for OLTP workloads, and to maximize the efficiency of parallel I/O for

query workloads.

The considerations for determining the page size for a table space are as follows:

v For OLTP applications that perform random row read and write operations, a

smaller page size is usually preferable because it does not waste buffer pool

space with unwanted rows.

v For decision-support system (DSS) applications that access large numbers of

consecutive rows at a time, a larger page size is usually better because it reduces

the number of I/O requests that are required to read a specific number of rows.

There is, however, an exception to this. If your row size is smaller than:

 pagesize / 255

there will be wasted space on each page (there is a maximum of 255 rows per

page). In this situation, a smaller page size may be more appropriate.

v Larger page sizes may allow you to reduce the number of levels in the index.

v Larger pages support rows of greater length.

v On default 4 KB pages, tables are restricted to 500 columns, while the larger

page sizes (8 KB, 16 KB, and 32 KB) support 1012 columns.

Chapter 5. Physical database design 143

v The maximum size of the table space is proportional to the page size of the table

space.

 Related concepts:

v “Database managed space” on page 120

v “System managed space” on page 117

 Related reference:

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

v “SQL and XQuery limits” in SQL Reference, Volume 1

v “chngpgs_thresh - Changed pages threshold configuration parameter” in

Performance Guide

Extent size

 The extent size for a table space represents the number of pages of table data that

will be written to a container before data will be written to the next container.

When selecting an extent size, you should consider:

v The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table one extent at a time. As the

table is populated and an extent becomes full, a new extent is allocated. DMS

table space container storage is prereserved which means that new extents are

allocated until the container is completely used.

Space in SMS table spaces is allocated to a table either one extent at a time or

one page at a time. As the table is populated and an extent or page becomes

full, a new extent or page is allocated until all of the extents or pages in the file

system are used. When using SMS table spaces, multipage file allocation is

allowed. Multipage file allocation allows extents to be allocated instead of a

page at a time.

Multipage file allocation is enabled by default. The value of the multipage_alloc

database configuration parameter will indicate if multipage file allocation is

enabled.

Note: Multipage file allocation is not applicable to temporary table spaces.

A table is made up of the following separate table objects:

– A data object. This is where the regular column data is stored.

– An index object. This is where all indexes defined on the table are stored.

– A long field object. This is where long field data, if your table has one or

more LONG columns, is stored.

– Two LOB objects. If your table has one or more LOB columns, they are stored

in these two table objects:

- One table object for the LOB data

- A second table object for metadata describing the LOB data.
– A block map object for multidimensional tables.
Each table object is stored separately, and each object allocates new extents as

needed. Each DMS table object is also paired with a metadata object called an

extent map, which describes all of the extents in the table space that belong to the

table object. Space for extent maps is also allocated one extent at a time.

144 Administration Guide: Planning

Therefore, the initial allocation of space for an object in a DMS table space is two

extents. (The initial allocation of space for an object in an SMS table space is one

page.) So, if you have many small tables in a DMS table space, you may have a

relatively large amount of space allocated to store a relatively small amount of

data. In such a case, you should specify a small extent size.

Otherwise, if you have a very large table that has a high growth rate, and you

are using a DMS table space with a small extent size, you could have

unnecessary overhead related to the frequent allocation of additional extents.

v The type of access to the tables.

If access to the tables includes many queries or transactions that process large

quantities of data, prefetching data from the tables may provide significant

performance benefits.

v The minimum number of extents required.

If there is not enough space in the containers for five extents of the table space,

the table space will not be created.

 Related concepts:

v “Table space design” on page 112

 Related reference:

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

v “db2empfa - Enable multipage file allocation command” in Command Reference

v “multipage_alloc - Multipage file allocation enabled configuration parameter” in

Performance Guide

Relationship between table spaces and buffer pools

 Each table space is associated with a specific buffer pool. The default buffer pool is

IBMDEFAULTBP. If another buffer pool is to be associated with a table space, the

buffer pool must exist (it is defined with the CREATE BUFFERPOOL statement), it

must have the same page size, and the association is defined when the table space

is created (using the CREATE TABLESPACE statement). The association between

the table space and the buffer pool can be changed using the ALTER TABLESPACE

statement.

Having more than one buffer pool allows you to configure the memory used by

the database to improve overall performance. For example, if you have a table

space with one or more large (larger than available memory) tables that are

accessed randomly by users, the size of the buffer pool can be limited, because

caching the data pages might not be beneficial. The table space for an online

transaction application might be associated with a larger buffer pool, so that the

data pages used by the application can be cached longer, resulting in faster

response times. Care must be taken in configuring new buffer pools.

Note: If you have determined that a page size of 8 KB, 16 KB, or 32 KB is required

by your database, each table space with one of these page sizes must be

mapped to a buffer pool with the same page size.

The storage required for all the buffer pools must be available to the database

manager when the database is started. If DB2 Database for Linux, UNIX, and

Windows is unable to obtain the required storage, the database manager will start

up with default buffer pools (one each of 4 KB, 8 KB, 16 KB, and 32 KB page

sizes), and issue a warning.

Chapter 5. Physical database design 145

In a partitioned database environment, you can create a buffer pool of the same

size for all database partitions in the database. You can also create buffer pools of

different sizes on different database partitions.

 Related concepts:

v “Table spaces and other storage structures” in SQL Reference, Volume 1

 Related reference:

v “ALTER BUFFERPOOL statement” in SQL Reference, Volume 2

v “ALTER TABLESPACE statement” in SQL Reference, Volume 2

v “CREATE BUFFERPOOL statement” in SQL Reference, Volume 2

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

Relationship between table spaces and database partition groups

 In a partitioned database environment, each table space is associated with a

specific database partition group. This allows the characteristics of the table space

to be applied to each database partition in the database partition group. The

database partition group must exist (it is defined with the CREATE DATABASE

PARTITION GROUP statement), and the association between the table space and

the database partition group is defined when the table space is created using the

CREATE TABLESPACE statement.

You cannot change the association between table space and database partition

group using the ALTER TABLESPACE statement. You can only change the table

space specification for individual database partitions within the database partition

group. In a single-partition environment, each table space is associated with the

default database partition group. The default database partition group, when

defining a table space, is IBMDEFAULTGROUP, unless a system temporary table

space is being defined; then IBMTEMPGROUP is used.

 Related concepts:

v “Table spaces and other storage structures” in SQL Reference, Volume 1

v “Database partition groups” on page 85

v “Table space design” on page 112

 Related reference:

v “CREATE DATABASE PARTITION GROUP statement” in SQL Reference, Volume

2

v “CREATE TABLESPACE statement” in SQL Reference, Volume 2

Storage management view

 Use the Storage Management view to monitor the storage state of a partitioned

database. The Storage Management view is the graphical interface to the Storage

Management tool. In the Storage Management view, you can take storage

snapshots for a database, a database partition group, or a table space. When a table

space snapshot is taken, statistical information is collected from the system catalogs

and database monitor for tables, indexes, and containers defined under the scope

of the given table space. When a database or database partition group snapshot is

taken, statistical information is collected for all the table spaces defined in the

given database or database partition group. When a database snapshot is taken,

146 Administration Guide: Planning

statistical information is collected for all the database partition groups within the

database. Different types of storage snapshots can be used to help you monitor

different aspects of storage:

v Space usage can be monitored through snapshots of table spaces.

v On partitioned databases only: Data skew (database distribution) can be

monitored best through snapshots of database partition groups.

v Cluster ratio of indexes can be captured through both database partition group

snapshots and table space snapshots. The cluster ratio of indexes is presented

through the detail view of the index folder.

The Storage Management view also enables you to set thresholds for data skew,

space usage, and index cluster ratio. If a target object exceeds a specified threshold,

the icons beside the object and its parent object in the Storage Management view

are marked with a warning flag or an alarm flag.

Note: You can only set data skew thresholds for partitioned databases.

Use the Storage Management launchpad to guide you through the tasks necessary

to set up the Storage Management tool. The Storage Management tool provides

you with the ability to manage the storage of a specific database or database

partition over the long term. It also allows you to capture data distribution

snapshots and to view storage history. Three stored procedure functions are

automatically created for the storage management tool when the database is

created: SYSPROC.CREATE_STORAGEMGMT_TABLES,

SYSPROC.DROP_STORAGEMGMT_TABLES, and

SYSPROC.CAPTURE_STORAGEMGMT_INFO. Their respective packages are

bound on demand.

Note: You can open the Storage Management Setup launchpad from a database,

database partition group, or table space object in the Control Center. The

launchpad will lead you through the one-time-only setup process for using

the Storage Management tool. After you have captured a snapshot for the

selected object or its parent object using the Storage Management Setup

launchpad, you will be able to open the Storage Management view.

 Related reference:

v “CAPTURE_STORAGEMGMT_INFO procedure – Retrieve storage-related

information for a given root object” in Administrative SQL Routines and Views

v “CREATE_STORAGEMGMT_TABLES procedure – Create storage management

tables” in Administrative SQL Routines and Views

v “DROP_STORAGEMGMT_TABLES procedure – Drop all storage management

tables” in Administrative SQL Routines and Views

v “Storage management view tables” on page 148

Stored procedures for the storage management tool

 The following table shows the stored procedure functions that are created for the

storage management tool. The stored procedures are automatically created when

the database is created. Also, their respective packages are bound on demand.

Chapter 5. Physical database design 147

Table 24. Stored procedures for the storage management tool

Fully qualified name Parameters Functionality

SYSPROC.CREATE_STORAGEMGMT_TABLES in_tbspace VARCHAR(128)

input - table space name

Creates all storage

management tables under a

fixed ″DB2TOOLS″ schema, in

the table space specified by

input.

SYSPROC.DROP_STORAGEMGMT_TABLES dropSpec SMALLINT input - 0

/ 1

Attempt to drop all storage

management tables. When

dropSpec=0, the process will

stop when any error is

encountered; when

dropSpec=1, the process will

continue ignoring any error it

has encountered.

SYSPROC.CAPTURE_STORAGEMGMT_INFO in_rootType SMALLINT input

all valid values are given in

STMG_OBJECT_TYPE table

in_rootSchema

VARCHAR(128) input -

schema name of the storage

snapshot root object

in_rootName VARCHAR(128)

input- name of the root object

Attempt to collect for system

catalog and snapshot the

storage-related information for

the given root object, as well

as its the storage objects

defined within its scope. All

the storage objects are

specified in

STMG_OBJECT_TYPE table.

 Related reference:

v “Storage management view” on page 146

Storage management view tables

 STMG_OBJECT_TYPE table:

 The STMG_OBJECT_TYPE table contains one row for each supported storage type

that can be monitored.

The STMG_OBJECT_TYPE must be specified as the first parameter to the

capture_storagemgmt_info() stored procedure. For example:

sysproc.capture_storagemgmt_info(<stmg_object_type>, <object_schema>, <object_name>)

The first parameter, stmg_object_type, is defined by the entries in this table.

 Table 25. STMG_OBJECT_TYPE table

Column name Data type Nullable Description

OBJ_TYPE INTEGER N Integer value corresponds to a type of

storage object

 0 - Database

 1 - Database Partition Group

 2 - Table Space

 3 - Table Space Container

 4 - Table

 5 - Index

148 Administration Guide: Planning

Table 25. STMG_OBJECT_TYPE table (continued)

Column name Data type Nullable Description

TYPE_NAME VARCHAR N Descriptive name of the storage object

type

 STMG_DATABASE

 STMG_DBPGROUP

 STMG_TABLESPACE

 STMG_CONTAINER

 STMG_TABLE

 STMG_INDEX

 STMG_THRESHOLD_REGISTRY table:

 The STMG_THRESHOLD_REGISTRY table contains one row for each storage

threshold type. The enabled thresholds are used by the analysis process when a

storage snapshot is taken. If a threshold type is enabled, the threshold analysis will

be performed on the data being monitored and threshold exceeded columns will

be updated with the appropriate values for the specified threshold type.

 Example::

 To disable threshold analysis for table space space usage:

 db2 UPDATE SYSTOOLS.STMG_THRESHOLD_REGISTRY SET ENABLED = ’N’

 WHERE STMG_TH_TYPE = 1

 Table 26. STMG_THRESHOLD_REGISTRY table

Column name Data type Nullable Description

STMG_TH_TYPE INTEGER N Integer value corresponds to a storage

threshold type

 1 = STMG SPACE USAGE

THRESHOLD

 2 = STMG DATA SKEW

THRESHOLD

 3 = STMG CLUSTER RATIO

THRESHOLD

ENABLED CHARACTER N Y = the threshold is enabled

N = the threshold is not enabled and

therefore will not be compared against

during storage analysis

STMG_TH_NAME VARCHAR Y Descriptive name of the storage

threshold

 STMG CLUSTER RATIO

THRESHOLD

 STMG SPACE USAGE

THRESHOLD

 STMG DATA SKEW THRESHOLD

 STMG_CURR_THRESHOLD table:

 The STMG_CURR_THRESHOLD table contains one row for each threshold type

which is explicitly set for a storage object. When a new storage snapshot is taken,

and threshold analysis is enabled for the objects being captured (see the Table 26),

the values in this table are used to determine the warning and alarm thresholds

that are set for each type of threshold being monitored. If an object under analysis

does not have thresholds explicitly set in this table, the thresholds for the parent

Chapter 5. Physical database design 149

object for that object type are used. By default, this table contains three rows, one

for each threshold type. The thresholds in these three rows are set for the database

object, the parent of all other objects in the database. All objects included in the

storage snapshot analysis will automatically inherit these thresholds from the

database object unless a threshold is set explicitly on a child object such as a table

space or table.

 Example::

 To set the space usage warning and alarm thresholds for all objects in the database

to 90 and 95:

 db2 UPDATE SYSTOOLS.STMG_CURR_THRESHOLD SET WARNING_THRESHOLD = 90,

 ALARM_THRESHOLD = 95

 WHERE STMG_TH_TYPE = 1 AND OBJ_TYPE = 0

 Table 27. STMG_CURR_THRESHOLD table

Column name Data type Nullable Description

STMG_TH_TYPE INTEGER N Integer value corresponds to a storage

threshold type. See Table 26 on page

149 for a definition of threshold types.

OBJ_TYPE INTEGER N Integer value corresponds to a type of

storage object. See Table 25 on page

148 for a definition of threshold types.

OBJ_NAME VARCHAR N The name of the storage object.

OBJ_SCHEMA VARCHAR N The schema of the storage object.

″-″ is used when schema is not

applicable for the object

WARNING_THRESHOLD SMALLINT Y The value of the warning threshold set

for the storage object.

ALARM_THRESHOLD SMALLINT Y The value of the alarm threshold set

for the storage object.

 STMG_ROOT_OBJECT table:

 The STMG_ROOT_OBJECT table contains one row for the root object of each

storage snapshot. Complete storage snapshots can be deleted by deleting entries

from this table.

 Examples::

1. Delete all storage management snapshots:

 db2 DELETE FROM SYSTOOLS.STMG_ROOT_OBJECT

2. Delete all table space snapshots:

 db2 DELETE FROM SYSTOOLS.STMG_ROOT_OBJECT WHERE OBJ_TYPE = 2

 Table 28. STMG_ROOT_OBJECT table

Column name Data type Nullable Description

STMG_TIMESTAMP TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_TYPE INTEGER N Integer value corresponds to a type of

storage object. See Table 25 on page

148 for a definition of threshold types.

ROOT_ID VARCHAR N The ID of the root object.

150 Administration Guide: Planning

STMG_OBJECT table:

 The STMG_OBJECT table contains one row for each storage object that is analyzed

by the storage snapshots taken so far.

Note: Within a column, “(PK)” indicates a primary key.

 Table 29. STMG_OBJECT table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates the time the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

ROOT_ID CHARACTER N The ID of the root object.

OBJ_TYPE INTEGER N Integer value corresponds to a type of

storage object. See Table 25 on page

148 for a definition of threshold types.

OBJ_SCHEMA VARCHAR N The schema of the storage object.

″-″ is used when schema is not

applicable for the object

OBJ_NAME VARCHAR N The name of the storage object.

DBPG_NAME VARCHAR Y The name of the database partition

group the object residing in. Null if

not applicable.

TS_NAME VARCHAR Y The name of the table space the object

residing in. Null if not applicable.

 STMG_HIST_THRESHOLD table:

 The STMG_HIST_THRESHOLD table contains one row for each threshold used for

the analyzing the storage objects at the time the storage snapshots are taken. This

is basically a snapshot of what was in the SYSTOOLS.STMG_CURR_THRESHOLD

table at the time of the snapshot.

Note: Within a column, “(PK)” indicates a primary key.

 Table 30. STMG_HIST_THRESHOLD table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates the time the data

capturing process started.

STMG_TH_TYPE (PK) INTEGER N Integer value corresponds to a storage

threshold type. See Table 26 on page

149 for a definition of threshold types.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

Chapter 5. Physical database design 151

Table 30. STMG_HIST_THRESHOLD table (continued)

Column name Data type Nullable Description

WARNING_THRESHOLD SMALLINT Y The value of the warning threshold set

for the storage object at the time the

storage snapshot was taken.

ALARM_THRESHOLD SMALLINT Y The value of the alarm threshold set

for the storage object at the time the

storage snapshot was taken

 STMG_DATABASE table:

 The STMG_DATABASE table contains one row for each detailed entry of database

storage snapshots.

 Table 31. STMG_DATABASE table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

COMPLETE_TIMESTAMP TIMESTAMP Y The timestamp of when the data

capturing process has completed for

the database, identified by OBJ_ID

column.

REMARKS VARCHAR Y User-specified remarks.

 STMG_DBPGROUP table:

 The STMG_DBPGROUP table contains one row for each detailed entry of database

partition group storage snapshots.

Note: Within a column, “(PK)” indicates a primary key.

 Table 32. STMG_DBPGROUP table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

COMPLETE_TIMESTAMP TIMESTAMP Y The timestamp of when the data

capturing process has completed for

the database partition group, identified

by OBJ_ID column.

PARTITON_COUNT SMALLINT Y The number of database partitions

included in the database partition

group.

152 Administration Guide: Planning

Table 32. STMG_DBPGROUP table (continued)

Column name Data type Nullable Description

TARGET_LEVEL BIGINT Y The average data size, in bytes, over

all the database partitions contained by

the database partition group. It is the

target level of even data distribution.

DATA_SKEW SMALLINT Y A percentage of the maximum data

size deviation from the

TARGET_LEVEL among all the

database partitions. This value is used

during data capture and analysis

process to be compared against the

data distribution skew set for the

database partition group in the

Table 27 on page 150.

TOTAL_SIZE BIGINT Y The total size, in bytes, over all the

database partitions contained by the

database partition group. It is the sum

of the total size (number of pages

multiplied by page size) of all table

spaces defined under the database

partition group. For DMS table spaces,

the total size is the allocated size; for

SMS table spaces, it is the size of the

currently used by the table space.

DATA_SIZE BIGINT Y The data size, in bytes, over all the

database partitions contained by the

database partition group. It is the sum

of the data size (number of data pages

multiplied by page size) of all table

spaces defined under the database

partition group.

PERCENT_USED SMALLINT Y A percentage value of data size over

total size. This value is compared

against the space usage threshold

during the data capture and analysis

process. In the case of SMS table

spaces, the space usage threshold for

the table space or its parent database

partition group should be set to 100 to

avoid unnecessary alarms.

REMARKS VARCHAR Y User-specified remarks.

 STMG_DBPARTITION table:

 The STMG_DBPARTITION table contains one row for each detailed entry of

database partition storage snapshots. This is meant to be used along with the

STMG_DBPGROUP table.

Note: Within a column, “(PK)” indicates a primary key.

Chapter 5. Physical database design 153

Table 33. STMG_DBPARTITION table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

PARTITION_NUM (PK) INTEGER Y The database partition number.

COMPLETE_TIMESTAMP TIMESTAMP Y The timestamp of when the data

capturing process has completed for

the database partition, identified by

OBJ_ID column.

DBPG_NAME CHARACTER Y The name of database partition group.

IN_USE CHARACTER Y Status of the database partition at the

time of the storage snapshot. Same as

IN_USE column in

SYSCAT.DBPARTITIONGROUPDEF.

HOST_NAME VARCHAR Y The host name of the database

partition.

HOST_SYSTEM_SIZE BIGINT Y NOT AVAILABLE.

EST_DATA_SIZE BIGINT Y The estimated data size on the

database partition, within the database

partition group scope. This value is

calculated as the sum of the data size

for that portion of the table found on

the given partition.

 STMG_TABLESPACE table:

 The STMG_TABLESPACE table contains one row for each detailed entry of table

space storage snapshots.

Note: Within a column, “(PK)” indicates a primary key.

 Table 34. STMG_TABLESPACE table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

COMPLETE_TIMESTAMP TIMESTAMP Y The timestamp of when the data

capturing process has completed for

the table space, identified by OBJ_ID

column.

TYPE CHARACTER Y As defined in SYSCAT.TABLESPACES.

DATATYPE CHARACTER Y As defined in SYSCAT.TABLESPACES.

TOTAL_SIZE BIGINT Y As defined in SYSCAT.TABLESPACES.

154 Administration Guide: Planning

Table 34. STMG_TABLESPACE table (continued)

Column name Data type Nullable Description

PERCENT_USED SMALLINT Y As defined in SYSCAT.TABLESPACES.

This is used during data capture and

analysis process to be compared

against the space usage threshold in

the STMG_CURR_THRESHOLD table.

DATA_SIZE BIGINT Y DATA_PAGE * PAGE_SIZE.

DATA_PAGE BIGINT Y USED_PAGES as defined in

SYSPROC.SNAPSHOT_TBS_CFG table

UDF.

EXTENT_SIZE INTEGER Y As defined in SYSCAT.TABLESPACES.

PREFETCH_SIZE INTEGER Y As defined in SYSCAT.TABLESPACES.

OVERHEAD DOUBLE Y As defined in SYSCAT.TABLESPACES.

TRANSFER_RATE DOUBLE Y As defined in SYSCAT.TABLESPACES.

BUFFERPOOL_ID INTEGER Y As defined in SYSCAT.TABLESPACES.

PAGE_SIZE INTEGER Y As defined in SYSCAT.TABLESPACES.

 STMG_CONTAINER table:

 The STMG_CONTAINER table contains one row for each detailed entry of

container storage snapshots.

Note: Within a column, “(PK)” indicates a primary key.

 Table 35. STMG_CONTAINER table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

COMPLETE_TIMESTAMP TIMESTAMP Y The timestamp of when the data

capturing process has completed for

the container, identified by OBJ_ID

column.

TABLESPACE_ID INTEGER Y tablespace_id - Table Space

Identification monitor element

CONTAINER_ID INTEGER Y container_id - Container Identification

monitor element

PARTITION_NUM INTEGER Y node_number - Node Number monitor

element

CONTAINER_TYPE CHARACTER Y container_type - Container Type

monitor element

TOTAL_PAGES BIGINT Y container_total_pages - Total Pages in

Container monitor element

USABLE_PAGES BIGINT Y container_usable_pages - Usable Pages

in Container monitor element

Chapter 5. Physical database design 155

Table 35. STMG_CONTAINER table (continued)

Column name Data type Nullable Description

ACCESSIBLE BIGINT Y container_accessible - Accessibility of

Container monitor element

STRIPE_SET BIGINT Y container_stripe_set - Stripe Set

monitor element

FILESYSTEM_NODENAME BIGINT Y The node name of the file system in

which the container is defined.

FILESYSTEM_ID BIGINT Y The unique file system identifier.

FILESYSTEM_MOUNT_POINT VARCHAR Y The file system mount point.

FILESYSTEM_TYPE_NAME VARCHAR Y File system type. For example, jfs, jfs2,

ext2, or ntfs.

FILESYSTEM_DEVICE_TYPE BIGINT Y File system device type.

FILESYSTEM_TOTAL_SIZE BIGINT Y The total file system size in bytes.

FILESYSTEM_FREE_SIZE BIGINT Y The total file system free size in bytes.

REMARKS VARCHAR Y User-specified remarks.

 STMG_TABLE table:

 The STMG_TABLE table contains one or more rows for each table included in the

specified snapshot type. A database snapshot would insert entries for each table in

the database. A table space snapshot would insert one or more rows for each table

in the specified table space, a table snapshot would insert entries for the table

specified in the snapshot command.

For non-partitioned tables, there would be exactly one row per table. For

partitioned tables, there would one row per table space that the table resides in.

For example, if a partitioned table was spread over 5 table spaces, there would be

5 rows in the STMG_TABLE for that table. Each row would contain information

specific to a table space with one exception: Information that relates to table totals

for partitioned tables are a summation of values taken from all the table spaces;

each row would show the same value where a table total is kept.

Note: Within a column, “(PK)” indicates a primary key.

 Table 36. STMG_TABLE table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

COMPLETE_TIMESTAMP TIMESTAMP Y The timestamp of when the data

capturing process has completed for

the table, identified by OBJ_ID

column.

DBPG_NAME VARCHAR Y The name of the database partition

group in which the table resides.

TOTAL_ROW_COUNT BIGINT Y Total row count of the table.

156 Administration Guide: Planning

Table 36. STMG_TABLE table (continued)

Column name Data type Nullable Description

AVG_ROW_COUNT BIGINT Y The average row count from all

portions of the table.

TARGET_LEVEL BIGINT Y The average data size on each

database partition, in bytes.

DATA_SKEW SMALLINT Y The maximum percentage of the

ROW_COUNT value deviated from

the TARGET_LEVEL, over all portions

of the table, for the given table. This is

used during data capture and analysis

process to be compared against the

data skew threshold in the

STMG_CURR_THRESHOLD table.

AVG_ROW_LENGTH BIGINT Y The average row length of the table. If

this statistic has been collected, it will

be the sum of the average column

length of all the columns in this table;

when there is no statistical data, this

value is calculated by adding the fixed

columns’ length with the percentage of

the variable columns’ length.

COLCOUNT INTEGER Y As defined in SYSCAT.TABLES.

ESTIMATED_SIZE BIGINT Y As defined in SYSCAT.TABLES.

NPAGES INTEGER Y As defined in SYSCAT.TABLES.

FPAGES INTEGER Y As defined in SYSCAT.TABLES.

OVERFLOW INTEGER Y As defined in SYSCAT.TABLES.

MAIN_TBSPACE VARCHAR Y As defined in SYSCAT.TABLES.

INDEX_TBSPACE VARCHAR Y As defined in SYSCAT.TABLES.

LONG_TBSPACE VARCHAR Y As defined in SYSCAT.TABLES.

REMARKS VARCHAR Y User-specified remarks.

TABLE_PARTITIONED CHAR(1) N Specifies whether the table is divided

into one or more data partitions. Has

value “Y” if table is partitioned and

“N” otherwise.

 STMG_TBPARTITION table:

 The STMG_TBPARTITION table contains one row for each detailed entry of table

partition storage snapshots.

Note: Within a column, “(PK)” indicates a primary key.

 Table 37. STMG_TBPARTITION table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

Chapter 5. Physical database design 157

Table 37. STMG_TBPARTITION table (continued)

Column name Data type Nullable Description

PARTITION_NUM (PK) INTEGER N The partition number of the database

partition where the table partition

resides.

COMPLETE_TIMESTAMP TIMESTAMP Y The timestamp of when the data

capturing process has completed for

the table partition, identified by

OBJ_ID column.

DBPG_NAME VARCHAR Y The name of the database partition

group where the table resides.

ROWCOUNT BIGINT Y The number of rows in this table

partition.

REMARKS VARCHAR Y User-specified remarks.

 STMG_INDEX table:

 The STMG_INDEX table contains one row for each detailed entry of index storage

snapshots.

Note: Within a column, “(PK)” indicates a primary key.

 Table 38. STMG_INDEX table

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

COMPLETE_TIMESTAMP TIMESTAMP Y The timestamp of when the data

capturing process has completed for

the index, identified by OBJ_ID

column.

DBPG_NAME VARCHAR Y The name of the database partition

group in which the index resides.

TB_SCHEMA VARCHAR Y As TABNAME defined in

SYSCAT.INDEXES.

TB_NAME VARCHAR Y As TABSCHEMA defined in

SYSCAT.INDEXES.

COLCOUNT INTEGER Y As defined in SYSCAT.INDEXES.

ESTIMATED_SIZE BIGINT Y As defined in SYSCAT.INDEXES.

NLEAF INTEGER Y As defined in SYSCAT.INDEXES.

NLEVELS SMALLINT Y As defined in SYSCAT.INDEXES.

FIRSTKEYCARD BIGINT Y As defined in SYSCAT.INDEXES.

FIRST2KEYCARD BIGINT Y As defined in SYSCAT.INDEXES.

FIRST3KEYCARD BIGINT Y As defined in SYSCAT.INDEXES.

FIRST4KEYCARD BIGINT Y As defined in SYSCAT.INDEXES.

FULLKEYCARD BIGINT Y As defined in SYSCAT.INDEXES.

158 Administration Guide: Planning

Table 38. STMG_INDEX table (continued)

Column name Data type Nullable Description

CLUSTERRATIO SMALLINT Y As defined in SYSCAT.INDEXES, this

is used during data capture and

analysis process to compare against

the threshold set for the given index.

CLUSTERFACTOR BIGINT Y As defined in SYSCAT.INDEXES.

SEQUENTIAL_PAGES INTEGER Y As defined in SYSCAT.INDEXES.

DENSITY INTEGER Y As defined in SYSCAT.INDEXES.

REMARKS VARCHAR Y User-specified remarks.

 STMG_OBJ_HISTORICAL_THRESHOLDS view:

 The STMG_OBJ_HISTORICAL_THRESHOLDS view contains one row for each

captured snapshot object. This view can be used to determine the thresholds that

were set for a given object at the time of the snapshot. It can also be used to

determine easily which objects have exceeded their thresholds for data skew,

cluster ratio, and space usage.

Note: Within a column, “(PK)” indicates a primary key.

 Table 39. STMG_OBJ_HISTORICAL_THRESHOLDS view

Column name Data type Nullable Description

STMG_TIMESTAMP (PK) TIMESTAMP N The timestamp of the storage

snapshot. It indicates when the data

capturing process started.

OBJ_ID (PK) VARCHAR N The unique identifier for each storage

object under a given storage snapshot

timestamp.

OBJ_NAME (PK) VARCHAR N The name of the storage object.

OBJ_SCHEMA (PK) VARCHAR N The schema of the storage object.

“-” is used when schema is not

applicable for the object.

DBPG_NAME VARCHAR Y The name of the database partition

group where the object resides. Null if

not applicable.

TS_NAME VARCHAR Y The name of the table space in which

the object resides. Null if not

applicable.

SPACE_WARNING_THRESHOLD SMALLINT Y The space usage warning threshold.

Null if not applicable.

SPACE_ALARM_THRESHOLD SMALLINT Y The space usage alarm threshold. Null

if not applicable.

SPACE_THRESHOLD_EXCEEDED SMALLINT Y The space usage threshold exceeded

value. 1 if exceeded; 0 otherwise. Null

if not applicable.

SKEW_WARNING_THRESHOLD SMALLINT Y The data skew warning threshold.

Null if not applicable.

SKEW_ALARM_THRESHOLD SMALLINT Y The data skew alarm threshold. Null if

not applicable.

Chapter 5. Physical database design 159

Table 39. STMG_OBJ_HISTORICAL_THRESHOLDS view (continued)

Column name Data type Nullable Description

SKEW_THRESHOLD_EXCEEDED SMALLINT Y The data skew threshold exceeded

value. 1 if exceeded; 0 otherwise. Null

if not applicable.

CLUSTER_WARNING_THRESHOLD SMALLINT Y The cluster ratio warning threshold.

Null if not applicable.

CLUSTER_ALARM_THRESHOLD SMALLINT Y The cluster ratio alarm threshold. Null

if not applicable.

CLUSTER_THRESHOLD_EXCEEDED SMALLINT Y The cluster ratio threshold exceeded

value. 1 if exceeded; 0 otherwise. Null

if not applicable.

 Related reference:

v “Storage management view” on page 146

Thresholds

 For storage management, thresholds are used to monitor the storage usage of your

database. In the Storage Management view, you can set warning and alarm

thresholds for the Storage Management tool to compare against the real time

readings of the system. If an object’s storage state exceeds the safe levels, or

thresholds, that you have set for it, an alert flag will be shown beside the object in

the Storage Management view.

When a database is created, there are default thresholds set for the database object.

All of its children (objects within the database scope) inherent the default

threshold. However, you can overwrite the default thresholds by providing specific

values for any of the objects. Once a threshold is set for an object, all the objects

defined under its scope will inherit its threshold setting, unless otherwise specified.

The Storage Management view monitors three types of thresholds: space usage,

data skew, and cluster ratio.

v Space usage measures the percentage of available storage space that is used by

an object. Space usage is monitored through table spaces. The space usage of an

object is represented as a percentage of total storage space, with a value of 0 to

100.

v Data skew measures the distribution of data by measuring an object’s deviation

from the average data level, as a percentage. The data skew is monitored

through tables and database partition groups. When a data skew threshold is

exceeded, the Redistribute Data wizard can be used to even out data distribution

differences among the database partitions in the database partition group. The

disk skew of an object is represented as a percentage showing the object’s

deviation from the average data level, ranging from -100 to 100. A negative

integer indicates that the data level is less that the average data level; an positive

data level indicates that the data level is greater than the average.

v Cluster ratio measures the degree to which the rows in a table are arranged in

the same order specified by a given index. A higher cluster ratio indicates that

the data rows are stored in the same physical sequence as the index. A low

cluster ratio indicates the index and data rows are stored in a different physical

sequence. Cluster ratio is represented as a percentage, with a value of 0 to 100.

160 Administration Guide: Planning

In the Health Center, the criteria for the health indicators that measure a

continuous range of values is defined in terms of thresholds. Thresholds define

boundaries or zones and are configured as single-bounded with either increasing

or decreasing values. There are three boundaries or zones: normal, warning, and

alarm. If the value of a health indicator falls into the warning zone, a warning alert

is issued. Similarly, if the indicator value falls into the alarm zone, an alarm alert is

generated.

 Related reference:

v “Storage management view” on page 146

Temporary table space design

 System temporary table spaces hold temporary data required by the database

manager while performing operations such as sorts or joins. These types of

operations require extra space to process the results set. A database must have at

least one system temporary table space; by default, one system temporary table

space called TEMPSPACE1 is created at database creation time. IBMTEMPGROUP

is the default database partition group for this table space.

User temporary table spaces hold temporary data from tables created with a

DECLARE GLOBAL TEMPORARY TABLE statement. To allow the definition of

declared temporary tables, at least one user temporary table space should be

created with the appropriate USE privileges. USE privileges are granted using the

GRANT statement. A user temporary table spaces is not created by default at

database creation time.

It is recommended that you define a single SMS temporary table space with a page

size equal to the page size used in the majority of your regular table spaces. This

should be suitable for typical environments and workloads. However, it can be

advantageous to experiment with different temporary table space configurations

and workloads. The following points should be considered:

v Temporary tables are in most cases accessed in batches and sequentially. That is,

a batch of rows is inserted, or a batch of sequential rows is fetched. Therefore, a

larger page size typically results in better performance, because fewer logical or

physical page I/O requests are required to read a given amount of data. This is

not always the case when the average temporary table row size is smaller than

the page size divided by 255. A maximum of 255 rows can exist on any page,

regardless of the page size. For example, a query that requires a temporary table

with 15-byte rows would be better served by a 4 KB temporary table space page

size, because 255 such rows can all be contained within a 4 KB page. An 8 KB

(or larger) page size would result in at least 4 KB (or more) bytes of wasted

space on each temporary table page, and would not reduce the number of

required I/O requests.

v If more than fifty percent of the regular table spaces in your database use the

same page size, it can be advantageous to define your temporary table spaces

with the same page size. The reason for this is that this arrangement enables

your temporary table space to share the same buffer pool space with most or all

of your regular table spaces. This, in turn, simplifies buffer pool tuning.

v When reorganizing a table using a temporary table space, the page size of the

temporary table space must match that of the table. For this reason, you should

ensure that there are temporary table spaces defined for each different page size

used by existing tables that you may reorganize using a temporary table space.

Chapter 5. Physical database design 161

You can also reorganize without a temporary table space by reorganizing the

table directly in the target table space. Of course, this type of reorganization

requires that there be extra space in the target table space for the reorganization

process.

v If you are reliant on system temporary tables in SMS system temporary table

spaces because of your work envionment, you may want to consider using the

registry variable DB2_SMS_TRUNC_TMPTABLE_THRESH. In the past when

system temporary tables were no longer needed, they were truncated to a file

size of zero. The need for a new system temporary table would have a

performance cost associated with it. Using this registry variable allows for

leaving non-zero system temporary tables on the system to avoid the

performance cost of repeated creations and truncations of system temporary

tables.

v In general, when temporary table spaces of differing page sizes exist, the

optimizer will choose the temporary table space whose buffer pool can hold the

most number of rows (in most cases that means the largest buffer pool). In such

cases, it is often wise to assign an ample buffer pool to one of the temporary

table spaces, and leave any others with a smaller buffer pool. Such a buffer pool

assignment will help ensure efficient utilization of main memory. For example, if

your catalog table space uses 4 KB pages, and the remaining table spaces use 8

KB pages, the best temporary table space configuration may be a single 8 KB

temporary table space with a large buffer pool, and a single 4 KB table space

with a small buffer pool.

v There is generally no advantage to defining more than one temporary table

space of any single page size.

v SMS is almost always a better choice than DMS for temporary table spaces

because:

– There is more overhead in the creation of a temporary table when using DMS

versus SMS.

– Disk space is allocated on demand in SMS, whereas it must be pre-allocated

in DMS. Pre-allocation can be difficult: Temporary table spaces hold transient

data that can have a very large peak storage requirement, and a much smaller

average storage requirement. With DMS, the peak storage requirement must

be pre-allocated, whereas with SMS, the extra disk space can be used for

other purposes during off-peak hours.

– The database manager attempts to keep temporary table pages in memory,

rather than writing them out to disk. As a result, the performance advantages

of DMS are less significant.

 Related concepts:

v “System managed space” on page 117

v “Table space design” on page 112

v “Temporary tables in SMS table spaces” on page 162

 Related reference:

v “REORG INDEXES/TABLE command” in Command Reference

Temporary tables in SMS table spaces

 Temporary tables in SMS table spaces are not deleted by default once they are no

longer needed. Instead, files associated with temporary tables are truncated to a

length of zero. In cases where temporary tables are used repeatedly, this avoids

some of the performance cost of deleting and recreating temporary tables.

162 Administration Guide: Planning

This reuse of temporary tables benefits users whose workload involves dealing

with many small temporary tables on smaller systems such as Windows where the

file system calls are relatively expensive; and users whose disk storage is

distributed, requiring network messages to complete file system operations.

By default, files that hold temporary tables are truncated to a zero length or to the

extent size specified in the DB2_SMS_TRUNC_TMPTABLE_THRESH registry

variable once they are no longer needed. You can set the number of extents to be

used by specifying a value for the DB2_SMS_TRUNC_TMPTABLE_THRESH

registry variable. You should increase the value associated with this registry

variable if your workload repeatedly uses large SMS temporary tables and you can

afford to leave space allocated between uses.

You can turn off this feature by specifying a value of 0 for the

DB2_SMS_TRUNC_TMPTABLE_THRESH registry variable. You might want to do

this if your system has restrictive space limitations and you are experiencing

repeated out of disk errors for SMS temporary table spaces.

The first connection to the database deletes any previously allocated files. If you

want to clear out existing temporary tables, you should drop all database

connections and reconnect, or deactivate the database and reactivate it. If you want

to ensure that space for temporary tables stays allocated, use the ACTIVATE

DATABASE command to start the database. This will avoid the repeated cost of

startup on the first connect to the database.

 Related concepts:

v “Temporary table space design” on page 161

Catalog table space design

 An SMS table space is recommended for database catalogs, for the following

reasons:

v The database catalog consists of many tables of varying sizes. When using a

DMS table space, a minimum of two extents are allocated for each table object.

Depending on the extent size chosen, a significant amount of allocated and

unused space may result. When using a DMS table space, a small extent size

(two to four pages) should be chosen; otherwise, an SMS table space should be

used.

v There are large object (LOB) columns in the catalog tables. LOB data is not kept

in the buffer pool with other data, but is read from disk each time it is needed.

Reading LOBs from disk reduces performance. Since a file system usually has its

own cache, using an SMS table space, or a DMS table space built on file

containers, makes avoidance of I/O possible if the LOB has previously been

referenced.

Given these considerations, an SMS table space is a somewhat better choice for the

catalogs.

Another factor to consider is whether you will need to enlarge the catalog table

space in the future. While some platforms have support for enlarging the

underlying storage for SMS containers, and while you can use redirected restore to

enlarge an SMS table space, the use of a DMS table space facilitates the addition of

new containers.

Chapter 5. Physical database design 163

Note: When creating a database, three table spaces are defined, including the

SYSCATSPACE table space for the system catalog tables. The page size that

becomes the default for all table spaces is set when the database is created.

If a page size greater than 4096 (or 4 KB) is chosen, the page size for the

catalog tables is restricted to a row size that it would have if the catalog

table space had a page size of 4 KB. The default database page size is stored

as an informational database configuration parameter called pagesize.

 Related concepts:

v “Database managed space” on page 120

v “System managed space” on page 117

v “Table space design” on page 112

v “System catalog tables” in Administration Guide: Implementation

Optimizing table space performance when data is on RAID devices

 To optimize performance when data is placed on Redundant Array of Independent

Disks (RAID) devices, you should do the following for each table space that uses a

RAID device:

v Define a single container for the table space (using the RAID device).

v Make the EXTENTSIZE of the table space equal to, or a multiple of, the RAID

stripe size.

v Ensure that the PREFETCHSIZE of the table space is:

– the RAID stripe size multiplied by the number of RAID parallel devices (or a

whole multiple of this product), and

– a multiple of the EXTENTSIZE.
v Use the DB2_PARALLEL_IO registry variable to enable parallel I/O for the table

space.

 DB2_PARALLEL_IO:

 When reading data from, or writing data to table space containers, DB2 Database

for Linux, UNIX, and Windows may use parallel I/O if the number of containers

in the database is greater than 1. However, there are situations when it would be

beneficial to have parallel I/O enabled for single container table spaces. For

example, if the container is created on a single RAID device that is composed of

more than one physical disk, you may want to issue parallel read and write calls.

To force parallel I/O for a table space that has a single container, you can use the

DB2_PARALLEL_IO registry variable. This variable can be set to ″*″ (asterisk),

meaning every table space, or it can be set to a list of table space IDs separated by

commas. For example:

 db2set DB2_PARALLEL_IO=* {turn parallel I/O on for all table spaces}

 db2set DB2_PARALLEL_IO=1,2,4,8 {turn parallel I/O on for table spaces 1, 2,

 4, and 8}

After setting the registry variable, DB2 must be stopped (db2stop), and then

restarted (db2start), for the changes to take effect.

DB2_PARALLEL_IO also affects table spaces with more than one container

defined. If you do not set the registry variable, the I/O parallelism is equal to the

number of containers in the table space. If you set the registry variable, the I/O

164 Administration Guide: Planning

parallelism is equal to the result of prefetch size divided by extent size. You might

want to set the registry variable if the individual containers in the table space are

striped across multiple physical disks.

For example, a table space has two containers and the prefetch size is four times

the extent size. If the registry variable is not set, a prefetch request for this table

space will be broken into two requests (each request will be for two extents).

Provided that the prefetchers are available to do work, two prefetchers can be

working on these requests in parallel. In the case where the registry variable is set,

a prefetch request for this table space will be broken into four requests (one extent

per request) with a possibility of four prefetchers servicing the requests in parallel.

In this example, if each of the two containers had a single disk dedicated to it,

setting the registry variable for this table space might result in contention on those

disks since two prefetchers will be accessing each of the two disks at once.

However, if each of the two containers was striped across multiple disks, setting

the registry variable would potentially allow access to four different disks at once.

 DB2_USE_PAGE_CONTAINER_TAG:

 By default, DB2 uses the first extent of each DMS container (file or device) to store

a container tag. The container tag is DB2’s metadata for the container. In earlier

versions of the DB2 database system, the first page was used for the container tag,

instead of the first extent, and as a result less space in the container was used to

store the tag. (In earlier versions of the DB2 database system, the

DB2_STRIPED_CONTAINERS registry variable was used to create table spaces

with an extent sized tag. However, because this is now the default behavior, this

registry variable no longer has any affect.)

When the DB2_USE_PAGE_CONTAINER_TAG registry variable is set to ON, any

new DMS containers created will be created with a one-page tag, instead of a

one-extent tag (the default). There will be no impact to existing containers that

were created before the registry variable was set.

Setting this registry variable to ON is not recommended unless you have very tight

space constraints, or you require behavior consistent with pre-Version 8 databases.

Setting this registry variable to ON can have a negative impact on I/O

performance if RAID devices are used for table space containers. When using

RAID devices for table space containers, it is suggested that the table space be

created with an extent size that is equal to, or a multiple of, the RAID stripe size.

However, if this registry variable is set to ON, a one-page container tag will be

used and the extents will not line up with the RAID stripes. As a result it may be

necessary during an I/O request to access more physical disks than would be

optimal. Users are thus strongly advised against setting this registry variable.

 Procedure:

 To create containers with one-page container tags, set this registry variable to ON,

and then stop and restart the instance:

 db2set DB2_USE_PAGE_CONTAINER_TAG=ON

 db2stop

 db2start

To stop creating containers with one-page container tags, reset this registry

variable, and then stop and restart the instance.

Chapter 5. Physical database design 165

db2set DB2_USE_PAGE_CONTAINER_TAG=

 db2stop

 db2start

The Control Center, the LIST TABLESPACE CONTAINERS command, and the GET

SNAPSHOT FOR TABLESPACES command do not show whether a container has

been created with a page or extent sized tag. They use the label “file” or “device,”

depending on how the container was created. To verify whether a container was

created with a page- or extent-size tag, you can use the /DTSF option of

DB2DART to dump table space and container information, and then look at the

type field for the container in question. The query container APIs (sqlbftcq and

sqlbtcq), can be used to create a simple application that will display the type.

 Related concepts:

v “Table space design” on page 112

 Related reference:

v “System environment variables” in Performance Guide

Considerations when choosing table spaces for your tables

 When determining how to map tables to table spaces, you should consider:

v The distribution of your tables.

At a minimum, you should ensure that the table space you choose is in a

database partition group with the distribution you want.

v The amount of data in the table.

If you plan to store many small tables in a table space, consider using SMS for

that table space. The DMS advantages with I/O and space management

efficiency are not as important with small tables. The SMS advantages of

allocating space one page at a time, and only when needed, are more attractive

with smaller tables. If one of your tables is larger, or you need faster access to

the data in the tables, a DMS table space with a small extent size should be

considered.

You may wish to use a separate table space for each very large table, and group

all small tables together in a single table space. This separation also allows you

to select an appropriate extent size based on the table space usage.

v The type of data in the table.

You may, for example, have tables containing historical data that is used

infrequently; the end-user may be willing to accept a longer response time for

queries executed against this data. In this situation, you could use a different

table space for the historical tables, and assign this table space to less expensive

physical devices that have slower access rates.

Alternatively, you may be able to identify some essential tables for which the

data has to be readily available and for which you require fast response time.

You may want to put these tables into a table space assigned to a fast physical

device that can help support these important data requirements.

Using DMS table spaces, you can also distribute your table data across three

different table spaces: one for index data; one for LOB and long field data; and

one for regular table data. This allows you to choose the table space

characteristics and the physical devices supporting those table spaces to best suit

the data. For example, you could put your index data on the fastest devices you

have available, and as a result, obtain significant performance improvements. If

you split a table across DMS table spaces, you should consider backing up and

166 Administration Guide: Planning

restoring those table spaces together if roll-forward recovery is enabled. SMS

table spaces do not support this type of data distribution across table spaces.

v Administrative issues.

Some administrative functions can be performed at the table space level instead

of the database or table level. For example, taking a backup of a table space

instead of a database can help you make better use of your time and resources.

It allows you to frequently back up table spaces with large volumes of changes,

while only occasionally backing up tables spaces with very low volumes of

changes.

You can restore a database or a table space. If unrelated tables do not share table

spaces, you have the option to restore a smaller portion of your database and

reduce costs.

A good approach is to group related tables in a set of table spaces. These tables

could be related through referential constraints, or through other defined

business constraints.

If you need to drop and redefine a particular table often, you may want to

define the table in its own table space, because it is more efficient to drop a

DMS table space than it is to drop a table.

 Related concepts:

v “Comparison of SMS and DMS table spaces” on page 140

v “Database managed space” on page 120

v “Database partition groups” on page 85

v “System managed space” on page 117

DB2 table types

 DB2 Database for Linux, UNIX, and Windows provides the following types of

tables:

v Regular tables, which are implemented as a heap

v Append mode tables, which are regular tables that are optimized primarily for

INSERTs

v Multidimensional clustering (MDC) tables, which are implemented as tables that

are physically clustered on more than one key, or dimension, at the same time

v Range-clustered tables (RCT), which are implemented as sequential clusters of

data that provide fast, direct access

v Partitioned tables, which are implemented as tables with data divided across

multiple data partitions according to values in the table partitioning key

columns for the table.

Each type of table has characteristics that make it useful when working in a

particular business environment. For each table that you use, consider which table

types would best suit your needs.

Regular tables with indexes are the “general purpose” table choice.

Regular tables are placed into append mode through an ALTER TABLE statement.

Append mode tables are suitable where you need to add new data and retrieve

existing data such as where you are dealing with customer accounts in a banking

environment. There you record each change to the account through debits, credits,

and transfers. You also have customers who want to review the history of changes

to that account.

Chapter 5. Physical database design 167

Multidimensional clustering tables are used in data warehousing and large

database environments. Clustering indexes on regular tables support

single-dimensional clustering of data. MDC tables provide the benefits of data

clustering across more than one dimension.

Range-clustered tables are used where the data is tightly clustered across one or

more columns in the table. The largest and smallest values in the columns define

the range of possible values. You use these columns to access records in the table.

Partitioned tables allow easier roll-in and roll-out of table data, easier

administration, flexible index placement, and better query processing than regular

tables.

 Related concepts:

v “Multidimensional clustering tables” on page 172

v “Range-clustered tables” on page 168

 Related tasks:

v “Creating a materialized query table” in Administration Guide: Implementation

v “Creating and populating a table” in Administration Guide: Implementation

Range-clustered tables

 A range-clustered table (RCT) is a table layout scheme where each record in the

table has a predetermined record ID (RID) which is an internal identifier used to

locate a record in a table.

For each table that holds your data, consider which of the possible table types

would best suit your needs. For example, if you have data records that will be

loosely clustered (not monotonically increasing), consider using a regular table and

indexes. If you have data records that will have duplicate (not unique) values in

the key, you should not use a range-clustered table. If you cannot afford to

preallocate a fixed amount of storage on disk for the range-clustered tables you

might want, you should not use this type of table. These factors will help you to

determine whether you have data that can be used as a range-clustered table.

An algorithm is used to equate the value of the key for the record with the

location of a specific row within a table. The basic algorithm is fairly simple. In its

most basic form (using a single column instead of two or more columns to make

up the key), the algorithm maps a sequence number to a logical row number. The

algorithm also uses the record’s key to determine the logical page number and slot

number. This process provides exceptionally fast access to records; that is, to

specific rows in the table.

The algorithm does not involve hashing because hashing does not preserve

key-value ordering. Preserving key-value ordering is essential because it eliminates

the need to reorganize the table data over time.

Each record key in the table should have the following characteristics:

v Unique

v Not null

v An integer (SMALLINT, INTEGER, or BIGINT)

v Monotonically increasing

168 Administration Guide: Planning

v Within a predetermined set of ranges based on each column in the key

The ALLOW OVERFLOW option is used when creating the table to allow key

values to exceed the defined range. The DISALLOW OVERFLOW option is used

when creating the table where key values will not exceed the defined range. In

this case, if a record is inserted out of the boundary indicated by the range, an

SQL error message is returned.

Applications where tightly clustered (dense) sequence key ranges are likely are

excellent candidates for range-clustered tables. When using this type of key to

create a range-clustered table, the key is used to generate the logical location of a

row in a table. This process avoids the need for a separate index.

Advantages associated with a range-clustered table structure include the following

factors:

v Direct access

Access is through a range-clustered table key-to-RID mapping function.

v Less maintenance

A secondary structure such as a B+ tree does not need to be updated for every

INSERT, UPDATE, or DELETE.

v Less logging

There is less logging done for range-clustered tables when compared to a

similarly sized regular table and associated B+ tree index.

v Less buffer pool memory required

There is no additional memory required to store a secondary structure.

v Order properties of B+ tree tables

The ordering of the records is the same as what was achieved by B+ tree tables

without requiring extra levels or B+ tree next-key locking schemes. With RCT,

the code path length is reduced compared to regular B+ tree indexes. To obtain

this advantage, however, the range-clustered table must be created with

DISALLOW OVERFLOW and the data must be dense, not sparse.

v One less index

Mapping each key to a location on disk means that the table can be created with

one less index than would have been necessary otherwise. With range-clustered

tables, the application requirements for accessing the data in the table might

make a second, separate index unnecessary. You may still choose to create

regular indexes, especially if the application requires it.

Indexes are used to perform the following functions:

v Locate a record based on a key from the record

v Apply start and stop key scans

v Distribute data vertically

By using an RCT, the only property of an index that is not accounted for is

vertical distribution of data.

When deciding to use range-clustered tables, consider the following characteristics

which differentiate them from regular tables:

v Range-clustered tables have no free-space control records (FSCR).

v Space is preallocated.

Space for the table is preallocated and reserved for use by the table even when

records for the table are not filled in. At table creation time, there are no records

Chapter 5. Physical database design 169

in the table; however, the entire range of pages is preallocated. Preallocation is

based on the record size and the maximum number of records to be stored.

– If variable length fields such as VARCHAR are used in each record, the

maximum length of the field is used and the overall record size is a fixed

length. The overall fixed length of each record is used with the maximum

number of records to determine the space required.

– This can result in additional space being allocated that cannot be effectively

utilized.

– If key values are sparse, there is unused space and poor range scan

performance.

– Range scans must visit all possible records within a range even if the rows

containing those key values have not yet been inserted into the database.
v No schema modifications permitted.

If a schema modification is required on a range-clustered table, the table must be

recreated to include the new schema name for the table and all the data from the

old table. In particular:

– Altering a key range is not supported.

This is important since if a table’s ranges need to be altered, a new table with

the desired ranges must be created and the new table populated with the data

from the old table.
v Duplicate key values are not allowed.

v Key values outside the defined range are not allowed.

This is true for range-clustered tables defined to DISALLOW OVERFLOW only.

– NULL values are explicitly disallowed.
v Range-cluster index is not materialized

An index with RCT key properties is indicated in the system catalogs and can be

selected by the optimizer, but the index is not materialized on disk. With a

regular table, space also needs to be given to each index associated with a table.

With a RCT, no space is required for the RCT index. The optimizer uses the

information in the system catalogs that refers to this RCT index to ensure that

the correct access method for the table can be chosen.

v Creating a primary or a unique key on the same definition as the

range-clustered table index is not permitted since it would be redundant.

v Range-clustered tables retain the original key value ordering, a feature that

guarantees the clustering of rows within a table.

In addition to those considerations, there are some incompatibilities that either

limit places where range-clustered tables can be used, or other utilities that do not

work with these tables. The limitations on range-clustered tables include:

v Range clustered tables on partitioned tables are not supported.

If you attempt to create a partitioned table with range clustering, the error

message SQL0270 rc=87 is returned.

v Declared global temporary tables (DGTT) are not supported.

These temp tables are not allowed to use the range cluster property.

v Automatic summary tables (AST) are not supported.

These tables are not allowed to use the range cluster property.

v Load utility is not supported.

Rows must be inserted one at a time through an import operation or a parallel

inserting application.

v REORG TABLE utility is not supported.

170 Administration Guide: Planning

Range-clustered tables that are defined to DISALLOW OVERFLOW will not

need to be reorganized. Those range-clustered tables defined to ALLOW

OVERFLOW are still not permitted to have the data in this overflow region

reorganized.

v Range-clustered tables on one logical machine only.

On the Enterprise Server Edition (ESE) with the Database Partitioning Feature

(DPF), a range-clustered table cannot exist in a database containing more than

one database partition.

v The design advisor will not recommend range-clustered tables.

v Range-clustered tables are, by definition, already clustered.

This means that the following clustering schemes are incompatible with

range-clustered tables:

– Multi-dimensional clustered (MDC) table

– Clustering indexes
v Value and default compression are not supported.

v Reverse scans on the range-clustered table are not supported.

v The REPLACE option on the IMPORT command is not supported.

v The WITH EMPTY TABLE option on the ALTER TABLE ... ACTIVATE NOT

LOGGED INITIALLY statement is not supported.

 Related concepts:

v “Range-clustered tables and out-of-range record key values” on page 171

v “Examples of range-clustered tables” in Administration Guide: Implementation

 Related reference:

v “Restrictions on native XML data store” in XML Guide

Range-clustered tables and out-of-range record key values

 You control the behavior of a range-clustered table (RCT) that allows overflow

records by using the CREATE TABLE statement and the ALLOW OVERFLOW

option. In this way, you ensure that all of the pages required by the table within

the defined range are allocated immediately.

Once created, any records with keys that fall into the defined range work the same

way, regardless of whether the table is created with the overflow option allowed or

disallowed. The difference occurs when there is a record with a key that falls

outside of the defined range. In this case, when the table allows overflow records,

the record is placed in the overflow area, which is dynamically allocated. As more

records are added from outside the defined range, they are placed into the

growing overflow area. Actions against the table that involve this overflow area

will require longer processing time because the overflow area must be accessed as

part of the action. The larger the overflow area, the longer it will take to access the

overflow area. After prolonged use of the overflow area, consider reducing its size

by exporting the data from the table to a new range-clustered table that you have

defined using new, extended ranges.

There might be times when you do not want records placed into a range-clustered

table to have record key values falling outside of an allowed or defined range. For

this type of RCT to exist, you must use the DISALLOW OVERFLOW option on the

Chapter 5. Physical database design 171

CREATE TABLE statement. Once you have created this type of RCT, you might

have to accept error messages if a record key value falls outside of the allowed or

defined range.

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

Range-clustered table locks

 Within normal processing, locking of records takes place to ensure that only one

application or user has access to a record or group of records at any given time.

With range-clustered tables, instead of key and next-key locking, “discrete locking”

is used. This method locks all records that are effected by, or might be effected by,

the operation requested by the application or user. The number of locks that are

obtained depends on the isolation level.

Qualifying rows in range-clustered tables that are currently empty but have been

preallocated are locked. This avoids the need for next-key locking. As a result,

fewer locks are required for a dense, range-clustered table.

 Related concepts:

v “Locks and concurrency control” in Performance Guide

Multidimensional clustering tables

 Multidimensional clustering (MDC) provides an elegant method for clustering data

in tables along multiple dimensions in a flexible, continuous, and automatic way.

MDC can significantly improve query performance. In addition, MDC can

significantly reduce the overhead of data maintenance, such as reorganization and

index maintenance operations during insert, update, and delete operations. MDC is

primarily intended for data warehousing and large database environments, but it

can also be used in online transaction processing (OLTP) environments.

 Related concepts:

v “Indexes” in SQL Reference, Volume 1

v “Block index considerations for MDC tables” on page 188

v “Block indexes” on page 175

v “Optimization strategies for MDC tables” in Performance Guide

v “Table and index management for MDC tables” in Performance Guide

v “Block indexes and query performance” on page 180

v “Block maps” on page 185

v “Comparison of regular and MDC tables” on page 173

v “Deletion from an MDC table” on page 187

v “Designing multidimensional clustering (MDC) tables” on page 189

v “Load considerations for MDC tables” on page 188

v “Logging considerations for MDC tables” on page 188

v “Maintaining clustering automatically during INSERT operations” on page 183

v “Multidimensional clustering (MDC) table creation, placement, and use” on page

197

v “Updating an MDC table” on page 187

172 Administration Guide: Planning

v “Working with an MDC table” on page 177

v “Multidimensional clustering considerations when loading data” in Data

Movement Utilities Guide and Reference

 Related reference:

v “Lock modes for table and RID index scans of MDC tables” in Performance Guide

v “Locking for block index scans for MDC tables” in Performance Guide

Comparison of regular and MDC tables

 Regular tables have indexes that are record-based. Any clustering of the indexes is

restricted to a single dimension. Prior to Version 8, DB2 Universal Database

supported only single-dimensional clustering of data, through clustering indexes.

Using a clustering index, DB2 attempts to maintain the physical order of data on

pages in the key order of the index when records are inserted and updated in the

table. Clustering indexes greatly improve the performance of range queries that

have predicates containing the key (or keys) of the clustering index. Performance is

improved with a good clustering index because only a portion of the table needs to

be accessed, and more efficient prefetching can be performed.

Data clustering using a clustering index has some drawbacks, however. First,

because space is filled up on data pages over time, clustering is not guaranteed.

An insert operation will attempt to add a record to a page nearby to those having

the same or similar clustering key values, but if no space can be found in the ideal

location, it will be inserted elsewhere in the table. Therefore, periodic table

reorganizations may be necessary to re-cluster the table and to setup pages with

additional free space to accommodate future clustered insert requests.

Second, only one index can be designated as the “clustering” index, and all other

indexes will be unclustered, because the data can only be physically clustered

along one dimension. This limitation is related to the fact that the clustering index

is record-based, as all indexes have been prior to Version 8.1.

Third, because record-based indexes contain a pointer for every single record in the

table, they can be very large in size.

Chapter 5. Physical database design 173

The table in Figure 42 has two record-based indexes defined on it:

v A clustering index on “Region”

v Another index on “Year”

The “Region” index is a clustering index which means that as keys are scanned in

the index, the corresponding records should be found for the most part on the

same or neighboring pages in the table. In contrast, the “Year” index is unclustered

which means that as keys are scanned in that index, the corresponding records will

likely be found on random pages throughout the table. Scans on the clustering

index will exhibit better I/O performance and will benefit more from sequential

prefetching, the more clustered the data is to that index.

MDC introduces indexes that are block-based. “Block indexes” point to blocks or

groups of records instead of to individual records. By physically organizing data in

an MDC table into blocks according to clustering values, and then accessing these

blocks using block indexes, MDC is able not only to address all of the drawbacks

of clustering indexes, but to provide significant additional performance benefits.

First, MDC enables a table to be physically clustered on more than one key, or

dimension, simultaneously. With MDC, the benefits of single-dimensional

clustering are therefore extended to multiple dimensions, or clustering keys. Query

performance is improved where there is clustering of one or more specified

dimensions of a table. Not only will these queries access only those pages having

records with the correct dimension values, these qualifying pages will be grouped

into blocks, or extents.

Second, although a table with a clustering index can become unclustered over

time, an MDC table is able to maintain and guarantee its clustering over all

dimensions automatically and continuously. This eliminates the need to reorganize

MDC tables to restore the physical order of the data.

Third, in MDC the clustering indexes are block-based. These indexes are drastically

smaller than regular record-based indexes, so take up much less disk space and are

faster to scan.

Table

Clustering index

Clustering
indexRegion

Unclustered
index

Year

Figure 42. A regular table with a clustering index

174 Administration Guide: Planning

Block indexes

 The MDC table shown in Figure 43 is physically organized such that records

having the same “Region” and “Year” values are grouped together into separate

blocks, or extents. An extent is a set of contiguous pages on disk, so these groups

of records are clustered on physically contiguous data pages. Each table page

belongs to exactly one block, and all blocks are of equal size (that is, an equal

number of pages). The size of a block is equal to the extent size of the table space,

so that block boundaries line up with extent boundaries. In this case, two block

indexes are created, one for the “Region” dimension, and another for the “Year”

dimension. These block indexes contain pointers only to the blocks in the table. A

scan of the “Region” block index for all records having “Region” equal to “East”

will find two blocks that qualify. All records, and only those records, having

“Region” equal to “East” will be found in these two blocks, and will be clustered

on those two sets of contiguous pages or extents. At the same time, and completely

independently, a scan of the “Year” index for records between 1999 and 2000 will

find three blocks that qualify. A data scan of each of these three blocks will return

all records and only those records that are between 1999 and 2000, and will find

these records clustered on the sequential pages within each of the blocks.

 In addition to these clustering improvements, MDC tables provide the following

benefits:

v Probes and scans of block indexes are much faster due to their incredibly small

size in relation to record-based indexes

v Block indexes and the corresponding organization of data allows for fine-grained

“database partition elimination”, or selective table access

v Queries that utilize the block indexes benefit from the reduced index size,

optimized prefetching of blocks, and guaranteed clustering of the corresponding

data

v Reduced locking and predicate evaluation is possible for some queries

Multidimensional clustering index

East

97

East

99

North

98

South

99

West

00

Year
Block

Block
indexRegion

Figure 43. A multidimensional clustering table

Chapter 5. Physical database design 175

v Block indexes have much less overhead associated with them for logging and

maintenance because they only need to be updated when adding the first record

to a block, or removing the last record from a block

v Data rolled in can reuse the contiguous space left by data previously rolled out.

Note: An MDC table defined with even just a single dimension can benefit from

these MDC attributes, and can be a viable alternative to a regular table with

a clustering index. This decision should be based on many factors, including

the queries that make up the workload, and the nature and distribution of

the data in the table. Refer to “Considerations when choosing dimensions”

and “MDC Advisor Feature on the DB2 Advisor”.

When you create a table, you can specify one or more keys as dimensions along

which to cluster the data. Each of these MDC dimensions can consist of one or

more columns similar to regular index keys. A dimension block index will be

automatically created for each of the dimensions specified, and it will be used by

the optimizer to quickly and efficiently access data along each dimension. A

composite block index will also automatically be created, containing all columns

across all dimensions, and will be used to maintain the clustering of data over

insert and update activity. A composite block index will only be created if a single

dimension does not already contain all the dimension key columns. The composite

block index may also be selected by the optimizer to efficiently access data that

satisfies values from a subset, or from all, of the column dimensions.

Note: The usefulness of this index during query processing depends on the order

of its key parts. The key part order is determined by the order of the

columns encountered by the parser when parsing the dimensions specified

in the ORGANIZE BY clause of the CREATE TABLE statement. Refer to

section “Block index considerations for MDC tables” for more information.

Block indexes are structurally the same as regular indexes, except that they point

to blocks instead of records. Block indexes are smaller than regular indexes by a

factor of the block size multiplied by the average number of records on a page.

The number of pages in a block is equal to the extent size of the table space, which

can range from 2 to 256 pages. The page size can be 4 KB, 8 KB, 16 KB, or 32 KB.

176 Administration Guide: Planning

As seen in Figure 44, in a block index there is a single index entry for each block

compared to a single entry for each row. As a result, a block index provides a

significant reduction in disk usage and significantly faster data access.

In an MDC table, every unique combination of dimension values form a logical

cell, which may be physically made up of one or more blocks of pages. The logical

cell will only have enough blocks associated with it to store the records having the

dimension values of that logical cell. If there are no records in the table having the

dimension values of a particular logical cell, no blocks will be allocated for that

logical cell. The set of blocks that contain data having a particular dimension key

value is called a slice.

 Related concepts:

v “Block index considerations for MDC tables” on page 188

v “Block indexes and query performance” on page 180

v “Block maps” on page 185

 Related reference:

v “Restrictions on native XML data store” in XML Guide

Working with an MDC table

 As an example of how to work with an MDC table, we will imagine an MDC table

called “Sales” that records sales data for a national retailer. The table is clustered

along the dimensions “YearAndMonth” and “Region”. Records in the table are

stored in blocks, which contain enough consecutive pages on disk to fill an extent.

In Figure 45 on page 178, a block is represented by a rectangle, and is numbered

according to the logical order of allocated extents in the table. The grid in the

diagram represents the logical database partitioning of these blocks, and each

square represents a logical cell. A column or row in the grid represents a slice for a

particular dimension. For example, all records containing the value ’South-central’

in the “Region” column are found in the blocks contained in the slice defined by

…

Row index Block index

Figure 44. How row indexes differ from block indexes

Chapter 5. Physical database design 177

the ’South-central’ column in the grid. In fact, each block in this slice also only

contains records having ’South-central’ in the “Region” field. Thus, a block is

contained in this slice or column of the grid if and only if it contains records

having ’South-central’ in the “Region” field.

 To determine which blocks comprise a slice, or equivalently, which blocks contain

all records having a particular dimension key value, a dimension block index is

automatically created for each dimension when the table is created.

In Figure 46 on page 179, a dimension block index is created on the

“YearAndMonth” dimension, and another on the “Region” dimension. Each

dimension block index is structured in the same manner as a traditional RID index,

except that at the leaf level the keys point to a block identifier (BID) instead of a

record identifier (RID). A RID identifies the location of a record in the table by a

physical page number and a slot number — the slot on the page where the record

is found. A BID represents a block by the physical page number of the first page of

that extent, and a dummy slot (0). Because all pages in the block are physically

consecutive starting from that one, and we know the size of the block, all records

in the block can be found using this BID.

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

1

5

3 16 204

2

34 4524

30

12

14 31

50 54

56

18

32 33

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

9

39

19

41

42

Figure 45. Multidimensional table with dimensions of ’Region’ and ’YearAndMonth’ that is

called Sales

178 Administration Guide: Planning

A slice, or the set of blocks containing pages with all records having a particular

key value in a dimension, will be represented in the associated dimension block

index by a BID list for that key value.

 Figure 47 shows how a key from the dimension block index on “Region” would

appear. The key is made up of a key value, namely ’South-central’, and a list of

BIDs. Each BID contains a block location. In Figure 47, the block numbers listed are

the same that are found in the ’South-central’ slice found in the grid for the Sales

table (see Figure 45 on page 178).

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th
9901

9903

9904

9902

Northwest NortheastSouthwest South-central

1

5

3 16 204

2

34 4524

30

12

14 31

50 54

56

18

32 33

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

9

39

19

41

42

Dimension block
index on Region

Dimension
block index on
YearAndMonth

Figure 46. Sales table with dimensions of ’Region’ and ’YearAndMonth’ showing dimension

block indexes

South-central 9 16 18 19 22 24 25 30 36 39 41 42

Key value BID list

Block ID (BID)

Figure 47. Key from the dimension block index on ’Region’

Chapter 5. Physical database design 179

Similarly, to find the list of blocks containing all records having ’9902’ for the

“YearAndMonth” dimension, look up this value in the “YearAndMonth”

dimension block index, shown in Figure 48.

 Related concepts:

v “Multidimensional clustering (MDC) table creation, placement, and use” on page

197

v “Multidimensional clustering tables” on page 172

Block indexes and query performance

 Scans on any of the block indexes of an MDC table provide clustered data access,

because each BID corresponds to a set of sequential pages in the table that is

guaranteed to contain data having the specified dimension value. Moreover,

dimensions or slices can be accessed independently from each other through their

block indexes without compromising the cluster factor of any other dimension or

slice. This provides the multidimensionality of multidimensional clustering.

Queries that take advantage of block index access can benefit from a number of

factors that improve performance. First, the block index is so much smaller than a

regular index, the block index scan is very efficient. Second, prefetching of the data

pages does not rely on sequential detection when block indexes are used. DB2

looks ahead in the index, prefetching the data pages of the blocks into memory

using big-block I/O, and ensuring that the scan does not incur the I/O when the

data pages are accessed in the table. Third, the data in the table is clustered on

sequential pages, optimizing I/O and localizing the result set to a selected portion

of the table. Fourth, if a block-based buffer pool is used with its block size being

the extent size, then MDC blocks will be prefetched from sequential pages on disk

into sequential pages in memory, further increasing the effect of clustering on

performance. Finally, the records from each block are retrieved using a

mini-relational scan of its data pages, which is often a faster method of scanning

data than through RID-based retrieval.

Queries use can use block indexes to narrow down a portion of the table having a

particular dimension value or range of values. This provides a fine-grained form of

“database partition elimination”, that is, block elimination. This can translate into

better concurrency for the table, because other queries, loads, inserts, updates and

deletes may access other blocks in the table without interacting with this query’s

data set.

If the Sales table is clustered on three dimensions, the individual dimension block

indexes can also be used to find the set of blocks containing records which satisfy

a query on a subset of all of the dimensions of the table. If the table has

dimensions of “YearAndMonth”, “Region” and “Product”, this can be thought of

as a logical cube, as illustrated in Figure 49 on page 181.

9902 2 5 7 8 14 15 17 18 31 32 33 43

Key value BID list

Block ID (BID)

Figure 48. Key from the dimension block index on ’YearAndMonth’

180 Administration Guide: Planning

Four block indexes will be created for the MDC table shown in Figure 49: one for

each of the individual dimensions, “YearAndMonth”, “Region”, and “Product”;

and another with all of these dimension columns as its key. To retrieve all records

having a “Product” equal to “ProductA” and “Region” equal to “Northeast”, DB2

would first search for the ProductA key from the “Product” dimension block index.

(See Figure 50.) DB2 then determines the blocks containing all records having

“Region” equal to “Northeast”, by looking up the “Northeast” key in the “Region”

dimension block index. (See Figure 51.)

Pro
duct

A
Pro

duct
B

1

5

3 16 204

2

34 4524

9

30

39

12

14 31

50 54

56

18

32 33

42

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

19

41

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

28

37

27

23

46

40

35

47

Pro
duct

Figure 49. Multidimensional table with dimensions of ’Region’, ’YearAndMonth’, and ’Product’

Product A 1 2 3 11 20 22 24 2625 30 56.

Figure 50. Key from dimension block index on ’Product’

Northeast 11 20 23 26 27 28 35 37 40 45 46 47 51 5453 56

Figure 51. Key from dimension block index on ’Region’

Chapter 5. Physical database design 181

Block index scans can be combined through the use of the logical AND and logical

OR operators and the resulting list of blocks to scan also provides clustered data

access.

Using the example above, in order to find the set of blocks containing all records

having both dimension values, you have to find the intersection of the two slices.

This is done by using the logical AND operation on the BID lists from the two

block index keys. The common BID values are 11, 20, 26, 45, 54, 51, 53, and 56.

The following example illustrates how using the logical OR operation with block

indexes to satisfy a query having predicates that involve two dimensions. Figure 52

assumes an MDC table where the two dimensions are “Color” and “Nation”. The

goal is to retrieve all those records in the MDC table that meet the conditions of

having “Color” of “blue” or having a “Nation” name “USA”.

 This diagram shows how the result of two separate block index scans are

combined to determine the range of values that meet the predicate restrictions.

Key from the dimension block index on Colour

Key from the dimension block index on Nation

Resulting block ID (BID) list of blocks to scan

Blue

USA

4,0

4,0

12,0

12,0

12,0

48,0

48,0

92,0

52,0

52,0

76,0

92,076,0

76,0

100,0

100,0 112,0 216,0 276,0

100,0 112,0

216,0

216,0 276,0

(OR)

Figure 52. How the logical OR operation can be used with block indexes

182 Administration Guide: Planning

Based on the predicates from the SELECT statement, two separate dimension block

index scans are done; one for the blue slice, and another for the USA slice. A

logical OR operation is done in memory in order to find the union of the two

slices, and determine the combined set of blocks found in both slices (including the

removal of duplicate blocks).

Once DB2 has list of blocks to scan, DB2 can do a mini-relational scan of each

block. Prefetching of the blocks can be done, and will involve just one I/O per

block, as each block is stored as an extent on disk and can be read into the buffer

pool as a unit. If predicates need to be applied to the data, dimension predicates

need only be applied to one record in the block, because all records in the block

are guaranteed to have the same dimension key values. If other predicates are

present, DB2 only needs to check these on the remaining records in the block.

MDC tables also support regular RID-based indexes. Both RID and block indexes

can be combined using a logical AND operation, or a logical OR operation, with

the index. Block indexes provide the optimizer with additional access plans to

choose from, and do not prevent the use of traditional access plans (RID scans,

joins, table scans, and others). Block index plans will be costed by the optimizer

along with all other possible access plans for a particular query, and the most

inexpensive plan will be chosen.

The DB2 Design Advisor can help to recommend RID-based indexes on MDC

tables, or to recommend MDC dimensions for a table.

 Related concepts:

v “Block index considerations for MDC tables” on page 188

v “Block indexes” on page 175

v “Block maps” on page 185

Maintaining clustering automatically during INSERT operations

 Automatic maintenance of data clustering in an MDC table is ensured using the

composite block index. It is used to dynamically manage and maintain the physical

clustering of data along the dimensions of the table over the course of INSERT

operations. A key is found in this composite block index only for each of those

logical cells of the table that contain records. This block index is therefore used

during an INSERT to quickly and efficiently determine if a logical cell exists in the

table, and only if so, determine exactly which blocks contain records having that

cell’s particular set of dimension values.

When an insert occurs:

v The composite block index is probed for the logical cell corresponding to the

dimension values of the record to be inserted.

v If the key of the logical cell is found in the index, its list of block ID (BIDs) gives

the complete list of blocks in the table having the dimension values of the

logical cell. (See Figure 53 on page 184.) This limits the numbers of extents of the

table to search for space to insert the record.

v If the key of the logical cell is not found in the index; or, if the extents

containing these values are full, a new block is assigned to the logical cell. If

possible, the reuse of an empty block in the table occurs first before extending

the table by another new extent of pages (a new block).

Chapter 5. Physical database design 183

Data records having particular dimension values are guaranteed to be found in a

set of blocks that contain only and all the records having those values. Blocks are

made up of consecutive pages on disk. As a result, access to these records is

sequential, providing clustering. This clustering is automatically maintained over

time by ensuring that records are only inserted into blocks from cells with the

record’s dimension values. When existing blocks in a logical cell are full, an empty

block is reused or a new block is allocated and added to the set of blocks for that

logical cell. When a block is emptied of data records, the block ID (BID) is

removed from the block indexes. This disassociates the block from any logical cell

values so that it can be reused by another logical cell in the future. Thus, cells and

their associated block index entries are dynamically added and removed from the

table as needed to accommodate only the data that exists in the table. The

composite block index is used to manage this, because it maps logical cell values

to the blocks containing records having those values.

Because clustering is automatically maintained in this way, reorganization of an

MDC table is never needed to re-cluster data. However, reorganization can still be

used to reclaim space. For example, if cells have many sparse blocks where data

could fit on fewer blocks, or if the table has many pointer-overflow pairs, a

reorganization of the table would compact records belonging to each logical cell

into the minimum number of blocks needed, as well as remove pointer-overflow

pairs.

The following example illustrates how the composite block index can be used for

query processing. If you want to find all records in the Sales table having “Region”

of ’Northwest’ and “YearAndMonth” of ’9903’, DB2 would look up the key value

9903, Northwest in the composite block index, as shown in Figure 54 on page 185.

The key is made up a key value, namely ’9903, Northwest’, and a list of BIDs. You

can see that the only BIDs listed are 3 and 10, and indeed there are only two

blocks in the Sales table containing records having these two particular values.

…

9902,
Northwest

9902,
Southwest

9902,
South-central

9901,
South-central

9901,
Northeast

9903,
Northwest

1 5 329

39

12 14 31 18

32 33

42 11

6 7 1015

8 17 43

19

41

= block 1

Legend

1

9901,
Northwest

Composite block index on YearAndMonth, Region

Figure 53. Composite block index on ’YearAndMonth’, ’Region’

184 Administration Guide: Planning

To illustrate the use of the composite block index during insert, take the example

of inserting another record with dimension values 9903 and Northwest. DB2 would

look up this key value in the composite block index and find BIDs for blocks 3 and

10. These blocks contain all records and the only records having these dimension

key values. If there is space available, DB2 inserts the new record into one of these

blocks. If there is no space on any pages in these blocks, DB2 allocates a new block

for the table, or uses a previously emptied block in the table. Note that, in this

example, block 48 is currently not in use by the table. DB2 inserts the record into

the block and associates this block to the current logical cell by adding the BID of

the block to the composite block index and to each dimension block index. See

Figure 55 for an illustration of the keys of the dimension block indexes after the

addition of Block 48.

 Related concepts:

v “Block maps” on page 185

v “Block indexes” on page 175

Block maps

 When a block is emptied, it is disassociated from its current logical cell values by

removing its BID from the block indexes. The block can then be reused by another

logical cell. This reduces the need to extend the table with new blocks. When a

new block is needed, previously emptied blocks need to be found quickly without

having to search the table for them.

The block map is a new structure used to facilitate locating empty blocks in the

MDC table. The block map is stored as a separate object:

v In SMS, as a separate .BKM file

v In DMS, as a new object descriptor in the object table.

The block map is an array containing an entry for each block of the table. Each

entry comprises a set of status bits for a block. The status bits include:

9903, Northwest 3 10

Key value BID list

Block ID (BID)

Figure 54. Key from composite block index on ’YearAndMonth’, ’Region’

Northwest

9903

9903, Northwest

1

3

3

3

4

5 6 7 8 10

10

10 48

16 20 22 26 30 36 48

1312 14 32 48

Figure 55. Keys from the dimension block indexes after addition of Block 48

Chapter 5. Physical database design 185

v In use. The block is assigned to a logical cell.

v Load. The block is recently loaded; not yet visible by scans.

v Constraint. The block is recently loaded; constraint checking is still to be done.

v Refresh. The block is recently loaded; materialized query views still need to be

refreshed.

 In Figure 56, the left side shows the block map array with different entries for each

block in the table. The right side shows how each extent of the table is being used:

some are free, most are in use, and records are only found in blocks marked in use

in the block map. For simplicity, only one of the two dimension block indexes is

shown in the diagram.

Notes:

1. There are pointers in the block index only to blocks which are marked IN USE

in the block map.

2. The first block is reserved. This block contains system records for the table.

Free blocks are found easily for use in a cell, by scanning the block map for FREE

blocks, that is, those without any bits set.

Table scans also use the block map to access only extents currently containing data.

Any extents not in use do not need to be included in the table scan at all. To

illustrate, a table scan in this example (Figure 56) would start from the third extent

Reserved Free — no status
bits set

In use — data
assigned to a cell

Legend

Extents in the table
Block
map

00 X

X

11 F

F

22 U

33 U

44 U

U

55 F

66 U

……

North,
1996

North, 1997

South, 1999

East, 1996

Year

Figure 56. How a block map works

186 Administration Guide: Planning

(extent 2) in the table, skipping the first reserved extent and the following empty

extent, scan blocks 2, 3 and 4 in the table, skip the next extent (not touching any of

that extent’s data pages), and then continue scanning from there.

 Related concepts:

v “Block index considerations for MDC tables” on page 188

v “Block indexes” on page 175

v “Block indexes and query performance” on page 180

Deletion from an MDC table

 When a record is deleted in an MDC table, if it is not the last record in the block,

the DB2 database system merely deletes the record and removes its RID from any

record-based indexes defined on the table. When a delete removes the last record

in a block, however, DB2 frees the block by changing its IN_USE status bit and

removing the block’s BID from all block indexes. Again, if there are record-based

indexes as well, the RID is removed from them.

Note: Therefore, block index entries need only be removed once per entire block

and only if the block is completely emptied, instead of once per deleted row

in a record-based index.

 Related concepts:

v “Multidimensional clustering tables” on page 172

Updating an MDC table

 In an MDC table, updates of non-dimension values are done in place just as they

are done with regular tables. If the update affects a variable length column and the

record no longer fits on the page, another page with sufficient space is found. The

search for this new page begins within the same block. If there is no space in that

block, the algorithm to insert a new record is used to find a page in the logical cell

with enough space. There is no need to update the block indexes, unless no space

is found in the cell and a new block needs to be added to the cell.

Updates of dimension values are treated as a delete of the current record followed

by an insert of the changed record, because the record is changing the logical cell

to which it belongs. If the deletion of the current record causes a block to be

emptied, the block index needs to be updated. Similarly, if the insert of the new

record requires it to be inserted into a new block, the block index needs to be

updated.

Block indexes only need to be updated when inserting the first record into a block

or when deleting the last record from a block. Index overhead associated with

block indexes for maintenance and logging is therefore much less than the index

overhead associated with regular indexes. For every block index that would have

otherwise been a regular index, the maintenance and logging overhead is greatly

reduced.

MDC tables are treated like any existing table; that is, triggers, referential integrity,

views, and materialized query tables can all be defined upon them.

 Related concepts:

Chapter 5. Physical database design 187

v “Multidimensional clustering tables” on page 172

Load considerations for MDC tables

 If you roll data in to your data warehouse on a regular basis, you can use MDC

tables to your advantage. In MDC tables, load will first reuse previously emptied

blocks in the table before extending the table and adding new blocks for the

remaining data. After you have deleted a set of data, for example, all the data for a

month, you can use the load utility to roll in the next month of data and it can

reuse the blocks that have been emptied after the (committed) deletion.

When loading data into MDC tables, the input data can be either sorted or

unsorted. If unsorted, consider doing the following:

v Increase the util_heap configuration parameter.

Increasing the utility heap size will affect all load operations in the database (as

well as backup and restore operations).

v Increase the value given with the DATA BUFFER clause of the LOAD command.

Increasing this value will affect a single load request. The utility heap size must

be large enough to accommodate the possibility of multiple concurrent load

requests.

v Ensure the page size used for the buffer pool is the same as the largest page size

for the temporary table space.

Load begins at a block boundary, so it is best used for data belonging to new cells

or for the initial populating of a table.

 Related concepts:

v “Multidimensional clustering tables” on page 172

Logging considerations for MDC tables

 In cases where columns previously or otherwise indexed by RID indexes are now

dimensions and so are indexed with block indexes, index maintenance and logging

are significantly reduced. Only when the last record in an entire block is deleted

does DB2 need to remove the BID from the block indexes and log this index

operation. Similarly, only when a record is inserted to a new block (if it is the first

record of a logical cell or an insert to a logical cell of currently full blocks) does

DB2 need to insert a BID in the block indexes and log that operation. Because

blocks can be between 2 and 256 pages of records, this block index maintenance

and logging will be relatively small. Inserts and deletes to the table and to RID

indexes will still be logged.

 Related concepts:

v “Multidimensional clustering tables” on page 172

Block index considerations for MDC tables

 When you define dimensions for an MDC table, dimension block indexes are

created. In addition, a composite block index may also be created when multiple

dimensions are defined. If you have defined only one dimension for your MDC

table, however, DB2 will create only one block index, which will serve both as the

dimension block index and as the composite block index. Similarly, if you create an

188 Administration Guide: Planning

MDC table that has dimensions on column A, and on (column A, column B), DB2

will create a dimension block index on column A and a dimension block index on

column A, column B. Because a composite block index is a block index of all the

dimensions in the table, the dimension block index on column A, column B will

also serve as the composite block index.

The composite block index is also used in query processing to access data in the

table having specific dimension values. Note that the order of key parts in the

composite block index may affect its use or applicability for query processing. The

order of its key parts is determined by the order of columns found in the entire

ORGANIZE BY DIMENSIONS clause used when creating the MDC table. For

example, if a table is created using the statement

 CREATE TABLE t1 (c1 int, c2 int, c3 int, c4 int)

 ORGANIZE BY DIMENSIONS (c1, c4, (c3,c1), c2)

then the composite block index will be created on columns (c1,c4,c3,c2). Note that

although c1 is specified twice in the dimensions clause, it is used only once as a

key part for the composite block index, and in the order in which it is first found.

The order of key parts in the composite block index makes no difference for insert

processing, but may do so for query processing. Therefore, if it is more desirable to

have the composite block index with column order (c1,c2,c3,c4), then the table

should be created using the statement

 CREATE TABLE t1 (c1 int, c2 int, c3 int, c4 int)

 ORGANIZE BY DIMENSIONS (c1, c2, (c3,c1), c4)

 Related concepts:

v “Block indexes” on page 175

v “Block indexes and query performance” on page 180

v “Block maps” on page 185

Designing multidimensional clustering (MDC) tables

 Once you have decided to work with multidimensional clustering tables, the

dimensions that you choose will depend not only on the type of queries that will

use the tables and benefit from block-level clustering, but even more importantly

on the amount and distribution of your actual data. Aspects of designing MDC

tables and some guidance regarding the selection of appropriate dimensions and

block sizes can be seen using the related concepts links.

 Queries that will benefit from MDC:

 The first consideration when choosing clustering dimensions for your table is the

determination of which queries will benefit from clustering at a block level.

Typically, there will be several candidates when choosing dimensions based on the

queries that make up the work to be done on the data. The ranking of these

candidates is important. Columns, especially those with low cardinalities, that are

involved in equality or range predicate queries will show the greatest benefit from,

and should be considered as candidates for, clustering dimensions. You will also

want to consider creating dimensions for foreign keys in an MDC fact table

involved in star joins with dimension tables. You should keep in mind the

performance benefits of automatic and continuous clustering on more than one

dimension, and of clustering at an extent or block level.

Chapter 5. Physical database design 189

There are many queries that can take advantage of multidimensional clustering.

Examples of such queries follow. In some of these examples, assume that there is

an MDC table t1 with dimensions c1, c2, and c3. In the other examples, assume

that there is an MDC table mdctable with dimensions color and nation.

Example 1:

SELECT FROM t1 WHERE c3 < 5000

This query involves a range predicate on a single dimension, so it can be internally

rewritten to access the table using the dimension block index on c3. The index is

scanned for block identifiers (BIDs) of keys having values less than 5000, and a

mini-relational scan is applied to the resulting set of blocks to retrieve the actual

records.

Example 2:

SELECT FROM t1 WHERE c2 IN (1,2037)

This query involves an IN predicate on a single dimension, and can trigger block

index based scans. This query can be internally rewritten to access the table using

the dimension block index on c2. The index is scanned for BIDs of keys having

values of 1 and 2037, and a mini-relational scan is applied to the resulting set of

blocks to retrieve the actual records.

Example 3:

SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ AND NATION=’USA’

190 Administration Guide: Planning

To carry out this query request, the following is done (and is shown in Figure 57):

v A dimension block index lookup is done: one for the Blue slice and another for

the USA slice.

v A block logical AND operation is carried out to determine the intersection of the

two slices. That is, the logical AND operation determines only those blocks that

are found in both slices.

v A mini-relation scan of the resulting blocks in the table is carried out.

Example 4:

SELECT ... FROM t1

 WHERE c2 > 100 AND c1 = ’16/03/1999’ AND c3 > 1000 AND c3 < 5000

This query involves range predicates on c2 and c3 and an equality predicate on c1,

along with a logical AND operation. This can be internally rewritten to access the

table on each of the dimension block indexes:

v A scan of the c2 block index is done to find BIDs of keys having values greater

than 100

Key from the dimension block index on Colour

Key from the dimension block index on Nation

Resulting block ID (BID) list of blocks to scan

Blue

USA

4,0

12,0

12,0

12,0

76,0

48,0

92,0

52,0 76,0

76,0

100,0

100,0

100,0 112,0

216,0

216,0 276,0

216,0

(AND)

Figure 57. A query request that uses a logical AND operation with two block indexes

Chapter 5. Physical database design 191

v A scan of the c3 block index is done to find BIDs of keys having values between

1000 and 5000

v A scan of the c1 block index is done to find BIDs of keys having the value

’16/03/1999’.

A logical AND operation is then done on the resulting BIDs from each block scan,

to find their intersection, and a mini-relational scan is applied to the resulting set

of blocks to find the actual records.

Example 5:

SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ OR NATION=’USA’

To carry out this query request, the following is done:

v A dimension block index lookup is done: one for each slice.

v A logical OR operation is done to find the union of the two slices.

v A mini-relation scan of the resulting blocks in the table is carried out.

Example 6:

SELECT FROM t1 WHERE c1 < 5000 OR c2 IN (1,2,3)

This query involves a range predicate on the c1 dimension and a IN predicate on

the c2 dimension, as well as a logical OR operation. This can be internally

rewritten to access the table on the dimension block indexes c1 and c2. A scan of

the c1 dimension block index is done to find values less than 5000 and another

scan of the c2 dimension block index is done to find values 1, 2, and 3. A logical

OR operation is done on the resulting BIDs from each block index scan, then a

mini-relational scan is applied to the resulting set of blocks to find the actual

records.

Example 7:

SELECT FROM t1 WHERE c1 = 15 AND c4 < 12

This query involves an equality predicate on the c1 dimension and another range

predicate on a column that is not a dimension, along with a logical AND

operation. This can be internally rewritten to access the dimension block index on

c1, to get the list of blocks from the slice of the table having value 15 for c1. If

there is a RID index on c4, an index scan can be done to retrieve the RIDs of

records having c4 less than 12, and then the resulting list of blocks undergoes a

logical AND operation with this list of records. This intersection eliminates RIDs

not found in the blocks having c1 of 15, and only those listed RIDs found in the

blocks that qualify are retrieved from the table.

If there is no RID index on c4, then the block index can be scanned for the list of

qualifying blocks, and during the mini-relational scan of each block, the predicate

c4 < 12 can be applied to each record found.

Example 8:

Given a scenario where there are dimensions for color, year, nation and a row ID

(RID) index on the part number, the following query is possible.

SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ AND PARTNO < 1000

192 Administration Guide: Planning

To carry out this query request, the following is done (and is shown in Figure 58):

v A dimension block index lookup and a RID index lookup are done.

v A logical AND operation is used with the blocks and RIDs to determine the

intersection of the slice and those rows meeting the predicate condition.

v The result is only those RIDs that also belong to the qualifying blocks.

Example 9:

SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ OR PARTNO < 1000

Key from the dimension block index on Colour

Row IDs (RID) from RID index on Partno

Resulting row IDs to fetch

Blue

6,4

4,0

8,12

6,4

12,0

50,1

50,1

48,0

77,3

52,0 76,0

107,0

77,3

100,0

115,0

216,0

219,5

219,5

276,9

(AND)

Figure 58. A query request that uses a logical AND operation on a block index and a row ID

(RID) index

Chapter 5. Physical database design 193

To carry out this query request, the following is done (and is shown in Figure 59):

v A dimension block index lookup and a RID index lookup are done.

v A logical OR operation is used with the blocks and RIDs to determine the union

of the slice and those rows meeting the predicate condition.

v The result is all of the rows in the qualifying blocks, plus additional RIDs that

fall outside the qualifying blocks that meet the predicate condition. A

mini-relational scan of each of the blocks is performed to retrieve their records,

and the additional records outside these blocks are retrieved individually.

Example 10:

SELECT ... FROM t1 WHERE c1 < 5 OR c4 = 100

This query involves a range predicate on dimension c1 and an equality predicate

on a non-dimension column c4, as well as a logical OR operation. If there is a RID

Key from the dimension block index on Colour

Row IDs (RID) from RID index on Partno

Resulting blocks and RIDs to fetch

Blue

6,4

4,0

4,0

8,12

12,0

8,12

12,0

50,1

48,0

107,0

48,0

77,3

52,0

52,0 76,0

107,0

76,0

115,0

100,0

115,0

100,0

216,0

219,5

216.0

276,9

276,9

,

(OR)

Figure 59. How block index and row ID using a logical OR operation works

194 Administration Guide: Planning

index on the c4 column, this may be internally rewritten to do a logical OR

operation using the dimension block index on c1 and the RID index on c4. If there

is no index on c4, a table scan may be chosen instead, since all records must be

checked. The logical OR operation would use a block index scan on c1 for values

less than 4, as well as a RID index scan on c4 for values of 100. A mini-relational

scan is performed on each block that qualifies, because all records within those

blocks will qualify, and any additional RIDs for records outside of those blocks are

retrieved as well.

Example 11:

SELECT FROM t1,d1,d2,d3

 WHERE t1.c1 = d1.c1 and d1.region = ’NY’

 AND t2.c2 = d2.c3 and d2.year=’1994’

 AND t3.c3 = d3.c3 and d3.product=’basketball’

This query involves a star join. In this example, t1 is the fact table and it has

foreign keys c1, c2, and c3, corresponding to the primary keys of d1, d2, and d3,

the dimension tables. The dimension tables do not have to be MDC tables. Region,

year, and product are columns of the respective dimension tables which can be

indexed using regular or block indexes (if the dimension tables are MDC tables).

When accessing the fact table on c1, c2, and c3 values, block index scans of the

dimension block indexes on these columns can be done, followed by a logical

AND operation using the resulting BIDs. When there is a list of blocks, a

mini-relational scan can be done on each block to get the records.

 Density of cells:

 The choices made for the appropriate dimensions and for the extent size are of

critical importance to MDC design. These factors determine the table’s expected

cell density. They are important because an extent is allocated for every existing

cell, regardless of the number of records in the cell. The right choices will take

advantage of block-based indexing and multidimensional clustering, resulting in

performance gains. The goal is to have densely-filled blocks to get the most benefit

from multidimensional clustering, and to get optimal space utilization.

Thus, a very important consideration when designing a multidimensional table is

the expected density of cells in the table, based on present and anticipated data.

You can choose a set of dimensions, based on query performance, that cause the

potential number of cells in the table to be very large, based on the number of

possible values for each of the dimensions. The number of possible cells in the

table is equal to the Cartesian product of the cardinalities of each of the

dimensions. For example, if you cluster the table on dimensions Day, Region and

Product and the data covers 5 years, you might have 1821 days * 12 regions * 5

products = 109 260 different possible cells in the table. Any cell that contains only

a few records will still require an entire block of pages allocated to it, in order to

store the records for that cell. If the block size is large, this table could end up

being much larger than it really needs to be.

There are several design factors that can contribute to optimal cell density:

v Varying the number of dimensions.

v Varying the granularity of one or more dimensions.

v Varying the block (extent) size and page size of the table space.

Carry out the following steps to achieve the best design possible:

1. Identify candidate dimensions.

Chapter 5. Physical database design 195

Determine which queries will benefit from block-level clustering. Examine the

potential workload for columns which have some or all of the following

characteristics:

v Range and equality of any IN-list predicates

v Roll-in or roll-out of data

v Group-by and order-by clauses

v Join clauses (especially in star schema environments).
2. Estimate the number of cells.

Identify how many potential cells are possible in a table organized along a set

of candidate dimensions. Determine the number of unique combinations of the

dimension values that occur in the data. If the table exists, an exact number can

be determined for the current data by simply selecting the number of distinct

values in each of the columns that will be dimensions for the table.

Alternatively, an approximation can be determined if you only have the

statistics for a table, by multiplying the column cardinalities for the dimension

candidates.

Note: If your table is in a partitioned database environment, and the

distribution key is not related to any of the dimensions considered, you

will have to determine an average amount of data per cell by taking all

of the data and dividing by the number of database partitions.

3. Estimate the space occupancy or density.

On average, consider that each cell has one partially-filled block where only a

few rows are stored. There will be more partially-filled blocks as the number of

rows per cell becomes smaller. Also, note that on average (assuming little or no

data skew), the number of records per cell can be found by dividing the

number of records in the table by the number of cells. However, if your table is

in a partitioned database environment, you need to consider how many records

there are per cell on each database partition, as blocks are allocated for data on

a database partition basis. When estimating the space occupancy and density in

a partitioned database environment, you need to consider the number of

records per cell on average on each database partition, not across the entire

table. See the section called “Multidimensional clustering (MDC) table creation,

placement, and use” for more information.

There are several ways to improve the density:

v Reduce the block size so that partially-filled blocks take up less space.

Reduce the size of each block by making the extent size appropriately small.

Each cell that has a partially-filled block, or that contains only one block with

few records on it, wastes less space. The trade-off, however, is that for those

cells having many records, more blocks are needed to contain them. This

increases the number of block identifiers (BIDs) for these cells in the block

indexes, making these indexes larger and potentially resulting in more inserts

and deletes to these indexes as blocks are more quickly emptied and filled. It

also results in more small groupings of clustered data in the table for these

more populated cell values, versus a smaller number of larger groupings of

clustered data.

v Reduce the number of cells by reducing the number of dimensions, or by

increasing the granularity of the cells with a generated column.

You can roll up one or more dimensions to a coarser granularity in order to

give it a lower cardinality. For example, you can continue to cluster the data

in the previous example on Region and Product, but replace the dimension

of Day with a dimension of YearAndMonth. This gives cardinalities of 60 (12

months times 5 years), 12, and 5 for YearAndMonth, Region, and Product,

196 Administration Guide: Planning

with a possible number of cells of 3600. Each cell then holds a greater range

of values and is less likely to contain only a few records.

You should also take into account predicates commonly used on the columns

involved, such as whether many are on Month of Date, or Quarter, or Day.

This affects the desirability of changing the granularity of the dimension. If,

for example, most predicates are on particular days and you have clustered

the table on Month, DB2 Database for Linux, UNIX, and Windows can use

the block index on YearAndMonth to quickly narrow down which months

contain the days desired and access only those associated blocks. When

scanning the blocks, however, the Day predicate must be applied to

determine which days qualify. However, if you cluster on Day (and Day has

high cardinality), the block index on Day can be used to determine which

blocks to scan, and the Day predicate only has to be reapplied to the first

record of each cell that qualifies. In this case, it may be better to consider

rolling up one of the other dimensions to increase the density of cells, as in

rolling up the Region column, which contains 12 different values, to Regions

West, North, South and East, using a user-defined function.

 Related concepts:

v “The Design Advisor” in Performance Guide

v “Multidimensional clustering (MDC) table creation, placement, and use” on page

197

v “Multidimensional clustering tables” on page 172

Multidimensional clustering (MDC) table creation, placement, and use

 There are many factors that should be considered when creating MDC tables. The

following sections discuss how your decisions on how to create, place, and use

your MDC tables could be influenced by your current database environment (for

example, whether you have a partitioned database or not), and by your choices of

dimensions for your MDC table. Also discussed is the DB2 Design Advisor, and

how it can be used to provide advice on some of these issues.

 Moving data from an existing table to a multidimensional clustering (MDC)

table:

 To improve query performance and reduce the overhead of data maintenance

operations in a data warehouse or large database environment, you can move data

from regular tables into multidimensional clustering (MDC) tables. To move data

from an existing table to an MDC table: export your data, drop the original table

(optional), create a multidimensional clustering (MDC) table (using the CREATE

TABLE statement with the ORGANIZE BY DIMENSIONS clause), and load the

MDC table with your data.

An ALTER TABLE procedure called SYSPROC.ALTOBJ can be used to carry out

the translation of data from an existing table to an MDC table. The procedure is

called from the DB2 Design Advisor. The time required to translate the data

between the tables can be significant and depends on the size of the table and the

amount of data that needs to be translated.

The ALTOBJ procedure does the following when altering a table:

v Drop all dependent objects of the table

v Rename the table

v Create the table using the new definition

Chapter 5. Physical database design 197

v Recreate all dependent objects of the table

v Transform existing data in the table into the data required in the new table. That

is, the selecting of data from the old table and loading that data into the new

one where column functions may be used to transform from a old data type to a

new data type.

 Multidimensional clustering (MDC) tables in SMS table spaces:

 If you plan to store MDC tables in an SMS table space, we strongly recommend

that you use multipage file allocation.

Note: Multipage file allocation is the default for newly created databases in

Version 8.2 and later.

The reason for this recommendation is that MDC tables are always extended by

whole extents, and it is important that all the pages in these extents are physically

consecutive. Therefore, there are no space advantage to disabling multipage file

allocation; and furthermore, enabling it will significantly increase the chances that

the pages in each extent are physically consecutive.

 MDC Advisor feature on the DB2 Design Advisor:

 The DB2 Design Advisor (db2advis), formerly known as the Index Advisor, has an

MDC feature. This feature recommends clustering dimensions for use in an MDC

table, including coarsifications on base columns in order to improve workload

performance. The term coarsification refers to a mathematic expression to reduce the

cardinality (the number of distinct values) of a clustering dimension. A common

example of a coarsification is the date where coarsification could be by date, week

of the date, month of the date, or quarter of the year.

A requirement to use the MDC feature of the DB2 Design Advisor is the existence

of at least several extents of data within the database. The DB2 Design Advisor

uses the data to model data density and cardinality.

If the database does not have data in the tables, the DB2 Design Advisor will not

recommend MDC, even if the database contains empty tables but has a mocked up

set of statistics to imply a populated database.

The recommendation includes identifying potential generated columns that define

coarsification of dimensions. The recommendation does not include possible block

sizes. The extent size of the table space is used when making recommendations for

MDC tales. The assumption is that the recommended MDC table will be created in

the same table space as the existing table, and will therefore have the same extent

size. The recommendations for MDC dimensions would change depending on the

extent size of the table space since the extent size impacts the number of records

that can fit into a block or cell. This directly affects the density of the cells.

Only single-column dimensions, and not composite-column dimensions, are

considered, although single or multiple dimensions may be recommended for the

table. The MDC feature will recommend coarsifications for most supported data

types with the goal of reducing the cardinality of cells in the resulting MDC

solution. The data type exceptions include: CHAR, VARCHAR, GRAPHIC, and

VARGRAPH data types. All supported data types are cast to INTEGER and are

coarsified through a generated expression.

198 Administration Guide: Planning

The goal of the MDC feature of the DB2 Design Advisor is to select MDC solutions

that result in improved performance. A secondary goal is to keep the storage

expansion of the database constrained to a modest level. A statistical method is

used to determine the maximum storage expansion on each table.

The analysis operation within the advisor includes not only the benefits of block

index access but also the impact of MDC on insert, update, and delete operations

against dimensions of the table. These actions on the table have the potential to

cause records to be moved between cells. The analysis operation also models the

potential performance impact of any table expansion resulting from the

organization of data along particular MDC dimensions.

The MDC feature is enabled using the -m <advise type> flag on the db2advis

utility. The “C” advise type is used to indicate multidimensional clustering tables.

The advise types are: “I” for index, “M” for materialized query tables, “C” for

MDC, and “P” for partitioned database environment. The advise types can be used

in combination with each other.

Note: The DB2 Design Advisor will not explore tables that are less than 12 extents

in size.

The advisor will analyze both MQTs and regular base tables when coming up with

recommendations.

The output from the MDC feature includes:

v Generated column expressions for each table for coarsified dimensions that

appear in the MDC solution.

v An ORGANIZE BY clause recommended for each table.

The recommendations are reported both to stdout and to the ADVISE tables that

are part of the explain facility.

 Multidimensional clustering (MDC) tables and a partitioned database

environment:

 Multidimensional clustering can be used in conjunction with a partitioned database

environment. In fact, MDC can complement a partitioned database environment. A

partitioned database environment is used to distribute data from a table across

multiple physical or logical nodes in order to:

v Take advantage of multiple machines to increase processing requests in parallel.

v Increase the physical size of the table beyond a single database partition’s limits.

v Improve the scalability of the database.

The reason for distributing a table is independent of whether the table is an MDC

table or a regular table. For example, the rules for the selection of columns to make

up the distribution key are the same. The distribution key for an MDC table can

involve any column, whether those columns make up part of a dimension of the

table or not.

If the distribution key is identical to a dimension from the table, then each

database partition will contain a different portion of the table. For instance, if our

example MDC table is distributed by color across two database partitions, then the

Color column will be used to divide the data. As a result, the Red and Blue slices

may be found on one database partition and the Yellow slice on the other. If the

distribution key is not identical to the dimensions from the table, then each

Chapter 5. Physical database design 199

database partition will have a subset of data from each slice. When choosing

dimensions and estimating cell occupancy (see the section called “Density of

cells”), note that on average the total amount of data per cell is determined by

taking all of the data and dividing by the number of database partitions.

 Multidimensional clustering (MDC) tables with multiple dimensions:

 If you know that certain predicates will be heavily used in queries, you can cluster

the table on the columns involved, using the ORGANIZE BY DIMENSIONS clause.

Example 1:

CREATE TABLE T1 (c1 DATE, c2 INT, c3 INT, c4 DOUBLE)

 ORGANIZE BY DIMENSIONS (c1, c3, c4)

The table in Example 1 is clustered on the values within three native columns

forming a logical cube (that is, having three dimensions). The table can now be

logically sliced up during query processing on one or more of these dimensions

such that only the blocks in the appropriate slices or cells will be processed by the

relational operators involved. Note that the size of a block (the number of pages)

will be the extent size of the table.

 Multidimensional clustering (MDC) tables with dimensions based on more than

one column:

 Each dimension can be made up of one or more columns. As an example, you can

create a table that is clustered on a dimension containing two columns.

Example 2:

CREATE TABLE T1 (c1 DATE, c2 INT, c3 INT, c4 DOUBLE)

 ORGANIZE BY DIMENSIONS (c1, (c3, c4))

In Example 2, the table will be clustered on two dimensions, c1 and (c3,c4). Thus,

in query processing, the table can be logically sliced up on either the c1 dimension,

or on the composite (c3, c4) dimension. The table will have the same number of

blocks as the table in Example 1, but one less dimension block index. In Example

1, there will be three dimension block indexes, one for each of the columns c1, c3,

and c4. In Example 2, there will be two dimension block indexes, one on the

column c1 and the other on the columns c3 and c4. The main differences between

these two approaches is that, in Example 1, queries involving just c4 can use the

dimension block index on c4 to quickly and directly access blocks of relevant data.

In Example 2, c4 is a second key part in a dimension block index, so queries

involving just c4 involve more processing. However, in Example 2 DB2 Database

for Linux, UNIX, and Windows will have one less block index to maintain and

store.

The DB2 Design Advisor does not make recommendations for dimensions

containing more than one column.

 Multidimensional clustering (MDC) tables with column expressions as

dimensions:

 Column expressions can also be used for clustering dimensions. The ability to

cluster on column expressions is useful for rolling up dimensions to a coarser

granularity, such as rolling up an address to a geographic location or region, or

rolling up a date to a week, month, or year. In order to implement the rolling up

of dimensions in this way, you can use generated columns. This type of column

200 Administration Guide: Planning

definition will allow the creation of columns using expressions that can represent

dimensions. In Example 3, the statement creates a table clustered on one base

column and two column expressions.

Example 3:

CREATE TABLE T1(c1 DATE, c2 INT, c3 INT, c4 DOUBLE,

 c5 DOUBLE GENERATED ALWAYS AS (c3 + c4),

 c6 INT GENERATED ALWAYS AS (MONTH(C1))

 ORGANIZE BY DIMENSIONS (c2, c5, c6)

In Example 3, column c5 is an expression based on columns c3 and c4, while

column c6 rolls up column c1 to a coarser granularity in time. This statement will

cluster the table based on the values in columns c2, c5, and c6.

 Range queries on a generated column dimension require monotonic column

functions:

 Expressions must be monotonic to derive range predicates for dimensions on

generated columns. If you create a dimension on a generated column, queries on

the base column will be able to take advantage of the block index on the generated

column to improve performance, with one exception. For range queries on the base

column (date, for example) to use a range scan on the dimension block index, the

expression used to generate the column in the CREATE TABLE statement must be

monotonic. Although a column expression can include any valid expression

(including user-defined functions (UDFs)), if the expression is non-monotonic, only

equality or IN predicates are able to use the block index to satisfy the query when

these predicates are on the base column.

As an example, assume that we create an MDC table with dimensions on the

generated column month, where month = INTEGER (date)/100. For queries on the

dimension (month), block index scans can be done. For queries on the base column

(date), block index scans can also be done to narrow down which blocks to scan,

and then apply the predicates on date to the rows in those blocks only.

The compiler generates additional predicates to be used in the block index scan.

For example, with the query:

 SELECT * FROM MDCTABLE WHERE DATE > "19999/03/03" AND DATE < "2000/01/15"

the compiler generates the additional predicates: “month >= 199903” and “month <

200001” which can be used as predicates for a dimension block index scan. When

scanning the resulting blocks, the original predicates are applied to the rows in the

blocks.

A non-monotonic expression will only allow equality predicates to be applied to

that dimension. A good example of a non-monotonic function is MONTH() as

seen in the definition of column c6 in Example 3. If the c1 column is a date,

timestamp, or valid string representation of a date or timestamp, then the function

returns an integer value in the range of 1 to 12. Even though the output of the

function is deterministic, it actually produces output similar to a step function (that

is, a cyclic pattern):

MONTH(date(’99/01/05’)) = 1

MONTH(date(’99/02/08’)) = 2

MONTH(date(’99/03/24’)) = 3

MONTH(date(’99/04/30’)) = 4

...

Chapter 5. Physical database design 201

MONTH(date(’99/12/09’)) = 12

MONTH(date(’00/01/18’)) = 1

MONTH(date(’00/02/24’)) = 2

...

Although date in this example is continually increasing, MONTH(date) is not.

More specifically, it is not guaranteed that whenever date1 is larger than date2,

MONTH(date1) is greater than or equal to MONTH(date2). It is this condition that

is required for monotonicity. This non-monotonicity is allowed, but it limits the

dimension in that a range predicate on the base column cannot generate a range

predicate on the dimension. However, a range predicate on the expression is fine,

for example, where month(c1) between 4 and 6. This can use the index on the

dimension in the usual way, with a starting key of 4 and a stop key of 6.

To make this function monotonic, you would have to include the year as the high

order part of the month. DB2 V9.1 provides an extension to the INTEGER built-in

function to help in defining a monotonic expression on date. INTEGER(date)

returns an integer representation of the date, which then can be divided to find an

integer representation of the year and month. For example, INTEGER(date(’2000/
05/24’)) returns 20000524, and therefore INTEGER(date(’2000/05/24’))/100 =

200005. The function INTEGER(date)/100 is monotonic.

Similarly, the built-in functions DECIMAL and BIGINT also have extensions so that

you can derive monotonic functions. DECIMAL(timestamp) returns a decimal

representation of a timestamp, and this can be used in monotonic expressions to

derive increasing values for month, day, hour, minute, and so on. BIGINT(date)

returns a big integer representation of the date, similar to INTEGER(date).

DB2 will determine the monotonicity of an expression, where possible, when

creating the generated column for the table, or when creating a dimension from an

expression in the dimensions clause. Certain functions can be recognized as

monotonicity-preserving, such as DATENUM(), DAYS(), YEAR(). Also, various

mathematical expressions such as division, multiplication, or addition of a column

and a constant are monotonicity-preserving. Where DB2 determines that an

expression is not monotonicity-preserving, or if it cannot determine this, the

dimension will only support the use of equality predicates on its base column.

 Related concepts:

v “Multidimensional clustering considerations when loading data” in Data

Movement Utilities Guide and Reference

v “Designing multidimensional clustering (MDC) tables” on page 189

v “Extent size” on page 144

v “Multidimensional clustering tables” on page 172

 Related tasks:

v “Defining dimensions on a table” in Administration Guide: Implementation

 Related reference:

v “CREATE TABLE statement” in SQL Reference, Volume 2

v “db2empfa - Enable multipage file allocation command” in Command Reference

202 Administration Guide: Planning

Chapter 6. Designing partitioned databases

This chapter discusses issues related to managing transactions when working with

partitioned databases. Updating a single database is discussed first. This is

followed by a discussion of more complex considerations associated with

transactions that use multiple databases. The concept of transaction managers is

also introduced, as well as considerations regarding updating a database from a

host or iSeries. This chapter also discusses two-phase commit when managing a

multi-site update and error recovery when working with transactions using

two-phase commit.

Updating a single database in a transaction

 The simplest form of transaction is to read from and write to only one database

within a single unit of work. This type of database access is called a remote unit of

work.

 Figure 60 shows a database client running a funds transfer application that accesses

a database containing checking and savings account tables, as well as a banking

fee schedule. The application must:

v Accept the amount to transfer from the user interface

v Subtract the amount from the savings account, and determine the new balance

v Read the fee schedule to determine the transaction fee for a savings account

with the given balance

v Subtract the transaction fee from the savings account

v Add the amount of the transfer to the checking account

v Commit the transaction (unit of work).

 Procedure:

 To set up such an application, you must do the following as part of the

preparation to carry out the transaction within the environment:

1. Create the tables for the savings account, checking account and banking fee

schedule in the same database

Figure 60. Using a single database in a transaction

© Copyright IBM Corp. 1993, 2006 203

2. If physically remote, set up the database server to use the appropriate

communications protocol

3. If physically remote, catalog the node and the database to identify the database

on the database server

4. Precompile your application program to specify a type 1 connection; that is,

specify CONNECT 1 (the default) on the PRECOMPILE PROGRAM command.

 Related concepts:

v “Units of work” on page 22

 Related tasks:

v “Updating a single database in a multi-database transaction” on page 204

v “Updating multiple databases in a transaction” on page 205

 Related reference:

v “PRECOMPILE command” in Command Reference

Using multiple databases in a single transaction

When using multiple databases in a single transaction, the requirements for setting

up and administering your environment are different depending on the number of

databases that are being updated in the transaction. The following topics discuss

these requirements.

Updating a single database in a multi-database transaction

 If your data is distributed across multiple databases, you may wish to update one

database while reading from one or more other databases. This type of access can

be performed within a single unit of work (transaction).

 Figure 61 shows a database client running a funds transfer application that accesses

two database servers: one containing the checking and savings accounts, and

another containing the banking or transaction fee payment table.

 Procedure:

Database client

Update

Read Transaction fee

Database

Savings account

Database

Checking account

Update

Figure 61. Using multiple databases in a single transaction

204 Administration Guide: Planning

To set up a funds transfer application for this environment, you must:

1. Create the necessary tables in the appropriate databases

2. If physically remote, set up the database servers to use the appropriate

communications protocols

3. If physically remote, catalog the nodes and the databases to identify the

databases on the database servers

4. Precompile your application program to specify a type 2 connection (that is,

specify CONNECT 2 on the PRECOMPILE PROGRAM command), and

one-phase commit (that is, specify SYNCPOINT ONEPHASE on the

PRECOMPILE PROGRAM command).

If databases are located on a host or iSeries database server, you require DB2

Connect™ for connectivity to these servers.

 Related concepts:

v “Units of work” on page 22

 Related tasks:

v “Updating a single database in a transaction” on page 203

v “Updating multiple databases in a transaction” on page 205

 Related reference:

v “PRECOMPILE command” in Command Reference

Updating multiple databases in a transaction

 If your data is distributed across multiple databases, you may want to read and

update several databases in a single transaction. This type of database access is

called a multisite update.

Transaction fee

Database

Checking account

Database

Savings account

Database

Database client

Update

Update

Read

Figure 62. Updating multiple databases in a single transaction

Chapter 6. Designing partitioned databases 205

Figure 62 on page 205 shows a database client running a funds transfer application

that accesses three database servers: one containing the checking account, another

containing the savings account, and the third containing the banking fee schedule.

 Procedure:

 To set up a funds transfer application for this environment, you have two options:

1. With the DB2 transaction manager (TM):

a. Create the necessary tables in the appropriate databases

b. If physically remote, set up the database servers to use the appropriate

communications protocols

c. If physically remote, catalog the nodes and the databases to identify the

databases on the database servers

d. Precompile your application program to specify a type 2 connection (that is,

specify CONNECT 2 on the PRECOMPILE PROGRAM command), and

two-phase commit (that is, specify SYNCPOINT TWOPHASE on the

PRECOMPILE PROGRAM command)

e. Configure the DB2 transaction manager (TM).
2. Using an XA-compliant transaction manager:

a. Create the necessary tables in the appropriate databases

b. If physically remote, set up the database servers to use the appropriate

communications protocols

c. If physically remote, catalog the nodes and the databases to identify the

databases on the database servers

d. Precompile your application program to specify a type 2 connection (that is,

specify CONNECT 2 on the PRECOMPILE PROGRAM command), and

one-phase commit (that is, specify SYNCPOINT ONEPHASE on the

PRECOMPILE PROGRAM command)

e. Configure the XA-compliant transaction manager to use the DB2 databases.

 Related concepts:

v “DB2 transaction manager” on page 206

v “Units of work” on page 22

 Related tasks:

v “Updating a single database in a multi-database transaction” on page 204

v “Updating a single database in a transaction” on page 203

 Related reference:

v “PRECOMPILE command” in Command Reference

DB2 transaction manager

 The DB2 Database for Linux, UNIX, and Windows transaction manager (TM)

assigns identifiers to transactions, monitors their progress, and takes responsibility

for transaction completion and failure. The DB2 database system and DB2 Connect

provide a transaction manager. The DB2 TM stores transaction information in the

designated TM database.

The database manager provides transaction manager functions that can be used to

coordinate the updating of several databases within a single unit of work. The

206 Administration Guide: Planning

database client automatically coordinates the unit of work, and uses a transaction

manager database to register each transaction and track its completion status.

You can use the DB2 transaction manager with DB2 databases. If you have

resources other than DB2 databases that you want to participate in a two-phase

commit transaction, you can use an XA-compliant transaction manager.

 Related concepts:

v “DB2 Database transaction manager configuration” on page 207

v “Two-phase commit” on page 210

v “Units of work” on page 22

DB2 Database transaction manager configuration

 If you are using an XA-compliant transaction manager, such as IBM® WebSphere®,

BEA Tuxedo, or Microsoft Transaction Server, you should follow the configuration

instructions for that product.

When using DB2 Database for Linux, UNIX, and Windows to coordinate your

transactions, you must fulfill certain configuration requirements. Configuration is

straightforward if you use TCP/IP exclusively for communications and DB2

Database for Linux, UNIX, and Windows or DB2 Universal Database for iSeries V5,

z/OS or OS/390 are the only database servers involved in your transactions.

DB2 Connect no longer supports SNA two phase commit access to host or iSeries

servers.

DB2 Database for Linux, UNIX, and Windows and DB2 Universal

Database for z/OS, OS/390, and iSeries V5 using TCP/IP

Connectivity

If each of the following statements is true for your environment, the configuration

steps for multisite update are straightforward.

v All communications with remote database servers (including DB2 UDB for

z/OS, OS/390, and iSeries V5) use TCP/IP exclusively.

v DB2 Database for Linux, UNIX, and Windows or DB2 Universal Database for

z/OS, OS/390 or iSeries V5 are the only database servers involved in the

transaction.

The database that will be used as the transaction manager database is determined

at the database client by the database manager configuration parameter

tm_database. Consider the following factors when setting this configuration

parameter:

v The transaction manager database can be:

– A DB2 Universal Database for UNIX or Windows Version 8 database

– A DB2 for z/OS and OS/390 Version 7 database or a DB2 for OS/390 Version

5 or 6 database

– A DB2 for iSeries V5 database

DB2 for z/OS, OS/390, and iSeries V5 are the recommended database servers

to use as the transaction manager database. z/OS, OS/390, and iSeries V5

systems are, generally, more secure than workstation servers, reducing the

possibility of accidental power downs, reboots, and so on. Therefore the

recovery logs, used in the event of resynchronization, are more secure.

Chapter 6. Designing partitioned databases 207

v If a value of 1ST_CONN is specified for the tm_database configuration parameter,

the first database to which an application connects is used as the transaction

manager database.

Care must be taken when using 1ST_CONN. You should only use this

configuration if it is easy to ensure that all involved databases are cataloged

correctly; that is, if the database client initiating the transaction is in the same

instance that contains the participating databases, including the transaction

manager database.

v If using TCP/IP version 6. The IP address is created depending on the operating

system configuration mode choosen.

v If using Auto Configuration mode. The MAC address is extracted from the IPv6

address and is used within the internal DB2 Coordinator’s Unit of Work

Identifier. No configuration changes are required.

v If using Manual Configuration mode. The internal DB2 Coordinator’s Unit of

Work Identifier is created using the last 6 bytes of the IPv6 address. To prevent

collision, the user must ensure that the last 6 bytes of the IPv6 addresses within

the network are unique.

Notes:

1. DB2 Coordinator is the DB2 client and configuration changes must be

performed on the system where the DB2 client exists.

2. If your application attempts to disconnect from the database being used as the

transaction manager database, you will receive a warning message, and the

connection will be held until the unit of work is committed.

Configuration parameters for transaction managers

You should consider the following configuration parameters when you are setting

up your environment to support transaction managers.

Database Manager Configuration Parameters

v tm_database

This parameter identifies the name of the Transaction Manager (TM) database

for each DB2 instance.

v spm_name

This parameter identifies the name of the DB2 Connect sync point manager

instance to the database manager. For resynchronization to be successful, the

name must be unique across your network.

v resync_interval

This parameter identifies the time interval (in seconds) after which the DB2

Transaction Manager, the DB2 server database manager, and the DB2 Connect

sync point manager or the DB2 sync point manager should retry the recovery of

any outstanding indoubt transactions.

v spm_log_file_sz

This parameter specifies the size (in 4 KB pages) of the SPM log file.

v spm_max_resync

This parameter identifies the number of agents that can simultaneously perform

resynchronization operations.

v spm_log_path

This parameter identifies the log path for the SPM log files.

Database Configuration Parameters

v maxappls

208 Administration Guide: Planning

This parameter specifies the maximum permitted number of active applications.

Its value must be equal to or greater than the sum of the connected applications,

plus the number of these applications that may be concurrently in the process of

completing a two-phase commit or rollback, plus the anticipated number of

indoubt transactions that might exist at any one time.

v autorestart

This database configuration parameter specifies whether the RESTART

DATABASE routine will be invoked automatically when needed. The default

value is YES (that is, enabled).

A database containing indoubt transactions requires a restart database operation

to start up. If autorestart is not enabled when the last connection to the database

is dropped, the next connection will fail and require an explicit RESTART

DATABASE invocation. This condition will exist until the indoubt transactions

have been removed, either by the transaction manager’s resynchronization

operation, or through a heuristic operation initiated by the administrator. When

the RESTART DATABASE command is issued, a message is returned if there are

any indoubt transactions in the database. The administrator can then use the

LIST INDOUBT TRANSACTIONS command and other Command Line

Processor (CLP) commands to find get information about those indoubt

transactions.

 Related concepts:

v “DB2 transaction manager” on page 206

 Related tasks:

v “Configuring BEA Tuxedo” on page 238

v “Configuring IBM TXSeries CICS” on page 236

v “Configuring IBM TXSeries Encina” on page 236

v “Configuring IBM WebSphere Application Server” on page 236

 Related reference:

v “autorestart - Auto restart enable configuration parameter” in Performance Guide

v “maxappls - Maximum number of active applications configuration parameter”

in Performance Guide

v “spm_log_path - Sync point manager log file path configuration parameter” in

Performance Guide

v “spm_log_file_sz - Sync point manager log file size configuration parameter” in

Performance Guide

v “spm_name - Sync point manager name configuration parameter” in Performance

Guide

v “spm_max_resync - Sync point manager resync agent limit configuration

parameter” in Performance Guide

v “tm_database - Transaction manager database name configuration parameter” in

Performance Guide

v “resync_interval - Transaction resync interval configuration parameter” in

Performance Guide

Chapter 6. Designing partitioned databases 209

Updating a database from a host or iSeries client

 Applications executing on host or iSeries clients can access data residing on DB2

Database for Linux, UNIX, and Windows database servers. TCP/IP is the only

protocol used for this access. DB2 Database for Linux, UNIX, and Windows servers

on all platforms no longer support SNA access from remote clients.

Previous to version 8, TCP/IP access from host or iSeries clients only supported

one-phase commit access. DB2 Database for Linux, UNIX, and Windows now

allows TCP/IP two-phase commit access from host or iSeries clients. There is no

need to use the Syncpoint Manager (SPM) when using TCP/IP two-phase commit

access.

The DB2 TCP/IP listener must be active on the server to be accessed by the host or

iSeries client. You can check that the TCP/IP listener is active by using the db2set

command to validate that the registry variable DB2COMM has a value of “tcpip”;

and that the database manager configuration parameter svcename is set to the

service name by using the GET DBM CFG command. If the listener is not active, it

can be made active by using the db2set command and the UPDATE DBM CFG

command.

 Related reference:

v “spm_name - Sync point manager name configuration parameter” in Performance

Guide

v “Communications variables” in Performance Guide

Two-phase commit

 Figure 63 on page 211 illustrates the steps involved in a multisite update.

Understanding how a transaction is managed will help you to resolve the problem

if an error occurs during the two-phase commit process.

210 Administration Guide: Planning

�0� The application is prepared for two-phase commit. This can be

accomplished through precompilation options. This can also be

accomplished through DB2 Database for Linux, UNIX, and Windows CLI

(Call Level Interface) configuration.

�1� When the database client wants to connect to the SAVINGS_DB database,

it first internally connects to the transaction manager (TM) database. The

TM database returns an acknowledgment to the database client. If the

database manager configuration parameter tm_database is set to 1ST_CONN,

SAVINGS_DB becomes the transaction manager database for the duration

of this application instance.

�2� The connection to the SAVINGS_DB database takes place and is

acknowledged.

Client
Savings
account

Checking
account

Transaction
fee

Transaction
manager

Connect

Connect

Connect

Update

Commit

Connect

Update

Select

Update

11

2

3
4

5

7

9

10

13

12

1

6

8

Figure 63. Updating multiple databases

Chapter 6. Designing partitioned databases 211

�3� The database client begins the update to the SAVINGS_ACCOUNT table.

This begins the unit of work. The TM database responds to the database

client, providing a transaction ID for the unit of work. Note that the

registration of a unit of work occurs when the first SQL statement in the

unit of work is run, not during the establishment of a connection.

�4� After receiving the transaction ID, the database client registers the unit of

work with the database containing the SAVINGS_ACCOUNT table. A

response is sent back to the client to indicate that the unit of work has

been registered successfully.

�5� SQL statements issued against the SAVINGS_DB database are handled in

the normal manner. The response to each statement is returned in the

SQLCA when working with SQL statements embedded in a program.

�6� The transaction ID is registered at the FEE_DB database containing the

TRANSACTION_FEE table, during the first access to that database within

the unit of work.

�7� Any SQL statements against the FEE_DB database are handled in the

normal way.

�8� Additional SQL statements can be run against the SAVINGS_DB database

by setting the connection, as appropriate. Since the unit of work has

already been registered with the SAVINGS_DB database �4�, the database

client does not need to perform the registration step again.

�9� Connecting to, and using the CHECKING_DB database follows the same

rules described in �6� and �7�.

�10� When the database client requests that the unit of work be committed, a

prepare message is sent to all databases participating in the unit of work.

Each database writes a ″PREPARED″ record to its log files, and replies to

the database client.

�11� After the database client receives a positive response from all of the

databases, it sends a message to the transaction manager database,

informing it that the unit of work is now ready to be committed

(PREPARED). The transaction manager database writes a ″PREPARED″

record to its log file, and sends a reply to inform the client that the second

phase of the commit process can be started.

�12� During the second phase of the commit process, the database client sends a

message to all participating databases to tell them to commit. Each

database writes a ″COMMITTED″ record to its log file, and releases the

locks that were held for this unit of work. When the database has

completed committing the changes, it sends a reply to the client.

�13� After the database client receives a positive response from all participating

databases, it sends a message to the transaction manager database,

informing it that the unit of work has been completed. The transaction

manager database then writes a ″COMMITTED″ record to its log file,

indicating that the unit of work is complete, and replies to the client,

indicating that it has finished.

 Related concepts:

v “DB2 transaction manager” on page 206

v “Units of work” on page 22

212 Administration Guide: Planning

Error recovery during two-phase commit

 Recovering from error conditions is a normal task associated with application

programming, system administration, database administration and system

operation. Distributing databases over several remote servers increases the

potential for error resulting from network or communications failures. To ensure

data integrity, the database manager provides the two-phase commit process. The

following explains how the database manager handles errors during the two-phase

commit process:

v First Phase Error

If a database communicates that it has failed to prepare to commit the unit of

work, the database client will roll back the unit of work during the second phase

of the commit process. A prepare message will not be sent to the transaction

manager database in this case.

During the second phase, the client sends a rollback message to all participating

databases that successfully prepared to commit during the first phase. Each

database then writes an ″ABORT″ record to its log file, and releases the locks

that were held for this unit of work.

v Second Phase Error

Error handling at this stage is dependent upon whether the second phase will

commit or roll back the transaction. The second phase will only roll back the

transaction if the first phase encountered an error.

If one of the participating databases fails to commit the unit of work (possibly

due to a communications failure), the transaction manager database will retry

the commit on the failed database. The application, however, will be informed

that the commit was successful through the SQLCA. DB2 Database for Linux,

UNIX, and Windows will ensure that the uncommitted transaction in the

database server is committed. The database manager configuration parameter

resync_interval is used to specify how long the transaction manager database

should wait between attempts to commit the unit of work. All locks are held at

the database server until the unit of work is committed.

If the transaction manager database fails, it will resynchronize the unit of work

when it is restarted. The resynchronization process will attempt to complete all

indoubt transactions; that is, those transactions that have finished the first phase,

but have not completed the second phase of the commit process. The database

manager associated with the transaction manager database performs the

resynchronization by:

1. Connecting to the databases that indicated they were ″PREPARED″ to

commit during the first phase of the commit process.

2. Attempting to commit the indoubt transactions at those databases. (If the

indoubt transactions cannot be found, the database manager assumes that

the database successfully committed the transactions during the second

phase of the commit process.)

3. Committing the indoubt transactions in the transaction manager database,

after all indoubt transactions have been committed in the participating

databases.
If one of the participating databases fails and is restarted, the database manager

for this database will query the transaction manager database for the status of

this transaction, to determine whether the transaction should be rolled back. If

the transaction is not found in the log, the database manager assumes that the

transaction was rolled back, and will roll back the indoubt transaction in this

database. Otherwise, the database waits for a commit request from the

transaction manager database.

Chapter 6. Designing partitioned databases 213

If the transaction was coordinated by a transaction processing monitor

(XA-compliant transaction manager), the database will always depend on the TP

monitor to initiate the resynchronization.

If, for some reason, you cannot wait for the transaction manager to automatically

resolve indoubt transactions, there are actions you can take to manually resolve

them. This manual process is sometimes referred to as ″making a heuristic

decision″.

Error recovery if autorestart=off

If the autorestart database configuration parameter is set to OFF, and there are

indoubt transactions in either the TM or RM databases, the RESTART DATABASE

command is required to start the resynchronization process. When issuing the

RESTART DATABASE command from the command line processor, use different

sessions. If you restart a different database from the same session, the connection

established by the previous invocation will be dropped, and must be restarted once

again. Issue the TERMINATE command to drop the connection after no more

indoubt transactions are returned by the LIST INDOUBT TRANSACTIONS

command.

 Related concepts:

v “Two-phase commit” on page 210

 Related tasks:

v “Resolving indoubt transactions manually” on page 227

 Related reference:

v “autorestart - Auto restart enable configuration parameter” in Performance Guide

v “LIST INDOUBT TRANSACTIONS command” in Command Reference

v “RESTART DATABASE command” in Command Reference

v “TERMINATE command” in Command Reference

214 Administration Guide: Planning

Chapter 7. Designing for XA-compliant transaction managers

You may want to use your databases with an XA-compliant transaction manager if

you have resources other than DB2 databases that you want to participate in a

two-phase commit transaction. If your transactions only access DB2 databases, you

should use the DB2 transaction manager, described in “Updating multiple

databases in a transaction” on page 205.

The topics in this chapter will assist you in using the database manager with an

XA-compliant transaction manager, such as IBM WebSphere or BEA Tuxedo.

If you are looking for information about Microsoft Transaction Server, see the Call

Level Interface Guide and Reference, Volume 1.

If you are using an XA-compliant transaction manager, or are implementing one,

more information is available from our technical support web site:

http://www.ibm.com/software/data/db2/udb/winos2unix/support

Once there, choose ″DB2″, then search the web site using the keyword ″XA″ for the

latest available information on XA-compliant transaction managers.

X/Open distributed transaction processing model

 The X/Open Distributed Transaction Processing (DTP) model includes three

interrelated components:

v Application program (AP)

v Transaction manager (TM)

v Resources managers (RM)

Figure 64 on page 216 illustrates this model, and shows the relationship among

these components.

© Copyright IBM Corp. 1993, 2006 215

http://www.ibm.com/software/data/db2/library/

Application program (AP)

The application program (AP) defines transaction boundaries, and defines the

application-specific actions that make up the transaction.

For example, a CICS® application program might want to access resource managers

(RMs), such as a database and a CICS Transient Data Queue, and use

programming logic to manipulate the data. Each access request is passed to the

appropriate resource managers through function calls specific to that RM. In the

case of DB2 products, these could be function calls generated by the DB2 database

precompiler for each SQL statement, or database calls coded directly by the

programmer using the APIs.

A transaction manager (TM) product usually includes a transaction processing (TP)

monitor to run the user application. The TP monitor provides APIs to allow an

application to start and end a transaction, and to perform application scheduling

and load balancing among the many users who want to run the application. The

application program in a distributed transaction processing (DTP) environment is

really a combination of the user application and the TP monitor.

To facilitate an efficient online transaction processing (OLTP) environment, the TP

monitor pre-allocates a number of server processes at startup, and then schedules

and reuses them among the many user transactions. This conserves system

resources, by allowing more concurrent users to be supported with a smaller

number of server processes and their corresponding RM processes. Reusing these

processes also avoids the overhead of starting up a process in the TM and RMs for

each user transaction or program. (A program invokes one or more transactions.)

This also means that the server processes are the actual ″user processes″ to the TM

and the RMs. This has implications for security administration and application

programming.

The following types of transactions are possible from a TP monitor:

1 - AP uses resources from a set of RMs
2 - AP defines transaction boundaries through

TM interfaces
3 - TM and RMs exchange transaction information

Legend

Resource
managers (RMs)

Transaction
manager (TM)

1 2

3

Application program (AP)

Figure 64. X/Open distributed transaction processing (DTP) model

216 Administration Guide: Planning

v Non-XA transactions

These transactions involve RMs that are not defined to the TM, and are therefore

not coordinated under the two-phase commit protocol of the TM. This might be

necessary if the application needs to access an RM that does not support the XA

interface. The TP monitor simply provides efficient scheduling of applications

and load balancing. Since the TM does not explicitly ″open″ the RM for XA

processing, the RM treats this application as any other application that runs in a

non-DTP environment.

v Global transactions

These transactions involve RMs that are defined to the TM, and are under the

TM’s two-phase commit control. A global transaction is a unit of work that

could involve one or more RMs. A transaction branch is the part of work between

a TM and an RM that supports the global transaction. A global transaction could

have multiple transaction branches when multiple RMs are accessed through one

or more application processes that are coordinated by the TM.

Loosely coupled global transactions exist when each of a number of application

processes accesses the RMs as if they are in a separate global transaction, but

those applications are under the coordination of the TM. Each application

process will have its own transaction branch within an RM. When a commit or

rollback is requested by any one of the APs, TM, or RMs, the transaction

branches are completed altogether. It is the application’s responsibility to ensure

that resource deadlock does not occur among the branches. (Note that the

transaction coordination performed by the DB2 transaction manager for

applications prepared with the SYNCPOINT(TWOPHASE) option is roughly

equivalent to these loosely coupled global transactions.

Tightly coupled global transactions exist when multiple application processes

take turns to do work under the same transaction branch in an RM. To the RM,

the two application processes are a single entity. The RM must ensure that

resource deadlock does not occur within the transaction branch.

Transaction manager (TM)

The transaction manager (TM) assigns identifiers to transactions, monitors their

progress, and takes responsibility for transaction completion and failure. The

transaction branch identifiers (known as XIDs) are assigned by the TM to identify

both the global transaction, and the specific branch within an RM. This is the

correlation token between the log in a TM and the log in an RM. The XID is

needed for two-phase commit, or rollback, to perform the resynchronization

operation (also known as a resync) on system startup, or to let the administrator

perform a heuristic operation (also known as manual intervention), if necessary.

After a TP monitor is started, it asks the TM to open all the RMs that a set of

application servers have defined. The TM passes xa_open calls to the RMs, so that

they can be initialized for DTP processing. As part of this startup procedure, the

TM performs a resync to recover all indoubt transactions. An indoubt transaction is

a global transaction that was left in an uncertain state. This occurs when the TM

(or at least one RM) becomes unavailable after successfully completing the first

phase (that is, the prepare phase) of the two-phase commit protocol. The RM will

not know whether to commit or roll back its branch of the transaction until the TM

can reconcile its own log with the RM logs when they become available again. To

perform the resync operation, the TM issues a xa_recover call one or more times to

each of the RMs to identify all the indoubt transactions. The TM compares the

replies with the information in its own log to determine whether it should inform

the RMs to xa_commit or xa_rollback those transactions. If an RM has already

Chapter 7. Designing for XA-compliant transaction managers 217

committed or rolled back its branch of an indoubt transaction through a heuristic

operation by its administrator, the TM issues an xa_forget call to that RM to

complete the resync operation.

When a user application requests a commit or a rollback, it must use the API

provided by the TP monitor or TM, so that the TM can coordinate the commit and

rollback among all the RMs involved. For example, when a CICS application issues

the CICS SYNCPOINT request to commit a transaction, the CICS XA TM

(implemented in the Encina Server) will in turn issue XA calls, such as xa_end,

xa_prepare, xa_commit, or xa_rollback to request the RM to commit or roll back

the transaction. The TM could choose to use one-phase instead of two-phase

commit if only one RM is involved, or if an RM replies that its branch is read-only.

Resource managers (RM)

A resource manager (RM) provides access to shared resources, such as databases.

The DB2 system, as resource manager of a database, can participate in a global

transaction that is being coordinated by an XA-compliant TM. As required by the

XA interface, the database manager provides a db2xa_switch external C variable of

type xa_switch_t to return the XA switch structure to the TM. This data structure

contains the addresses of the various XA routines to be invoked by the TM, and

the operating characteristics of the RM.

There are two methods by which the RM can register its participation in each

global transaction: static registration and dynamic registration:

v Static registration requires the TM to issue (for every transaction) the xa_start,

xa_end, and xa_prepare series of calls to all the RMs defined for the server

application, regardless of whether a given RM is used by the transaction. This is

inefficient if not every RM is involved in every transaction, and the degree of

inefficiency is proportional to the number of defined RMs.

v Dynamic registration (used by DB2) is flexible and efficient. An RM registers

with the TM using an ax_reg call only when the RM receives a request for its

resource. Note that there is no performance disadvantage with this method, even

when there is only one RM defined, or when every RM is used by every

transaction, because the ax_reg and the xa_start calls have similar paths in the

TM.

The XA interface provides two-way communication between a TM and an RM. It is

a system-level interface between the two DTP software components, not an

ordinary application program interface to which an application developer codes.

However, application developers should be familiar with the programming

restrictions that the DTP software components impose.

Although the XA interface is invariant, each XA-compliant TM may have

product-specific ways of integrating an RM. For information about integrating your

DB2 product as a resource manager with a specific transaction manager, see the

appropriate TM product documentation.

 Related concepts:

v “Security considerations for XA transaction managers” on page 231

v “X/Open XA Interface programming considerations” in Developing SQL and

External Routines

v “XA function supported by DB2 Database for Linux, UNIX, and Windows” on

page 233

218 Administration Guide: Planning

Related tasks:

v “Updating multiple databases in a transaction” on page 205

Resource manager setup

 Each database is defined as a separate resource manager (RM) to the transaction

manager (TM), and the database must be identified with an xa_open string.

When setting up a database as a resource manager, you do not need the xa_close

string. If provided, this string will be ignored by the database manager.

Database connection considerations

Automatic client reroute (ACR)

Whenever a server crashes, each client that is connected to that server gets a

communication error which terminates the connection and concludes in an

application error. In application environments where availability is important, the

user will either have a redundant setup or will fail the server over to a standby

node. In either case, the DB2 Database for Linux, UNIX, and Windows client code

will attempt to re-establish the connection to either the original database (which

may be running on a failover node where the IP address fails over as well), or to a

new database on a different server. The application is then notified using an

SQLCODE to indicate that the connection has been rerouted and that the specific

transaction being run has been rolled back. At that point, the application can

choose to rerun that transaction or continue on.

Data consistency between the failed primary database and the ″failed to″ standby

database when using ACR is very dependent upon the state of the database logs in

the database to which the connection has been rerouted. For the purposes of this

discussion, we will call this database the ″standby database″ and the server on

which this standby database resides the ″standby server″. If the standby database

is an exact copy of the failed primary database at the point in time of the failure

then the data at the standby database will be consistent and there will be no data

integrity issues. However, if the standby database is not an exact copy of the failed

primary database then there may be data integrity issues resulting from

inconsistent transaction outcomes for transactions which have been prepared by

the XA Transaction Manager but yet to be committed. These are known as indoubt

transactions. The Database Administrator and application developers who are

using the ACR function must be aware of the risk of data integrity problems when

using this capability.

The following sections describe the various DB2 Database for Linux, UNIX, and

Windows environments and the risks of data integrity problems in each.

 High availability disaster recovery (HADR):

 DB2’s High Availability Disaster Recovery feature (HADR) can be used to control

the level of log duplication between the primary and standby databases when the

application regains connectivity after a primary database failure. The database

configuration parameter which controls the level of log duplication is called

hadr_syncmode. There are three possible values for this parameter:

v SYNC

This mode provides the greatest protection against transaction loss at the cost of

longest transaction response time among the three modes. As the name of this

Chapter 7. Designing for XA-compliant transaction managers 219

mode suggests, SYNC is used to synchronize the writing of the transaction log

in the primary database and in the standby database. Synchronization is

accomplished when the primary database has written its own log files and it has

received acknowledgement from the standby database that the logs have also

been written on the standby database.

If an XA Transaction Manager is being used to coordinate transactions involving

DB2 resources, then it is strongly recommended that SYNC mode be used.

SYNC mode will guarantee data integrity as well as transaction

resynchronization integrity when a client is rerouted to the standby database

since it is an exact replica of the primary database.

v NEARSYNC

This mode provides slightly less protection against transaction loss, in exchange

for a shorter transaction response time when compared with SYNC mode. The

primary database considers log write successful only when logs have been

written to its own log files and it has received acknowledgement from the

standby database that the logs have also been written to main memory on the

standby database. If the standby database crashes before it can copy the logs

from memory to disk, the logs are lost on the standby database in the short

term.

Given the possibility that database logs are lost, and the situation where the

standby database is not an exact replica of the primary database, it is possible

that data integrity will be compromised. The compromise occurs if the given

transaction was indoubt and then the primary database crashes. Assume the

transaction outcome is COMMIT. When the XA TM issues the subsequent

XA_COMMIT request, it will fail since the primary database has crashed. Since

the XA_COMMIT request has failed, the XA TM will need to recover this

transaction on this database by issuing an XA_RECOVER request. The standby

database will respond by returning the list of all its transactions which are

INDOUBT. If the standby database were to crash and restart before the “in

memory,” database logs were written to disk, and before the XA_RECOVER

request was issued by the XA TM, the standby database would have lost the log

information about the transaction and could not return it in response to the

XA_RECOVER request. The XA TM would then assume the database committed

this transaction. But, what has really occurred is the data manipulation will have

been lost and the appearance that the transaction was rolled back. This results in

a data integrity issue since all other resources involved in this transaction were

COMMITTED by the XA TM.

Using NEARSYNC is a good compromise between data integrity and transaction

response time since the likelihood of both the primary and standby databases

crashing should be low. However, a database administrator still needs to

understand that there is a possibility of data integrity problems.

v ASYNC

This mode has the greatest chance of transaction loss in the event of primary

failure, in exchange for the shortest transaction response time among the three

modes. The primary database considers log write successful only when logs

have been written to its own log files and the logs have been delivered to the

TCP layer on the primary database’s host machine. The primary database does

not wait for acknowledgement of any kind from the standby database. The logs

may be still on their way to the standby database when the primary database

considers relevant transactions committed.

If the same scenario as described in NEARSYNC occurs, the likelihood of loss of

transaction information is higher than with NEARSYNC. Therefore, the

likelihood of data integrity issues is higher than with NEARSYNC and,

obviously, with SYNC.

220 Administration Guide: Planning

DB2 ESE Partitioned Database Environments:

 The use of ACR in partitioned database environments can also lead to data

integrity issues. If the standby database is defined to be a different database

partition of the same database, then recovery of indoubt transactions in scenarios

as described in the High Availability Disaster Recovery NEARSYNC section above,

may result in data integrity problems. This occurs because the database partitions

do not share database transaction logs. Therefore the standby database (database

partition B) will have no knowledge of indoubt transactions that exist at the

primary database (database partition A).

 DB2 ESE Non Partitioned Database Environments:

 The use of ACR in non-partitioned database environments can also lead to data

integrity issues. Assuming disk failover technology, such as IBM AIX High

Availability Cluster Multiprocessor (HACMP™), Microsoft Cluster Service (MSCS),

or HP’s Service Guard, is not in use then the standby database will not have the

database transaction logs that existed on the primary database when it failed.

Therefore, the recovery of indoubt transactions in scenarios as described in the

High Availability Disaster Recovery NEARSYNC section above, can result in data

integrity problems.

Transactions accessing partitioned databases

In a partitioned database environment, user data may be distributed across

database partitions. An application accessing the database connects and sends

requests to one of the database partitions (the coordinator node). Different

applications can connect to different database partitions, and the same application

can choose different database partitions for different connections.

For transactions against a database in a partitioned database environment, all

access must be through the same database partition. That is, the same database

partition must be used from the start of the transaction until (and including) the

time that the transaction is committed.

Any transaction against the partitioned database must be committed before

disconnecting.

 Related concepts:

v “X/Open distributed transaction processing model” on page 215

v “High availability disaster recovery overview” in Data Recovery and High

Availability Guide and Reference

 Related reference:

v “xa_open string formats” on page 221

xa_open string formats

 xa_open string format for DB2 Database for Linux, UNIX, and Windows and

DB2 Connect Version 8 FixPak 3 and later:

 This is the format for the xa_open string:

 parm_id1 = <parm value>,parm_id2 = <parm value>, ...

Chapter 7. Designing for XA-compliant transaction managers 221

It does not matter in what order these parameters are specified. Valid values for

parm_id are described below.

Note: Unless explicitly stated, these parameters are not case sensitive and have no

default value.

AXLIB

Library that contains the TP monitor’s ax_reg and ax_unreg functions. This

value is used by DB2 to obtain the addresses of the required ax_reg and

ax_unreg functions. It can be used to override assumed values based on the

TPM parameter, or it can be used by TP monitors that do not appear on the

list for TPM. On AIX, if the library is an archive library, the archive member

should be specified in addition to the library name. For example:

AXLIB=/usr/mqm/lib/libmqmax_r.a(libmqmax_r.o). This parameter is optional.

CHAIN_END

xa_end chaining flag. Valid values are T, F, or no value. XA_END chaining is

an optimization that can be used by DB2 to reduce network flows. If the TP

monitor environment is such that it can be guaranteed that xa_prepare will be

invoked within the same thread or process immediately following the call to

xa_end, and if CHAIN_END is on, the xa_end flag will be chained with the

xa_prepare command, thus eliminating one network flow. A value of T means

that CHAIN_END is on; a value of F means that CHAIN_END is off; no

specified value means that CHAIN_END is on. This parameter can be used to

override the setting derived from a specified TPM value. If this parameter is

not specified, the default value of F is used.

CREG

xa_start chaining flag. Valid values are T, or F, or no value.xa_start chaining is

an optimization that is used by DB2 to reduce network flows. The parameter is

only valid if the TP monitor is using static registration (see SREG). The TP

monitor environment is such that it can guarantee that an SQL statement will

be invoked immediately after the call to the XA API xa_start. If CREG is set to

T, the SQL statement is chained to the xa_start request, thus eliminating one

network flow. This parameter can be used to override the setting derived from

a specified TPM value. If this parameter is not specified, the default value of F

is used.

CT

Connect Timeout. Valid values are 0 - 32767. CT specifies the amount of time,

in seconds, that an application will wait when attempting to establish a

connection with the server. If a connection is not established in the amount of

time specified, an error will be returned. Specifying a value of 0 means that the

application will attempt to wait until a connection is established regardless of

how long it takes. However, it is possible that the connection attempt will be

terminated by the default TCP/IP timeout setting. If this parameter is not

specified, the default value of 0 is used.

DB

Database alias. Database alias used by the application to access the database.

This parameter must be specified.

HOLD_CURSOR

Specifies whether cursors are held across transaction commits. Valid values are

T, F, or no value. TP monitors typically reuse threads or processes for multiple

applications. To ensure that a newly loaded application does not inherit cursors

opened by a previous application, cursors are closed after a commit. If

HOLD_CURSORS is on, cursors with hold attributes are not closed, and will

persist across transaction commit boundaries. When using this option, the

222 Administration Guide: Planning

global transaction must be committed or rolled back from the same thread of

control. If HOLD_CURSOR is off, the opening of any cursors with hold

attributes will be rejected. A value of T means that HOLD_CURSOR is on; a

value of F means that HOLD_CURSOR is off; no specified value means that

HOLD_CURSOR is on. This parameter can be used to override the setting

derived from a specified TPM value. If this parameter is not specified, the

default value of F is used.

PWD

Password. A password that is associated with the user ID. Required if a user

ID is specified. This parameter is case sensitive.

SREG

Static Registration. Valid values are T, or F, or no value.DB2 supports two

methods of registering a global transaction. The first is Dynamic Registeration,

where DB2 calls the TP’s ax_reg function to register the transaction (see

AXLIB). The second method is Static Registeration, where the TP calls the XA

API xa_start to initiate a global transaction. Please note both dynamic and

static registration are mutally exclusive. If this parameter is not specified, the

default value of F is used.

SUSPEND_CURSOR

Specifies whether cursors are to be kept when a transaction thread of control is

suspended. Valid values are T, F, or no value. TP monitors that suspend a

transaction branch can reuse the suspended thread or process for other

transactions. If SUSPEND_CURSOR is off, all cursors except cursors with hold

attributes are closed. On resumption of the suspended transaction, the

application must obtain the cursors again. If SUSPEND_CURSOR is on, any

open cursors are not closed, and are available to the suspended transaction on

resumption. A value of T means that SUSPEND_CURSOR is on; a value of F

means that SUSPEND_CURSOR is off; no specified value means that

SUSPEND_CURSOR is on. This parameter can be used to override the setting

derived from a specified TPM value. If this parameter is not specified, the

default value of F is used.

TOC

The entity (“Thread of Control”) to which all DB2 XA Connections are bound.

Valid values are T, or P, or not set. TOC is the entity where all DB2 XA

Connections are bound. All DB2 XA Connections formed within an entity must

be unique. That is, they cannot have two connections to the same database

within the entity. The TOC has two parameters: T (OS Thread) and P (OS

Process). When set to a value of T, all DB2 XA Connections formed under a

particular OS Thread are unique to that thread only. Multiple threads cannot

share DB2 XA Connections. Each OS thread has to form its own set of DB2 XA

Connections. When set to a value of P, all DB2 XA Connections are unique to

the OS Process and all XA Connections can be shared between OS threads. If

this parameter is not specified, the default value of T is used.

TPM

Transaction processing monitor name. Name of the TP monitor being used. For

supported values, see the next table. This parameter can be specified to allow

multiple TP monitors to use a single DB2 instance. The specified value will

override the value specified in the tp_mon_name database manager

configuration parameter. This parameter is optional.

UID

User ID. Specifies the user ID that has authority to connect to the database.

Required if a password is specified. This parameter is case sensitive.

Chapter 7. Designing for XA-compliant transaction managers 223

UREGNM

User Registry Name. When an identity mapping service is being used, this

parameter gives the name of the registry to which the user name given in the

UID parameter belongs.

TCTX

Specifies whether or not the transaction should use a trusted connection. Valid

values are TRUE or FALSE. If this parameter is set to TRUE it tells the transaction

manager to try to open a trusted connection.

 TPM and tp_mon_name values:

 The xa_open string TPM parameter and the tp_mon_name database manager

configuration parameter are used to indicate to DB2 which TP monitor is being

used. The tp_mon_name value applies to the entire DB2 instance. The TPM

parameter applies only to the specific XA resource manager. The TPM value

overrides the tp_mon_name parameter. Valid values for the TPM and tp_mon_name

parameters are as follows:

 Table 40. Valid Values for TPM and tp_mon_name

TPM Value TP Monitor Product Internal Settings

CICS IBM TxSeries CICS AXLIB=libEncServer (for Windows)

 =/usr/lpp/encina/lib/libEncServer

 (for UNIX based systems)

HOLD_CURSOR=T

CHAIN_END=T

SUSPEND_CURSOR=F

TOC=T

ENCINA IBM TxSeries Encina®

Monitor

AXLIB=libEncServer (for Windows)

 =/usr/lpp/encina/lib/libEncServer

 (for UNIX based systems)

HOLD_CURSOR=F

CHAIN_END=T

SUSPEND_CURSOR=F

TOC=T

MQ IBM MQSeries® AXLIB=mqmax

(for Windows)

 =/usr/mqm/lib/libmqmax_r.a

(for AIX threaded applications)

 =/usr/mqm/lib/libmqmax.a

(for AIX non-threaded applications)

 =/opt/mqm/lib/libmqmax.so

(for Solaris)

 =/opt/mqm/lib/libmqmax_r.sl

(for HP threaded applications)

 =/opt/mqm/lib/libmqmax.sl

(for HP non-threaded applications)

 =/opt/mqm/lib/libmqmax_r.so

(for Linux threaded applications)

 =/opt/mqm/lib/libmqmax.so

(for Linux non-threaded applications)

HOLD_CURSOR=F

CHAIN_END=F

SUSPEND_CURSOR=F

TOC=P

224 Administration Guide: Planning

Table 40. Valid Values for TPM and tp_mon_name (continued)

TPM Value TP Monitor Product Internal Settings

CB IBM Component

Broker

AXLIB=somtrx1i (for Windows)

 =libsomtrx1

 (for UNIX based systems)

HOLD_CURSOR=F

CHAIN_END=T

SUSPEND_CURSOR=F

TOC=T

SF IBM San Francisco AXLIB=ibmsfDB2

HOLD_CURSOR=F

CHAIN_END=T

SUSPEND_CURSOR=F

TOC=T

TUXEDO BEA Tuxedo AXLIB=libtux

HOLD_CURSOR=F

CHAIN_END=F

SUSPEND_CURSOR=F

TOC=T

MTS Microsoft Transaction

Server

It is not necessary to configure DB2 for

MTS. MTS is automatically detected by

DB2’s ODBC driver.

JTA Java Transaction API It is not necessary to configure DB2 for

Enterprise Java Servers (EJS) such as IBM

WebSphere. DB2’s JDBC driver

automatically detects this environment.

Therefore this TPM value is ignored.

 xa_open string format for earlier versions:

 Earlier versions of DB2 used the xa_open string format described here. This format

is still supported for compatibility reasons. Applications should be migrated to the

new format when possible.

Each database is defined as a separate resource manager (RM) to the transaction

manager (TM), and the database must be identified with an xa_open string that

has the following syntax:

 "database_alias<,userid,password>"

The database_alias is required to specify the alias name of the database. The alias

name is the same as the database name unless you have explicitly cataloged an

alias name after you created the database. The user name and password are

optional and, depending on the authentication method, are used to provide

authentication information to the database.

 Examples:

1. You are using IBM TxSeries CICS on Windows. The TxSeries documentation

indicates that you need to configure tp_mon_name with a value of

libEncServer:C. This is still an acceptable format; however, with DB2 Database

for Linux, UNIX, and Windows or DB2 Connect Version 8 FixPak 3 and later,

you have the option of:

v Specifying a tp_mon_name of CICS (recommended for this scenario):

 db2 update dbm cfg using tp_mon_name CICS

For each database defined to CICS in the Region—> Resources—>

Product—> XAD—> Resource manager initialization string, specify:

 db=dbalias,uid=userid,pwd=password

Chapter 7. Designing for XA-compliant transaction managers 225

v For each database defined to CICS in the Region—> Resources—>

Product—> XAD—> Resource manager initialization string, specify:

 db=dbalias,uid=userid,pwd=password,tpm=cics

2. You are using IBM MQSeries on Windows. The MQSeries documentation

indicates that you need to configure tp_mon_name with a value of mqmax. This is

still an acceptable format; however, with DB2 Database for Linux, UNIX, and

Windows or DB2 Connect Version 8 FixPak 3 and later, you have the option of:

v Specifying a tp_mon_name of MQ (recommended for this scenario):

 db2 update dbm cfg using tp_mon_name MQ

For each database defined to CICS in the Region—> Resources—>

Product—> XAD—> Resource manager initialization string, specify:

 uid=userid,db=dbalias,pwd=password

v For each database defined to CICS in the Region—> Resources—>

Product—> XAD—> Resource manager initialization string, specify:

 uid=userid,db=dbalias,pwd=password,tpm=mq

3. You are using both IBM TxSeries CICS and IBM MQSeries on Windows. A

single DB2 instance is being used. In this scenario, you would configure as

follows:

a. For each database defined to CICS in the Region—> Resources—>

Product—> XAD—> Resource manager initialization string, specify:

 pwd=password,uid=userid,tpm=cics,db=dbalias

b. For each database defined as a resource in the queue manager properties,

specify an XaOpenString as:

 db=dbalias,uid=userid,pwd=password,tpm=mq

4. You are developing your own XA-compliant transaction manager (XA TM) on

Windows, and you want to tell DB2 that library ″myaxlib″ has the required

functions ax_reg and ax_unreg. Library ″myaxlib″ is in a directory specified in

the PATH statement. You have the option of:

v Specifying a tp_mon_name of myaxlib:

 db2 update dbm cfg using tp_mon_name myaxlib

and, for each database defined to the XA TM, specifying an xa_open string:

 db=dbalias,uid=userid,pwd=password

v For each database defined to the XA TM, specifying an xa_open string:

 db=dbalias,uid=userid,pwd=password,axlib=myaxlib

5. You are developing your own XA-compliant transaction manager (XA TM) on

Windows, and you want to tell DB2 that library ″myaxlib″ has the required

functions ax_reg and ax_unreg. Library ″myaxlib″ is in a directory specified in

the PATH statement. You also want to enable XA END chaining. You have the

option of:

v For each database defined to the XA TM, specifying an xa_open string:

 db=dbalias,uid=userid,pwd=password,axlib=myaxlib,chain_end=T

v For each database defined to the XA TM, specifying an xa_open string:

 db=dbalias,uid=userid,pwd=password,axlib=myaxlib,chain_end

 Related concepts:

v “X/Open distributed transaction processing model” on page 215

 Related reference:

226 Administration Guide: Planning

v “tp_mon_name - Transaction processor monitor name configuration parameter”

in Performance Guide

Updating host or iSeries database servers with an XA-compliant

transaction manager

 Host and iSeries database servers may be updatable depending upon the

architecture of the XA Transaction Manager.

 Procedure:

 To support commit sequences from different processes, the DB2 Connect

connection concentrator must be enabled. To enable the DB2 Connect connection

concentrator, set the database manager configuration parameter max_connections to

a value greater than max_coordagents. Note that the DB2 Connect connection

concentrator requires a DB2 Universal Database (DB2 UDB) Version 7.1 client or

later to support XA commit sequences from different processes.

You will also require DB2 Connect with the DB2 sync point manager (SPM)

configured.

 Related reference:

v “maxagents - Maximum number of agents configuration parameter” in

Performance Guide

v “max_connections - Maximum number of client connections configuration

parameter” in Performance Guide

Resolving indoubt transactions manually

 An XA-compliant transaction manager (Transaction Processing Monitor) uses a

two-phase commit process similar to that used by the DB2 transaction manager.

The principal difference between the two environments is that the TP monitor

provides the function of logging and controlling the transaction, instead of the DB2

transaction manager and the transaction manager database.

Errors similar to those that occur for the DB2 transaction manager can occur when

using an XA-compliant transaction manager. Similar to the DB2 transaction

manager, an XA-compliant transaction manager will attempt to resynchronize

indoubt transactions.

If you cannot wait for the transaction manager to automatically resolve indoubt

transactions, you can manually resolve them. This manual process is sometimes

referred to as “making a heuristic decision”.

The LIST INDOUBT TRANSACTIONS command (using the WITH PROMPTING

option), or the related set of APIs (db2XaListIndTrans, sqlxphcm, sqlxhfrg, sqlxphrl),

allows you to query, commit, and roll back indoubt transactions. In addition, it also

allows you to “forget” transactions that have been heuristically committed or

rolled back, by removing the log records and releasing the log space.

 Restrictions:

 Manually resolve indoubt transactions by using these commands (or related APIs)

with extreme caution, and only as a last resort. The best strategy is to wait for the

Chapter 7. Designing for XA-compliant transaction managers 227

transaction manager to drive the resynchronization process. You could experience

data integrity problems if you manually commit or roll back a transaction in one of

the participating databases, and the opposite action is taken against another

participating database. Recovering from data integrity problems requires you to

understand the application logic, to identify the data that was changed or rolled

back, and then to perform a point-in-time recovery of the database, or manually

undo or reapply the changes.

If you cannot wait for the transaction manager to initiate the resynchronization

process, and you must release the resources tied up by an indoubt transaction,

heuristic operations are necessary. This situation could occur if the transaction

manager will not be available for an extended period of time to perform the

resynchronization, and the indoubt transaction is tying up resources that are

urgently needed. An indoubt transaction ties up the resources that were associated

with this transaction before the transaction manager or resource managers became

unavailable. For the database manager, these resources include locks on tables and

indexes, log space, and storage taken up by the transaction. Each indoubt

transaction also decreases (by one) the maximum number of concurrent

transactions that can be handled by the database. Moreover, an offline backup

cannot be taken unless all indoubt transactions have been resolved.

The heuristic forget function is required in the following situations:

v When a heuristically committed or rolled back transaction causes a log full

condition, indicated in output from the LIST INDOUBT TRANSACTIONS

command

v When an offline backup is to be taken

The heuristic forget function releases the log space occupied by an indoubt

transaction. The implication is that if a transaction manager eventually performs a

resynchronization operation for this indoubt transaction, it could potentially make

the wrong decision to commit or roll back other resource managers, because there

is no log record for the transaction in this resource manager. In general a “missing”

log record implies that the resource manager has rolled back the transaction.

 Procedure:

 To manually resolve indoubt transactions:

1. Connect to the database for which you require all transactions to be complete.

2. Display the indoubt transactions:

v For DB2 database servers, use the LIST INDOUBT TRANSACTIONS WITH

PROMPTING command. The xid represents the global transaction ID, and is

identical to the xid used by the transaction manager and by other resource

managers participating in the transaction.

v For host or iSeries database servers, you may use one of the following:

– You can obtain indoubt information directly from the host or iSeries

server.

To obtain indoubt information directly from DB2 for z/OS and OS/390,

invoke the DISPLAY THREAD TYPE(INDOUBT) command. Use the

RECOVER command to make a heuristic decision. To obtain indoubt

information directly from DB2 for iSeries, invoke the wrkcmtdfn

command.

– You can obtain indoubt information from the DB2 Connect server used to

access the host or iSeries database server.

228 Administration Guide: Planning

To obtain indoubt information from the DB2 Connect server, first connect

to the DB2 sync point manager by connecting to the DB2 instance

represented by the value of the spm_name database manager configuration

parameter. Then issue the LIST DRDA INDOUBT TRANSACTIONS WITH

PROMPTING command to display indoubt transactions and to make

heuristic decisions. Alternatively, you can call the sqlcspqy API from a

client application to list DRDA® indoubt transactions.
3. For each indoubt transaction that has been listed or displayed, use the

information shown about the application and the operating environment to

determine the other participating resource managers.

4. Determine the actions to take with each indoubt transaction:

v If the transaction manager is available, and the indoubt transaction in a

resource manager was caused by the resource manager not being available in

the second commit phase, or for an earlier resynchronization process, you

should do the following:

a. Check the transaction manager’s log to determine what action has been

taken against the other resource managers.

b. Take the same action against the database; that is, use the LIST INDOUBT

TRANSACTIONS WITH PROMPTING command, to either heuristically

commit or heuristically roll back the transaction.
v If the transaction manager is not available, use the status of the transaction in

the other participating resource managers to determine what action you

should take:

– If at least one of the other resource managers has committed the

transaction, heuristically commit the transaction in all the resource

managers.

– If at least one of the other resource managers has rolled back the

transaction, heuristically roll back the transaction.

– If the transaction is in the “prepared” (indoubt) state in all of the

participating resource managers, heuristically roll back the transaction.

– If one or more of the other resource managers is not available,

heuristically roll back the transaction.

To obtain indoubt transaction information from DB2 on UNIX or Windows,

connect to the database and issue the LIST INDOUBT TRANSACTIONS WITH

PROMPTING command, or call the db2XaListIndTrans API from a client

application.

 Related concepts:

v “Indoubt transaction management APIs” on page 230

v “Two-phase commit” on page 210

 Related reference:

v “LIST DRDA INDOUBT TRANSACTIONS command” in Command Reference

v “LIST INDOUBT TRANSACTIONS command” in Command Reference

v “db2XaListIndTrans API - List indoubt transactions” in Administrative API

Reference

v “sqlcspqy API - List DRDA indoubt transactions” in Administrative API Reference

v “sqlxhfrg API - Forget transaction status” in Administrative API Reference

v “sqlxphcm API - Commit an indoubt transaction” in Administrative API Reference

v “sqlxphrl API - Roll back an indoubt transaction” in Administrative API Reference

Chapter 7. Designing for XA-compliant transaction managers 229

Related samples:

v “dbxamon.c -- Show and roll back indoubt transactions.”

Indoubt transaction management APIs

 Databases can be used in a distributed transaction processing (DTP) environment.

A set of APIs is provided for tool writers to perform heuristic functions on indoubt

transactions when the resource owner (such as the database administrator) cannot

wait for the Transaction Manager (TM) to perform the re-sync action. This condition

may occur if, for example, the communication line is broken, and an indoubt

transaction is tying up needed resources. For the database manager, these resources

include locks on tables and indexes, log space, and storage used by the transaction.

Each indoubt transaction also decreases, by one, the maximum number of

concurrent transactions that could be processed by the database manager.

The heuristic APIs have the capability to query, commit, and roll back indoubt

transactions, and to cancel transactions that have been heuristically committed or

rolled back, by removing the log records and releasing log pages.

 Attention: The heuristic APIs should be used with caution and only as a last

resort. The TM should drive the re-sync events. If the TM has an operator

command to start the re-sync action, it should be used. If the user cannot wait for

a TM-initiated re-sync, heuristic actions are necessary.

Although there is no set way to perform these actions, the following guidelines

may be helpful:

v Use the db2XaListIndTrans function to display the indoubt transactions. They

have a status = ’P’ (prepared), and are not connected. The gtrid portion of an xid

is the global transaction ID that is identical to that in other resource managers

(RM) that participate in the global transaction.

v Use knowledge of the application and the operating environment to identify the

other participating RMs.

v If the transaction manager is CICS, and the only RM is a CICS resource, perform

a heuristic rollback.

v If the transaction manager is not CICS, use it to determine the status of the

transaction that has the same gtrid as does the indoubt transaction.

v If at least one RM has committed or rolled back, perform a heuristic commit or a

rollback.

v If they are all in the prepared state, perform a heuristic rollback.

v If at least one RM is not available, perform a heuristic rollback.

If the transaction manager is available, and the indoubt transaction is due to the

RM not being available in the second phase, or in an earlier re-sync, the DBA

should determine from the TM’s log what action has been taken against the other

RMs, and then do the same. The gtrid is the matching key between the TM and the

RMs.

Do not execute sqlxhfrg unless a heuristically committed or rolled back transaction

happens to cause a log full condition. The forget function releases the log space

occupied by this indoubt transaction. If a transaction manager eventually performs

a re-sync action for this indoubt transaction, the TM could make the wrong

Indoubt transaction management APIs

230 Administration Guide: Planning

decision to commit or to roll back other RMs, because no record was found in this

RM. In general, a missing record implies that the RM has rolled back.

 Related reference:

v “db2XaListIndTrans API - List indoubt transactions” in Administrative API

Reference

v “sqlcspqy API - List DRDA indoubt transactions” in Administrative API Reference

v “sqlxhfrg API - Forget transaction status” in Administrative API Reference

v “sqlxphcm API - Commit an indoubt transaction” in Administrative API Reference

v “sqlxphrl API - Roll back an indoubt transaction” in Administrative API Reference

Security considerations for XA transaction managers

 The TP monitor pre-allocates a set of server processes and runs the transactions

from different users under the IDs of the server processes. To the database, each

server process appears as a big application that has many units of work, all being

run under the same ID associated with the server process.

For example, in an AIX environment using CICS, when a TXSeries® CICS region is

started, it is associated with the AIX user name under which it is defined. All the

CICS Application Server processes are also being run under this TXSeries CICS

″master″ ID, which is usually defined as ″cics″. CICS users can invoke CICS

transactions under their DCE login ID, and while in CICS, they can also change

their ID using the CESN signon transaction. In either case, the end user’s ID is not

available to the RM. Consequently, a CICS Application Process might be running

transactions on behalf of many users, but they appear to the RM as a single

program with many units of work from the same ″cics″ ID. Optionally, you can

specify a user ID and password on the xa_open string, and that user ID will be

used, instead of the ″cics″ ID, to connect to the database.

There is not much impact on static SQL statements, because the binder’s privileges,

not the end user’s privileges, are used to access the database. This does mean,

however, that the EXECUTE privilege of the database packages must be granted to

the server ID, and not to the end user ID.

For dynamic statements, which have their access authentication done at run time,

access privileges to the database objects must be granted to the server ID and not

to the actual user of those objects. Instead of relying on the database to control the

access of specific users, you must rely on the TP monitor system to determine

which users can run which programs. The server ID must be granted all privileges

that its SQL users require.

To determine who has accessed a database table or view, you can perform the

following steps:

1. From the SYSCAT.PACKAGEDEP catalog view, obtain a list of all packages that

depend on the table or view.

2. Determine the names of the server programs (for example, CICS programs) that

correspond to these packages through the naming convention used in your

installation.

3. Determine the client programs (for example, CICS transaction IDs) that could

invoke these programs, and then use the TP monitor’s log (for example, the

CICS log) to determine who has run these transactions or programs, and when.

Indoubt transaction management APIs

Chapter 7. Designing for XA-compliant transaction managers 231

Related concepts:

v “X/Open distributed transaction processing model” on page 215

Configuration considerations for XA transaction managers

 You should consider the following configuration parameters when you are setting

up your TP monitor environment:

v tp_mon_name

This database manager configuration parameter identifies the name of the TP

monitor product being used (″CICS″, or ″ENCINA″, for example).

v tpname

This database manager configuration parameter identifies the name of the

remote transaction program that the database client must use when issuing an

allocate request to the database server, using the APPC communications

protocol. The value is set in the configuration file at the server, and must be the

same as the transaction processor (TP) name configured in the SNA transaction

program.

v tm_database

Because DB2 Database for Linux, UNIX, and Windows does not coordinate

transactions in the XA environment, this database manager configuration

parameter is not used for XA-coordinated transactions.

v maxappls

This database configuration parameter specifies the maximum number of active

applications allowed. The value of this parameter must be equal to or greater

than the sum of the connected applications, plus the number of these

applications that may be concurrently in the process of completing a two-phase

commit or rollback. This sum should then be increased by the anticipated

number of indoubt transactions that might exist at any one time.

For a TP monitor environment (for example, TXSeries CICS), you may need to

increase the value of the maxappls parameter. This would help to ensure that all

TP monitor processes can be accommodated.

v autorestart

This database configuration parameter specifies whether the RESTART

DATABASE routine will be invoked automatically when needed. The default

value is YES (that is, enabled).

A database containing indoubt transactions requires a restart database operation

to start up. If autorestart is not enabled when the last connection to the database

is dropped, the next connection will fail and require an explicit RESTART

DATABASE invocation. This condition will exist until the indoubt transactions

have been removed, either by the transaction manager’s resync operation, or

through a heuristic operation initiated by the administrator. When the RESTART

DATABASE command is issued, a message is returned if there are any indoubt

transactions in the database. The administrator can then use the LIST INDOUBT

TRANSACTIONS command and other command line processor commands to

find get information about those indoubt transactions.

 Related concepts:

v “X/Open distributed transaction processing model” on page 215

 Related reference:

v “tpname - APPC transaction program name configuration parameter” in

Performance Guide

Indoubt transaction management APIs

232 Administration Guide: Planning

v “autorestart - Auto restart enable configuration parameter” in Performance Guide

v “LIST INDOUBT TRANSACTIONS command” in Command Reference

v “maxappls - Maximum number of active applications configuration parameter”

in Performance Guide

v “RESTART DATABASE command” in Command Reference

v “tm_database - Transaction manager database name configuration parameter” in

Performance Guide

v “tp_mon_name - Transaction processor monitor name configuration parameter”

in Performance Guide

XA function supported by DB2 Database for Linux, UNIX, and Windows

 DB2 Database for Linux, UNIX, and Windows supports the XA91 specification

defined in X/Open CAE Specification Distributed Transaction Processing: The XA

Specification, with the following exceptions:

v Asynchronous services

The XA specification allows the interface to use asynchronous services, so that

the result of a request can be checked at a later time. The database manager

requires that the requests be invoked in synchronous mode.

v Registration

The XA interface allows two ways to register an RM: static registration and

dynamic registration. DB2 supports both dynamic and static registration. DB2

provides two switches to control the type of registration used.

– db2xa_switch_std for dynamic registration

– db2xa_switch_static_std for static registration
v Association migration

DB2 V9.1 does not support transaction migration between threads of control.

XA switch usage and location

As required by the XA interface, the database manager provides a db2xa_switch_std

and a db2xa_switch_static_std external C variable of type xa_switch_t to return the

XA switch structure to the TM. Other than the addresses of various XA functions,

the following fields are returned:

Field Value

name The product name of the database manager. For example, IBM DB2

Version 9.1 for AIX.

flags For db2xa_switch_std TMREGISTER | TMNOMIGRATE is set

 Explicitly states that DB2 V9.1 uses dynamic registration, and that

the TM should not use association migration. Implicitly states that

asynchronous operation is not supported.

 For db2xa_switch_static_std TMNOMIGRATE is set

 Explicitly states that DB2 V9.1 uses static registration, and that the

TM should not use association migration. Implicitly states that

asynchronous operation is not supported.

version Must be zero.

Indoubt transaction management APIs

Chapter 7. Designing for XA-compliant transaction managers 233

Using the DB2 Database for Linux, UNIX, and Windows XA

switch

The XA architecture requires that a Resource Manager (RM) provide a switch that

gives the XA Transaction Manager (TM) access to the RM’s xa_ routines. An RM

switch uses a structure called xa_switch_t. The switch contains the RM’s name,

non-NULL pointers to the RM’s XA entry points, a flag, and a version number.

Linux and UNIX

The switch for DB2 Database for Linux, UNIX, and Windows can be obtained

through either of the following two ways:

v Through one additional level of indirection. In a C program, this can be

accomplished by defining the macro:

 #define db2xa_switch_std (*db2xa_switch_std)

 #define db2xa_switch_static_std (*db2xa_switch_std)

prior to using db2xa_switch_std or db2xa_switch_static_std.

v By calling db2xacic_std or db2xacicst_std

DB2 provides these APIs, which return the address of the db2xa_switch_std or

db2xa_switch_static_std structure. This function is prototyped as:

 struct xa_switch_t * SQL_API_FN db2xacic_std()

 struct xa_switch_t * SQL_API_FN db2xacicst_std()

With either method, you must link your application with libdb2.

Windows

The pointer to the xa_switch structure, db2xa_switch_std, or db2xa_switch_static_std is

exported as DLL data. This implies that a Windows application using this structure

must reference it in one of three ways:

v Through one additional level of indirection. In a C program, this can be

accomplished by defining the macro:

 #define db2xa_switch_std (*db2xa_switch_std)

 #define db2xa_switch_static_std (*db2xa_switch_std)

prior to using db2xa_switch_std or db2xa_switch_static_std.

v If using the Microsoft Visual C++ compiler, db2xa_switch_std or

db2xa_switch_static_std can be defined as:

 extern __declspec(dllimport) struct xa_switch_t db2xa_switch_std

 extern __declspec(dllimport) struct xa_switch_t db2xa_switch_static_std

v By calling db2xacic_std or db2xacicst_std

DB2 provides this API, which returns the address of the db2xa_switch_std or

db2xa_switch_static_std structure. This function is prototyped as:

 struct xa_switch_t * SQL_API_FN db2xacic_std()

 struct xa_switch_t * SQL_API_FN db2xacicst_std()

With any of these methods, you must link your application with db2api.lib.

Example C Code

The following code illustrates the different ways in which the db2xa_switch_std or

db2xa_switch_static_std can be accessed via a C program on any DB2 V9.1 platform.

Be sure to link your application with the appropriate library.

 #include <stdio.h>

 #include <xa.h>

 struct xa_switch_t * SQL_API_FN db2xacic_std();

Indoubt transaction management APIs

234 Administration Guide: Planning

#ifdef DECLSPEC_DEFN

 extern __declspec(dllimport) struct xa_switch_t db2xa_switch_std;

 #else

 #define db2xa_switch_std (*db2xa_switch_std)

 extern struct xa_switch_t db2xa_switch_std;

 #endif

main()

 {

 struct xa_switch_t *foo;

 printf ("%s \n", db2xa_switch_std.name);

 foo = db2xacic_std();

 printf ("%s \n", foo—>name);

 return ;

 }

 Related concepts:

v “X/Open distributed transaction processing model” on page 215

XA interface problem determination

 When an error is detected during an XA request from the TM, the application

program may not be able to get the error code from the TM. If your program

abends, or gets a cryptic return code from the TP monitor or the TM, you should

check the First Failure Service Log, which reports XA error information when

diagnostic level 3 or greater is in effect.

You should also consult the console message, TM error file, or other

product-specific information about the external transaction processing software that

you are using.

The database manager writes all XA-specific errors to the First Failure Service Log

with SQLCODE -998 (transaction or heuristic errors) and the appropriate reason

codes. Following are some of the more common errors:

v Invalid syntax in the xa_open string.

v Failure to connect to the database specified in the open string as a result of one

of the following:

– The database has not been cataloged.

– The database has not been started.

– The server application’s user name or password is not authorized to connect

to the database.
v Communications error.

 Related concepts:

v “X/Open distributed transaction processing model” on page 215

 Related reference:

v “xa_open string formats” on page 221

Indoubt transaction management APIs

Chapter 7. Designing for XA-compliant transaction managers 235

XA transaction manager configuration

Configuring IBM WebSphere Application Server

 IBM WebSphere Application Server is a Java-based application server. It can use

the DB2 Database for Linux, UNIX, and Windows XA support via the Java

Transaction API (JTA) provided by the DB2 JDBC driver. Refer to IBM WebSphere

documentation regarding how to use the Java Transaction API with WebSphere

Application Server. WebSphere Application Server documentation can be viewed

online at http://www.ibm.com/software/webservers/appserv/infocenter.html.

Configuring IBM TXSeries CICS

 For information about how to configure IBM TXSeries CICS to use DB2 Database

for Linux, UNIX, and Windows as a resource manager, refer to your IBM TXSeries

CICS Administration Guide. TXSeries documentation can be viewed online at

http://www.transarc.com/Library/documentation/websphere/WAS-EE/en_US/
html/.

Host and iSeries database servers can participate in CICS-coordinated transactions.

Configuring IBM TXSeries Encina

 Following are the various APIs and configuration parameters required for the

integration of Encina Monitor and DB2 Database for Linux, UNIX, and Windows

servers, or DB2 for z/OS and OS/390, DB2 for iSeries, or DB2 for VSE & VM when

accessed through DB2 Connect. TXSeries documentation can be viewed online at

http://www.transarc.com/Library/documentation/websphere/WAS-EE/en_US/
html/.

Host and iSeries database servers can participate in Encina-coordinated

transactions.

Configuring DB2 Database for Linux, UNIX, and Windows

To configure DB2 Database for Linux, UNIX, and Windows:

1. Each database name must be defined in the DB2 database directory. If the

database is a remote database, a node directory entry must also be defined. You

can perform the configuration using the Configuration Assistant, or the DB2

command line processor (CLP). For example:

 DB2 CATALOG DATABASE inventdb AS inventdb AT NODE host1 AUTH SERVER

 DB2 CATALOG TCPIP NODE host1 REMOTE hostname1 SERVER svcname1

2. The DB2 client can optimize its internal processing for Encina if it knows that it

is dealing with Encina. You can specify this by setting the tp_mon_name

database manager configuration parameter to ENCINA. The default behavior is

no special optimization. If tp_mon_name is set, the application must ensure that

the thread that performs the unit of work also immediately commits the work

after ending it. No other unit of work may be started. If this is not your

environment, ensure that the tp_mon_name value is NONE (or, through the CLP,

that the value is set to NULL). The parameter can be updated through the

Control Center or the CLP. The CLP command is:

 db2 update dbm cfg using tp_mon_name ENCINA

Indoubt transaction management APIs

236 Administration Guide: Planning

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://publibfp.boulder.ibm.com/epubs/html/txv5002/en_US/html/index.htm
http://publibfp.boulder.ibm.com/epubs/html/txv5002/en_US/html/index.htm
http://publibfp.boulder.ibm.com/epubs/html/txv5002/en_US/html/index.htm
http://publibfp.boulder.ibm.com/epubs/html/txv5002/en_US/html/index.htm

Configuring Encina for Each Resource Manager

To configure Encina for each resource manager (RM), an administrator must define

the Open String, Close String, and Thread of Control Agreement for each DB2

database as a resource manager before the resource manager can be registered for

transactions in an application. The configuration can be performed using the

Enconcole full screen interface, or the Encina command line interface. For example:

 monadmin create rm inventdb -open "db=inventdb,uid=user1,pwd=password1"

There is one resource manager configuration for each DB2 database, and each

resource manager configuration must have an rm name (″logical RM name″). To

simplify the situation, you should make it identical to the database name.

The xa_open string contains information that is required to establish a connection

to the database. The content of the string is RM-specific. The xa_open string of

DB2 contains the alias name of the database to be opened, and optionally, a user

ID and password to be associated with the connection. Note that the database

name defined here must also be cataloged into the regular database directory

required for all database access.

The xa_close string is not used by DB2.

The Thread of Control Agreement determines if an application agent thread can

handle more than one transaction at a time.

If you are accessing DB2 for z/OS and OS/390, DB2 for iSeries, or DB2 for VSE &

VM, you must use the DB2 Syncpoint Manager.

Referencing a DB2 Database for Linux, UNIX, and Windows

database from an Encina application

To reference a DB2 Database for Linux, UNIX, and Windows database from an

Encina application:

1. Use the Encina Scheduling Policy API to specify how many application agents

can be run from a single TP monitor application process. For example:

 rc = mon_SetSchedulingPolicy (MON_EXCLUSIVE)

2. Use the Encina RM Registration API to provide the XA switch and the logical

RM name to be used by Encina when referencing the RM in an application

process. For example:

 rc = mon_RegisterRmi (&db2xa_switch, /* xa switch */

 "inventdb", /* logical RM name */

 &rmiId); /* internal RM ID */

The XA switch contains the addresses of the XA routines in the RM that the TM

can call, and it also specifies the functionality that is provided by the RM. The

XA switch of DB2 V9.1 is db2xa_switch, and it resides in the DB2 client library

(db2app.dll on Windows operating systems and libdb2 on UNIX based

systems).

The logical RM name is the one used by Encina, and is not the actual database

name that is used by the SQL application that runs under Encina. The actual

database name is specified in the xa_open string in the Encina RM Registration

API. The logical RM name is set to be the same as the database name in this

example.

The third parameter returns an internal identifier or handle that is used by the

TM to reference this connection.

 Related concepts:

Indoubt transaction management APIs

Chapter 7. Designing for XA-compliant transaction managers 237

v “DB2 Connect and transaction processing monitors” in DB2 Connect User’s Guide

 Related reference:

v “tp_mon_name - Transaction processor monitor name configuration parameter”

in Performance Guide

v “xa_open string formats” on page 221

Configuring BEA Tuxedo

 What follows is a description of the process to configure BEA Tuxedo for use with

DB2 Database for Linux, UNIX, and Windows. There are some differences that are

noted based on whether Tuxedo is working with a 64-bit instance of DB2 Database

for Linux, UNIX, and Windows or a 32-bit instance of DB2 Database for Linux,

UNIX, and Windows.

Note: There are new names for the XA switch data structures: db2xa_switch_std and

db2xa_switch_static_std. There are also new names for the APIs: db2xacic and

db2xacicst. The old switch data structure and API names can be used but

only when working with a 32-bit instance of DB2 Database for Linux, UNIX,

and Windows.

 Procedure:

 To configure Tuxedo to use DB2 Database for Linux, UNIX, and Windows as a

resource manager, perform the following steps:

1. Install Tuxedo as specified in the documentation for that product. Ensure that

you perform all basic Tuxedo configuration, including the log files and

environment variables.

You also require a compiler and the DB2 Application Development Client.

Install these if necessary.

2. At the Tuxedo server ID, set the DB2INSTANCE environment variable to

reference the instance that contains the databases that you want Tuxedo to use.

Set the PATH variable to include the DB2 program directories. Confirm that the

Tuxedo server ID can connect to the DB2 databases.

3. Update the tp_mon_name database manager configuration parameter with the

value TUXEDO.

4. Add a definition for DB2 V9.1 to the Tuxedo resource manager definition file.

In the examples that follow, UDB_XA is the locally-defined Tuxedo resource

manager name for DB2 V9.1, and db2xa_switch_std is the DB2-defined name for

a structure of type xa_switch_t:

v For AIX. In the file ${TUXDIR}/udataobj/RM, add the definition:

 # DB2 UDB

 UDB_XA:db2xa_switch_std:-L${DB2DIR} /lib -ldb2

where {TUXDIR} is the directory where you installed Tuxedo, and {DB2DIR} is

the DB2 instance directory.

v For Windows. In the file %TUXDIR%\udataobj\rm, add the definition:

 # DB2 UDB

 UDB_XA;db2xa_switch_std;%DB2DIR%\lib\db2api.lib

where %TUXDIR% is the directory where you installed Tuxedo, and %DB2DIR% is

the DB2 instance directory.
5. Build the Tuxedo transaction monitor server program for DB2:

Indoubt transaction management APIs

238 Administration Guide: Planning

v For AIX:

 ${TUXDIR}/bin/buildtms -r UDB_XA -o ${TUXDIR}/bin/TMS_UDB

where {TUXDIR} is the directory where you installed Tuxedo.

v For Windows:

 %TUXDIR%\bin\buildtms -r UDB_XA -o %TUXDIR%\bin\TMS_UDB

6. Build the application servers. In the examples that follow, the -r option

specifies the resource manager name, the -f option (used one or more times)

specifies the files that contain the application services, the -s option specifies

the application service names for this server, and the -o option specifies the

output server file name:

v For AIX:

 ${TUXDIR}/bin/buildserver -r UDB_XA -f svcfile.o -s SVC1,SVC2

 -o UDBserver

where {TUXDIR} is the directory where you installed Tuxedo.

v For Windows:

 %TUXDIR%\bin\buildserver -r UDB_XA -f svcfile.o -s SVC1,SVC2

 -o UDBserver

where %TUXDIR% is the directory where you installed Tuxedo.
7. Set up the Tuxedo configuration file to reference the DB2 server. In the

*GROUPS section of the UDBCONFIG file, add an entry similar to:

 UDB_GRP LMID=simp GRPNO=3

 TMSNAME=TMS_UDB TMSCOUNT=2

 OPENINFO="UDB_XA:db=sample,uid=db2_user,pwd=db2_user_pwd"

where the TMSNAME parameter specifies the transaction monitor server

program that you built previously, and the OPENINFO parameter specifies the

resource manager name. This is followed by the database name, and the DB2

database user ID and password, which are used for authentication.

The application servers that you built previously are referenced in the

*SERVERS section of the Tuxedo configuration file.

8. If the application is accessing data residing on DB2 for z/OS and OS/390, DB2

for iSeries, or DB2 for VM&VSE, the DB2 Connect XA concentrator will be

required.

9. Start Tuxedo:

 tmboot -y

After the command completes, Tuxedo messages should indicate that the

servers are started. In addition, if you issue the DB2 command LIST

APPLICATIONS ALL, you should see two connections (in this situation)

specified by the TMSCOUNT parameter in the UDB group in the Tuxedo

configuration file, UDBCONFIG.

 Related concepts:

v “DB2 Connect and transaction processing monitors” in DB2 Connect User’s Guide

 Related reference:

v “LIST APPLICATIONS command” in Command Reference

v “tp_mon_name - Transaction processor monitor name configuration parameter”

in Performance Guide

Indoubt transaction management APIs

Chapter 7. Designing for XA-compliant transaction managers 239

Indoubt transaction management APIs

240 Administration Guide: Planning

Part 3. Appendixes

© Copyright IBM Corp. 1993, 2006 241

242 Administration Guide: Planning

Appendix A. Incompatibilities between releases

This section identifies the incompatibilities that exist between DB2 Version 9 and

previous releases of DB2 Universal Database.

An incompatibility is a part of DB2 database that works differently than it did in a

previous release. If used in an existing application, it will produce an unexpected

result, require a change to the application, or reduce performance. In this context,

″application″ refers to:

v Application program code

v Third-party utilities

v Interactive SQL queries

v Command or API invocation.

Incompatibilities introduced in DB2 Universal Database Version 8 and DB2 Version

9 are described. They are grouped according to the following categories:

v System Catalog Information

v Application Programming

v SQL

v Database Security and Tuning

v Utilities and Tools

v Connectivity and Coexistence

v Messages

v Configuration Parameters.

Each incompatibility section includes a description of the incompatibility, the

symptom or effect of the incompatibility, and possible resolutions. There is also an

indicator at the beginning of each incompatibility description that identifies the

operating system to which the incompatibility applies:

Windows

Microsoft Windows® platforms supported by DB2 databases

UNIX UNIX®-based platforms supported by DB2 databases

Deprecated and discontinued features

 This section describes current and future deprecated and discontinued features. In

addition, any planned incompatibilities that users of DB2 database systems should

keep in mind when coding new applications, or when modifying existing

applications are presented here. Knowing about these changes will facilitate your

current application development and future planning to move to newer versions of

DB2.

For example, in the reference material you will see the new parameters in the

command or SQL statement syntax and description with a note that says that this

new parameter is replacing another parameter. However, that other, older

parameter will continue to be recognized for a period of time. The actual time for

this continued support of the older parameter is not explicitly stated because it is

© Copyright IBM Corp. 1993, 2006 243

difficult to predict the future. The time of overlap between the old and the new

parameter allows you time to plan for the changes to be applied to your

applications.

There are also new functions or features for the product that are first discussed in

the ″What’s New″ document.

Some of these deprecated function or features, or the new functions and features,

will have an impact for you if you are a current customer of our product. The

impacts are outlined as part of the discussion on migration.

What follows is a list of those differences in the current release from the previous

release of DB2.

 System catalog information:

 PK_COLNAMES and FK_COLNAMES in a future version of DB2:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The SYSCAT.REFERENCES columns PK_COLNAMES and FK_COLNAMES will

no longer be available.

 Symptom:

 When referenced, an error is returned because the columns no longer exist.

 Explanation:

 These columns are obsolete and have been replaced.

 Resolution:

 Change your tools or applications that reference the SYSCAT.REFERENCES

columns PK_COLNAMES and FK_COLNAMES to use the SYSCAT.KEYCOLUSE

view instead.

 COLNAMES no longer available in a future version of DB2:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The SYSCAT.INDEXES column COLNAMES will no longer be available.

This column will only contain valid information if the column names are less than

or equal to 30 bytes, and if there are less than or equal to 16 columns in the index.

Either a blank or a NULL value is returned if any column name exceeds 30 bytes,

or if there are greater than 16 columns.

244 Administration Guide: Planning

Symptom:

 Column does not exist and an error is returned.

 Explanation:

 Tools or applications are coded to use the obsolete COLNAMES column.

 Resolution:

 Change the tool or application to use the SYSCAT.INDEXCOLUSE view instead.

 Application programming:

 iCheckPending parameter of the db2Load API is deprecated:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The iCheckPending parameter of the db2load API is deprecated. The replacement

parameter is iSetIntegrityPending.

 Explanation:

 The iCheckPending parameter of the db2Load API is deprecated. It is an input

parameter of the db2Load API to specify whether a table should be put into the

check pending state.

Note: The set integrity pending state replaces the check pending state. They are

equivalent states.

 Resolution:

 Use the iSetIntegrityPending parameter with the db2Load API. The values to use

with this new parameter are: SQLU_SI_PENDING_CASCADE_IMMEDIATE or

SQLU_SI_PENDING_CASCADE_DEFERRED.

 User defined functions (UDFs) and procedures to be deprecated:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The following UDFs are deprecated: GET_DBM_CONFIG,

SNAP_GET_CONTAINER, SNAP_GET_DB, SNAP_GET_DYN_SQL,

SNAP_GET_STO_PATHS, SNAP_GET_TAB, SNAP_GET_TBSP,

SNAP_GET_TBSP_PART, SNAPSHOT_AGENT, SNAPSHOT_APPL,

SNAPSHOT_APPL_INFO, SNAPSHOT_BP, SNAPSHOT_CONTAINER,

SNAPSHOT_DATABASE, SNAPSHOT_DBM, SNAPSHOT_DYN_SQL,

SNAPSHOT_FCM, SNAPSHOT_FCMNODE, SNAPSHOT_LOCK,

SNAPSHOT_LOCKWAIT, SNAPSHOT_QUIESCERS, SNAPSHOT_RANGES,

Appendix A. Incompatibilities between releases 245

SNAPSHOT_STATEMENT, SNAPSHOT_SUBSECT, SNAPSHOT_SWITCHES,

SNAPSHOT_TABLE, SNAPSHOT_TBREORG, SNAPSHOT_TBS,

SNAPSHOT_TBS_CFG, SQLCACHE_SNAPSHOT.

The following procedures are deprecated: GET_DB_CONFIG, SNAPSHOT_FILEW,

and SYSINSTALLROUTINES.

Deprecating these routines means that there will be no further investment in the

routines. The documentation for the routines is updated to indicate that the routine

is deprecated, but is being maintained for compatibility. At some point in the

future these UDFs and routines will be removed from the catalogs and

documentation.

 Explanation:

 New routines based on the SQL Administrative API standards, are replacing old

functions created before the standards were implemented.

 Resolution:

 New equivalent functions with similar names beginning with SNAP_GET_ are

available. Different parameters and additional columns may be associated with the

new functions. You should review the differences before using the replacement

functions within your applications.

For additional information on the deprecated UDFs and procedures, and the new

equivalent functions and views, refer to “Deprecated SQL administative routines

and their replacement routines or views”.

Use the new functions, routines and views; applications using the old functions

and procedures should consider a plan to update the applications by moving to

the new functions and routines. The old functions and procedures will continue to

be supported for compatibility. However, this support will be removed in a future

version or release of the product.

 Default function entry points in external routine libraries is deprecated:

 Operating systems affected:

 Only the 32-bit AIX and Windowsoperating systems are affected.

 Change:

 In some future version or release, we will no longer support loading a library

name and assuming the default entry point.

Within the AIX and Windowsoperating system environments, support for the

default function entry points in external routine libraries is deprecated.

 Explanation:

 There is a risk of instance failure when only specifying the library name and using

the default entry point when routines are run in trusted (not fenced) mode.

 Resolution:

246 Administration Guide: Planning

From this point forward, when creating stored procedures and functions, do not

rely on the database manager to resolve and load the function specified by the

default entry point. Instead, specify the complete entry point and library name

when loading routine libraries. For new routines, specify the !proc-id (for a

procedure) or the !func-id (for a function) value as part of the EXTERNAL NAME

clause value. For existing routines, provide an explicit entry point value for routine

definitions that specify the EXTERNAL NAME clause. This can be done using the

ALTER FUNCTION statement.

 Remove type-1 index support:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The type-1 index support has been removed.

 Explanation:

 A new type of index was introduced in Version 8, called a type-2 index. With

type-1 indexes, that is indexes created prior to Version 8, a key is physically

removed from a leaf page as part of the deletion or update of a table row. With

type-2 indexes, keys are marked as deleted when a row is deleted or updated, but

they are not physically removed until after the deletion or update is committed.

When support for re-creation of type-1 indexes is removed, you will not have to

rebuild your indexes manually. Type-1 indexes will continue to function correctly.

All actions that result in the re-creation of indexes will automatically convert

type-1 indexes to type-2 indexes. In a future version, support for type-1 indexes

will be removed.

 Resolution:

 Use the newer type-2 indexes. This can be done by converting the older indexes

manually (by request during a REORG of the indexes). All new indexes use the

new type-2 indexes.

 DB2 JDBC type 2 driver is deprecated:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The DB2 JDBC type 2 driver was deprecated in version 8.2, and remains

deprecated in version 9.1. Support for the driver will be removed in a future

release.

 Resolution:

 Use the IBM DB2 Driver for JDBC and SQLJ.

 Remove Type 3 JDBC driver support:

Appendix A. Incompatibilities between releases 247

Operating systems affected:

 All supported operating systems are affected.

 Change:

 The Type 3 JDBC driver support has been removed.

 Explanation:

 The db2jd is not be shipped with the product.

 Resolution:

 Use the IBM DB2 Driver for JDBC and SQLJ.

 Application libraries have changed:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The following changes have been made:

v db2app.dll was extended. It includes its original information, plus the

information from the db2util.dll, db2abind.dll, and db2cli.dll libraries.

v db2api.dll was extended. It includes its original information, plus the

information from the db2cli.dll library.

 Explanation:

 The library information is being consolidated.

 Resolution:

 Stubs for the db2util.dll, db2abind.dll, and db2cli.dll libraries are still available for

backwards compatibility. These stubs will be removed in a future version or release

of the product.

 SQL:

 Some SQL administrative routines have been replaced:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 Some of the existing administrative routines have been replaced by newer, more

comprehensive routines or views.

 Explanation:

248 Administration Guide: Planning

Expanding the support of SQL administrative routines in Version 9 required the

replacement of some existing routines.

 Resolution:

 Applications that use Version 8 table functions should be modified to use the new

functions or administrative views. The new table functions have the same base

names as the original functions but are suffixed with “_Vxx” to identify the version

of the product in which they were added. However, the administrative views will

always be based on the most current version of the table functions, and therefore

allow for more application portability.

For additional information on the new routines, refer to “Deprecated SQL

administrative routines and their replacement routines or views”.

 Partitioning key to distribution key terminology change:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The term “partitioning key” is changed to “distribution key”. A distribution key is

a column (or group of columns) that is used to determine the database partition in

which a particular row of data is stored. A table partitioning key is an ordered set

of one or more columns that is used to determine the data partition in which each

table row belongs.

 Explanation:

 The introduction of table partitioning required that there be a redefinition of

“partitioning key”.

 Resolution:

 The term “distribution key” is used in the documentation where it once was

“partitioning key”.

 PARTITIONING KEY clause changes on the ALTER TABLE statement:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The ADD PARTITIONING KEY clause of the ALTER TABLE statement is being

deprecated. This clause is being replaced by the ADD DISTRIBUTE BY HASH

clause.

The DROP PARTITIONING KEY clause of the ALTER TABLE statement is being

deprecated. This clause is being replaced by the DROP DISTRIBUTION clause.

 Explanation:

Appendix A. Incompatibilities between releases 249

The introduction of table partitioning required that there be a redefinition of

“partitioning key” resulting in changed syntax on the ALTER TABLE statement.

 Resolution:

 The old PARTITIONING KEY clause in the syntax is supported for backwards

compatibility. However, the clause not be supported in a future release of the

product. Therefore, you should plan to convert applications that use this old

syntax to the new syntax.

 Database security and tuning:

 Extended storage is no longer supported:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 Extended storage is no longer supported. With DB2 products moving to 64-bit

environments, the need for extended storage is removed.

Following your migration to DB2 Version 9, values in the catalog views will

change. Fore example, the ESTORE column within the SYSCAT.BUFFERPOOLS

catalog view will always be “N”. Any data definition language (DDL) that may be

run to attempt to change this value will be tolerated but will have not effect.

There are monitor elements that are still present, but are deprecated in Version 9.

The four monitor elements are:

v pool_data_to_estore

v pool_index_to_estore

v pool_data_from_estore

v pool_index_from_estore

In a future release or version of DB2 products, using the monitor elements relating

to extended storage, and the output generated by the contents of those elements

when requesting a GET SNAPSHOT command, will no longer be available.

In addition, the configuration parameters for extended storage (estore_seg_sz and

num_estore_segs) are no longer valid in Version 9.

The “ESTORE” column from the SYSCAT.BUFFERPOOLS catalog will also be

removed in a future release or version.

 Explanation:

 Extended storage acted as an extended look-aside buffer for the main buffer pools.

It allowed for memory performance improvements which took advantage of

computers with large amounts of main memory. For computers with 64-bit

environments, extended storage and other similar methods are no longer needed.

 Resolution:

250 Administration Guide: Planning

Extended storage should no longer be used. You should plan not to use the

extended storage configuration parameters, nor the extended storage monitor

elements.

 Utilities and tools:

 Desktop icon and folder making utility no longer supported (Linux):

 Operating systems affected:

 Only the Linux operating system is affected.

 Change:

 This release no longer includes a set of utilities for the creation of DB2 desktop

folders and icons for launching commonly used product tools on the Gnome and

KDE desktops for supported Intel®-based Linux distributions.

 db2ilist command has deprecated options (Linux and UNIX):

 Operating systems affected:

 Only the Linux and supported UNIX operating systems are affected.

 Change:

 The db2ilist command has the following command options deprecated:

v -w (list the bitwidth for each instance)

v -a (list both regular and AFP™ instances)

v -p (list the path for each instance)

 Explanation:

 In the past, the db2ilist command could be used to list all available instances on a

system. Now, the db2ilist command only lists the instances related to the current

installation path and only one type of instance on each UNIX or Linux platform.

 Resolution:

 The db2ilist command can still be used. The deprecated options on the command

should not be used.

 db2reg2large utility for converting DMS table space size is no longer available:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The db2reg2large utility, which is used for converting Regular DMS table spaces to

Large DMS tale spaces has been discontinued in DB2 Version 9.

 Resolution:

Appendix A. Incompatibilities between releases 251

This utility has been replaced with a new CONVERT TO LARGE option on the

ALTER TABLESPACE SQL statement.

 db2profc and db2profp utilities are discontinued:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 In previous releases, db2profc was accepted as an alternative name for

db2sqljcustomize, and db2profp was accepted as an alternative name for

db2sqljprint. These alternative names are no longer accepted.

 Explanation:

 The DB2 JDBC Type 2 Driver originally used the name db2profc for the SQLJ

profile customizer command, and the name db2profp for the SQLJ profile printer

command.

 Resolution:

 For the IBM DB2 Driver for JDBC and SQKJ, the SQLJ profile customizer command

is named db2sqljcustomize, and the SQLJ profile printer command is name

db2sqljprint. Use these commands instead of db2profc and db2profp.

 Set permissions for database objects (db2secv82) is deprecated:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The set permissions for database objects (db2secv82) command is deprecated.

 Explanation:

 The name of the command suggested that it was only for use with Version 8.2 of

the product (db2secv82). The new name will be for use in the current release and

in future releases.

 Resolution:

 Use the set permissions for database objects (db2extsec) command in place of the

set permissions for database objects (db2secv82) command. You should locate and

change references to the db2secv82 command in your applications and scripts and

develop a plan to replace those references with ones to the db2extsec command.

 db2look tool behavior changes:

 Operating systems affected:

 All supported operating systems are affected.

252 Administration Guide: Planning

Change:

 On systems using the Database Partitioning Feature (DPF), table space data

definition language (DDL) may not be complete if some database partitions are not

active. When requesting DDL on systems using DPF, a warning message is

displayed in place of the DDL for table spaces that exist on inactive database

partitions.

 Explanation:

 The use of automatic re-sizing and automatic storage across databases partitions,

and the resulting need to gather data using a snapshot approach, requires that each

database partition be active.

 Resolution:

 To ensure proper DDL is produced for all table spaces, all database partitions must

be activated.

 WordWidth parameter (-w option) of the db2icrt, db2ilist, and db2iupdt

commands is ignored and deprecated:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The WordWidth (-w) option of the db2icrt, db2ilist, and db2iupdt commands is

ignored when used and is being deprecated. This option provided the instance

width in bits.

 Resolution:

 There is no effect if this option continues to be specified. The option is only valid

on AIX 5L™, HP-UX, Linux, and the Solaris operating systems.

 Manual installation:

 Operating systems affected:

 Only Linux and UNIX operating systems are affected.

 Change:

 Manual installation, uninstallation, or querying of DB2 products using native Linux

or UNIX operating system utilities such as pkgadd, rpm, SMIT, or swinstall is not

supported.

 Explanation:

 To better manage and control the installation process, manual installation or

uninstallation of DB2 products is no longer supported.

 Resolution:

Appendix A. Incompatibilities between releases 253

Use the db2_install command which has new parameters to support new function.

The db2_deinstall command is part of the base installation image.

 Support for Lock Object Name will be removed:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The Lock Object Name that is part of the snapshot monitor sample ouput provides

no value and contains redundant information from the Lock Name part of the

output. The monitor element “lock_object_name” will be deprecated in a future

release.

 Explanation:

 The output report from the snapshot monitor produces a list of locks. The Lock

Name is the first item in the list. This information is taken from the monitor

element “lockname”. Later in the report, the Lock Object Name is shown. This

information is taken from the monitor element “lock_object_name”. The

information presented as part of this item could also have been extracted from the

value given for the monitor element “lockname”.

 Resolution:

 The monitor element “lock_object_name” will be deprecated in a future release.

The information it provides is also going to be removed from snapshot monitor

output.

You should plan not to use the GET SNAPSHOT FOR LOCKS ON <dbname>

command to return the “Lock Object Name” in any new or revised applications.

 Remove raw log support:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The raw device support for logging has been removed.

 Explanation:

 Increasing dedicated storage subsystems and full support of self-managing DMS

storage is reducing the need for detailed storage management.

 Resolution:

 Do not use raw devices for logging. You may need to change the newlogpath

database configuration parameter setting to a disk device instead of a raw device.

Remember to stop and restart the database manager to make the new setting for

the configuration parameter effective.

254 Administration Guide: Planning

Changes to db2batch:

 Operating systems affected:

 All supported operating systems are affected.

 Symptom:

 The db2batch command now runs only in CLI mode. CLI mode used to be

specified using the -cli option. Embedded dynamic SQL was the default mode, but

this has been changed so that the command only runs in CLI mode. Also, scripts

that perform REBIND or BIND on db2batch.bnd will fail because a “bnd” file is no

longer shipped.

In addition, the -p option is not available.

 Explanation:

 The parallel option on the db2batch command is no longer supported.

 Resolution:

 You can continue to use the -cli option for backward compatibility only, but it has

no effect. You can change the default isolation level by specifying the TxnIsolation

configuration keyword in the db2cli.ini file. The new -iso option is used to

specify the isolation level.

You can no longer use the -p option on the db2batch command.

 Support for db2uiddl tool will be removed:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 Indexes which do not support deferred unique semantics will no longer be

supported. The db2uiddl - Prepare Unique Index Conversion to V5 Semantics

command will no longer be supported after DB2 Version 9.

 Explanation:

 In DB2 Universal Database (UDB) Version 5, the semantics of unique indexes were

changed to deferred unique. To support this change, the db2uiddl tool was

introduced to convert unique indexes to the new semantics. When databases using

pre-Version 5 unique index semantics are migrated, all unique indexes are not

automatically changed to Version 5 semantics because converting unique indexes is

a very time-consuming operation, and you will want to manage the conversion

based on your business needs.

 Resolution:

 Develop a plan to convert all unique indexes created prior to DB2 UDB Version 5

to the new deferred unique index semantics before support for db2uiddl is

removed. The db2uiddl tool searches the system catalogs for indexes without

Appendix A. Incompatibilities between releases 255

deferred unique semantics and writes CREATE UNIQUE INDEX statements for the

indexes that require conversion. These statements are stored in a file which must

be run after migration to Version 9 is successful. This will ensure that the indexes

are converted prior to the deprecation of the db2uiddl tool.

 Support for db2undgp tool will be removed:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 Execute privileges of routines (functions, procedures, and methods) are now

controlled by the SYSCAT.ROUTINEAUTH system catalog view. The db2undgp

command will no longer be available after DB2 Version 9.

 Explanation:

 In DB2 Universal Database (UDB) Version 8, a system catalog view,

SYSCAT.ROUTINEAUTH, was added to control the EXECUTE privileges of

routines (functions, procedures, and methods). During database migration to DB2

UDB Version 8, the EXECUTE privilege for all existing functions, methods, and

external stored procedures are granted to all users (PUBLIC). This results in a

security exposure for external stored procedures that access SQL data. The

db2undgp command is used to prevent users from accessing SQL objects which

they do not have privileges for.

 Resolution:

 Develop a plan to revoke the EXECUTE privilege from the PUBLIC group before

the db2undgp tool is deprecated.

 Support for re-creation of type-1 indexes will be removed:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 A new type of index was introduced in Version 8, called a type-2 index. With

type-1 indexes, that is indexes created prior to Version 8, a key is physically

removed from a leaf page as part of the deletion or update of a table row. With

type-2 indexes, keys are marked as deleted when a row is deleted or updated, but

they are not physically removed until after the deletion or update is committed.

When support for re-creation of type-1 indexes is removed, you will not have to

rebuild your indexes manually. Type-1 indexes will continue to function correctly.

All actions that result in the re-creation of indexes will automatically convert

type-1 indexes to type-2 indexes. In a future version, support for type-1 indexes

will be removed.

 Explanation:

 Type-2 indexes have advantages over type-1 indexes:

v A type-2 index can be created on columns whose length is greater than 255 bytes

256 Administration Guide: Planning

v The use of next-key locking is reduced to a minimum, which improves

concurrency.

 Resolution:

 Develop a plan to convert your existing indexes to type-2 indexes over time. The

Online Index Reorganization capability can help do this while minimizing

availability outages. Increase index table space size if needed. Consider creating

new indexes in large table spaces and moving existing indexes to large table

spaces.

Note: If you convert pre-Version 5 indexes to type-2, you do not need to run the

db2uiddl tool.

 Connectivity and coexistence:

 CLI keyword CLISCHEMA no longer supported:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 For DB2 clients connecting to DB2 for Linux, UNIX, and Windows DB2 database

servers, the CLISchema keyword is deprecated.

For DB2 clients connecting to DB2 for z/OS database servers, the CLISchema

keyword is dropped.

 Resolution:

 DB2 clients should no longer use the CLISchema keyword. One keyword that is

similar to CLISchema is SysSchema.

 Data Warehouse Manager is no longer included:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The DB2 Warehouse Manager Standard Edition is not available for this release. The

Data Warehouse Center and the Information Catalog Center are not included in

this release.

 Resolution:

 These products and centers are being developed and released separately from the

base DB2 Version 9 product.

 Text Extender is no longer supported:

 Operating systems affected:

Appendix A. Incompatibilities between releases 257

All supported operating systems are affected.

 Change:

 DB2 Text Extender is not supported in this release.

 Resolution:

 A direct replacement function is not available. However, there are other full-text

search products capable of performing similar tasks. For example, there are DB2

Net Search Extender that is very like the Text Extender; and, WebSphere

Information Integrator OmniFind™ Edition that provides an enterprise search

solution for finding the most relevant corporate information. The information can

be found not only in a relational database but searched across intranets, extranets,

corporate public Web sites, and a wide range of content repositories.

 Audio, Image, and Video (AIV) Extenders are no longer supported:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 Audio, Image, and Video (AIV) Extenders are no longer supported in this release.

 Resolution:

 You might consider implementing your own extensions similar to the AIV

Extenders to enhance the DB2 functionality using DB2 user-defined functions and

third party software.

 Platform support changes for the DB2 Administration Tools:

 Operating systems affected:

 Only supported Windows and Linux operating systems are affected.

 Change:

 In previous releases, the DB2 Administration Tools, including the Control Center,

were supported on all platforms. In Version 9, the DB2 Administration Tools, are

supported only on Windows x86, Windows x64 (AMD64 or EM64T), Linux on x86,

and Linux on AMD64 or EM64T.

 32-bit instance support changes:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 In response to market demand, a priority is being placed on DB2 database server

support for 64-bit hardware and operating systems. The number of supported

258 Administration Guide: Planning

32-bit platforms is being reduced. Support for 32-bit Windows and Linux platforms

will continue since those platforms are often preferred for building or running

small and medium business applications.

 Configuration parameters and registry variables:

 Deprecated configuration parameters:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The following configuration parameters are deprecated:

v estore_seg_sz

v num_estore_segs

v min_priv_mem

v priv_mem_thresh; Use the DB2MEMMAXFREE registry variable in its place.

v fcm_num_rqb

v fcm_num_anchors

v fcm_num_connect

A value may be set for each of these configuration parameters but the value is

ignored. (That is, the value will have no effect.)

 Deprecated registry variables:

 Operating systems affected:

 All supported operating systems are affected.

 Change:

 The following registry variables are deprecated:

v DB2_FORCE_FCM_BP; the default value is changed from “No” to “Yes”.

v DB2_LGPAGE_BP; Use the DB2_LARGE_PAGE_MEM registry variable in its

place.

v DB2LINUXAIO

The following registry variables are deprecated:

v DB2_SCATTERED_IO; Default is to always read from disk on Linux.

 Related reference:

v “Deprecated SQL administrative routines and their replacement routines or

views” in Administrative SQL Routines and Views

Appendix A. Incompatibilities between releases 259

Version 9 incompatibilities with previous releases and changed

behaviors

 This section describes current incompatibilities that users of DB2 database systems

should keep in mind when coding new applications, or when modifying existing

applications. This will facilitate your current application development and future

planning to move to newer versions of DB2. An incompatibility typically involves

a change in defaults for product functions and feature; or, it involves a different

requirement or outcome from what would have occurred in the previous version of

the DB2 product. For example, if you used an SQL statement last version or

release, you expect a certain behavior or result. If you used the same SQL

statement this version and you receive a different behavior or result that is not

expected, then there is an incompatibility between the last version (or release) and

the current version. Those differences or “incompatibilities” are documented here.

Note: Although an attempt has been made to list all of the currently known

product incompatibilities, there may be more recent incompatibilities

documented in the product release notes.

 System catalog information:

 SETTING fields will be changing:

 Windows UNIX

 Change:

 There is a change in type (and length) of the SETTING fields in specific catalogs.

 Symptom:

 Existing application programs referencing SETTING in the ORDER BY clause, or

WHERE SETTING IN... clause, or WHERE SETTING= clause will fail.

 Explanation:

 The SETTING files in the following catalogs have changed from VARCHAR(255) to

CLOB(32K):

v SYSCAT.TABOPTIONS

v SYSCAT.COLOPTIONS

Application programs that SELECT the SETTING fields from these catalogs will

need to be rewritten because of the restrictions on large objects (LOBs) for SQL

statements.

 Resolution:

 Rewrite your application programs that SELECT the SETTING fields from the

catalogs specified.

 Application Programming:

260 Administration Guide: Planning

Application ID format changed:

 Windows UNIX

 Change:

 The format of the application ID has changed.

 Explanation:

 The new format presents the port number and IP address in a readable form that

also accommodates the longer IPv6 addresses.

 Resolution:

 If you have scripts that parse output that contains the application ID, you will

need to modify the parsing conditions to account for the new format. For example,

you may parse the output from the LIST APPLICATIONS command.

 DB2 Embedded Application Server updated:

 Windows UNIX

 Change:

 The DB2 Embedded Application Server enables you to run the Web applications

supplied with DB2 without needing to purchase an application server. In Version 8,

the DB2 Embedded Application Server was also referred to as the application server

for DB2 UDB.

The XML Metadata Repository (XMR) application is not longer supported as one

of the applications with DB2 Embedded Application Server.

 Resolution:

 For users of the XMR application in Version 8, it is necessary to uninstall XMR and

find a replacement product. WebSphere offers several suitable replacement

products.

 IBM Software Development Kit (SDK) for Java 5.x is now supported:

 Windows UNIX

 Change:

 The IBM Software Development Kit (SDK) for Java 5.x is now supported on the

following operating system platforms: AIX 5, Linux on x86, Linux on

AMD64/EM64T, Linux on zSeries®, Linux on POWER™, Windows x86 and

Windows x64.

 Resolution:

Appendix A. Incompatibilities between releases 261

The IBM SDK is automatically installed on the server. If the client tools are

installed, the IBM SDK is also installed on the client. If you are using the JDBC

drivers with your own applications, you need to ensure the IBM SDK is installed.

 Application and routine feature support changes:

 Windows UNIX

 Change:

 The removal of support for most 32-bit database instances has resulted in changes

in support for application and routines.

 Symptom:

 Client applications using DB2 Version 6 or Version 7 client instances cannot

connect to DB2 Version 9 database servers.

There are new environment variable values within the client application

environment.

32-bit unfenced routines (stored procedures and user-defined functions) created in

DB2 Universal Database Version 8 will no longer work on 64-bit DB2 database

servers in the AIX, HP, SUN, Linux on POWER, Linux for AMD64 and Intel

EM64T, and Linux on zSeries environments. Migrating these routines to DB2

Version 9 requires that you rebuild them on the target 64-bit database server.

SQL procedures that you created for 32-bit instances of DB2 Universal Database

Version 8 with any of FixPak 1 through FixPak 6 will not run on 64-bit instances of

DB2 Version 9. To successfully migrate these SQL procedures to DB2 Version 9, you

must drop and recreate the SQL procedures using the target 64-bit database server.

SQL procedures created for 32-bit instances of DB2 Universal Database Version 7 or

Version 8 with any FixPak will continue to work on the supported 32-bit instances

of DB2 Version 9.

 Explanation:

 The removal of support for most 32-bit database instances has resulted in changes

in support for application and routines.

 Resolution:

 You will need to consider whether you need to remain using a 32-bit database

instance as a result of the product changes, or if you should move to a 64-bit

database instance.

For example, only a 64-bit JVM is provided with 64-bit DB2 database servers. A

32-bit JVM is provided only for the Linux x86 and Windows on x86 operating

systems. Finally, Java external routines require a 32-bit JVM for 32-bit DB2 database

servers and a 64-bit JVM for 64-bit DB2 database servers.

 New shipped functions and procedures:

 Windows UNIX

262 Administration Guide: Planning

Change:

 New functions, function signatures for existing functions, or procedures have been

added to the set of routines shipped with the product.

 Symptom:

 If a user-defined function or user-defined procedure has the same name and

signature as a new shipped function or procedure, an unqualified reference to that

function or procedure in a dynamic SQL statement will now execute the shipped

function or procedure and not the user-defined one. Note that this does not affect

static SQL in packages or SQL objects such as views, triggers, or SQL functions

which will continue to execute the user-defined function or procedure until an

explicit bind of the package or drop and create of the SQL object.

 Explanation:

 The default SQL path contains the schemas SYSIBM, SYSFUN, SYSPROC, and

SYSIBMADM before the schema name which is the value of the USER special

register. These system schemas are also usually included in the SQL path when it

is explicitly set using the SET PATH statement or the FUNCPATH bind option.

When function resolution and procedure resolution is performed, the shipped

functions and procedures in these schemas will be considered before user-defined

functions and user-defined procedures.

In Version 9, the following functions and procedures were added to the set of

shipped functions and procedures:

 CHARACTER_LENGTH

 OCTET_LENGTH

 POSITION

 SECLABEL

 SECLABEL_BY_NAME

 SECLABEL_TO_CHAR

 STRIP

 SUBSTRING

 TRIM

 XMLCOMMENT

 XMLDOCUMENT

 XMLQUERY

 XMLTEXT

 XMLVALIDATE

 XMLXSROBJECTID

In Version 9, new administrative functions and procedures were added. Since the

naming convention used for these functions and procedures make it more unlikely

that a user-defined function or user-defined procedure would have the same name,

they are not listed here. See the Administrative SQL Routines and Views for a list of

these functions and procedures.

 Resolution:

Appendix A. Incompatibilities between releases 263

Rename the user-defined function or user-defined procedure; or, fully qualify the

name to invoke it. Otherwise, you will be using the shipped function or procedure.

Alternatively, the schema in which the user-defined function or user defined

procedure exists can be placed in the SQL path before the schema in which the

shipped function or procedure exists. However, doing this will increase the time it

will take to resolve to all shipped functions and procedures since the schemas

before the system schemas will be considered first.

 Change to LIST APPLICATIONS output:

 Windows UNIX

 Change:

 There are two new agents that will be included as part of the LIST

APPLICATIONS command.

 Explanation:

 There are two new agents (db2stmm and db2taskd) requiring connection to the

database at all times. As a result, there are two new agents that will be included as

part of the LIST APPLICATIONS command. If you have any scripts designed to

monitor the output from the LIST APPLICATIONS command, they will need to be

modified based on these two new agents.

 Resolution:

 Modify any scripts designed to monitor the output from the LIST APPLICATIONS

command to account for the presence of the two new agents.

 Default size of DMS table spaces:

 Windows UNIX

 Change:

 The new default size for DMS table spaces is “large”.

 Symptom:

 There may be an increase in the amount of storage used if you have scripts that

are used to create DMS table spaces and that do not explicitly specify the size

(whether regular or large). The old default was “regular”, the new default is

“large”.

 Explanation:

 The default size for DMS table spaces is “large” which takes up more space than a

“regular” table space.

 Resolution:

 For those scripts which you use to create table spaces and have, in the past, simply

accepted the default, you should consider modifying the scripts by adding explicit

requests for a “regular” table space size if that is what you wish.

264 Administration Guide: Planning

SQL:

 SQL procedures can no longer use cursor blocking:

 Windows UNIX

 Change:

 Cursor blocking can no longer be used for SQL procedures, regardless of the value

that you specify for the BLOCKING bind option. The data is always received one

row at a time.

 Explanation:

 There is a new limitation that applies to FETCH statements as well as FETCH

statements that are implicitly contained in FOR loops.

 Resolution:

 Reveiw those applications where you use cursor blocking. These applications

might need to be modified based on this change in behavior.

 Lock lists require additional space:

 Windows UNIX

 Change:

 The space required by each lock in a lock list has changed such that a lock list of a

given size can no longer represent as many locks as it once did.

 Explanation:

 Lock sizes have changed as follows:

v On 32-bit platforms, each lock requires 48 bytes of the lock list to record a lock

on an object that has an existing lock on it. The lock requirement was 40 bytes.

v On 64-bit HP-UX/PA-RISC systems, each lock requires 80 bytes of the lock list to

record a lock on an object that has an existing lock on it. The lock requirement

was 64 bytes.

 Resolution:

 You may need to modify your lock list size.

 New function SYSIBM.LOCATE replacing SYSFUN.LOCATE:

 Windows UNIX

 Change:

 A new function SYSIBM.LOCATE is shipped in Version 9.1 that extends the

functionality present in SYSFUN.LOCATE.

Appendix A. Incompatibilities between releases 265

Symptom:

 If the LOCATE function is used in an application that is compiled in Version 9.1

without the schema name qualification, the new SYSIBM.LOCATE will be invoked.

SYSIBM.LOCATE may return results that are different from SYSFUN.LOCATE in

some cases.

 Explanation:

 The SYSIBM.LOCATE extends the functionality of SYSFUN.LOCATE by adding

character semantics to the LOCATE function and accepting graphic string

arguments. Though the existing syntax supported by SYSFUN.LOCATE continues

to work and have the same semantics using SYSIBM.LOCATE when used with

OCTETS or without CODEUNITS specification, there are few cases where the

results could be different.

One such case occurs when a search is performed on a graphic string data type. In

releases before Version 9.1, in a Unicode database, graphic strings would be

converted to character strings before the function was invoked. The position at

which the search succeeded is counted in terms of bytes for SYSFUN.LOCATE,

whereas it is counted in terms of units of TWO bytes for SYSIBM.LOCATE when

no CODEUNITS specification is specified.

For example, the following returns the value 2:

 VALUES SYSIBM.LOCATE(GX’0040’, GX’D8000040’)

whereas the following returns the value 4:

 VALUES SYSFUN.LOCATE(GX’0040’, GX’D8000040’)

Another difference occurs when a 2-byte graphic character search string that may

occur as a byte pattern that spans two “real characters” in the source string. For

example searching for GX'2233 in a string GX'11223344 succeeds with

SYSFUN.LOCATE, but returns 0 (NOT FOUND) with SYSIBM.LOCATE. This is

because SYSFUN.LOCATE does a byte-based search and SYSIBM.LOCATE does a

character-based search. The characters in the source string are “1122” and “3344”.

There is no character “2233”, it is just a byte pattern that is present; but straddles

two characters.

Another difference is that SYSIBM.LOCATE does some character validations that

are not done by SYSFUN.LOCATE and may give different results when there are

invalid characters in the search string.

 Resolution:

 If the difference in results caused by illegal characters is acceptable, users can use

OCTETS as the codeunit specification to get the same behavior as

SYSFUN.LOCATE. If the exact behavior of the SYSFUN.LOCATE function is

required, applications can use the function name qualified with the schema name.

Our recommendation is to adapt the application to use the new SYSIBM.LOCATE

as it offers more functionality.

 SQL functions processing based on specified units:

 Windows UNIX

266 Administration Guide: Planning

Change:

 Not all SQL functions that operate on character strings are limited to processing

“bytes”.

 Explanation:

 The CHARACTER_LENGTH, LENGTH, LOCATE, POSITION, and SUBSTRING

functions include a parameter that allows you to specify a predefined set of string

units. This means that the functions can process strings using the specified units

instead of bytes or double bytes.

For example, the SYSIBM.LENGTH and SYSIBM.LOCATE functions process input

as “characters” as compared to the SYSFUN version of LENGTH and LOCATE

which use “bytes”. This may result in different behavior being exhibited when

each handles illegal characters.

 Resolution:

 Take some care in the selection of the functions you use when you may encounter

illegal characters in the data being processed. Different results could be expected

based on the function used.

 New scan default when creating an index:

 Windows UNIX

 Change:

 When creating new primary keys, unique keys, or indexes (except extended index),

ALLOW REVERSE SCANS is the default. Consequently, the access plan may

change and query execution times may improve because the optimizer may be able

to use the reverse index scan in some SQL statements. The exception is when

working with extended index types. In the previous release, the default used to be

DISALLOW REVERSE SCANS.

 Explanation:

 The new default allows the optimizer to consider both forward and reverse scans

through the index.

Note: If you create two indexes on the same table, one specifying ascending order

(ASC) and the other specifying descending order (DESC), and if you do not

specify the DISALLOW REVERSE SCANS option in the CREATE INDEX

statement, the two indexes will default to ALLOW REVERSE SCANS. As a

result, the latter index will not be created and a duplicate index warning

message is issued.

 Resolution:

 In prior versions, you may have created one forward scan index and one reverse

scan index to speed up the application. Unfortunately, this requires the

maintenance of two indexes. Now that reverse scans is enabled by default, the two

indexes can be replaced with a single one that is enabled for reverse scans.

Appendix A. Incompatibilities between releases 267

If you do not want to allow reverse scans on the indexes you are creating, then

you must explicitly request that they be created with the DISALLOW REVERSE

SCANS option.

 New features enabled by default when a new database is created:

 Windows UNIX

 Change:

 When a new database is created, self tuning memory, the Configuration Advisor,

and automated RUNSTATS are enabled by default.

 Explanation:

 After creating a new database, you may see different query plans or workload

behavior resulting from changes caused by the new defaults for these autonomic

features. Existing applications or scripts that rely on previous DB2 default behavior

and database configuration values, may see changes because some configuration

values will have changed.

 Resolution:

 If you do not these features to be enabled by default, they can be disabled by

actions involving the respective features:

v Configuration Advisor: Before creating the database, set the

DB2_ENABLED_AUTOCONFIG_DEFAULT registry variable to “NO” using

db2set.

v Self tuning memory: After the database is created, update the self_tuning_mem

database configuration parameter by turning it “OFF”.

v Automated RUNSTATS: After the database is created, update the auto_runstats

database configuration parameter by turning it “OFF”.

 Disallowing multiple changes to the same buffer pool within one unit:

 Windows UNIX

 Change:

 No longer allow multiple ALTER BUFFERPOOL statements within the same unit

of work.

 Explanation:

 The addition of the self tuning memory manager in Version 9, increases the

complexity in the actions that may be made on the characteristics of buffer pools.

To limit this complexity, multiple alterations to the characteristics of the same

buffer pool within a single unit of work is disallowed.

 Resolution:

 Attempting to make multiple ALTER BUFFERPOOL statements within the same

unit of work will be disallowed.

268 Administration Guide: Planning

Database security and tuning:

 SET SESSION AUTHORIZATION requires SETSESSIONUSER privilege:

 Windows UNIX

 Change:

 In DB2 Version 9, changing the session authorization ID to a new value using the

SET SESSION AUTHORIZATION statement requires that the authorization ID of

the SQL statement have the SETSESSIONUSER privilege. This privilege can be

granted by a security administrator (SECADM) using the new GRANT

SETSESSIONUSER statement.

 Explanation:

 In DB2 UDB Version 8, users with DBADM or SYSADM authority could assume

different authorization IDs on the same connection using the SET SESSION

AUTHORIZATION statement. In DB2 Version 9, the new SETSESSIONUSER

privilege, which can only be granted by a security administrator (SECADM), is

required to perform this task.

 Resolution:

 For backward compatibility, and to avoid loss of existing user privileges, any

authorization ID that explicitly holds DBADM authority (as recorded in the

SYSCAT.DBAUTH catalog view) is automatically granted the SETSESSIONUSER

privilege upon migration to DB2 Version 9. A user who acquires DBADM authority

after migration to DB2 Version 9 will not be able to change the session

authorization ID unless they are explicitly granted the SETSESSIONUSER privilege.

 TSM filtering changes involving management class:

 Windows UNIX

 Change:

 Prior to DB2 Version 9, restore and log retrieval could search for objects based on a

management class, if it was specified. Because the management class can change,

filtering based on management class could produce incorrect results. Consequently,

management class is no longer used as a basis for filtering.

 Explanation:

 Management class is a Tivoli Storage Manager (TSM) concept that helps with the

management of objects according to defined storage policies. When a backup

image, a load copy image, or a log file is written to TSM, a particular management

class is associated with that object. After a log file is written to, or a backup image

is stored, the management class may be changed through TSM.

 Resolution:

 Management class is no longer used as a basis for filtering.

Appendix A. Incompatibilities between releases 269

Privileges and authorities changes to bring tables out of set integrity pending:

 Windows UNIX

 Change:

 The SET INTEGRITY and REFRESH TABLE statements require specific authorities

and privileges to work on the tables affected by these statements. The list of

authorities and privileges that may be held by the authorization ID has changed

from Version 8 to Version 9.

 Resolution:

 Bringing tables out of the set integrity pending state and performing the needed

integrity processing requires specific authorities and privileges. The authorities and

privileges held by the authorization ID of the statement must include at least one

of the following:

v CONTROL privilege on:

– The tables on which integrity processing is performed and, if exception tables

are provided for one or more of those tables, INSERT privilege on the

exception tables

– All descendent foreign key tables, descendent immediate materialized query

tables, and descendent immediate staging tables that will implicitly be placed

in set integrity pending state by the statement
v LOAD authority (with conditions). The following conditions must all be met

before LOAD authority can be considered as providing valid privileges:

– The required integrity processing does not involve the following actions:

- Refreshing a materialized query table

- Propagation to a staging table

- Updates of a generated or identity column
– If exception tables are provided for one or more tables, the required access is

granted for the duration of the integrity processing to the tables on which

integrity processing is performed, and to the associated exception tables. That

is:

- SELECT and DELETE privilege on each table on which integrity processing

is performed; and,

- INSERT privilege on the exception tables
v SYSADM or DBADM authority

 Index changes that could cause an error:

 Windows UNIX

 Change:

 The maximum number of columns in an index has been increased from 16 to 64;

and so has the maximum size of an index key which depends on the index page

size. Sort heap overflows require a system temporary table space that has a large

enough page size to be used by the sort.

 Explanation:

270 Administration Guide: Planning

In the previous release, the default temporary system table space using 4 KB pages

may have been sufficient. However, in the current release, the key size plus record

identifier plus the page header size may be greater than the 4 KB pages and result

in error message SQL1584N.

 Resolution:

 Applications that may encounter this error message should be updated to detect it

and to react in accordance with the message.

 Extended storage is no longer supported:

 Windows UNIX

 Change:

 Extended storage is no longer supported. With DB2 products moving to 64-bit

environments, the need for extended storage is removed.

 Explanation:

 Extended storage acted as an extended look-aside buffer for the main buffer pools.

It allowed for memory performance improvements which took advantage of

computers with large amounts of main memory. For computers with 64-bit

environments, extended storage and other similar methods are no longer needed.

 Resolution:

 Extended storage should no longer be used. If you are using Windows and you

want to use more memory, you should consider moving to a 64-bit operating

system. However, if you have to stay on a Windows 32-bit operating system, you

can use Address Windowing Extensions (AWE) to overcome the 32-bit space

limitation. AWE is controlled by the registry variable DB2_AWE.

 Databases are created as automatic storage by default:

 Windows UNIX

 Change:

 The CREATE DATABASE command and sqlecrea() API have been changed in

Version 9. They will now create automatic storage-enabled databases by default.

You will have to explicitly specify non-automatic storage to use the old behavior.

 Symptom:

 The SYSCATSPACE, TEMPSPACE1, and USERSPACE1 will all be created as

automatic storage table spaces. This means that the database manager will manage

the storage for these table spaces. Container operations are not valid against

automatic storage table spaces. TableIDs (FIDs) will also change, although you may

not be interested in these values. Redirected restore operations also act differently

with automatic storage (that is, you redefine the storage paths instead of

individual table space containers).

 Explanation:

Appendix A. Incompatibilities between releases 271

Automatic storage manages the containers for automatic storage table spaces, so

there are certain operations which cannot be performed on those table spaces, such

as container operations and redirected restore. Note that table spaces which are

explicitly created as SMS or DMS will not be affected by this change. Databases

migrated from previous releases are also unaffected. This may affect your scripts

which rely on characteristics of the default table spaces.

Due to the change of table space type, disk requirements will increase. By default,

non-temporary automatic storage table spaces increase by 32 MB at a time, so

small databases may take more disk space. This space will be used as the database

grows. Similarly, empty tables will consume more space. An empty table and index

will consume 512 KB. This can be reduced by changing the extent size for the table

space, either explicitly or by modifying the default extent size (DFT_EXTENT_SZ)

in the database configuration. For small databases, an extent size of 4 is suggested.

The extent size can only be chosen when the table space is created.

 Resolution:

 If necessary, you can create a non-automatic storage database by calling CREATE

DATABASE with the AUTOMATIC STORAGE NO clause, or sqlecrea() with

SQL_AUTOMATIC_STORAGE_NO. The application may also be updated to use

the new table space type properly; for example, by redefining storage paths on

restore instead of issuing SET CONTAINERS as a part of a redirected restore.

 Utilities and tools:

 Autoloader utility (db2atld) is no longer supported:

 Windows UNIX

 Change:

 The Autoloader utility (db2atld) is no longer supported.

 Explanation:

 The load utility is now recommended for distributing and loading data within

partitioned database environments.

 Resolution:

 Use the load utility for distributing and loading data within partitioned database

environments.

 Load from cursor:

 Windows UNIX

 Change:

 You cannot use the distributed data files from a previous release when performing

a load operation using the CURSOR file type and the PARTITION_ONLY

partitioned database configuration load option in the current release.

 Explanation:

272 Administration Guide: Planning

The distributed data files are not compatible with the new DB2 server. The reverse

is also true; that is, the distributed data files from the current release cannot be

used when performing a load operation using the CURSOR file type and the

PARTITION_ONLY partitioned database configuration load option.

 Resolution:

 When performing a load operation on a Version 9 DB2 server using the CURSOR

file type and the PARTITION_ONLY partitioned database configuration load

option, you must use the set of distributed data files created using DB2 Version 9.

 Vendor load API (sqluvtld) is no longer valid:

 Windows UNIX

 Change:

 The Vendor load API (sqluvtld) is no longer available for use.

 Explanation:

 The load utility is now recommended for distributing and loading data.

 Resolution:

 The load utility is the only supported bulk loader. The load utility can be run

using the db2Load API.

 Changes to db2batch:

 Windows UNIX

 Change:

 Embedded dynamic SQL was the default mode, but this has been changed so that

the command only runs in CLI mode. The output provided by the db2batch

command is improved by including additional information such as time stamps

and clearer messages. The output is also in a new format.

 Explanation:

 The parallel option (-p) on the db2batch command is no longer supported.

 Resolution:

 You can continue to use the -cli option for backward compatibility only, but it has

no effect. You can change the default isolation level by specifying the TxnIsolation

configuration keyword in the db2cli.ini file. The new -iso option is used to

specify the isolation level.

You can no longer use the -p option on the db2batch command.

Appendix A. Incompatibilities between releases 273

LOAD command set of distributed data files are changed:

 Windows UNIX

 Change:

 The created set of distributed data files created using a LOAD command in a

previous version using the CURSOR file type and the PARTITION_ONLY

partitioned database configuration load option is specified cannot be used as input

to the LOAD command in Version 9. That is, the distributed data files created

previously are not compatible with a LOAD command using the CURSOR file type

and the LOAD_ONLY partitioned database configuration load option.

 Explanation:

 The format of the distributed data files has changed in Version 9.

 Resolution:

 When creating a set of distributed data files, you should partition the data and

load the data using the same version of the DB2 product.

 Changes to the db2ckmig tool:

 Windows UNIX

 Change:

 If an SQLCODE exists for messages returned by the db2ckmig tool, the db2ckmig

log file now includes both the SQLCODE and the SQL message text.

 Explanation:

 In previous releases, the db2ckmig tool reported errors using message text from its

own message file. However, in some cases, existing SQLCODEs also describe the

errors. Having the SQLCODE in the db2ckmig log file, means that you can refer to

the messages documentation for a more detailed explanation of the problem and

possible user responses.

 Resolution:

 Any tools built on the exact message text of the db2ckmig log file might require

changes to parse SQLCODEs.

 REORGCHK command output changes:

 Windows UNIX

 Change:

 The output generated as part of the REORGCHK command is changed for Version

9.

274 Administration Guide: Planning

The SCHEMA and NAME columns are concatenated into one column

(SCHEMA.NAME). In addition, the SCHEMA.NAME for each table and index is

broken into two rows, one of the actual fully qualified name of the table, and one

for the fully qualified name of each index on that table. The actual data for the

remaining columns follows each index name.

 Resolution:

 You may have to take into account the changes made to the output from the

REORGCHK command.

 Changes to migration support tools and commands:

 Windows UNIX

 Change:

 The database tools, utilities, and commands that are provided support migration

from Version 8 but not from Version 7.

 Explanation:

 The breadth and complexity of the changes from Version 7 to Version 8; and from

Version 8 to Version 9 make the migration path from Version 7 to Version 9 too

difficult to be done with one set of migration tools and commands.

 Resolution:

 Use the migration information to plan for your migration to the current version

and release. This may involve migrating to Version 8 before attempting to migrate

to the current version and release.

 New naming convention for backup images:

 Windows UNIX

 Change:

 The naming convention for backup images stored on Windows operating systems

has changed to match the naming convention used for all other operating systems.

 Explanation:

 File names for backup images created on disk will now consist of a concatenation

of several elements, separated by periods:

 DB_alias.Type.Inst_name.NODEnnnn.CATNnnnn.timestamp.Seq_num

 Resolution:

 Use this new naming convention for backup images.

Note: Backup images from earlier versions of the product that use the previous

naming structure can still be restored on V9.1 DB2 database systems.

Appendix A. Incompatibilities between releases 275

Change to db2look output:

 Linux UNIX

 Change:

 In the output generated by the db2look command, the value displayed for the

identity collating sequence is now IDENTITY.

 Explanation:

 In previous releases, the value BINARY was displayed for the identity collating

sequence in the output generated by the db2look command and the GET

DATABASE CONFIGURATION command. The collating sequence itself has not

changed.

 Changes to data movement utilities:

 Linux UNIX

 Change:

 The following changes have been made to the load, import, and export utilities:

v When recreating tables using the IXF file format, if a feature cannot be recreated

during the import process using the CREATE option, you will receive a warning

during the export process and an error during the import process. In some cases,

you can force the creation of tables from IXF files by specifying the file type

modifier FORCECREATE. This new behavior only affects files exported using

DB2 Version 9.1.

v The extension for an exported LOB file is now .lob. For example,

filename.001.lob, filename.002.lob. The default name of the lob file is the input

data file name. For example, <datafile>.001.lob, <datafile>.002.lob. If the input

data file is generated in DB2 UDB Version 8, the DB2 Version 9.1 import utility

can read it correctly.

v When moving LOB data, the default paths and the order in which the load,

import, and export utilities search for these paths have changed.

v When exporting and importing LOB data, the LOBSINFILE keyword is specified

automatically if you specify the LOBS TO or LOBFILE options in the EXPORT

command, or the LOBS FROM option in the IMPORT command. In DB2 UDB

Version 8, if the LOBSINFILE file type modifier was not specified, the LOBS TO,

LOBS FROM, and LOBFILE options were ignored.

 Changes to the db2mtrk command:

 Linux UNIX

 Change:

 The -d option, which shows database level memory, is now supported on Windows

platforms. The -i option, which shows instance level memory, no longer shows the

database level memory.

 Explanation:

276 Administration Guide: Planning

Since the -d option is now available on Windows platforms, it should be used to

display the database level memory. When the -i option is used, only the instance

level memory is displayed.

 Resolution:

 On Windows platforms, use the -d option of the db2mtrk command to see the

database level memory.

 Changes to location of diagnostic messages for automatic maintenance:

 Linux UNIX

 Change:

 The following changes have been made to the diagnostic level and location of

messages related to automatic maintenance:

v A diagnostic record is written in the db2diag.log file whenever automatic

maintenance health indicators are evaluated. If a maintenance operation occurs

as a result of these evaluations, a diagnostic record is written in both the

db2diag.log file and the notification log.

v The diagnostic records associated with automatic maintenance are classified as

″info″ records.

v These diagnostic records will only be written when the diagnostic level

(diaglevel) or notification level (notifylevel) of the instance is set to a value of 4.

 Explanation:

 In DB2 Universal Database Version 8, whenever automatic maintenance health

indicators were evaluated, a diagnostic record was written in db2diag.log file.

Whenever a maintenance operation occurred as a result of these evaluations,

another entry was written in the db2diag.log file. These diagnostic records were

classified as ″event″ records and would appear when the diagnostic level of the

instance (as specified in the diaglevel database manager configuration parameter)

was set to values of 3 or 4.

 Resolution:

 To ensure that diagnostic records (″event″ records) appear in the db2diag.log file

and the notification log, set the diagnostic level (diaglevel) or notification level

(notifylevel) of the instance to 4.

 Restrictions for table space point in time rollforward operations:

 Linux UNIX

 Change:

 For DB2 Version 9 clients, all table space rollforward recovery operation must be

done to a point in time.

 Resolution:

Appendix A. Incompatibilities between releases 277

Ensure that all clients have been migrated to DB2 Version 9 and that you specify a

point in time when initiating a rollforward operation.

 Write-to-table event monitor changes:

 Linux UNIX

 Change:

 In a partitioned database environment, a write-to-table event monitor will only be

active on database partitions where the table space containing the event monitor

table exists. When the target table space for an active event monitor does not exist

on a particular database partition, the event monitor will be deactivated on that

database partition, and an error is written to the db2diag.log file.

 Explanation:

 In earlier versions of DB2, the event monitor would be active and would appear as

an active event monitor process on these database partitions but would not write

any data.

 Connectivity and coexistence:

 Increased log, table space, and memory requirements:

 Linux UNIX

 Change:

 Record identifier (RID) size was increased to support LARGE table spaces. The

growth rate for log files and the size of log records also increases. Each RID now

requires 8 bytes of memory in a single-partition environment and 16 bytes of

memory in a partitioned database environment.

 Explanation:

 With the related change concerned with larger record identifiers (RID), there are

increased requirements for logs, table spaces, and memory. Larger record

identifiers (RID) allow more data pages per table object and more records per

page. This increase in the number of pages and records also changes the required

amount of memory and space used by log files and system temporary table spaces.

 Resolution:

 If the row size in your results sets is close to the maximum row length limit for

your existing system temporary table space with the largest page size, you might

need to create a system temporary table space with a larger page size. Another

alternative is to reduce the length of the information retrieved by your query, or to

split the query.

 Databases require additional space:

 Linux UNIX

278 Administration Guide: Planning

Change:

 To accommodate changes in the DB2 product requires that you allocate more space

for database objects when compared to the same objects in a prior version.

 Explanation:

 Changes in this version of the DB2 product means that additional space is required

for logs, table spaces, indexes, system catalog tables, and user table data.

 Resolution:

 Review the changes to the database objects so that you will understand the

increased space requirements before creating those objects.

 DB2 install images on Linux and UNIX have package format changes:

 Linux UNIX

 Change:

 The DB2 install images on Linux and UNIX not longer use the operating system

formats.

You can no longer use Linux and UNIX operating system utilities such as pkgadd,

rpm, SMIT, or swinstall.

 Explanation:

 To enable you to install multiple DB2 copies on the same system, all DB2 install

images for Linux and UNIX are compressed in a tar.gz format.

 Resolution:

 You should use the DB2 installation programs to ensure that your DB2 products

are deployed and set up correctly. If you have scripts that you used in the past to

install DB2 products using operating system commands, you must modify them to

call DB2 installation programs (db2setup or db2_install) instead.

You can only use the db2ls command to query the installation of a DB2 product. If

you used scripts containing operating system commands to query DB2 installation

packages, you must modify them to use db2ls.

 NetBIOS and SNA no longer supported:

 Windows UNIX

 Change:

 NetBIOS and SNA are no longer supported as methods of communications

between database systems.

 Explanation:

 NetBIOS and SNA are no longer supported.

Appendix A. Incompatibilities between releases 279

Resolution:

 Do not plan to use either NetBIOS or SNA as a future method of communication

between and among database clients and servers. Remove the NetBIOS and SNA

keywords from the DB2COMM registry variable to prevent the generation of an

error when you start the instance. An error will also be returned when you use the

CATALOG NETBIOS NODE, CATALOG APPC NODE, or CATALOG APPN

NODE commands.

 DB2 products no longer supported during installation:

 Windows UNIX

 Change:

 The following products are no longer supported as installation options or as

prerequisite components:

v DB2 Data Warehouse Center

v DB2 Data Warehouse Manager

v DB2 Information Catalog Center

v DB2 Data Links Manager

v DB2 Datajoiner

 Explanation:

 Resolution:

 If any of these products is installed on your system, they must be uninstalled

before migrating your DB2 database system to Version 9. Instance migration will

fail should any of these products be installed.

Also, any database objects created by these products (such as user-defined types,

user-defined functions, and stored procedures) will remain in the database

following the uninstall of the DB2 products. You should remove these objects from

the databases before migration because they may cause the migration to fail.

 Data Links Manager no longer supported:

 Windows UNIX

 Change:

 DB2 Data Links Manager is no longer supported. This non-support includes

several components of a Data Links server:

v Data Links File Manager (DLFM)

v Data Links Filesystem Filter (DLFF) controlling a Data Links File System (DLFS)

v DB2 Logging Manager

 Explanation:

 DB2 Data Links Manager is no longer supported.

 Resolution:

280 Administration Guide: Planning

Do not create any new database objects with the DATALINK data type or any new

database objects that reference DATALINK columns.

 VM/VSE objects no longer supported in the Control Center:

 Windows UNIX

 Change:

 From the DB2 Control Center you can no longer connect or disconnect from

VM/VSE databases. You can only display the cataloged VM and VSE databases.

When adding an instance, the VM and VSE operating systems will no longer be

available for selection.

 Resolution:

 Although you may display the cataloged VM and VSE databases, you will have to

connect to them independent of the DB2 Control Center.

 Maximum number of connections change in use:

 Windows UNIX

 Change:

 There are two new agents requiring connection to the database at all times.

 Explanation:

 There are two new agents (db2stmm and db2taskd) requiring connection to the

database at all times. There connection requirements will mean that in a tightly

configured environment, two of the connections identified by the max_connections

database manager configuration parameter will always be in use. As a result, you

may run out of available connections.

 Resolution:

 If you are working in a tightly configured environment, you should consider

increasing the max_connections database manager configuration parameter value by

two.

 Configuration parameters and registry variables:

 Configuration parameters default value changes:

 Windows UNIX

 Change:

 The default values for the following configuration parameters have changed

between Version 8.2 and Version 9 of the DB2 database.

Appendix A. Incompatibilities between releases 281

Table 41. Configuration parameters with changed default values

Parameter V8.2 Default Value V9.1 Default Value

app_ctl_heap_sz -

Application control heap size

configuration parameter

Database server with local

and remote clients: 128

Database server with local

clients:

v 64 (for non-UNIX

platforms)

v 128 (for UNIX-based

platforms)

Partitioned database server

with local and remote clients:

512

Database server with local

and remote clients:

v 128 when

INTRA_PARALLEL is not

enabled

v 512 when

INTRA_PARALLEL is

enabled

Database server with local

clients:

v 64 (for non-UNIX

platforms) when

INTRA_PARALLEL is not

enabled

v 512 (for non-UNIX

platforms) when

INTRA_PARALLEL is

enabled

v 128 (for UNIX-based

platforms) when

INTRA_PARALLEL is not

enabled

v 512 (for UNIX-based

platforms) when

INTRA_PARALLEL is

enabled

Partitioned database server

with local and remote clients:

512

auto_maint - Automatic

maintenance configuration

parameter

OFF ON

auto_runstats (See

auto_maint - Automatic

maintenance configuration

parameter for details.)

OFF ON

auto_tbl_maint (See

auto_maint - Automatic

maintenance configuration

parameter for details.)

OFF ON

avg_appls - Average number

of active applications

configuration parameter

1 Automatic

database_memory - Database

shared memory size

configuration parameter

Automatic v AIX and Windows:

Automatic

v Linux, HP-UX, Solaris

Operating System:

Computed

java_heap_sz - Maximum

Java interpreter heap size

configuration parameter

512 v 32-bit platforms: 512

v 64-bit platforms: 1024

282 Administration Guide: Planning

Table 41. Configuration parameters with changed default values (continued)

Parameter V8.2 Default Value V9.1 Default Value

locklist - Maximum storage

for lock list configuration

parameter

v UNIX: 100

v Windows Database server

with local and remote

clients: 50

v Windows 64-bit Database

server with local clients: 50

v Windows 32-bit Database

server with local clients: 25

Automatic

maxlocks - Maximum

percent of lock list before

escalation configuration

parameter

v UNIX: 10

v Windows: 22

Automatic

num_iocleaners - Number of

asynchronous page cleaners

configuration parameter

1 Automatic

num_ioservers - Number of

I/O servers configuration

parameter

3 Automatic

pckcachesz - Package cache

size configuration parameter

-1 Automatic

sheapthres - Sort heap

threshold configuration

parameter

v UNIX 32-bit platforms: 20

000

v Windows 32-bit platforms:

10 000

v 64-bit platforms: 20 000

0

sheapthres_shr - Sort heap

threshold for shared sorts

configuration parameter

sheapthres Automatic

sortheap - Sort heap size

configuration parameter

256 Automatic

userexit - User exit enable

configuration parameter

No Off

 Configuration parameter changes:

 Windows UNIX

 Change:

 The following configuration parameters are no longer valid in Version 9:

v estore_seg_sz

v num_estore_segs

v min_priv_mem (Windows only)

v priv_mem_thresh (Windows only)

v fcm_num_rqb

v fcm_num_anchors

v fcm_num_connect

The following changes have been made to configuration parameter content and

meaning:

Appendix A. Incompatibilities between releases 283

v avg_appls; the average number of active applications database configuration

parameter has a new default. The default for the configuration parameter is set

to one (the old default) unless an SAP environment is detected. If it is an SAP

environment, the default is three active applications. In both cases, the defaults

being set may not conflict with the setting for the maxappls database

configuration parameter.

The new format presents the port number and IP address in a readable form

that also accommodates the longer IPv6 addresses.

If you have scripts that parse output that contains the application ID, you will

need to modify the parsing conditions to account for the new format. For

example, you may parse the output from the LIST APPLICATIONS command.

v database_memory; the meaning of “AUTOMATIC” has changed. What was know

as “AUTOMATIC” before Version 9 has been renamed to “COMPUTED”. To

maintain the behavior for this configuration parameter as it was used before

Version 9, set the database_memory configuration parameter to “COMPUTED”. By

setting the database_memory configuration parameter to “AUTOMATIC” in

Version 9, self tuning memory is enabled, and total database memory usage is

automatically tuned.

v sheapthres_shr; the types of sorts using the shared memory has changed. Before

Version 9, only sorts in a symmetric multi-processor (SMP) environment, or

when using the concentrator, would use the shared memory. In Version 9, by

setting the sheapthres instance configuration parameter to zero (0), and the

sheapthres_shr database configuration parameter to a non-zero value, all sort

memory consumers for the database use the database shared memory instead of

private sort memory. Also, the default value for the sheapthres_shr database

configuration parameter has changed from the value of sheapthres to 5000 4 KB

pages.

v dyn_query_mgmt; during migration from Version 8 to Version 9, the default value

for this configuration parameter is changed from “Enable” to “Disable”. Once

migration is complete, and once Query Patroller is installed, then you must set

this configuration parameter to “Enable” manually. You can set configuration

parameter values using the UPDATE DATABASE CONFIGURATION command.

v num_iocleaners and num_ioservers; the default values set for these two

configuration parameters is changed to “AUTOMATIC”. This means that the

number of prefetchers and page cleaners started is based on environment

characteristics such as the number of CPUs, the number of database partitions,

and the parallelism settings of the table spaces in the database.

For existing databases, you can take advantage of this feature by setting the

values of num_iocleaners and num_ioservers to “AUTOMATIC”.

The following changes have been made to registry variable content and meaning:

v DB2_ALLOCATION_SIZE; the default value is changed from 8388608 to 131072.

This registry variable specifies the size of the memory allocation for buffer pools.

v DB2_FORCE_FCM_BP; the default value is changed from “No” to “Yes”. This

registry variable specifies the memory allocation for FCM buffers.

 Related concepts:

v “Migration overview for DB2 servers” in Migration Guide

v “Migration recommendations for DB2 servers” in Migration Guide

v “Migration essentials for DB2 clients” in Migration Guide

v “About the Release Notes” in Release notes

v “What's new for V9.1: Administration changes summary” in What’s New

284 Administration Guide: Planning

v “What's new for V9.1: Application development changes summary” in What’s

New

v “What's new for V9.1: Changes in existing functionality summary” in What’s

New

v “What's new for V9.1: Database setup changes summary” in What’s New

 Related reference:

v “Deprecated and discontinued features” on page 243

Version 8 incompatibilities with previous releases

 System catalog information:

 IMPLEMENTED column in catalog tables:

 Windows UNIX

 Change:

 In previous versions, the column IMPLEMENTED in SYSIBM.SYSFUNCTIONS and

SYSCAT.SYSFUNCTIONS had values of Y, M, H, and N. In Version 8, the values

are Y and N.

 Resolution:

 Recode your applications to use only the values Y and N.

 OBJCAT views renamed to SYSCAT views:

 Windows UNIX

 Change:

 The following OBJCAT views have been renamed to SYSCAT views:

TRANSFORMS, INDEXEXTENSIONS, INDEXEXTENSIONMETHODS,

INDEXEXTENSIONDEP, INDEXEXTENSIONPARMS, PREDICATESPECS,

INDEXEXPLOITRULES.

 Resolution:

 Recode your applications to use the SYSCAT views.

 SYSCAT views are now read-only:

 Windows UNIX

 Change:

 As of Version 8, the SYSCAT views are read-only.

 Symptom:

 An UPDATE or INSERT operation on a view in the SYSCAT schema now fails.

Appendix A. Incompatibilities between releases 285

Explanation:

 The SYSSTAT views are the recommended way to update the system catalog

information. Some SYSCAT views were unintentionally updatable and this has

now been fixed.

 Resolution:

 Change your applications to reference the updatable SYSSTAT views instead.

 Application programming:

 Audit context records statement size has grown:

 Windows UNIX

 Change:

 The statement limit has been raised to 2 MB.

 Symptom:

 The audit context record statement text is too large to fit into the table.

 Explanation:

 The existing tables used to record auditing context records only allow 32 KB for

the statement text. The new statement limit is 2 MB. If you do not use long

statement lengths, this will not affect you.

 Resolution:

 Create a new table to hold audit context records with a CLOB(2M) value for the

statement text column. If desired, populate the new table with data from the old

table, then drop the old table and use the new one. The new table may be renamed

to the same name as the old table. Rebind any applications that use the new table.

 Applications run multithreaded by default:

 Windows UNIX

 Change:

 In Version 8, applications run in multithreaded mode by default. In previous

versions, the default was to run applications in single-threaded mode. This change

means that calls to the sqleSetTypeCtx API will have no effect.

The Version 8 multithreaded mode is equivalent to calling the sqleSetTypeCtx API

with the SQL_CTX_MULTI_MANUAL option in a pre-Version 8 application. A

Version 7 client can still run an application in single-threaded mode.

 Explanation:

 In Version 7, if you wanted to run an application in multithreaded mode, you had

to call context APIs and manage the contexts. In Version 8, this is not necessary

since DB2 Database for Linux, UNIX, and Windows will manage contexts

286 Administration Guide: Planning

internally. However, in Version 8 you are still able to manage contexts for

applications if you want to, through external context APIs.

 SQL0818N error not returned when using VERSION option:

 Windows UNIX

 Change:

 If you use the new VERSION option on the PRECOMPILE, BIND, REBIND, and

DROP PACKAGE commands, requests to execute may now return an SQL0805N

error instead of an SQL0818N error.

 Symptom:

 Applications coded to react to an SQL0818N error may not behave as before.

 Resolution:

 Recode your applications to react to both SQL0805N and SQL0818N errors.

 SQL0306N error not returned to the precompiler when a host variable is not

defined:

 Windows UNIX

 Change:

 If a host variable is not declared in the BEGIN DECLARE section and is used in

the EXEC SQL section, SQL0306N will not be returned by the precompiler. If the

variable is declared elsewhere in the application, application runtime will return

SQL0804N. If the variable is not declared anywhere in the application, the compiler

will return an error at compilation time.

 Symptom:

 Applications coded to react to an SQL0306N error at precompilation time may not

behave as before.

 Resolution:

 Host variables should be declared in the BEGIN DECLARE section. If host

variables are declared in a section other than the BEGIN DECLARE section, you

should recode your application to handle SQL0804 return codes.

 Data types not supported for use with scrollable cursors:

 Windows UNIX

 Change:

Appendix A. Incompatibilities between releases 287

Scrollable cursors using LONG VARCHAR, LONG VARGRAPHIC, DATALINK

and LOB types, distinct types on any of these types, or structured types will not be

supported in Version 8. Any of these data types supported for Version 7 scrollable

cursors will no longer be supported.

 Symptom:

 If any columns with these data types are specified in the select list of a scrollable

cursor, SQL0270N Reason Code 53 is returned.

 Resolution:

 Modify the select-list of the scrollable cursor so it does not include a column with

any of these types.

 Euro version of code page conversion tables:

 Windows UNIX

 Change:

 The Version 8 code page conversion tables, which provide support for the euro

symbol, are slightly different from the conversion tables supplied with previous

versions of DB2.

 Resolution:

 If you want to use the pre-Version 8 code page conversion tables, they are

provided in the directory sqllib/conv/v7.

 Switching between a LOB locator and a LOB value:

 Windows UNIX

 Change:

 The ability to switch between a large object (LOB) locator and a LOB value has

been changed during bindout on a cursor statement. When an application is bound

with SQLRULES DB2 (the default behavior), the user will not be able to switch

between LOB locators and LOB values.

 Resolution:

 If you want to switch between a LOB locator and a LOB value during bindout of a

cursor statement, precompile your application with SQLRULES STD.

 Uncommitted units of work on UNIX platforms:

 UNIX

 Change:

 In Version 8, all application terminations implicitly roll back outstanding units of

work. Windows-based applications will not change as they already perform an

288 Administration Guide: Planning

implicit ROLLBACK for normal or abnormal application termination. Prior to

version 8, UNIX applications that did not use either explicit or implicit context

support would commit an outstanding unit of work if the application terminated

normally without directly invoking either a CONNECT RESET, COMMIT, or

ROLLBACK statement. CLI, ODBC, and Java-based applications (implicit context

support) and applications that would explicitly create application contexts would

always roll back any outstanding unit of work if the application terminated.

Abnormal application termination would also lead to an implicit ROLLBACK for

the outstanding unit of work.

 Resolution:

 In order to ensure that transactions are committed, the application should perform

either an explicit COMMIT or a CONNECT RESET before terminating.

 Change to savepoint naming:

 Windows UNIX

 Change:

 Savepoint names can no longer start with ″SYS″.

 Symptom:

 Creating a savepoint with a name that starts with ″SYS″ will fail with error

SQL0707N.

 Explanation:

 Savepoint names that start with ″SYS″ are reserved for use by the system.

 Resolution:

 Rename any savepoints that start with ″SYS″ to another name that does not start

with ″SYS″.

 Code page conversion errors and byte substitution:

 Windows UNIX

 Change:

 Character data in input host variables will be converted to the database code page,

when necessary, before being used in the SQL statement where the host variable

appears. During code page conversion, data expansion may occur. Previously,

when code page conversion was detected for data in a host variable, the actual

length assumed for the host variable was increased to handle the expansion. This

assumed increase in length is no longer performed, to mitigate the impact of the

change of the data type length on other SQL operations.

Note: None of this applies to host variables that are used in the context of FOR

BIT DATA. The data in these host variables will not be converted before

being used as for bit data.

Appendix A. Incompatibilities between releases 289

Symptom:

 If the host variable is not large enough to hold the expanded length after code

page conversion, an error is returned (SQLSTATE 22001, SQLCODE -302).

 Explanation:

 Since expansion or contraction can occur during code page conversion, operations

that depend on the length of the data in the host variable can produce different

results or an error situation.

 Resolution:

 Alternatives that can be considered include:

v Coding the application to handle the possibility of code page conversion causing

the length of the data to change by increasing the length of character host

variables

v Changing the data to avoid characters that cause expansion

v Changing the application code page to match the database code page so that

code page conversion does not occur.

 Code page conversion for host variables:

 Windows UNIX

 Change:

 Code page conversion, when necessary, will now be performed during the bind in

phase.

 Symptom:

 Different results.

 Explanation:

 Now that code page conversion, when necessary, will always be done for host

variables, predicate evaluation will always occur in the database code page and not

the application code page. For example,

 SELECT * FROM table WHERE :hv1 > :hv2

will be done using the database code page rather than the application code page.

The collation used continues to be the database collation.

 Resolution:

 Verify that the results in previous versions were indeed the desired results. If they

were, then change the predicate to produce the desired result given that the

database collation and code page are used. Alternatively, change the application

code page or the database code page.

 Expansion and contraction of data in host variables:

 Windows UNIX

290 Administration Guide: Planning

Change:

 Code page conversion, when necessary, will now be performed during a bind

operation.

 Symptom:

 Data from host variables have a different length.

 Explanation:

 Since expansion or contraction can occur during code page conversion, operations

that depend on the length of the data in the host variable can produce different

results or an error situation.

 Resolution:

 Change the data, the application code page or the database code page so that code

page conversion does not produce changes in length of the converted data, or code

the application to handle the possibility of code page conversion causing the length

of the data to change.

 Length of host variables after code page conversion:

 Windows UNIX

 Change:

 Code page conversion will no longer cause result length to increase for host

variables or parameter markers due to expansion.

 Symptom:

 Data truncation errors.

 Explanation:

 The length of the character data type determined for the untyped parameter

marker is no longer increased to account for potential expansion from code page

conversion. The result length will be shorter for operations that determine result

length using the length of the untyped parameter marker. For example, given that

C1 is a CHAR(10) column:

 VALUES CONCAT (?, C1)

no longer has a result data type and length of CHAR(40) for a database where 3

times expansion is possible when converting from the application code page to the

database code page, but will have a result data type and length of CHAR(20).

 Resolution:

 Use a CAST to give the untyped parameter marker the type desired or change the

operand that determines the type of the untyped parameter marker to a data type

or length that would accommodate the expansion of the data due to code page

conversion.

Appendix A. Incompatibilities between releases 291

Change to output of DESCRIBE statement:

 Windows UNIX

 Change:

 Code page conversion will no longer cause result length to increase for host

variables or parameter markers due to expansion.

 Symptom:

 Output from DESCRIBE statement changes.

 Explanation:

 Since the result length is not increased due to potential expansion on code page

conversion, the output of a DESCRIBE statement that describes such a result length

will now be different.

 Resolution:

 If necessary, change the application to handle the new values returned from the

DESCRIBE statement.

 Error when using SUBSTR function with host variables:

 Windows UNIX

 Change:

 Code page conversion will no longer cause result length to increase for host

variables or parameter markers due to expansion.

 Symptom:

 Error SQL0138N from SUBSTR.

 Explanation:

 Potential expansion due to code page conversion was taken into account by

increasing the length set aside for the host variable. This allowed, for example,

SUBSTR (:hv,19,1) to work successfully for a host variable with a length of 10.

This will no longer work.

 Resolution:

 Increase the length of the host variable to account for the length of the converted

data or change the SUBSTR invocation to specify positions within the length of the

host variable.

 Non-thread safe libraries are no longer supported on Solaris:

 UNIX

292 Administration Guide: Planning

Change:

 The non-thread safe library libdb2_noth.so is no longer available.

 Symptom:

 Tools or applications that require libdb2_noth.so will not work.

 Explanation:

 Since support for the obsolete non-thread safe libraries is no longer required, the

libdb2_noth.so library is not included with IBM DB2 Version 9.1 for Solaris.

 Resolution:

 Change the tool or application to use the thread-safe libdb2.so library instead.

Re-link your applications with the -mt parameter.

 Importing or exporting a DBCLOB when connected to a Unicode database:

 Windows UNIX

 Change:

 Prior to Version 8, if you exported data that contained a DBCLOB from a Unicode

database (UTF-8), and used the LOBSINFILE file type modifier, the DBCLOB

would be exported in code page 1200 (the Unicode graphic code page). If you

imported data that contained a DBCLOB, and used the LOBSINFILE file type

modifier, the DBCLOB would be imported in code page 1200 (the Unicode graphic

code page). This behavior is maintained in Version 8 if you set the

DB2GRAPHICUNICODESERVER registry variable to ON.

In Version 8, the default setting of the DB2GRAPHICUNICODESERVER registry

variable is OFF. If you export data containing a DBCLOB and using the

LOBSINFILE file type modifier, the DBCLOB will be exported in the application’s

graphic code page. If you import data containing a DBCLOB and using the

LOBSINFILE file type modifier, the DBCLOB will be imported in the application’s

graphic code page. If your application code page is IBM-eucJP (954) or IBM-eucTW

(964), and you export data containing a DBCLOB and using the LOBSINFILE file

type modifier, the DBCLOB will be exported in the application’s character code

page. If you import data containing a DBCLOB and using the LOBSINFILE file

type modifier, the DBCLOB will be imported in the application’s character code

page.

 Symptom:

 When importing data with the LOBSINFILE file type modifier into a Unicode

database, the character data will be converted correctly, but the DBCLOB data is

corrupted.

 Resolution:

 If you are moving data between a Version 8 database and an earlier database, set

the DB2GRAPHICUNICODESERVER registry variable to ON to retain the previous

behavior.

Appendix A. Incompatibilities between releases 293

SQL:

 DROPPED TABLE RECOVERY default changed for the CREATE TABLESPACE

statement:

 Windows UNIX

 Change:

 The DROPPED TABLE RECOVERY default changed for the CREATE TABLESPACE

statement from OFF to ON.

 Symptom:

 Forward recovery performance may be affected by this change in defaults. The

performance impact may be noticeable when there are many drop table operations

to recover; or, when the history table is large. In the later case, during forward

recovery when redoing SQLP_PRT_DROP_TABLE_RECOVERY pending list action,

the database manager needs to read and update the history file for the related

dropped recovery entry. If the history file is large, this action could take time while

searching the file for the correct entry and then updating the entry.

 Resolution:

 If you will be dropping many tables, and if you are either using circular logging or

do not wish to recovery those tables, then you should consider disabling this

feature. To disable the feature for new table spaces, you can use the CREATE

TABLESPACE statement and explicitly use the DROPPED TABLE RECOVERY

clause with the value set to OFF. For existing table spaces, you can use the ALTER

TABLESPACE statement and explicitly use the DROPPED TABLE RECOVERY

clause to change the value from the default (ON) to OFF. Dropped tables will no

longer be recovered as part of the forward recovery process.

 Identical specific names not permitted for functions and procedures:

 Windows UNIX

 Change:

 The name space for SPECIFICNAME has been unified. Previous versions of DB2

would allow a function and a procedure to have the same specific name, but

Version 8 does not allow this.

 Symptom:

 If you are migrating a database to Version 8, the db2ckmig utility will check for

functions and procedures with the same specific name. If duplicate names are

encountered during migration, the migration will fail.

 Resolution:

 Drop the procedure and recreate it with a different specific name.

294 Administration Guide: Planning

EXECUTE privilege on functions and procedures:

 Windows UNIX

 Change:

 Previously, a user only had to create a routine for others to be able to use it. Now

after creating a routine, a user has to GRANT EXECUTE on it first before others

can use it.

In previous versions, there were no authorization checks on procedures, but the

invoker had to have EXECUTE privilege on any package invoked from the

procedure. For an embedded application precompiled with CALL_RESOLUTION

IMMEDIATE in Version 8, and for a CLI cataloged procedure, the invoker has to

have EXECUTE privilege on the procedure and only the definer of the procedure

has to have EXECUTE privilege on any packages.

 Symptom:

 1. An application may not work correctly.

2. An existing procedure that is made up of multiple packages, and for which the

definer of the procedure does not have access to all the packages, will not work

correctly.

 Resolution:

 1. Issue the required GRANT EXECUTE statements. If all the routines are in a

single schema, the privileges for each type of routine can be granted with a

single statement, for example:

GRANT EXECUTE ON FUNCTION schema1.* TO PUBLIC

2. If one package is usable by everyone but another package is restricted to a few

privileged users, a stored procedure that uses both packages will watch for an

authority error when it tries to access the second package. If it sees the

authority error, it knows that the user is not a privileged user and the

procedure bypasses part of its logic.

You can resolve this in several ways:

a. When precompiling a program, CALL_RESOLUTION DEFERRED should

be set to indicate that the program will be executed as an invocation of the

deprecated sqleproc() API when the precompiler fails to resolve a procedure

on a CALL statement.

b. The CLI keyword UseOldStpCall can be added to the db2cli.ini file to

control the way in which procedures are invoked. It can have two values: A

value of 0 means procedures will not be invoked using the old call method,

while a value of 1 means procedures will be invoked using the old call

method.

c. Grant EXECUTE privilege to everyone who executes the package.

 Adding a foreign key constraint to a table:

 Windows UNIX

 Change:

Appendix A. Incompatibilities between releases 295

In previous versions, if you created a foreign key constraint that referenced a table

in check pending state, the dependent table would also be put into check pending

state. In Version 8, if you create a foreign key constraint that references a table in

check pending state, there are two possible results:

1. If the foreign key constraint is added upon creation of the dependent table, the

creation of the table and the addition of the constraint will be successful

because the table will be created empty, and therefore no rows will violate the

constraint.

2. If a foreign key is added to an existing table, you will receive error SQL0668N.

 Resolution:

 Use the SET INTEGRITY ... IMMEDIATE CHECKED statement to turn on integrity

checking for the table that is in check pending state, before adding the foreign key

that references the table.

 Change to SET INTEGRITY ... IMMEDIATE CHECKED:

 Windows UNIX

 Change:

 In previous releases, a table that had the SET INTEGRITY ... UNCHECKED

statement issued on it (i.e. with some ’U’ bytes in the const_checked column of

SYSCAT.TABLES) would by default be fully processed upon the next SET

INTEGRITY ... IMMEDIATE CHECKED statement, meaning all records would be

checked for constraint violations. You had to explicitly specify INCREMENTAL to

avoid full processing.

In Version 8, when the SET INTEGRITY ... IMMEDIATE CHECKED statement is

issued, the default is to leave the unchecked data alone (i.e. keeping the ’U’ bytes)

by doing only incremental processing. (A warning will be returned that old data

remains unverified.)

 Explanation:

 This change is made to avoid having the default behavior be a constraint check of

all records, which usually consumes more resources.

 Resolution:

 You will have to explicitly specify NOT INCREMENTAL to force full processing.

 Decimal separator for CHAR function:

 Windows UNIX

 Change:

 Dynamic applications that run on servers with a locale that uses the comma as the

decimal separator and include unqualified invocations of the CHAR function with

an argument of type REAL or DOUBLE, will return a period as the separator

296 Administration Guide: Planning

character in the result of the CHAR(double) function. This incompatibility will also

be visible when objects like views and triggers are re-created in Version 8 or when

static packages are explicitly rebound.

 Explanation:

 This is a result of resolving to the new SYSIBM.CHAR(double) function signature

instead of the SYSFUN.CHAR(double) signature.

 Resolution:

 To maintain the behavior from earlier versions of DB2, the application will need to

explicitly invoke the function with SYSFUN.CHAR instead of allowing function

resolution to select the SYSIBM.CHAR signature.

 Changes to CALL statement:

 Windows UNIX

 Change:

 In Version 8, an application precompiled with CALL_RESOLUTION IMMEDIATE

and a CLI cataloged procedure have several key differences compared to previous

versions:

v Host variable support has been replaced by support for dynamic CALL.

v Support for compilation of applications that call uncataloged stored procedures

has been removed. Uncataloged stored procedure support will be removed

entirely in a future version of DB2.

v Variable argument list stored procedure support has been deprecated.

v There are different rules for loading the stored procedure library.

 Resolution:

 The CALL statement as supported prior to Version 8 will continue to be available

and can be accessed using the CALL_RESOLUTION DEFERRED option on the

PRECOMPILE PROGRAM command.

Existing applications (built prior to Version 8) will continue to work. If applications

are re-precompiled without the CALL_RESOLUTION DEFERRED option, then

source code changes may be necessary.

Support for the CALL_RESOLUTION DEFERRED statement will be removed in a

future version.

 Output from UDFs returning fixed-length strings:

 Windows UNIX

 Change:

 A UDF (scalar or table function) can be defined to return a fixed-length string

(CHAR(n) or GRAPHIC(n)). In previous versions, if the returned value contains an

imbedded null character, the result would simply be n bytes (or 2n bytes for

GRAPHIC data types) including the null character and any bytes to the right of

Appendix A. Incompatibilities between releases 297

the null character. In Version 8, DB2 UDB looks for the null character and returns

blanks from that point (the null character) to the end of the value.

 Resolution:

 If you want to continue the pre-Version 8 behavior, change the definition of the

returned value from CHAR(n) to CHAR(n) FOR BIT DATA. There is no method to

continue the pre-Version 8 behavior for GRAPHIC data.

 Change in database connection behavior:

 Windows UNIX

 Change:

 In Version 7, if you use embedded SQL to connect to a database, and then attempt

a connection to a non-existent database, the attempt to connect to the non-existent

database will fail with SQL1013N. The connection to the first database still exists.

In Version 8, the attempt to connect to the non-existent database will result in a

disconnection from the first database. This will result in the application being left

with no connection.

 Resolution:

 Code your embedded SQL to reconnect to the initial database following an

unsuccessful attempt to connect to another database.

 Revoking CONTROL on packages:

 Windows UNIX

 Change:

 A user can grant privileges on a package using the CONTROL privilege. In DB2

UDB Version 8, the WITH GRANT OPTION provides a mechanism to determine a

user’s authorization to grant privileges on packages to other users. This mechanism

is used in place of CONTROL to determine whether a user may grant privileges to

others. When CONTROL is revoked, users will continue to be able to grant

privileges to others.

 Symptom:

 A user can still grant privileges on a package, following the revocation of

CONTROL privilege.

 Resolution:

 If a user should no longer be authorized to grant privileges on packages to others,

revoke all privileges on the package and grant only those required.

 Error when casting a FOR BIT DATA character string to a CLOB:

 Windows UNIX

298 Administration Guide: Planning

Change:

 Casting a character string defined as FOR BIT DATA to a CLOB (using the CAST

specification or the CLOB function) now returns an error (SQLSTATE 42846).

 Symptom:

 Casting to a CLOB now returns an error where previously it did not.

 Explanation:

 FOR BIT DATA is not supported for the CLOB data type. The result of using the

CAST specification or the CLOB function when a FOR BIT DATA string is given as

an argument is not defined. This situation in now caught as an error.

 Resolution:

 Change the argument to the CAST specification or the CLOB function so that it is

not a FOR BIT DATA string. This can be done by using the CAST specification to

cast the FOR BIT DATA string to a FOR SBCS DATA string or a FOR MIXED

DATA string. For example, if C1FBD is a VARCHAR(20) column declared as FOR

BIT DATA, in a non-DBCS database, the following would be a valid argument to

the CLOB function:

 CAST (C1FBD AS VARCHAR(20) FOR SBCS DATA)

 Output from CHR function:

 Windows UNIX

 Change:

 CHR(0) returns a blank (X’20’) instead of the character with code point X’00’.

 Symptom:

 Output from the CHR function with X’00’ as the argument returns different results.

 Explanation:

 String handling when invoking and returning from user-defined functions

interprets X’00’ as end of string.

 Resolution:

 Change the application code to handle the new output value. Alternatively, define

a user-defined function that returns CHAR(1) FOR BIT DATA which is sourced

from the definition of the SYSFUN CHR function, and place this function before

SYSFUN on the SQL path.

For example, to find the source definition for SYSFUN.CHR located in column

IMPLEMENTATION:

Appendix A. Incompatibilities between releases 299

SELECT IMPLEMENTATION, ROUTINENAME FROM SYSIBM.SYSROUTINES

 WHERE ROUTINENAME LIKE ’%CHR%’;

IMPLEMENTATION ROUTINENAME

-------------- -----------

db2clifn!CLI_udfCHAR CHR

Then, you could create a new user-defined function from the definition

db2clifn!CLI_udfCHAR returned above.

CREATE FUNCTION DBS.CHR(INTEGER) RETURNS CHARACTER(1) FOR BIT DATA NOT FENCED

 LANGUAGE C PARAMETER STYLE DB2SQL NO DBINFO EXTERNAL NAME ’db2clifn!CLI_udfCHAR’

 TABLE_NAME and TABLE_SCHEMA functions cannot be used in generated

columns or check constraints:

 Windows UNIX

 Change:

 The definitions for the TABLE_NAME and TABLE_SCHEMA functions have been

corrected, and can now not be used in generated columns or check constraints.

 Symptom:

 The bind will fail with an SQLCODE -548/SQLSTATE 42621 stating that

TABLE_NAME or TABLE_SCHEMA is invalid in the context of a check constraint.

 Explanation:

 The TABLE_NAME and TABLE_SCHEMA functions retrieve data from catalog

views. They are of the class READS SQL DATA; functions of class READS SQL

DATA are not permitted in GENERATED COLUMN expressions and check

constraints, since DB2 cannot enforce the correctness of the constraint over time.

 Resolution:

 Update any columns that contain generated column expressions and check

constraints to remove the use of TABLE_NAME and TABLE_SCHEMA. To alter a

generated column, use the ALTER TABLE statement to SET a new expression. To

remove a check constraint, use the ALTER TABLE statement with the DROP

CONSTRAINT clause. This will allow you to BIND and continue accessing the

tables that contain the affected columns.

 Database security and tuning:

 Authority for CREATE FUNCTION, CREATE METHOD and CREATE

PROCEDURE statements:

 Windows UNIX

 Change:

 The CREATE_EXTERNAL_ROUTINE authority is introduced in Version 8.

 Symptom:

300 Administration Guide: Planning

CREATE FUNCTION, CREATE METHOD and CREATE PROCEDURE statements

with the EXTERNAL option may fail.

 Resolution:

 Grant CREATE_EXTERNAL_ROUTINE authority to users who issue CREATE

FUNCTION, CREATE METHOD, and CREATE PROCEDURE statements with the

EXTERNAL option.

 Utilities and tools:

 Changes with the DB2 Administration Server (DAS):

 Windows UNIX

 Symptom:

 When migrating, errors occurred and were recorded in the db2diag.log at DB2

startup.

 Explanation:

 In Version 7, the DB2 Administration Server (DAS) was its own instance. In

Version 8, the DAS is no longer an instance but is a control point used to assist

with DB2 server tasks.

 Resolution:

 If you have attempted to migrate from Version 7 to Version 8 and encountered

problems relating to the DAS, then use the “db2admin drop” command to stop

and drop the DAS. Following the removal, then use the “db2admin create”

command to create the DAS.

 Changes when monitoring performance using the Control Center:

 Windows UNIX

 Symptom:

 When looking within the Control Center, you do not find any references to the

performance monitor.

 Explanation:

 The performance monitor capability of the Control Center has be removed.

 Resolution:

 When working with IBM DB2 Version 9.1 for Windows, there are tools that can be

used to monitor performance:

v DB2 Performance Expert

The separately purchased DB2 Performance Expert for Multiplatforms, Version

1.1 consolidates, reports, analyzes and recommends self-managing and resource

tuning changes based on DB2 performance-related information.

Appendix A. Incompatibilities between releases 301

v DB2 Health Center

The functions of the Health Center provide you with different methods to work

with performance-related information. These functions somewhat replace the

performance monitor capability of the Control Center.

v Windows Performance Monitor

The Windows Performance Monitor enables you to monitor both database and

system performance, retrieving information from any of the performance data

providers registered with the system. Windows also provides performance

information data on all aspects of machine operation including:

– CPU usage

– Memory utilization

– Disk activity

– Network activity

 Running online utilities at the same time:

 Windows UNIX

 Symptom:

 When online utilities are used at the same time, the utilities may take a long time

to complete.

 Explanation:

 The locks required by one utility affect the progress of the other utilities running at

the same time.

 Resolution:

 When there is a potential for conflict between the locking requirements of utilities

that are being run at the same time, you should consider altering your scheduling

for the utilities you wish to run. The utilities (like online backup table space, load

table, or inplace reorganization of tables) use locking mechanisms to prevent

conflicts between the utilities. The utilities use table locks, table space locks, and

table space states at different times to control what needs to be done in the

database. When locks are held by a utility, the other utilities requesting similar or

related locks must wait until the locks are released.

For example, the last phase of an inplace table reorganization cannot start while an

online backup is running that includes the table being reorganized. You can pause

the reorganization request if you require the backup to complete.

In another example, the online load utility will not work with another online load

request on the same table. If different tables are being loaded, then the load

requests will not block each other.

 Changes to db2move summary output:

 Windows UNIX

 Change:

302 Administration Guide: Planning

In Version 8.2, the summary output generated by db2move is improved by being

made more descriptive. However, the change in the summary output may cause a

script written to analyze the old output to fail.

 Symptom:

 A script written to analyze the old output generated by db2move fails.

 Explanation:

 The summary output generated by db2move is improved.

When db2move is run with the “IMPORT” option, the old output appeared as:

 IMPORT: -Rows read: 5; -Rows committed: 5; Table "DSCIARA2"."T20"

The new output appears as:

 * IMPORT: table "DSCIARA2"."T20"

 -Rows read: 5

 -Inserted: 4

 -Rejected: 1

 -Committed: 5

When db2move is run with the “LOAD” option, the old output appeared as:

 * LOAD: table "DSCIARA2"."T20"

 -Rows read: 5; -Loaded: 4; -Rejected 1 -Deleted 0 -Committed 5

The new output appears as:

 * IMPORT: table "DSCIARA2"."T20"

 -Rows read: 5

 -Loaded: 4

 -Rejected: 1

 -Deleted: 0

 -Committed: 5

 Resolution:

 Your script used to analyze the db2move output will need to be modified to

account for the changes in the layout and content.

 Changes to the explain facility tables:

 Windows UNIX

 Change:

 In Version 8, there are changes to the existing explain facility tables including two

new tables: ADVISE_MQT and ADVISE_PARTITION.

 Symptom:

 The DB2 Design Advisor, when asked to make recommendations for materialized

query tables (MQTs), or for database partitions, will return error messages if the

explain tables have not been created.

 Explanation:

Appendix A. Incompatibilities between releases 303

The new tables ADVISE_MQT and ADVISE_PARTITION have not been created.

 Resolution:

 Use the db2exmig command to move the Version 7 and Version 8.1 explain tables

to Version 8.2. This command has the necessary EXPLAIN DLL to create all of the

needed explain facility tables.

 Changes to the db2diag.log message format:

 Windows UNIX

 Change:

 In Version 8, the db2diag.log message format is changed.

 Symptom:

 You will notice that the format has changed when reviewing the db2diag.log

messages. The changes include the following examples: each message will have a

diagnostic log record header, record fields will be preceded by the field name and

column, and message and data portions of the logging record will be clearly

marked. All of the changes to the format will make the logging record easier to use

and to understand.

 Explanation:

 The DB2 diagnostic logs are being reworked. The db2diag.log file will be parsable.

 Downlevel CREATE DATABASE and DROP DATABASE not supported:

 Windows UNIX

 Change:

 In Version 8, the CREATE DATABASE and DROP DATABASE commands are not

supported from downlevel clients or to downlevel servers.

 Symptom:

 You will receive error SQL0901N when you issue one of these commands.

 Explanation:

 The CREATE DATABASE and DROP DATABASE commands are both only

supported from Version 8 clients to Version 8 servers. You cannot issue these

commands from a Version 6 or Version 7 client to a Version 8 server. You cannot

issue these commands from a Version 8 client to a Version 7 server.

 Resolution:

 Create or drop a Version 8 database from a Version 8 client. Create or drop a

Version 7 database from a Version 6 or Version 7 client.

304 Administration Guide: Planning

Mode change to tables after a load:

 Windows UNIX

 Change:

 In previous versions, a table that has been loaded with the INSERT option and has

immediate materialized query tables (also known as summary tables) would be in

Normal (Full Access) state after a subsequent SET INTEGRITY IMMEDIATE

CHECKED statement on it. In Version 8, the table will be in No Data Movement

mode after the SET INTEGRITY IMMEDIATE CHECKED statement.

 Explanation:

 Access to a table in No Data Movement mode is very similar to a table in Normal

(Full Access) mode, except for some statements and utilities that involve data

movement within the table itself.

 Resolution:

 You can force the base table that has been loaded and has dependent immediate

summary tables to bypass the No Data Movement mode and to go directly into

Full Access mode by issuing a SET INTEGRITY ... IMMEDIATE CHECKED FULL

ACCESS statement on the base table. However, use of this option is not

recommended as it will force a full refresh of the dependent immediate

materialized query tables (also known as summary tables).

 Load utility in insert or replace mode:

 Windows UNIX

 Change:

 In previous versions, when using the load utility in insert or replace mode, the

default option was CASCADE IMMEDIATE when integrity checking was turned

off; when the table was put into check pending state, all of its dependent foreign

key tables and dependent materialized query tables (also known as summary

tables) were also immediately put into check pending state.

For Version 8, when using the load utility in insert or replace mode, the default is

CASCADE DEFERRED when integrity checking has been turned off.

 Resolution:

 You can put dependent foreign key tables and dependent materialized query tables

into check pending state along with their parent tables by using the CHECK

PENDING CASCADE IMMEDIATE option of the LOAD command.

 DB2_LIKE_VARCHAR does not control collection of sub-element statistics:

 Windows UNIX

 Change:

Appendix A. Incompatibilities between releases 305

In Version 7, the DB2_LIKE_VARCHAR registry variable controlled collection of

sub-element statistics as well as the use of these statistics. In Version 8,

DB2_LIKE_VARCHAR does not control collection of sub-element statistics; instead,

collection of sub-element statistics is controlled by the LIKE STATISTICS option of

the RUNSTATS command or the DB2RUNSTATS_COLUMN_LIKE_STATS value of

the iColumnflags parameter of the db2Runstats API.

 Symptom:

 After invoking the RUNSTATS command or calling the db2Runstats API,

sub-element statistics are set to -1 (the default) in the system catalog; this can be

observed with a query like the following:

SELECT SUBSTR(TABSCHEMA,1,18), SUBSTR(TABNAME,1,18),

 SUBSTR(COLNAME,1,18), COLCARD, AVGCOLLEN, SUB_COUNT, SUB_DELIM_LENGTH

 FROM SYSSTAT.COLUMNS

 WHERE COLNAME IN (’P_TYPE’, ’P_NAME’)

 ORDER BY 1,2,3

(Replace P_TYPE and P_NAME with the appropriate column names.)

If the result for a column has a non-negative value for COLCARD and

AVGCOLLEN but a value of -1 for SUB_COUNT and SUB_DELIM_LENGTH, this

indicates that basic statistics have been gathered for the column, but sub-element

statistics have not been gathered.

 Resolution:

 If you specified DB2_LIKE_VARCHAR=?,Y (where ? is any value) in Version 7,

then you should specify the LIKE STATISTICS option on the RUNSTATS command

or DB2RUNSTATS_COLUMN_LIKE_STATS on the db2Runstats API to collect these

statistics for appropriate columns.

 Connectivity and coexistence:

 Down level server support:

 Windows UNIX

 Change:

 As you move your environment from Version 7 to Version 8, if you are in a

situation where you migrate your client machines to Version 8 before you migrate

all of your servers to Version 8, there are several restrictions and limitations. These

restrictions and limitations are not associated with DB2 Connect; nor with zSeries,

OS/390, or iSeries database servers.

 Resolution:

 For Version 8 clients to work with Version 7 servers, you need to configure/enable

the use of DRDA Application Server capability on the Version 7 server. For

information on how to do this, refer to the Version 7 Installation and Configuration

Supplement.

To avoid the known restrictions and limitations, you should migrate all of your

servers to Version 8 before you migrate any of your client machines to Version 8. If

306 Administration Guide: Planning

this is not possible, then you should know that when accessing Version 7 servers

from Version 8 clients, there is no support available for:

v Some data types:

– Large object (LOB) data types.

– User-defined distinct types (UDTs).

– DATALINK data types.
v Some security capabilities:

– Authentication type SERVER_ENCRYPT.

– Changing passwords. You are not able to change passwords on the DB2 UDB

Version 7 server from a DB2 UDB Version 8 client.
v Certain connections and communication protocols:

– Instance requests that require an ATTACH instead of a connection.

– The ATTACH statement is not supported from a DB2 UDB Version 8 client to

a DB2 UDB Version 7 server.

– The only supported network protocol is TCP/IP.

– Other network protocols like SNA, NetBIOS, IPX/SPX, and others are not

supported.
v Some application features and tasks:

– The DESCRIBE INPUT statement is not supported with one exception for

ODBC/JDBC applications. In order to support DB2 UDB Version 8 clients

running ODBC/JDBC applications accessing DB2 UDB Version 7 servers, a fix

for DESCRIBE INPUT support must be applied to all DB2 UDB Version 7

servers where this type of access is required. This fix is associated with APAR

IY30655 and will be available before the DB2 UDB Version 8 General

Availability date. Use the “Contacting IBM” information in any DB2

document to find out how to get the fix associated with APAR IY30655. The

DESCRIBE INPUT statement is a performance and usability enhancement to

allow an application requestor to obtain a description of input parameter

markers in a prepared statement. For a CALL statement, this includes the

parameter markers associated with the IN and INOUT parameters for the

stored procedure.

– Using Result.getObject(1) will return a BigDecimal instead of a Java Long

datatype as required by the JDBC specification. The DB2 UDB Version 7

DRDA server maps BIGINT to DEC(19,0) when it responds to a DESCRIBE

INPUT request and when it retrieves data. This behavior occurs because the

DB2 UDB Version 7 server operates at a DRDA level where BIGINT is not

defined.

– Query interrupts are not supported. This affects the CLI/ODBC

SQL_QUERY_TIMEOUT connection attribute as well as the interrupt APIs.

– Two-phase commit. The DB2 UDB Version 7 server cannot be used as a

transaction manager database when using coordinated transactions that

involve DB2 UDB Version 8 clients. Nor can a DB2 UDB Version 7 server

participate in a coordinated transaction where a DB2 UDB Version 8 server

may be the transaction manager database.

– XA-compliant transaction managers. An application using a DB2 UDB Version

8 client cannot use a DB2 UDB Version 7 server as an XA resource. This

includes WebSphere, Microsoft COM+/MTS, BEA WebLogic, and others that

are part of a transaction management arrangement.

– Monitoring. Monitor functions are not supported from a DB2 UDB Version 8

client to a DB2 UDB Version 7 server.

Appendix A. Incompatibilities between releases 307

– Utilities. Those utilities that can be initiated by a client to a server are not

supported when:

1. The client is at DB2 UDB Version 8 and the server is at DB2 UDB Version

7.

2. SQL statements greater than 32 KB in size.
– Query interrupts are not supported. This affects the CLI/ODBC

SQL_QUERY_TIMEOUT connection attribute as well as the interrupt APIs.

In addition to these limitations and restrictions for DB2 UDB Version 8 clients

working with DB2 UDB Version 7 servers, there are also similar limitations and

restrictions for DB2 UDB Version 8 tools working with DB2 UDB Version 7 servers.

The following DB2 UDB Version 8 tools support only DB2 UDB Version 8 servers:

v Control Center

v Task Center

v Journal

v Satellite Administration Center

v Information Catalog Center (including the Web-version of this center)

v Health Center (including the Web-version of this center)

v License Center

v Spatial Extender

v Tools Settings

v Development Center. You should use Stored Procedure Builder to develop server

objects on pre-Version 8 servers.

The following DB2 UDB Version 8 tools support DB2 UDB Version 7 servers (with

some restrictions) and DB2 UDB Version 8 servers:

v Configuration Assistant

It is possible to discover a DB2 UDB Version 7 server and catalog it. However,

even though cataloged, no function will work if attempting to access the DB2

UDB Version 7 server. Also, you are able to import a DB2 UDB Version 7 profile

to a DB2 UDB Version 8 server, or import a DB2 UDB Version 8 profile to a DB2

UDB Version 7 server. However, all other Configuration Assistant functions will

not work with DB2 UDB Version 7 servers.

v Data Warehouse Center

v Replication Center

v Command Editor (the replacement for the Command Center, including the

Web-version of this center)

Importing and saving scripts to and from DB2 UDB Version 7 servers is not

possible. Any utility requiring an ATTACH will not work.

v SQL Assist

v Visual Explain

In general, any DB2 UDB Version 8 tool that is only launched from within the

navigation tree of the Control Center, or any details view based on these tools, will

not be available or accessible to DB2 UDB Version 7 and earlier servers. You

should consider using the DB2 UDB Version 7 tools when working with DB2 UDB

Version 7 or earlier servers.

 Scrollable cursor support:

 Windows UNIX

308 Administration Guide: Planning

Change:

 In Version 8, scrollable cursor functionality will not be supported from a Version 8

DB2 UDB for Unix and Windows client to a Version 7 DB2 UDB for Unix and

Windows server. Support for scrollable cursors will only be available from a

Version 8 DB2 UDB for Unix and Windows client to a DB2 UDB for Unix and

Windows Version 8 server or to a DB2 UDB for z/OS and OS/390 Version 7 server.

DB2 UDB for Unix and Windows Version 7 clients will continue to support existing

scrollable cursor functionality to Version 8 DB2 UDB for Unix and Windows

servers.

 Resolution:

 Upgrade servers to Version 8.

 Version 7 server access via a DB2 Connect Version 8 server:

 Windows UNIX

 Change:

 In Version 8, access from a DB2 UDB for Unix and Windows client to a Version 7

DB2 UDB server will not be supported through a Version 8 server, where the

functionality is provided either by DB2 Connect Enterprise Edition Version 8 or by

DB2 UDB Enterprise Server Edition Version 8.

 Resolution:

 Upgrade servers to Version 8.

 Type 1 connection with CLP and embedded SQL:

 Windows UNIX

 Change:

 In previous versions of DB2, when using the Command Line Processor (CLP) or

embedded SQL and connected to a database with a Type 1 connection, an attempt

to connect to another database during a unit of work would fail with an

SQL0752N error. In Version 8, the unit of work is committed, the connection is

reset, and the connection to the second database is allowed. The unit of work will

be committed and the connection will be reset even if AUTOCOMMIT is off.

 Messages:

 DB2 Connect messages returned instead of DB2 messages:

 Windows UNIX

 Change:

Appendix A. Incompatibilities between releases 309

In Version 8, conditions that would have returned a DB2 message in previous

releases may now return a DB2 Connect message.

The messages affected by this change are related to bind, connection, or security

errors. SQL errors for queries and other SQL requests are not affected by this

change.

Examples:

v SQLCODE -30081 will be returned instead of SQLCODE -1224

v SQLCODE -30082 will be returned instead of SQLCODE -1403

v SQLCODE -30104 will be returned instead of SQLCODE -4930

 Symptom:

 Applications coded to react to DB2 messages may not behave as before.

 Configuration parameters:

 Obsolete database manager configuration parameters:

 Windows UNIX

 Change:

 The following database manager configuration parameters are obsolete:

v backbufsz: In previous versions you could perform a backup operation using a

default buffer size, and the value of backbufsz would be taken as the default. In

Version 8 you should explicitly specify the size of your backup buffers when

you use the backup utility.

v dft_client_adpt: DCE directory services are no longer supported

v dft_client_comm: DCE directory services are no longer supported

v dir_obj_name: DCE directory services are no longer supported

v dir_path_name: DCE directory services are no longer supported

v dir_type: DCE directory services are no longer supported

v dos_rqrioblk

v drda_heap_sz

v fcm_num_anchors, fcm_num_connect, and fcm_num_rqb: DB2 will now adjust

message anchors, connection entries, and request blocks dynamically and

automatically, so you will not have to adjust these parameters

v fileserver: IPX/SPX is no longer supported

v initdari_jvm: Java stored procedures will now run multithreaded by default, and

are run in separate processes from other language routines, so this parameter is

no longer supported

v ipx_socket: IPX/SPX is no longer supported

v jdk11_path: replaced by jdk_path database manager configuration parameter

v keepdari: replaced by keepfenced database manager configuration parameter

v max_logicagents: replaced by max_connections database manager configuration

parameter

v maxdari: replaced by fenced_pool database manager configuration parameter

310 Administration Guide: Planning

v num_initdaris: replaced by num_initfenced database manager configuration

parameter

v objectname: IPX/SPX is no longer supported

v restbufsz: In previous versions you could perform a restore operation using a

default buffer size, and the value of restbufsz would be taken as the default. In

Version 8 you should explicitly specify the size of your restore buffers when use

restore utility.

v route_obj_name: DCE directory services are no longer supported

v ss_logon: this is an OS/2® parameter, and OS/2 is no longer supported

v udf_mem_sz: UDFs no longer pass data in shared memory, so this parameter is

not supported

 Resolution:

 Remove all references to these parameters from your applications.

 Obsolete database configuration parameters:

 Windows UNIX

 Change:

 The following database configuration parameters are obsolete:

v buffpage: In previous versions, you could create or alter a buffer pool using a

default size, and the value of buffpage would be taken as the default. In Version

8, you should explicitly specify the size of your buffer pools, using the SIZE

keyword on the ALTER BUFFERPOOL or CREATE BUFFERPOOL statements.

v copyprotect

v indexsort

 Resolution:

 Remove all references to these parameters from your applications.

 Related concepts:

v “Version 9 incompatibilities with previous releases and changed behaviors” on

page 260

 Related reference:

v “Deprecated and discontinued features” on page 243

Appendix A. Incompatibilities between releases 311

312 Administration Guide: Planning

Appendix B. National language support (NLS)

This section contains information about the national language support (NLS)

provided by DB2 databases, including information about territories, languages, and

code pages (code sets) supported, and how to configure and use DB2 NLS features

in your databases and applications.

National language versions

 DB2 Database for Linux, UNIX, and Windows Version 9.1 is available in Simplified

Chinese, Traditional Chinese, Czech, Danish, English, Finnish, French, German,

Italian, Japanese, Korean, Norwegian, Polish, Brazilian Portuguese, Russian,

Spanish, and Swedish.

The DB2 Run-Time Client is available in these additional languages: Arabic,

Bulgarian, Croatian, Dutch, Greek, Hebrew, Hungarian, Portuguese, Romanian,

Slovak, Slovenian, and Turkish.

 Related reference:

v “Supported territory codes and code pages” on page 313

Supported territory codes and code pages

 The following tables show the languages and code sets supported by the database

servers, and how these values are mapped to territory code and code page values

that are used by the database manager.

Note: When creating a database, you can use any supported code page on any

supported platform.

The following is an explanation of the columns in the tables:

v Code page shows the IBM-defined code page as mapped from the operating

system code set.

v Group shows whether a code page is single-byte (″S″), double-byte (″D″), or

neutral (″N″). The ″-n″ is a number used to create a letter-number combination.

Matching combinations show where connection and conversion is allowed by

DB2 database systems. For example, all ″S-1″ groups can work together.

However, if the group is neutral, then connection and conversion with any other

code page listed is allowed.

v Code set shows the code set associated with the supported language. The code

set is mapped to the DB2 code page.

v Territory code shows the code that is used by the database manager internally

to provide region-specific support.

v Locale shows the locale values supported by the database manager.

v Operating system shows the operating system that supports the languages and

code sets. When used in this column, the word “host” refers to an operating

system such as z/OS that supports the EBCDIC code pages natively. Note that

Linux on z/OS is not a host platform. You cannot use DB2 database manager to

create a database in a host code page, but you can use DB2 database manager to

connect to a host database in a supported host code page.

© Copyright IBM Corp. 1993, 2006 313

Table 42. Unicode

Code page Group Code set

Territory

code Locale

Operating

system

1200 N-1 16-bit

Unicode

Any Any Any

1208 N-1 UTF-8

encoding of

Unicode

Any Any Any

 Table 43. Albania, territory identifier: AL

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 355 sq_AL AIX

850 S-1 IBM-850 355 - AIX

923 S-1 ISO8859-15 355 sq_AL.8859-15 AIX

1208 N-1 UTF-8 355 SQ_AL AIX

37 S-1 IBM-37 355 - Host

1140 S-1 IBM-1140 355 - Host

819 S-1 iso88591 355 - HP-UX

923 S-1 iso885915 355 - HP-UX

1051 S-1 roman8 355 - HP-UX

437 S-1 IBM-437 355 - OS/2

850 S-1 IBM-850 355 - OS/2

819 S-1 ISO8859-1 355 - Solaris

923 S-1 ISO8859-15 355 - Solaris

1252 S-1 1252 355 - Windows

 Table 44. Arabic countries/regions, territory identifier: AA

Code page Group Code set

Territory

code Locale

Operating

system

1046 S-6 IBM-1046 785 Ar_AA AIX

1089 S-6 ISO8859-6 785 ar_AA AIX

1208 N-1 UTF-8 785 AR_AA AIX

420 S-6 IBM-420 785 - Host

425 S-6 IBM-425 785 - Host

1089 S-6 iso88596 785 ar_SA.iso88596 HP-UX

864 S-6 IBM-864 785 - OS/2

1256 S-6 1256 785 - Windows

 Table 45. Australia, territory identifier: AU

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 61 en_AU AIX

850 S-1 IBM-850 61 - AIX

923 S-1 ISO8859-15 61 en_AU.8859-15 AIX

1208 N-1 UTF-8 61 EN_AU AIX

37 S-1 IBM-37 61 - Host

1140 S-1 IBM-1140 61 - Host

819 S-1 iso88591 61 - HP-UX

923 S-1 iso885915 61 - HP-UX

1051 S-1 roman8 61 - HP-UX

437 S-1 IBM-437 61 - OS/2

314 Administration Guide: Planning

Table 45. Australia, territory identifier: AU (continued)

Code page Group Code set

Territory

code Locale

Operating

system

850 S-1 IBM-850 61 - OS/2

819 S-1 ISO8859-1 61 en_AU SCO

819 S-1 ISO8859-1 61 en_AU Solaris

923 S-1 ISO8859-15 61 - Solaris

1252 S-1 1252 61 - Windows

 Table 46. Austria, territory identifier: AT

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 43 - AIX

850 S-1 IBM-850 43 - AIX

923 S-1 ISO8859-15 43 - AIX

1208 N-1 UTF-8 43 - AIX

37 S-1 IBM-37 43 - Host

1140 S-1 IBM-1140 43 - Host

819 S-1 iso88591 43 - HP-UX

923 S-1 iso885915 43 - HP-UX

1051 S-1 roman8 43 - HP-UX

819 S-1 ISO-8859-1 43 de_AT Linux

923 S-1 ISO-8859-15 43 de_AT@euro Linux

437 S-1 IBM-437 43 - OS/2

850 S-1 IBM-850 43 - OS/2

819 S-1 ISO8859-1 43 de_AT SCO

819 S-1 ISO8859-1 43 de_AT Solaris

923 S-1 ISO8859-15 43 de_AT.ISO8859-15 Solaris

1252 S-1 1252 43 - Windows

 Table 47. Belarus, territory identifier: BY

Code page Group Code set

Territory

code Locale

Operating

system

1167 S-5 KOI8-RU 375 – –

915 S-5 ISO8859-5 375 be_BY AIX

1208 N-1 UTF-8 375 BE_BY AIX

1025 S-5 IBM-1025 375 - Host

1154 S-5 IBM-1154 375 - Host

915 S-5 ISO8859-5 375 - OS/2

1131 S-5 IBM-1131 375 - OS/2

1251 S-5 1251 375 - Windows

 Table 48. Belgium, territory identifier: BE

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 32 fr_BE AIX

819 S-1 ISO8859-1 32 nl_BE AIX

850 S-1 IBM-850 32 Fr_BE AIX

850 S-1 IBM-850 32 Nl_BE AIX

923 S-1 ISO8859-15 32 fr_BE.8859-15 AIX

923 S-1 ISO8859-15 32 nl_BE.8859-15 AIX

1208 N-1 UTF-8 32 FR_BE AIX

Appendix B. National language support (NLS) 315

Table 48. Belgium, territory identifier: BE (continued)

Code page Group Code set

Territory

code Locale

Operating

system

1208 N-1 UTF-8 32 NL_BE AIX

274 S-1 IBM-274 32 - Host

500 S-1 IBM-500 32 - Host

1148 S-1 IBM-1148 32 - Host

819 S-1 iso88591 32 - HP-UX

923 S-1 iso885915 32 - HP-UX

819 S-1 ISO-8859-1 32 fr_BE Linux

819 S-1 ISO-8859-1 32 nl_BE Linux

923 S-1 ISO-8859-15 32 fr_BE@euro Linux

923 S-1 ISO-8859-15 32 nl_BE@euro Linux

437 S-1 IBM-437 32 - OS/2

850 S-1 IBM-850 32 - OS/2

819 S-1 ISO8859-1 32 fr_BE SCO

819 S-1 ISO8859-1 32 nl_BE SCO

819 S-1 ISO8859-1 32 fr_BE Solaris

819 S-1 ISO8859-1 32 nl_BE Solaris

923 S-1 ISO8859-15 32 fr_BE.ISO8859-15 Solaris

923 S-1 ISO8859-15 32 nl_BE.ISO8859-15 Solaris

1252 S-1 1252 32 - Windows

 Table 49. Bulgaria, territory identifier: BG

Code page Group Code set

Territory

code Locale

Operating

system

915 S-5 ISO8859-5 359 bg_BG AIX

1208 N-1 UTF-8 359 BG_BG AIX

1025 S-5 IBM-1025 359 - Host

1154 S-5 IBM-1154 359 - Host

915 S-5 iso88595 359 bg_BG.iso88595 HP-UX

855 S-5 IBM-855 359 - OS/2

915 S-5 ISO8859-5 359 - OS/2

1251 S-5 1251 359 - Windows

 Table 50. Brazil, territory identifier: BR

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 55 pt_BR AIX

850 S-1 IBM-850 55 - AIX

923 S-1 ISO8859-15 55 pt_BR.8859-15 AIX

1208 N-1 UTF-8 55 PT_BR AIX

37 S-1 IBM-37 55 - Host

1140 S-1 IBM-1140 55 - Host

819 S-1 ISO8859-1 55 - HP-UX

923 S-1 ISO8859-15 55 - HP-UX

819 S-1 ISO-8859-1 55 pt_BR Linux

923 S-1 ISO-8859-15 55 - Linux

850 S-1 IBM-850 55 - OS/2

819 S-1 ISO8859-1 55 pt_BR SCO

819 S-1 ISO8859-1 55 pt_BR Solaris

923 S-1 ISO8859-15 55 - Solaris

1252 S-1 1252 55 - Windows

316 Administration Guide: Planning

Table 51. Canada, territory identifier: CA

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 1 fr_CA AIX

850 S-1 IBM-850 1 Fr_CA AIX

923 S-1 ISO8859-15 1 fr_CA.8859-15 AIX

1208 N-1 UTF-8 1 FR_CA AIX

37 S-1 IBM-37 1 - Host

1140 S-1 IBM-1140 1 - Host

819 S-1 iso88591 1 fr_CA.iso88591 HP-UX

923 S-1 iso885915 1 - HP-UX

1051 S-1 roman8 1 fr_CA.roman8 HP-UX

819 S-1 ISO-8859-1 1 en_CA Linux

923 S-1 ISO-8859-15 1 - Linux

850 S-1 IBM-850 1 - OS/2

819 S-1 ISO8859-1 1 en_CA SCO

819 S-1 ISO8859-1 1 fr_CA SCO

819 S-1 ISO8859-1 1 en_CA Solaris

923 S-1 ISO8859-15 1 - Solaris

1252 S-1 1252 1 - Windows

 Table 52. Canada (French), territory identifier: CA

Code page Group Code set

Territory

code Locale

Operating

system

863 S-1 IBM-863 2 - OS/2

 Table 53. China (PRC), territory identifier: CN

Code page Group Code set

Territory

code Locale

Operating

system

1383 D-4 IBM-eucCN 86 zh_CN AIX

1386 D-4 GBK 86 Zh_CN.GBK AIX

1208 N-1 UTF-8 86 ZH_CN AIX

935 D-4 IBM-935 86 - Host

1388 D-4 IBM-1388 86 - Host

1383 D-4 hp15CN 86 zh_CN.hp15CN HP-UX

1386 D-4 GBK 86 zh_CN.GBK Linux

1381 D-4 IBM-1381 86 - OS/2

1386 D-4 GBK 86 - OS/2

1383 D-4 eucCN 86 zh_CN SCO

1383 D-4 eucCN 86 zh_CN.eucCN SCO

1383 D-4 gb2312 86 zh Solaris

1208 N-1 UTF-8 86 zh.UTF-8 Solaris

1381 D-4 IBM-1381 86 - Windows

1386 D-4 GBK 86 - Windows

1392/5488 D-4 86 -

See note 1 on page 332.

Appendix B. National language support (NLS) 317

Table 54. Croatia, territory identifier: HR

Code page Group Code set

Territory

code Locale

Operating

system

912 S-2 ISO8859-2 385 hr_HR AIX

1208 N-1 UTF-8 385 HR_HR AIX

870 S-2 IBM-870 385 - Host

1153 S-2 IBM-1153 385 - Host

912 S-2 iso88592 385 hr_HR.iso88592 HP-UX

912 S-2 ISO-8859-2 385 hr_HR Linux

852 S-2 IBM-852 385 - OS/2

912 S-2 ISO8859-2 385 hr_HR.ISO8859-2 SCO

1250 S-2 1250 385 - Windows

 Table 55. Czech Republic, territory identifier: CZ

Code page Group Code set

Territory

code Locale

Operating

system

912 S-2 ISO8859-2 421 cs_CZ AIX

1208 N-1 UTF-8 421 CS_CZ AIX

870 S-2 IBM-870 421 - Host

1153 S-2 IBM-1153 421 - Host

912 S-2 iso88592 421 cs_CZ.iso88592 HP-UX

912 S-2 ISO-8859-2 421 cs_CZ Linux

852 S-2 IBM-852 421 - OS/2

912 S-2 ISO8859-2 421 cs_CZ.ISO8859-2 SCO

1250 S-2 1250 421 - Windows

 Table 56. Denmark, territory identifier: DK

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 45 da_DK AIX

850 S-1 IBM-850 45 Da_DK AIX

923 S-1 ISO8859-15 45 da_DK.8859-15 AIX

1208 N-1 UTF-8 45 DA_DK AIX

277 S-1 IBM-277 45 - Host

1142 S-1 IBM-1142 45 - Host

819 S-1 iso88591 45 da_DK.iso88591 HP-UX

923 S-1 iso885915 45 _ HP-UX

1051 S-1 roman8 45 da_DK.roman8 HP-UX

819 S-1 ISO-8859-1 45 da_DK Linux

923 S-1 ISO-8859-15 45 - Linux

850 S-1 IBM-850 45 - OS/2

819 S-1 ISO8859-1 45 da SCO

819 S-1 ISO8859-1 45 da_DA SCO

819 S-1 ISO8859-1 45 da_DK SCO

819 S-1 ISO8859-1 45 da Solaris

923 S-1 ISO8859-15 45 da.ISO8859-15 Solaris

1252 S-1 1252 45 - Windows

 Table 57. Estonia, territory identifier: EE

Code page Group Code set

Territory

code Locale

Operating

system

922 S-10 IBM-922 372 Et_EE AIX

318 Administration Guide: Planning

Table 57. Estonia, territory identifier: EE (continued)

Code page Group Code set

Territory

code Locale

Operating

system

1208 N-1 UTF-8 372 ET_EE AIX

1122 S-10 IBM-1122 372 - Host

1157 S-10 IBM-1157 372 - Host

922 S-10 IBM-922 372 - OS/2

1257 S-10 1257 372 - Windows

 Table 58. Finland, territory identifier: FI

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 358 fi_FI AIX

850 S-1 IBM-850 358 Fi_FI AIX

923 S-1 ISO8859-15 358 fi_FI.8859-15 AIX

1208 N-1 UTF-8 358 FI_FI AIX

278 S-1 IBM-278 358 - Host

1143 S-1 IBM-1143 358 - Host

819 S-1 iso88591 358 fi_FI.iso88591 HP-UX

923 S-1 iso885915 358 - HP-UX

1051 S-1 roman8 358 fi-FI.roman8 HP-UX

819 S-1 ISO-8859-1 358 fi_FI Linux

923 S-1 ISO-8859-15 358 fi_FI@euro Linux

437 S-1 IBM-437 358 - OS/2

850 S-1 IBM-850 358 - OS/2

819 S-1 ISO8859-1 358 SCO

819 S-1 ISO8859-1 358 fi_FI SCO

819 S-1 ISO8859-1 358 sv_FI SCO

819 S-1 ISO8859-1 358 - Solaris

923 S-1 ISO8859-15 358 fi.ISO8859-15 Solaris

1252 S-1 1252 358 - Windows

 Table 59. FYR Macedonia, territory identifier: MK

Code page Group Code set

Territory

code Locale

Operating

system

915 S-5 ISO8859-5 389 mk_MK AIX

1208 N-1 UTF-8 389 MK_MK AIX

1025 S-5 IBM-1025 389 - Host

1154 S-5 IBM-1154 389 - Host

915 S-5 iso88595 389 - HP-UX

855 S-5 IBM-855 389 - OS/2

915 S-5 ISO8859-5 389 - OS/2

1251 S-5 1251 389 - Windows

 Table 60. France, territory identifier: FR

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 33 fr_FR AIX

850 S-1 IBM-850 33 Fr_FR AIX

923 S-1 ISO8859-15 33 fr_FR.8859-15 AIX

1208 N-1 UTF-8 33 FR_FR AIX

297 S-1 IBM-297 33 - Host

Appendix B. National language support (NLS) 319

Table 60. France, territory identifier: FR (continued)

Code page Group Code set

Territory

code Locale

Operating

system

1147 S-1 IBM-1147 33 - Host

819 S-1 iso88591 33 fr_FR.iso88591 HP-UX

923 S-1 iso885915 33 - HP-UX

1051 S-1 roman8 33 fr_FR.roman8 HP-UX

819 S-1 ISO-8859-1 33 fr_FR Linux

923 S-1 ISO-8859-15 33 fr_FR@euro Linux

437 S-1 IBM-437 33 - OS/2

850 S-1 IBM-850 33 - OS/2

819 S-1 ISO8859-1 33 SCO

819 S-1 ISO8859-1 33 fr_FR SCO

819 S-1 ISO8859-1 33 Solaris

923 S-1 ISO8859-15 33 fr.ISO8859-15 Solaris

1208 N-1 UTF-8 33 fr.UTF-8 Solaris

1252 S-1 1252 33 - Windows

 Table 61. Germany, territory identifier: DE

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 49 de_DE AIX

850 S-1 IBM-850 49 De_DE AIX

923 S-1 ISO8859-15 49 de_DE.8859-15 AIX

1208 N-1 UTF-8 49 DE_DE AIX

273 S-1 IBM-273 49 - Host

1141 S-1 IBM-1141 49 - Host

819 S-1 iso88591 49 de_DE.iso88591 HP-UX

923 S-1 iso885915 49 _ HP-UX

1051 S-1 roman8 49 de_DE.roman8 HP-UX

819 S-1 ISO-8859-1 49 de_DE Linux

923 S-1 ISO-8859-15 49 de_DE@euro Linux

437 S-1 IBM-437 49 - OS/2

850 S-1 IBM-850 49 - OS/2

819 S-1 ISO8859-1 49 SCO

819 S-1 ISO8859-1 49 de_DE SCO

819 S-1 ISO8859-1 49 Solaris

923 S-1 ISO8859-15 49 de.ISO8859-15 Solaris

1208 N-1 UTF-8 49 de.UTF-8 Solaris

1252 S-1 1252 49 - Windows

 Table 62. Greece, territory identifier: GR

Code page Group Code set

Territory

code Locale

Operating

system

813 S-7 ISO8859-7 30 el_GR AIX

1208 N-1 UTF-8 30 EL_GR AIX

423 S-7 IBM-423 30 - Host

875 S-7 IBM-875 30 - Host

813 S-7 iso88597 30 el_GR.iso88597 HP-UX

813 S-7 ISO-8859-7 30 el_GR Linux

813 S-7 ISO8859-7 30 - OS/2

869 S-7 IBM-869 30 - OS/2

813 S-7 ISO8859-7 30 el_GR.ISO8859-7 SCO

320 Administration Guide: Planning

Table 62. Greece, territory identifier: GR (continued)

Code page Group Code set

Territory

code Locale

Operating

system

737 S-7 737 30 - Windows

1253 S-7 1253 30 - Windows

 Table 63. Hungary, territory identifier: HU

Code page Group Code set

Territory

code Locale

Operating

system

912 S-2 ISO8859-2 36 hu_HU AIX

1208 N-1 UTF-8 36 HU_HU AIX

870 S-2 IBM-870 36 - Host

1153 S-2 IBM-1153 36 - Host

912 S-2 iso88592 36 hu_HU.iso88592 HP-UX

912 S-2 ISO-8859-2 36 hu_HU Linux

852 S-2 IBM-852 36 - OS/2

912 S-2 ISO8859-2 36 hu_HU.ISO8859-2 SCO

1250 S-2 1250 36 - Windows

 Table 64. Iceland, territory identifier: IS

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 354 is_IS AIX

850 S-1 IBM-850 354 Is_IS AIX

923 S-1 ISO8859-15 354 is_IS.8859-15 AIX

1208 N-1 UTF-8 354 IS_IS AIX

871 S-1 IBM-871 354 - Host

1149 S-1 IBM-1149 354 - Host

819 S-1 iso88591 354 is_IS.iso88591 HP-UX

923 S-1 iso885915 354 - HP-UX

1051 S-1 roman8 354 is_IS.roman8 HP-UX

819 S-1 ISO-8859-1 354 is_IS Linux

923 S-1 ISO-8859-15 354 - Linux

850 S-1 IBM-850 354 - OS/2

819 S-1 ISO8859-1 354 SCO

819 S-1 ISO8859-1 354 is_IS SCO

819 S-1 ISO8859-1 354 - Solaris

923 S-1 ISO8859-15 354 - Solaris

1252 S-1 1252 354 - Windows

 Table 65. India, territory identifier: IN

Code page Group Code set

Territory

code Locale

Operating

system

806 S-13 IBM-806 91 hi_IN -

1137 S-13 IBM-1137 91 - Host

 Table 66. Indonesia, territory identifier: ID

Code page Group Code set

Territory

code Locale

Operating

system

1252 S-1 1252 62 - Windows

Appendix B. National language support (NLS) 321

Table 67. Ireland, territory identifier: IE

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 353 - AIX

850 S-1 IBM-850 353 - AIX

923 S-1 ISO8859-15 353 - AIX

1208 N-1 UTF-8 353 - AIX

285 S-1 IBM-285 353 - Host

1146 S-1 IBM-1146 353 - Host

819 S-1 iso88591 353 - HP-UX

923 S-1 iso885915 353 - HP-UX

1051 S-1 roman8 353 - HP-UX

819 S-1 ISO-8859-1 353 en_IE Linux

923 S-1 ISO-8859-15 353 en_IE@euro Linux

437 S-1 IBM-437 353 - OS/2

850 S-1 IBM-850 353 - OS/2

819 S-1 ISO8859-1 353 en_IE.ISO8859-1 SCO

819 S-1 ISO8859-1 353 en_IE Solaris

923 S-1 ISO8859-15 353 en_IE.ISO8859-15 Solaris

1252 S-1 1252 353 - Windows

 Table 68. Israel, territory identifier: IL

Code page Group Code set

Territory

code Locale

Operating

system

856 S-8 IBM-856 972 Iw_IL AIX

916 S-8 ISO8859-8 972 iw_IL AIX

1208 N-1 UTF-8 972 HE-IL AIX

916 S-8 ISO-8859-8 972 iw_IL Linux

424 S-8 IBM-424 972 - Host

862 S-8 IBM-862 972 - OS/2

1255 S-8 1255 972 - Windows

 Table 69. Italy, territory identifier: IT

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 39 it_IT AIX

850 S-1 IBM-850 39 It_IT AIX

923 S-1 ISO8859-15 39 it_IT.8859-15 AIX

1208 N-1 UTF-8 39 It_IT AIX

280 S-1 IBM-280 39 - Host

1144 S-1 IBM-1144 39 - Host

819 S-1 iso88591 39 it_IT.iso88591 HP-UX

923 S-1 iso885915 39 _ HP-UX

1051 S-1 roman8 39 it_IT.roman8 HP-UX

819 S-1 ISO-8859-1 39 it_IT Linux

923 S-1 ISO-8859-15 39 it_IT@euro Linux

437 S-1 IBM-437 39 - OS/2

850 S-1 IBM-850 39 - OS/2

819 S-1 ISO8859-1 39 SCO

819 S-1 ISO8859-1 39 it_IT SCO

819 S-1 ISO8859-1 39 Solaris

923 S-1 ISO8859-15 39 it.ISO8859-15 Solaris

1208 N-1 UTF-8 39 it.UTF-8 Solaris

322 Administration Guide: Planning

Table 69. Italy, territory identifier: IT (continued)

Code page Group Code set

Territory

code Locale

Operating

system

1252 S-1 1252 39 - Windows

 Table 70. Japan, territory identifier: JP

Code page Group Code set

Territory

code Locale

Operating

system

932 D-1 IBM-932 81 Ja_JP AIX

943 D-1 IBM-943 81 Ja_JP AIX

See note 2 on page 332.

954 D-1 IBM-eucJP 81 ja_JP AIX

1208 N-1 UTF-8 81 JA_JP AIX

930 D-1 IBM-930 81 - Host

939 D-1 IBM-939 81 - Host

5026 D-1 IBM-5026 81 - Host

5035 D-1 IBM-5035 81 - Host

1390 D-1 81 - Host

1399 D-1 81 - Host

954 D-1 eucJP 81 ja_JP.eucJP HP-UX

5039 D-1 SJIS 81 ja_JP.SJIS HP-UX

954 D-1 EUC-JP 81 ja_JP Linux

932 D-1 IBM-932 81 - OS/2

942 D-1 IBM-942 81 - OS/2

943 D-1 IBM-943 81 - OS/2

954 D-1 eucJP 81 ja SCO

954 D-1 eucJP 81 ja_JP SCO

954 D-1 eucJP 81 ja_JP.EUC SCO

954 D-1 eucJP 81 ja_JP.eucJP SCO

943 D-1 IBM-943 81 ja_JP.PCK Solaris

954 D-1 eucJP 81 ja Solaris

1208 N-1 UTF-8 81 ja_JP.UTF-8 Solaris

943 D-1 IBM-943 81 - Windows

1394 D-1 81 -

See note 3 on page 332.

 Table 71. Kazakhstan, territory identifier: KZ

Code page Group Code set

Territory

code Locale

Operating

system

1251 S-5 1251 7 - Windows

 Table 72. Korea, South, territory identifier: KR

Code page Group Code set

Territory

code Locale

Operating

system

970 D-3 IBM-eucKR 82 ko_KR AIX

1208 N-1 UTF-8 82 KO_KR AIX

933 D-3 IBM-933 82 - Host

1364 D-3 IBM-1364 82 - Host

970 D-3 eucKR 82 ko_KR.eucKR HP-UX

970 D-3 EUC-KR 82 ko_KR Linux

949 D-3 IBM-949 82 - OS/2

970 D-3 eucKR 82 ko_KR.eucKR SGI

Appendix B. National language support (NLS) 323

Table 72. Korea, South, territory identifier: KR (continued)

Code page Group Code set

Territory

code Locale

Operating

system

970 D-3 5601 82 ko Solaris

1208 N-1 UTF-8 82 ko.UTF-8 Solaris

1363 D-3 1363 82 - Windows

 Table 73. Latin America, territory identifier: Lat

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 3 - AIX

850 S-1 IBM-850 3 - AIX

923 S-1 ISO8859-15 3 - AIX

1208 N-1 UTF-8 3 - AIX

284 S-1 IBM-284 3 - Host

1145 S-1 IBM-1145 3 - Host

819 S-1 iso88591 3 - HP-UX

923 S-1 iso885915 3 - HP-UX

1051 S-1 roman8 3 - HP-UX

819 S-1 ISO-8859-1 3 - Linux

923 S-1 ISO-8859-15 3 - Linux

437 S-1 IBM-437 3 - OS/2

850 S-1 IBM-850 3 - OS/2

819 S-1 ISO8859-1 3 - Solaris

923 S-1 ISO8859-15 3 - Solaris

1252 S-1 1252 3 - Windows

 Table 74. Latvia, territory identifier: LV

Code page Group Code set

Territory

code Locale

Operating

system

921 S-10 IBM-921 371 Lv_LV AIX

1208 N-1 UTF-8 371 LV_LV AIX

1112 S-10 IBM-1112 371 - Host

1156 S-10 IBM-1156 371 - Host

921 S-10 IBM-921 371 - OS/2

1257 S-10 1257 371 - Windows

 Table 75. Lithunia, territory identifier: LT

Code page Group Code set

Territory

code Locale

Operating

system

921 S-10 IBM-921 370 Lt_LT AIX

1208 N-1 UTF-8 370 LT_LT AIX

1112 S-10 IBM-1112 370 - Host

1156 S-10 IBM-1156 370 - Host

921 S-10 IBM-921 370 - OS/2

1257 S-10 1257 370 - Windows

 Table 76. Malaysia, territory identifier: ID

Code page Group Code set

Territory

code Locale

Operating

system

1252 S-1 1252 60 - Windows

324 Administration Guide: Planning

Table 77. Netherlands, territory identifier: NL

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 31 nl_NL AIX

850 S-1 IBM-850 31 Nl_NL AIX

923 S-1 ISO8859-15 31 nl_NL.8859-15 AIX

1208 N-1 UTF-8 31 NL_NL AIX

37 S-1 IBM-37 31 - Host

1140 S-1 IBM-1140 31 - Host

819 S-1 iso88591 31 nl_NL.iso88591 HP-UX

923 S-1 iso885915 31 _ HP-UX

1051 S-1 roman8 31 nl_NL.roman8 HP-UX

819 S-1 ISO-8859-1 31 nl_NL Linux

923 S-1 ISO-8859-15 31 nl_NL@euro Linux

437 S-1 IBM-437 31 - OS/2

850 S-1 IBM-850 31 - OS/2

819 S-1 ISO8859-1 31 nl SCO

819 S-1 ISO8859-1 31 nl_NL SCO

819 S-1 ISO8859-1 31 nl Solaris

923 S-1 ISO8859-15 31 nl.ISO8859-15 Solaris

1252 S-1 1252 31 - Windows

 Table 78. New Zealand, territory identifier: NZ

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 64 - AIX

850 S-1 IBM-850 64 - AIX

923 S-1 ISO8859-15 64 - AIX

1208 N-1 UTF-8 64 - AIX

37 S-1 IBM-37 64 - Host

1140 S-1 IBM-1140 64 - Host

819 S-1 ISO8859-1 64 - HP-UX

923 S-1 ISO8859-15 64 - HP-UX

850 S-1 IBM-850 64 - OS/2

819 S-1 ISO8859-1 64 en_NZ SCO

819 S-1 ISO8859-1 64 en_NZ Solaris

923 S-1 ISO8859-15 64 - Solaris

1252 S-1 1252 64 - Windows

 Table 79. Norway, territory identifier: NO

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 47 no_NO AIX

850 S-1 IBM-850 47 No_NO AIX

923 S-1 ISO8859-15 47 no_NO.8859-15 AIX

1208 N-1 UTF-8 47 NO_NO AIX

277 S-1 IBM-277 47 - Host

1142 S-1 IBM-1142 47 - Host

819 S-1 iso88591 47 no_NO.iso88591 HP-UX

923 S-1 iso885915 47 - HP-UX

1051 S-1 roman8 47 no_NO.roman8 HP-UX

Appendix B. National language support (NLS) 325

Table 79. Norway, territory identifier: NO (continued)

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO-8859-1 47 no_NO Linux

923 S-1 ISO-8859-15 47 - Linux

850 S-1 IBM-850 47 - OS/2

819 S-1 ISO8859-1 47 no SCO

819 S-1 ISO8859-1 47 no_NO SCO

819 S-1 ISO8859-1 47 no Solaris

923 S-1 ISO8859-15 47 - Solaris

1252 S-1 1252 47 - Windows

 Table 80. Poland, territory identifier: PL

Code page Group Code set

Territory

code Locale

Operating

system

912 S-2 ISO8859-2 48 pl_PL AIX

1208 N-1 UTF-8 48 PL_PL AIX

870 S-2 IBM-870 48 - Host

1153 S-2 IBM-1153 48 - Host

912 S-2 iso88592 48 pl_PL.iso88592 HP-UX

912 S-2 ISO-8859-2 48 pl_PL Linux

852 S-2 IBM-852 48 - OS/2

912 S-2 ISO8859-2 48 pl_PL.ISO8859-2 SCO

1250 S-2 1250 48 - Windows

 Table 81. Portugal, territory identifier: PT

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 351 pt_PT AIX

850 S-1 IBM-850 351 Pt_PT AIX

923 S-1 ISO8859-15 351 pt_PT.8859-15 AIX

1208 N-1 UTF-8 351 PT_PT AIX

37 S-1 IBM-37 351 - Host

1140 S-1 IBM-1140 351 - Host

819 S-1 iso88591 351 pt_PT.iso88591 HP-UX

923 S-1 iso885915 351 - HP-UX

1051 S-1 roman8 351 pt_PT.roman8 HP-UX

819 S-1 ISO-8859-1 351 pt_PT Linux

923 S-1 ISO-8859-15 351 pt_PT@euro Linux

850 S-1 IBM-850 351 - OS/2

860 S-1 IBM-860 351 - OS/2

819 S-1 ISO8859-1 351 pt SCO

819 S-1 ISO8859-1 351 pt_PT SCO

819 S-1 ISO8859-1 351 pt Solaris

923 S-1 ISO8859-15 351 pt.ISO8859-15 Solaris

1252 S-1 1252 351 - Windows

 Table 82. Romania, territory identifier: RO

Code page Group Code set

Territory

code Locale

Operating

system

912 S-2 ISO8859-2 40 ro_RO AIX

1208 N-1 UTF-8 40 RO_RO AIX

326 Administration Guide: Planning

Table 82. Romania, territory identifier: RO (continued)

Code page Group Code set

Territory

code Locale

Operating

system

870 S-2 IBM-870 40 - Host

1153 S-2 IBM-1153 40 - Host

912 S-2 iso88592 40 ro_RO.iso88592 HP-UX

912 S-2 ISO-8859-2 40 ro_RO Linux

852 S-2 IBM-852 40 - OS/2

912 S-2 ISO8859-2 40 ro_RO.ISO8859-2 SCO

1250 S-2 1250 40 - Windows

 Table 83. Russia, territory identifier: RU

Code page Group Code set

Territory

code Locale

Operating

system

915 S-5 ISO8859-5 7 ru_RU AIX

1208 N-1 UTF-8 7 RU_RU AIX

1025 S-5 IBM-1025 7 - Host

1154 S-5 IBM-1154 7 - Host

915 S-5 iso88595 7 ru_RU.iso88595 HP-UX

878 S-5 KOI8-R 7 ru_RU.koi8-r Linux,

Solaris

915 S-5 ISO-8859-5 7 ru_RU Linux

866 S-5 IBM-866 7 - OS/2

915 S-5 ISO8859-5 7 - OS/2

915 S-5 ISO8859-5 7 ru_RU.ISO8859-5 SCO

1251 S-5 1251 7 - Windows

 Table 84. Serbia/Montenegro, territory identifier: SP

Code page Group Code set

Territory

code Locale

Operating

system

915 S-5 ISO8859-5 381 sr_SP AIX

1208 N-1 UTF-8 381 SR_SP AIX

1025 S-5 IBM-1025 381 - Host

1154 S-5 IBM-1154 381 - Host

915 S-5 iso88595 381 - HP-UX

855 S-5 IBM-855 381 - OS/2

915 S-5 ISO8859-5 381 - OS/2

1251 S-5 1251 381 - Windows

 Table 85. Slovakia, territory identifier: SK

Code page Group Code set

Territory

code Locale

Operating

system

912 S-2 ISO8859-2 422 sk_SK AIX

1208 N-1 UTF-8 422 SK_SK AIX

870 S-2 IBM-870 422 - Host

1153 S-2 IBM-1153 422 - Host

912 S-2 iso88592 422 sk_SK.iso88592 HP-UX

852 S-2 IBM-852 422 - OS/2

912 S-2 ISO8859-2 422 sk_SK.ISO8859-2 SCO

1250 S-2 1250 422 - Windows

Appendix B. National language support (NLS) 327

Table 86. Slovenia, territory identifier: SI

Code page Group Code set

Territory

code Locale

Operating

system

912 S-2 ISO8859-2 386 sl_SI AIX

1208 N-1 UTF-8 386 SL_SI AIX

870 S-2 IBM-870 386 - Host

1153 S-2 IBM-1153 386 - Host

912 S-2 iso88592 386 sl_SI.iso88592 HP-UX

912 S-2 ISO-8859-2 386 sl_SI Linux

852 S-2 IBM-852 386 - OS/2

912 S-2 ISO8859-2 386 sl_SI.ISO8859-2 SCO

1250 S-2 1250 386 - Windows

 Table 87. South Africa, territory identifier: ZA

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 27 en_ZA AIX

850 S-1 IBM-850 27 En_ZA AIX

923 S-1 ISO8859-15 27 en_ZA.8859-15 AIX

1208 N-1 UTF-8 27 EN_ZA AIX

285 S-1 IBM-285 27 - Host

1146 S-1 IBM-1146 27 - Host

819 S-1 iso88591 27 - HP-UX

923 S-1 iso885915 27 - HP-UX

1051 S-1 roman8 27 - HP-UX

437 S-1 IBM-437 27 - OS/2

850 S-1 IBM-850 27 - OS/2

819 S-1 ISO8859-1 27 en_ZA.ISO8859-1 SCO

819 S-1 ISO8859-1 27 - Solaris

923 S-1 ISO8859-15 27 - Solaris

1252 S-1 1252 27 - Windows

 Table 88. Spain, territory identifier: ES

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 34 es_ES AIX

850 S-1 IBM-850 34 Es_ES AIX

923 S-1 ISO8859-15 34 es_ES.8859-15 AIX

1208 N-1 UTF-8 34 ES_ES AIX

284 S-1 IBM-284 34 - Host

1145 S-1 IBM-1145 34 - Host

819 S-1 iso88591 34 es_ES.iso88591 HP-UX

923 S-1 iso885915 34 - HP-UX

1051 S-1 roman8 34 es_ES.roman8 HP-UX

819 S-1 ISO-8859-1 34 es_ES Linux

923 S-1 ISO-8859-15 34 es_ES@euro Linux

437 S-1 IBM-437 34 - OS/2

850 S-1 IBM-850 34 - OS/2

819 S-1 ISO8859-1 34 es SCO

819 S-1 ISO8859-1 34 es_ES SCO

819 S-1 ISO8859-1 34 es Solaris

923 S-1 ISO8859-15 34 es.ISO8859-15 Solaris

1208 N-1 UTF-8 34 es.UTF-8 Solaris

328 Administration Guide: Planning

Table 88. Spain, territory identifier: ES (continued)

Code page Group Code set

Territory

code Locale

Operating

system

1252 S-1 1252 34 - Windows

 Table 89. Spain (Catalan), territory identifier: ES

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 34 ca_ES AIX

850 S-1 IBM-850 34 Ca_ES AIX

923 S-1 ISO8859-15 34 ca_ES.8859-15 AIX

1208 N-1 UTF-8 34 CA_ES AIX

 Table 90. Sweden, territory identifier: SE

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 46 sv_SE AIX

850 S-1 IBM-850 46 Sv_SE AIX

923 S-1 ISO8859-15 46 sv_SE.8859-15 AIX

1208 N-1 UTF-8 46 SV_SE AIX

278 S-1 IBM-278 46 - Host

1143 S-1 IBM-1143 46 - Host

819 S-1 iso88591 46 sv_SE.iso88591 HP-UX

923 S-1 iso885915 46 - HP-UX

1051 S-1 roman8 46 sv_SE.roman8 HP-UX

819 S-1 ISO-8859-1 46 sv_SE Linux

923 S-1 ISO-8859-15 46 - Linux

437 S-1 IBM-437 46 - OS/2

850 S-1 IBM-850 46 - OS/2

819 S-1 ISO8859-1 46 sv SCO

819 S-1 ISO8859-1 46 sv_SE SCO

819 S-1 ISO8859-1 46 sv Solaris

923 S-1 ISO8859-15 46 sv.ISO8859-15 Solaris

1208 N-1 UTF-8 46 sv.UTF-8 Solaris

1252 S-1 1252 46 - Windows

 Table 91. Switzerland, territory identifier: CH

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 41 de_CH AIX

850 S-1 IBM-850 41 De_CH AIX

923 S-1 ISO8859-15 41 de_CH.8859-15 AIX

1208 N-1 UTF-8 41 DE_CH AIX

500 S-1 IBM-500 41 - Host

1148 S-1 IBM-1148 41 - Host

819 S-1 iso88591 41 - HP-UX

923 S-1 iso885915 41 - HP-UX

1051 S-1 roman8 41 - HP-UX

819 S-1 ISO-8859-1 41 de_CH Linux

923 S-1 ISO-8859-15 41 - Linux

437 S-1 IBM-437 41 - OS/2

850 S-1 IBM-850 41 - OS/2

Appendix B. National language support (NLS) 329

Table 91. Switzerland, territory identifier: CH (continued)

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 41 de_CH SCO

819 S-1 ISO8859-1 41 fr_CH SCO

819 S-1 ISO8859-1 41 it_CH SCO

819 S-1 ISO8859-1 41 de_CH Solaris

923 S-1 ISO8859-15 41 - Solaris

1252 S-1 1252 41 - Windows

 Table 92. Taiwan, territory identifier: TW

Code page Group Code set

Territory

code Locale

Operating

system

950 D-2 big5 88 Zh_TW AIX

See note 8 on page 333.

964 D-2 IBM-eucTW 88 zh_TW AIX

1208 N-1 UTF-8 88 ZH_TW AIX

937 D-2 IBM-937 88 - Host

1371 D-2 IBM-1371 88 - Host

950 D-2 big5 88 zh_TW.big5 HP-UX

964 D-2 eucTW 88 zh_TW.eucTW HP-UX

950 D-2 BIG5 88 zh_TW Linux

938 D-2 IBM-938 88 - OS/2

948 D-2 IBM-948 88 - OS/2

950 D-2 big5 88 - OS/2

950 D-2 big5 88 zh_TW.BIG5 Solaris

964 D-2 cns11643 88 zh_TW Solaris

1208 N-1 UTF-8 88 zh_TW.UTF-8 Solaris

950 D-2 big5 88 - Windows

See note 8 on page 333.

 Table 93. Thailand, territory identifier: TH

Code page Group Code set

Territory

code Locale

Operating

system

874 S-20 TIS620-1 66 th_TH AIX

1208 N-1 UTF-8 66 TH_TH AIX

838 S-20 IBM-838 66 - Host

1160 S-20 IBM-1160 66 - Host

874 S-20 tis620 66 th_TH.tis620 HP-UX

874 S-20 TIS620-1 66 - OS/2

874 S-20 TIS620-1 66 - Windows

 Table 94. Turkey, territory identifier: TR

Code page Group Code set

Territory

code Locale

Operating

system

920 S-9 ISO8859-9 90 tr_TR AIX

1208 N-1 UTF-8 90 TR_TR AIX

1026 S-9 IBM-1026 90 - Host

1155 S-9 IBM-1155 90 - Host

920 S-9 iso88599 90 tr_TR.iso88599 HP-UX

920 S-9 ISO-8859-9 90 tr_TR Linux

857 S-9 IBM-857 90 - OS/2

330 Administration Guide: Planning

Table 94. Turkey, territory identifier: TR (continued)

Code page Group Code set

Territory

code Locale

Operating

system

920 S-9 ISO8859-9 90 tr_TR.ISO8859-9 SCO

1254 S-9 1254 90 - Windows

 Table 95. United Kingdom, territory identifier: GB

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 44 en_GB AIX

850 S-1 IBM-850 44 En_GB AIX

923 S-1 ISO8859-15 44 en_GB.8859-15 AIX

1208 N-1 UTF-8 44 EN_GB AIX

285 S-1 IBM-285 44 - Host

1146 S-1 IBM-1146 44 - Host

819 S-1 iso88591 44 en_GB.iso88591 HP-UX

923 S-1 iso885915 44 - HP-UX

1051 S-1 roman8 44 en_GB.roman8 HP-UX

819 S-1 ISO-8859-1 44 en_GB Linux

923 S-1 ISO-8859-15 44 - Linux

437 S-1 IBM-437 44 - OS/2

850 S-1 IBM-850 44 - OS/2

819 S-1 ISO8859-1 44 en_GB SCO

819 S-1 ISO8859-1 44 en SCO

819 S-1 ISO8859-1 44 en_GB Solaris

923 S-1 ISO8859-15 44 en_GB.ISO8859-15 Solaris

1252 S-1 1252 44 - Windows

 Table 96. Ukraine, territory identifier: UA

Code page Group Code set

Territory

code Locale

Operating

system

1124 S-12 IBM-1124 380 Uk_UA AIX

1208 N-1 UTF-8 380 UK_UA AIX

1123 S-12 IBM-1123 380 - Host

1158 S-12 IBM-1158 380 - Host

1168 S-12 KOI8-U 380 uk_UA.koi8u Linux

1125 S-12 IBM-1125 380 - OS/2

1251 S-12 1251 380 - Windows

 Table 97. United States of America, territory identifier: US

Code page Group Code set

Territory

code Locale

Operating

system

819 S-1 ISO8859-1 1 en_US AIX

850 S-1 IBM-850 1 En_US AIX

923 S-1 ISO8859-15 1 en_US.8859-15 AIX

1208 N-1 UTF-8 1 EN_US AIX

37 S-1 IBM-37 1 - Host

1140 S-1 IBM-1140 1 - Host

819 S-1 iso88591 1 en_US.iso88591 HP-UX

923 S-1 iso885915 1 - HP-UX

1051 S-1 roman8 1 en_US.roman8 HP-UX

819 S-1 ISO-8859-1 1 en_US Linux

Appendix B. National language support (NLS) 331

Table 97. United States of America, territory identifier: US (continued)

Code page Group Code set

Territory

code Locale

Operating

system

923 S-1 ISO-8859-15 1 - Linux

437 S-1 IBM-437 1 - OS/2

850 S-1 IBM-850 1 - OS/2

819 S-1 ISO8859-1 1 en_US SCO

819 S-1 ISO8859-1 1 en_US SGI

819 S-1 ISO8859-1 1 en_US Solaris

923 S-1 ISO8859-15 1 en_US.ISO8859-15 Solaris

1208 N-1 UTF-8 1 en_US.UTF-8 Solaris

1252 S-1 1252 1 - Windows

 Table 98. Vietnam, territory identifier: VN

Code page Group Code set

Territory

code Locale

Operating

system

1129 S-11 IBM-1129 84 Vi_VN AIX

1208 N-1 UTF-8 84 VI_VN AIX

1130 S-11 IBM-1130 84 - Host

1164 S-11 IBM-1164 84 - Host

1129 S-11 IBM-1129 84 - OS/2

1258 S-11 1258 84 - Windows

Notes:

1. CCSIDs 1392 and 5488 (GB 18030) can only be used with the load or import

utilities to move data from CCSIDs 1392 and 5488 to a DB2 Unicode database,

or to export from a DB2 Unicode database to CCSIDs 1392 or 5488.

2. On AIX 4.3 or later the code page is 943. If you are using AIX 4.2 or earlier, the

code page is 932.

3. Code page 1394 (Shift JIS X0213) can only be used with the load or import

utilities to move data from code page 1394 to a DB2 Unicode database, or to

export from a DB2 Unicode database to code page 1394.

4. The following map to Arabic Countries/Regions (AA):

v Arabic (Saudi Arabia)

v Arabic (Iraq)

v Arabic (Egypt)

v Arabic (Libya)

v Arabic (Algeria)

v Arabic (Morocco)

v Arabic (Tunisia)

v Arabic (Oman)

v Arabic (Yemen)

v Arabic (Syria)

v Arabic (Jordan)

v Arabic (Lebanon)

v Arabic (Kuwait)

v Arabic (United Arab Emirates)

v Arabic (Bahrain)

v Arabic (Qatar)

332 Administration Guide: Planning

5. The following map to English (US):

v English (Jamaica)

v English (Caribbean)
6. The following map to Latin America (Lat):

v Spanish (Mexican)

v Spanish (Guatemala)

v Spanish (Costa Rica)

v Spanish (Panama)

v Spanish (Dominican Republic)

v Spanish (Venezuela)

v Spanish (Colombia)

v Spanish (Peru)

v Spanish (Argentina)

v Spanish (Ecuador)

v Spanish (Chile)

v Spanish (Uruguay)

v Spanish (Paraguay)

v Spanish (Bolivia)
7. The following Indic scripts are supported through Unicode: Hindi, Gujarati,

Kannada, Konkani, Marathi, Punjabi, Sanskrit, Tamil and Telugu.

8. Code page 950 is also known as Big5. Microsoft code page 950 differs from IBM

code page 950 in the following ways:

 Range Description IBM Microsoft Difference

X’8140’ to X’8DFE’ User defined

characters

User defined area User defined area Same

X’8E40’ to X’A0FE’ User defined

characters

User defined area User defined area Same

X’A140’ to X’A3BF’ Special symbols System characters System characters Same

X’A3C0’ to X’A3E0’ Control symbols System characters Empty Different

X’A3E1’ to X’A3FE’ Reserved Empty Empty Same

X’A440’ to X’C67E’ Primary use

characters

System characters System characters Same

X’C6A1’ to X’C878’ Eten added

symbols

System characters User defined area Different

X’C879’ to X’C8CC’ Eten added

symbols

Empty User defined area Different

X’C8CD’ to X’C8D3’ Eten added

symbols

System characters User defined area Different

X’C8D4’ to X’C8FD’ Reserved System characters User defined area Different

X’C8FE’ Invalid/

undefined

character

System characters User defined area Different

X’C940’ to X’F9D5’ Secondary use

characters

System characters System characters Same

X’F9D6’ to X’F9FE’ Eten extension for

Big-5

User defined area System characters Different

Appendix B. National language support (NLS) 333

Range Description IBM Microsoft Difference

X’FA40’ to X’FEFE’ User defined

characters

User defined area User defined area Same

X’8181’ to X’8C82’ User defined

characters

User defined area Empty Different

X’F286’ to X’F9A0’ IBM select

characters

System characters Empty Different

Total characters 14 060 13 502

Total user defined characters 6 204 6 217

Total defined code points 20 264 19 719

 Related tasks:

v “Installing the previous tables for converting between code page 1394 and

Unicode” on page 366

Availability of Asian fonts (Linux)

 IBM offers additional font packages for Linux that contain additional double-byte

character set (DBCS) support for Asian characters. These font packages are

necessary with some versions of Linux which install only the fonts required to

display the country-specific or region-specific characters.

If you notice missing characters when you use the DB2 Setup wizard or the DB2

GUI tools (post-installation), install the necessary fonts provided with the DB2

product then re-run the db2setup command or restart the DB2 GUI tools you were

using. The Asian fonts are found in the java_fonts directory on the National

Language Pack CD-ROM (NLPACK CD) for your Linux operating system.

In this directory, there are two typefaces available: Times New Roman WorldType

and Monotype Sans Duospace WorldType. For each typeface, there is a country- or

region-specific font. The following table lists the eight fonts provided in

compressed format in the java_fonts directory.

 Font typeface Font file name Country/Region

Times New Roman WT J tnrwt_j.zip Japan and other

countries/regions

Times New Roman WT K tnrwt_k.zip Korea

Times New Roman WT SC tnrwt_s.zip China (Simplified Chinese)

Times New Roman WT TC tnrwt_t.zip Taiwan (Traditional Chinese)

Monotype Sans Duospace WT

J

mtsansdj.zip Japan and other

countries/regions

Monotype Sans Duospace WT

K

mtsansdk.zip Korea

Monotype Sans Duospace WT

SC

mtsansds.zip China (Simplified Chinese)

Monotype Sans Duospace WT

TC

mtsansdt.zip Taiwan (Traditional Chinese)

334 Administration Guide: Planning

Note: These fonts do not replace the system fonts. These fonts are to be used in

conjunction with or for use with DB2. You cannot engage in the general or

unrestricted sale or distribution of these fonts.

To install a font:

1. Unzip the font package.

2. Copy the font package to the /opt/jre/lib/fonts directory. You need to create

the directory if it does not already exist.

3. Enter the following command: export JAVA_FONTS=/opt/jre/lib/fonts

Note: Optionally, you can copy the Asian font package into the java directory

in the DB2 installation path. For example, <DB2 installation

path>/java/jdk32/jre/lib/fonts, or <DB2 installation

path>/java/jdk64/jre/lib/fonts.

As a minimum you need to install one font of each typeface for your country or

region. If you are in either the China, Korea, or Taiwan territory, use the

territory-specific or region-specific versions; otherwise, use the Japanese version of

the fonts. If you have space on your system, it is recommended that you install all

eight fonts.

Simplified Chinese locale coding set

 IBM AIX and some distributions of Linux have changed the code set bound to the

simplified Chinese locale from GBK (code page 1386) to GB18030 (code page 5488

or 1392). For example, the Zh_CN locale on AIX is now bound to the GB18030

code set since:

v AIX Version 5.1.0000.0011

v AIX Version 5.1.0 with maintenance level 2

DB2 database manager supports the GBK code set natively and the GB18030 code

set only through Unicode. DB2 database manager will default the locale’s code set

to ISO 8859-1 (code page 819), and in some operations will also default the locale’s

territory to the United States (US). To work around this limitation, you have two

options:

1. You can override the locale’s code set from GB18030 to GBK; and the territory

from US to China (whose territory identifier is CN and territory code is 86).

2. You can use a different simplified Chinese locale.

If you choose to use the first option, issue the following commands:

 db2set DB2CODEPAGE=1386

 db2set DB2TERRITORY=86

 db2 terminate

 db2stop

 db2start

If you choose to use the second option on AIX, issue either of the following

commands:

 export LANG=zh_CN

 export LANG=ZH_CN

The code set associated with zh_CN is eucCN (code page 1383), and with ZH_CN

is UTF-8 (code page 1208).

Appendix B. National language support (NLS) 335

If you choose to use the second option on Linux, issue one of the following

commands:

 export LANG=zh_CN.gbk

 export LANG=zh_CN

 export LANG=zh_CN.utf8

The code set associated with zh_CN is eucCN (code page 1383), and with

zh_CN.utf8 is UTF-8 (code page 1208).

Displaying Indic characters in the DB2 GUI tools

 If you have problems displaying Indic characters when using the DB2 GUI tools on

Linux or UNIX operating systems, you might not have the required fonts installed

on your system.

DB2 has packaged the following IBM TrueType and OpenType proportional Indic

language fonts for your use. You can find these fonts in the java_fonts directory

on the National Language Pack CD-ROM (NLPACK CD) for the Linux and UNIX

operating systems.

These fonts are to be used in conjunction with DB2. You cannot engage in the

general or unrestricted sale or distribution of these fonts:

 Table 99. Indic fonts packaged with DB2

Typeface Weight Font File Name

Devanagari MT for IBM Medium devamt.ttf

Devanagari MT for IBM Bold devamtb.ttf

Tamil Medium TamilMT.ttf

Tamil Bold TamilMTB.ttf

Telugu Medium TeluguMT.ttf

Telugu Bold TeleguMTB.ttf

Detailed instructions on how to install the fonts and modify the font.properties

file can be found in the Internationalization section of the Java documentation.

In addition, some Microsoft products also come with Indic fonts that can be used

with our GUI tools.

Enabling and disabling euro symbol support

 DB2 Database for Linux, UNIX, and Windows provides support for the euro

currency symbol. The euro symbol has been added to numerous code pages.

Microsoft ANSI code pages have been modified to include the euro currency

symbol in position X’80’. Code page 850 has been modified to replace the character

DOTLESS I (found at position X’D5’) with the euro currency symbol. DB2 internal

code page conversion routines use these revised code page definitions as the

default to provide euro symbol support.

However, if you want to use the non-euro definitions of the code page conversion

tables, follow the procedure below after installation is complete.

 Prerequisites:

336 Administration Guide: Planning

For replacing existing external code page conversion table files, you may want to

back up the current files before copying the non-euro versions over them.

The files are located in the directory sqllib/conv/. On UNIX, sqllib/conv/ is

linked to the install path of the DB2 database system.

 Procedure:

 To disable euro-symbol support:

1. Stop the DB2 instance.

2. Download the appropriate conversion table files, in binary:

v For big-endian platforms from ftp://ftp.software.ibm.com/ps/products/
db2/info/vr8/conv/BigEndian/. This ftp server is anonymous, so if you are

connecting via the command line, log in as user ″anonymous″ and use your

e-mail address as your password. After logging in, change to the conversion

tables directory: cd ps/products/db2/info/vr8/conv/BigEndian/

v For little-endian platforms from ftp://ftp.software.ibm.com/ps/products/
db2/info/vr8/conv/LittleEndian/. This ftp server is anonymous, so if you

are connecting via the command line, log in as user ″anonymous″ and use

your e-mail address as your password. After logging in, change to the

conversion tables directory: cd ps/products/db2/info/vr8/conv/
LittleEndian

3. Copy the files to your sqllib/conv/ directory.

4. Restart the DB2 instance.

 Code pages 819 and 1047:

 For code pages 819 (ISO 8859-1 Latin 1 ASCII) and 1047 (Latin 1 Open System

EBCDIC), the euro replacement code pages, 923 (ISO 8859-15 Latin 9 ASCII) and

924 (Latin 9 Open System EBCDIC) respectively, contain not just the euro symbol

but also several new characters. DB2 Database for Linux, UNIX, and Windows

continues to use the old (non-euro) definitions of these two code pages and

conversion tables, namely 819 and 1047, by default. There are two ways to activate

the new 923/924 code page and the associated conversion tables:

v Create a new database that uses the new code page. For example,

DB2 CREATE DATABASE dbname USING CODESET ISO8859-15 TERRITORY US

v Copy the 923 or 924 conversion table files from the sqllib/conv/alt/ directory

to the sqllib/conv/ directory and rename them to 819 or 1047, respectively.

 Related concepts:

v “Character conversion” in SQL Reference, Volume 1

 Related reference:

v “Conversion table files for euro-enabled code pages” on page 339

v “Conversion tables for code pages 923 and 924” on page 343

Appendix B. National language support (NLS) 337

Character-conversion guidelines

 Data conversion might be required to map data between application and database

code pages when your application and database do not use the same code page.

Because mapping and data conversion require additional overhead application

performance improves if the application and database use the same code page or

the identity collating sequence.

Character conversion occurs in the following circumstances:

v When a client or application runs in a code page that is different from the code

page of the database that it accesses.

The conversion occurs on the database server machine that receives the data. If

the database server receives the data, character conversion is from the

application code page to the database code page. If the application machine

receives the data, conversion is from the database code page to the application

code page.

v When a client or application that imports or loads a file runs in a code page

different from the file being imported or loaded.

Character conversion does not occur for the following objects:

v File names.

v Data targeted for or coming from a column for which the FOR BIT DATA

attribute is assigned, or data that is used in an SQL operation whose result is

FOR BIT or BLOB data.

v A DB2 product or platform for which no supported conversion function to or

from EUC or UCS-2 is installed. Your application receives an SQLCODE -332

(SQLSTATE 57017) error in this case.

The conversion function and conversion tables or DBCS conversion APIs that the

database manager uses when it converts multi-byte code pages depends on the

operating system environment.

Note: Character string conversions between multi-byte code pages, such as DBCS

with EUC, might increase or decrease length of a string. In addition, code

points assigned to different characters in the PC DBCS, EUC, and UCS-2

code sets might produce different results when same characters are sorted.

Extended UNIX Code (EUC) Code Page Support

Host variables that use graphic data in C or C++ applications require special

considerations that include special precompiler, application performance, and

application design issues.

Many characters in both the Japanese and Traditional Chinese EUC code pages

require special methods of managing database and client application support for

graphic data, which require double byte characters. Graphic data from these EUC

code pages is stored and manipulated using the UCS-2 code set.

 Related concepts:

v “Guidelines for analyzing where a federated query is evaluated” in Performance

Guide

 Related reference:

338 Administration Guide: Planning

v “Conversion table files for euro-enabled code pages” on page 339

v “Conversion tables for code pages 923 and 924” on page 343

Conversion table files for euro-enabled code pages

 The following tables list the conversion tables that have been enhanced to support

the euro currency symbol. If you want to disable euro symbol support, download

the conversion table file indicated in the column titled ″Conversion table file″.

 Arabic:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

864, 17248 1046, 9238 08641046.cnv, 10460864.cnv,

IBM00864.ucs

864, 17248 1256, 5352 08641256.cnv, 12560864.cnv,

IBM00864.ucs

864, 17248 1200, 1208, 13488, 17584 IBM00864.ucs

1046, 9238 864, 17248 10460864.cnv, 08641046.cnv,

IBM01046.ucs

1046, 9238 1089 10461089.cnv, 10891046.cnv,

IBM01046.ucs

1046, 9238 1256, 5352 10461256.cnv, 12561046.cnv,

IBM01046.ucs

1046, 9238 1200, 1208, 13488, 17584 IBM01046.ucs

1089 1046, 9238 10891046.cnv, 10461089.cnv

1256, 5352 864, 17248 12560864.cnv, 08641256.cnv,

IBM01256.ucs

1256, 5352 1046, 9238 12561046.cnv, 10461256.cnv,

IBM01256.ucs

1256, 5352 1200, 1208, 13488, 17584 IBM01256.ucs

 Baltic:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

921, 901 1257 09211257.cnv, 12570921.cnv,

IBM00921.ucs

921, 901 1200, 1208, 13488, 17584 IBM00921.ucs

1257, 5353 921, 901 12570921.cnv, 09211257.cnv,

IBM01257.ucs

1257, 5353 922, 902 12570922.cnv, 09221257.cnv,

IBM01257.ucs

1257, 5353 1200, 1208, 13488, 17584 IBM01257.ucs

Appendix B. National language support (NLS) 339

Belarus:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

1131, 849 1251, 5347 11311251.cnv, 12511131.cnv

1131, 849 1283 11311283.cnv

 Cyrillic:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

855, 872 866, 808 08550866.cnv, 08660855.cnv

855, 872 1251, 5347 08551251.cnv, 12510855.cnv

866, 808 855, 872 08660855.cnv, 08550866.cnv

866, 808 1251, 5347 08661251.cnv, 12510866.cnv

1251, 5347 855, 872 12510855.cnv, 08551251.cnv,

IBM01251.ucs

1251, 5347 866, 808 12510866.cnv, 08661251.cnv,

IBM01251.ucs

1251, 5347 1124 12511124.cnv, 11241251.cnv,

IBM01251.ucs

1251, 5347 1125, 848 12511125.cnv, 11251251.cnv,

IBM01251.ucs

1251, 5347 1131, 849 12511131.cnv, 11311251.cnv,

IBM01251.ucs

1251, 5347 1200, 1208, 13488, 17584 IBM01251.ucs

 Estonia:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

922, 902 1257 09221257.cnv, 12570922.cnv,

IBM00922.ucs

922, 902 1200, 1208, 13488, 17584 IBM00922.ucs

1122, 1157 1257, 5353 11221257.cnv

 Greek:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

813, 4909 869, 9061 08130869.cnv, 08690813.cnv,

IBM00813.ucs

813, 4909 1253, 5349 08131253.cnv, 12530813.cnv,

IBM00813.ucs

813, 4909 1200, 1208, 13488, 17584 IBM00813.ucs

869, 9061 813, 4909 08690813.cnv, 08130869.cnv

869, 9061 1253, 5349 08691253.cnv, 12530869.cnv

340 Administration Guide: Planning

Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

1253, 5349 813, 4909 12530813.cnv, 08131253.cnv,

IBM01253.ucs

1253, 5349 869, 9061 12530869.cnv, 08691253.cnv,

IBM01253.ucs

1253, 5349 1200, 1208, 13488, 17584 IBM01253.ucs

 Hebrew:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

856, 9048 862, 867 08560862.cnv, 08620856.cnv,

IBM0856.ucs

856, 9048 916 08560916.cnv, 09160856.cnv,

IBM0856.ucs

856, 9048 1255, 5351 08561255.cnv, 12550856.cnv,

IBM0856.ucs

856, 9048 1200, 1208, 13488, 17584 IBM0856.ucs

862, 867 856, 9048 08620856.cnv, 08560862.cnv,

IBM00862.ucs

862, 867 916 08620916.cnv, 09160862.cnv,

IBM00862.ucs

862, 867 1255, 5351 08621255.cnv, 12550862.cnv,

IBM00862.ucs

862, 867 1200, 1208, 13488, 17584 IBM00862.ucs

916 856, 9048 09160856.cnv, 08560916.cnv

916 862, 867 09160862.cnv, 08620916.cnv

1255, 5351 856, 9048 12550856.cnv, 08561255.cnv,

IBM01255.ucs

1255, 5351 862, 867 12550862.cnv, 08621255.cnv,

IBM01255.ucs

1255, 5351 1200, 1208, 13488, 17584 IBM01255.ucs

 Latin-1:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

437 850, 858 04370850.cnv, 08500437.cnv

500, 1148 437 05000437.cnv, IBM00500.ucs

850, 858 437 08500437.cnv, 04370850.cnv

850, 858 860 08500860.cnv, 08600850.cnv

850, 858 1114, 5210 08501114.cnv, 11140850.cnv

850, 858 1275 08501275.cnv, 12750850.cnv

860 850, 858 08600850.cnv, 08500860.cnv

1275 850, 858 12750850.cnv, 08501275.cnv

Appendix B. National language support (NLS) 341

Latin-2:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

852, 9044 1250, 5346 08521250.cnv, 12500852.cnv

1250, 5346 852, 9044 12500852.cnv, 08521250.cnv,

IBM01250.ucs

1250, 5346 1200, 1208, 13488, 17584 IBM01250.ucs

 Simplified Chinese:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

837, 935, 1388 1200, 1208, 13488, 17584 1388ucs2.cnv

1386 1200, 1208, 13488, 17584 1386ucs2.cnv, ucs21386.cnv

 Traditional Chinese:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

937, 835, 1371 950, 1370 09370950.cnv, 0937ucs2.cnv

937, 835, 1371 1200, 1208, 13488, 17584 0937ucs2.cnv

1114, 5210 850, 858 11140850.cnv, 08501114.cnv

 Thailand:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

874, 1161 1200, 1208, 13488, 17584 IBM00874.ucs

 Turkish:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

857, 9049 1254, 5350 08571254.cnv, 12540857.cnv

1254, 5350 857, 9049 12540857.cnv, 08571254.cnv,

IBM01254.ucs

1254, 5350 1200, 1208, 13488, 17584 IBM01254.ucs

 Ukraine:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

1124 1251, 5347 11241251.cnv, 12511124.cnv

1125, 848 1251, 5347 11251251.cnv, 12511125.cnv

342 Administration Guide: Planning

Unicode:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

1200, 1208, 13488, 17584 813, 4909 IBM00813.ucs

1200, 1208, 13488, 17584 862, 867 IBM00862.ucs

1200, 1208, 13488, 17584 864, 17248 IBM00864.ucs

1200, 1208, 13488, 17584 874, 1161 IBM00874.ucs

1200, 1208, 13488, 17584 921, 901 IBM00921.ucs

1200, 1208, 13488, 17584 922, 902 IBM00922.ucs

1200, 1208, 13488, 17584 1046, 9238 IBM01046.ucs

1200, 1208, 13488, 17584 1250, 5346 IBM01250.ucs

1200, 1208, 13488, 17584 1251, 5347 IBM01251.ucs

1200, 1208, 13488, 17584 1253, 5349 IBM01253.ucs

1200, 1208, 13488, 17584 1254, 5350 IBM01254.ucs

1200, 1208, 13488, 17584 1255, 5351 IBM01255.ucs

1200, 1208, 13488, 17584 1256, 5352 IBM01256.ucs

1200, 1208, 13488, 17584 1386 ucs21386.cnv, 1386ucs2.cnv

 Vietnamese:

 Database server

CCSIDs/CPGIDs

Database client

CCSIDs/CPGIDs Conversion table files

1258, 5354 1129, 1163 12581129.cnv

 Related concepts:

v “Character conversion” in SQL Reference, Volume 1

 Related tasks:

v “Enabling and disabling euro symbol support” on page 336

Conversion tables for code pages 923 and 924

 The following is a list of all the code page conversion table files that are associated

with code pages 923 and 924. Each file is of the form XXXXYYYY.cnv or

ibmZZZZZ.ucs, where XXXXX is the source code page number and YYYY is the

target code page number. The file ibmZZZZZ.ucs supports conversion between

code page ZZZZZ and Unicode.

To activate a particular code page conversion table, copy the conversion table file

from the sqllib/conv/alt/ directory to the sqllib/conv/ directory and rename

that conversion table file as shown in the second column.

For example, to support the euro symbol when connecting a 8859-1/15 (Latin 1/9)

client to a Windows 1252 database, you need to copy and rename the following

code page conversion table files:

v sqllib/conv/alt/09231252.cnv to sqllib/conv/08191252.cnv

v sqllib/conv/alt/12520923.cnv to sqllib/conv/12520819.cnv

Appendix B. National language support (NLS) 343

v sqllib/conv/alt/ibm00923.ucs to sqllib/conv/ibm00819.ucs

 923 and 924 conversion table files in the

sqlllib/conv/alt/ directory New name in the sqllib/conv/ directory

04370923.cnv 04370819.cnv

08500923.cnv 08500819.cnv

08600923.cnv 08600819.cnv

08630923.cnv 08630819.cnv

09230437.cnv 08190437.cnv

09230850.cnv 08190850.cnv

09230860.cnv 08190860.cnv

09231043.cnv 08191043.cnv

09231051.cnv 08191051.cnv

09231114.cnv 08191114.cnv

09231252.cnv 08191252.cnv

09231275.cnv 08191275.cnv

09241252.cnv 10471252.cnv

10430923.cnv 10430819.cnv

10510923.cnv 10510819.cnv

11140923.cnv 11140819.cnv

12520923.cnv 12520819.cnv

12750923.cnv 12750819.cnv

ibm00923.ucs ibm00819.ucs

 Related concepts:

v “Character conversion” in SQL Reference, Volume 1

 Related tasks:

v “Enabling and disabling euro symbol support” on page 336

Choosing a language for your database

 When you create a database, you have to decide what language your data will be

stored in. When you create a database, you can specify the territory and code set.

The territory and code set may be different from the current operating system

settings. If you do not explicitly choose a territory and code set at database

creation time, the database will be created using the current locale. When you are

choosing a code set, make sure it can encode all the characters in the language you

will be using.

Another option is to store data in a Unicode database, which means that you do

not have to choose a specific language; Unicode encoding includes characters from

almost all of the living languages in the world.

344 Administration Guide: Planning

Locale setting for the DB2 Administration Server

Ensure that the locale of the DB2 Administration Server instance is compatible

with the locale of the DB2 instance. Otherwise, the DB2 instance cannot

communicate with the DB2 Administration Server.

If the LANG environment variable is not set in the user profile of the DB2

Administration Server, the DB2 Administration Server will be started with the

default system locale. If the default system locale is not defined, the DB2

Administration Server will be started with code page 819. If the DB2 instance uses

one of the DBCS locales, and the DB2 Administration Server is started with code

page 819, the instance will not be able to communicate with the DB2

Administration Server. The locale of the DB2 Administration Server and the locale

of the DB2 instance must be compatible.

For example, on a Simplified Chinese Linux system, LANG=zh_CN should be set in

the DB2 Administration Server’s user profile.

 Related tasks:

v “Changing the DB2 interface language (Linux and UNIX)” in Quick Beginnings

for DB2 Servers

v “Changing the DB2 interface language (Windows)” in Quick Beginnings for DB2

Servers

Enabling bidirectional support

 Bidirectional layout transformations are implemented in DB2 Database for Linux,

UNIX, and Windows using the new Coded Character Set Identifier (CCSID)

definitions. For the new bidirectional-specific CCSIDs, layout transformations are

performed instead of, or in addition to, code page conversions. To use this support,

the DB2BIDI registry variable must be set to YES. By default, this variable is not

set. It is used by the server for all conversions, and can only be set when the server

is started. Setting DB2BIDI to YES may have some performance impact because of

additional checking and layout transformations.

 Restrictions:

 The following restrictions apply:

v If you select a CCSID that is not appropriate for the code page or string type of

your client platform, you may get unexpected results. If you select an

incompatible CCSID (for example, the Latin-1 CCSID for connection to an Arabic

database), or if DB2BIDI has not been set for the server, you will receive an error

message when you try to connect.

v The DB2 Command Line Processor on the Windows operating system does not

have bidirectional support.

v CCSID override is not supported for cases where the HOST EBCDIC platform is

the client, and DB2 Database is the server.

When converting from one Arabic CCSID to another Arabic CCSID, DB2 employs

the following logic to deshape (or expand) the lam-alef ligature. Deshaping will

occur when the Text Shaping attribute of the source Arabic CCSID is shaped but

the Text Shaping attribute of the target Arabic CCSID is unshaped.

The logic to deshape the lam-alef ligature is:

Appendix B. National language support (NLS) 345

1. If the last character of the data stream is a blank character, then every character

after the lam-alef ligature will be shifted to the end of the data stream,

therefore making available an empty position for the current lam-alef ligature

to be deshaped (expanded) into its two constituent characters: lam and alef.

2. Otherwise, if the first character of the data stream is a blank character, then

every character before the lam-alef ligature will be shifted to the beginning of

the data stream, therefore making available an empty position for the current

lam-alef ligature to be deshaped (expanded) into its two constituent characters:

lam and alef.

3. Otherwise, there is no blank character at the beginning and end of the data

stream, and the lam-alef ligature cannot be deshaped. If the target CCSID does

have the lam-alef ligature, then the lam-alef ligature remains as is; otherwise,

the lam-alef ligature is replaced by the target CCSID’s SUBstitution character.

Conversely when converting from an Arabic CCSID whose Text Shaping attribute

is unshaped to an Arabic CCSID whose Text Shaping attribute is shaped, the

source lam and alef characters will be contracted to one ligature character, and a

blank character is inserted at the end of the target area data stream.

 Procedure:

 To specify a particular bidirectional CCSID in a non-DRDA environment:

v Ensure the DB2BIDI registry variable is set to YES.

v Select the CCSID that matches the characteristics of your client, and set

DB2CODEPAGE to that value.

v If you already have a connection to the database, you must issue a TERMINATE

command, and then reconnect to allow the new setting for DB2CODEPAGE to

take effect.

For DRDA environments, if the HOST EBCDIC platform also supports these

bidirectional CCSIDs, you only need to set the DB2CODEPAGE value. Note that

you must not further specify the same CCSID on the BIDI parameter in the

PARMS field of the DCS database directory entry for the server database,

otherwise an extra bidi layout conversion would occur, and render any Arabic data

to be incorrectly reversed. However, if the HOST platform does not support these

CCSIDs, you must also specify a CCSID override for the HOST database server to

which you are connecting. This is accomplished through the use of the BIDI

parameter in the PARMS field of the DCS database directory entry for the server

database. The override is necessary because, in a DRDA environment, code page

conversions and layout transformations are performed by the receiver of data.

However, if the HOST server does not support these bidirectional CCSIDs, it does

not perform layout transformation on the data that it receives from DB2. If you use

a CCSID override, the DB2 client performs layout transformation on the outbound

data as well.

 Related concepts:

v “Bidirectional support with DB2 Connect” on page 349

v “Handling BiDi data” in DB2 Connect User’s Guide

 Related reference:

v “Bidirectional-specific CCSIDs” on page 347

v “General registry variables” in Administration Guide: Implementation

346 Administration Guide: Planning

Bidirectional-specific CCSIDs

 The following bidirectional attributes are required for correct handling of

bidirectional data on different platforms:

v Text type

v Numeric shaping

v Orientation

v Text shaping

v Symmetric swapping

Because default values on different platforms are not the same, problems can occur

when DB2 data is moved from one platform to another. For example, the Windows

operating system uses LOGICAL UNSHAPED data, while z/OS and OS/390

usually use SHAPED VISUAL data. Therefore, without support for bidirectional

attributes, data sent from DB2 Universal Database for z/OS and OS/390 to DB2 on

Windows 32-bit operating systems may display incorrectly.

DB2 Database for Linux, UNIX, and Windows supports bidirectional data

attributes through special bidirectional Coded Character Set Identifiers (CCSIDs).

The following bidirectional CCSIDs have been defined and are implemented with

DB2 as shown in Table 100. CDRA string types are defined as shown in Table 101

on page 349.

 Table 100. Bidirectional CCSIDs

CCSID Code Page String Type

420 420 4

424 424 4

856 856 5

862 862 4

864 864 5

867 862 4

916 916 5

1046 1046 5

1089 1089 5

1200 1200 10

1208 1208 10

1255 1255 5

1256 1256 5

5351 1255 5

5352 1256 5

8612 420 5

8616 424 10

9048 856 5

9238 1046 5

12712 424 4

13488 13488 10

Appendix B. National language support (NLS) 347

Table 100. Bidirectional CCSIDs (continued)

CCSID Code Page String Type

16804 420 4

17248 864 5

62208 856 4

62209 862 10

62210 916 4

62211 424 5

62213 862 5

62215 1255 4

62218 864 4

62220 856 6

62221 862 6

62222 916 6

62223 1255 6

62224 420 6

62225 864 6

62226 1046 6

62227 1089 6

62228 1256 6

62229 424 8

62230 856 8

62231 862 8

62232 916 8

62233 420 8

62234 420 9

62235 424 6

62236 856 10

62237 1255 8

62238 916 10

62239 1255 10

62240 424 11

62241 856 11

62242 862 11

62243 916 11

62244 1255 11

62245 424 10

62246 1046 8

62247 1046 9

62248 1046 4

62249 1046 12

62250 420 12

348 Administration Guide: Planning

Table 101. CDRA string types

String type Text type

Numeric

shaping Orientation Text shaping

Symmetrical

swapping

4 Visual Passthrough LTR Shaped Off

5 Implicit Arabic LTR Unshaped On

6 Implicit Arabic RTL Unshaped On

7* Visual Passthrough Contextual* Unshaped

ligature

Off

8 Visual Passthrough RTL Shaped Off

9 Visual Passthrough RTL Shaped On

10 Implicit Arabic Contextual

LTR

Unshaped On

11 Implicit Arabic Contextual

RTL

Unshaped On

12 Implicit Arabic RTL Shaped Off

Note: * String orientation is left-to-right (LTR) when the first alphabetic character

is a Latin character, and right-to-left (RTL) when it is an Arabic or Hebrew

character. Characters are unshaped, but LamAlef ligatures are kept and are

not broken into constituents.

 Related concepts:

v “Bidirectional support with DB2 Connect” on page 349

 Related tasks:

v “Enabling bidirectional support” on page 345

Bidirectional support with DB2 Connect

 When data is exchanged between DB2 Connect and a database on the server, it is

usually the receiver that performs conversion on the incoming data. The same

convention would normally apply to bidirectional layout transformations, and is in

addition to the usual code page conversion. DB2 Connect has the optional ability

to perform bidirectional layout transformation on data it is about to send to the

server database, in addition to data received from the server database.

In order for DB2 Connect to perform bidirectional layout transformation on

outgoing data for a server database, the bidirectional CCSID of the server database

must be overridden. This is accomplished through the use of the BIDI parameter in

the PARMS field of the DCS database directory entry for the server database.

Note: If you want DB2 Connect to perform layout transformation on the data it is

about to send to the DB2 host or iSeries database, even though you do not

have to override its CCSID, you must still add the BIDI parameter to the

PARMS field of the DCS database directory. In this case, the CCSID that you

should provide is the default DB2 host or iSeries database CCSID.

Appendix B. National language support (NLS) 349

The BIDI parameter is to be specified as the ninth parameter in the PARMS field,

along with the bidirectional CCSID with which you want to override the default

server database bidirectional CCSID:

 ",,,,,,,,BIDI=xyz"

where xyz is the CCSID override.

Note: The registry variable DB2BIDI must be set to YES for the BIDI parameter to

take effect.

The use of this feature is best described with an example.

Suppose you have a Hebrew DB2 client running CCSID 62213 (bidirectional string

type 5), and you want to access a DB2 host or iSeries database running CCSID

00424 (bidirectional string type 4). However, you know that the data contained in

the DB2 host or iSeries database is based on CCSID 08616 (bidirectional string type

6).

There are two problems here: The first is that the DB2 host or iSeries database does

not know the difference in the bidirectional string types with CCSIDs 00424 and

08616. The second problem is that the DB2 host or iSeries database does not

recognize the DB2 client CCSID (62213). It only supports CCSID 00862, which is

based on the same code page as CCSID 62213.

You will need to ensure that data sent to the DB2 host or iSeries database is in

bidirectional string type 6 format to begin with, and also let DB2 Connect know

that it has to perform bidirectional transformation on data it receives from the DB2

host or iSeries database. You will need to use following catalog command for the

DB2 host or iSeries database:

 db2 catalog dcs database nydb1 as telaviv parms ",,,,,,,,BIDI=08616"

This command tells DB2 Connect to override the DB2 host or iSeries database

CCSID of 00424 with 08616. This override includes the following processing:

1. DB2 Connect connects to the DB2 host or iSeries database using CCSID 00862.

2. DB2 Connect performs bidirectional layout transformation on the data it is

about to send to the DB2 host or iSeries database. The transformation is from

CCSID 62213 (bidirectional string type 5) to CCSID 62221 (bidirectional string

type 6).

3. DB2 Connect performs bidirectional layout transformation on data it receives

from the DB2 host or iSeries database. This transformation is from CCSID 08616

(bidirectional string type 6) to CCSID 62213 (bidirectional string type 5).

Note: In some cases, use of a bidirectional CCSID may cause the SQL query itself

to be modified in such a way that it is not recognized by the DB2 server.

Specifically, you should avoid using IMPLICIT CONTEXTUAL and

IMPLICIT RIGHT-TO-LEFT CCSIDs when a different string type can be

used. CONTEXTUAL CCSIDs can produce unpredictable results if the SQL

query contains quoted strings. Avoid using quoted strings in SQL

statements; use host variables whenever possible.

If a specific bidirectional CCSID is causing problems that cannot be rectified

by following these recommendations, set DB2BIDI to NO.

 Related concepts:

v “Handling BiDi data” in DB2 Connect User’s Guide

350 Administration Guide: Planning

Related reference:

v “Bidirectional-specific CCSIDs” on page 347

Collating sequences

 The database manager compares character data using a collating sequence. This is an

ordering for a set of characters that determines whether a particular character sorts

higher, lower, or the same as another.

Note: Character string data defined with the FOR BIT DATA attribute, and BLOB

data, is sorted using the binary sort sequence.

For example, a collating sequence can be used to indicate that lowercase and

uppercase versions of a particular character are to be sorted equally.

The database manager allows databases to be created with custom collating

sequences. The following sections help you determine and implement a particular

collating sequence for a database.

The database manager allows databases to be created with custom collating

sequences. For Unicode databases, the various collating sequences supported are

described in the “Unicode implementation in the DB2 database” topic. The

following sections help you determine and implement a particular collating

sequence for a database.

Each single-byte character in a database is represented internally as a unique

number between 0 and 255 (in hexadecimal notation, between X'00' and X'FF').

This number is referred to as the code point of the character; the assignment of

numbers to characters in a set is collectively called a code page. A collating sequence

is a mapping between the code point and the desired position of each character in

a sorted sequence. The numeric value of the position is called the weight of the

character in the collating sequence. In the simplest collating sequence, the weights

are identical to the code points. This is called the identity sequence.

For example, suppose the characters B and b have the code points X'42' and X'62',

respectively. If (according to the collating sequence table) they both have a sort

weight of X'42' (B), they collate the same. If the sort weight for B is X'9E', and the

sort weight for b is X'9D', b will be sorted before B. The collation sequence table

specifies the weight of each character. The table is different from a code page,

which specifies the code point of each character.

Consider the following example. The ASCII characters A through Z are represented

by X'41' through X'5A'. To describe a collating sequence in which these characters

are sorted consecutively (no intervening characters), you can write: X'41', X'42', ...

X'59', X'5A'.

The hexadecimal value of a multi-byte character is also used as the weight. For

example, suppose the code points for the double-byte characters A and B are

X'8260' and X'8261' respectively, then the collation weights for X'82', X'60', and X'61'

are used to sort these two characters according to their code points.

The weights in a collating sequence need not be unique. For example, you could

give uppercase letters and their lowercase equivalents the same weight.

Appendix B. National language support (NLS) 351

Specifying a collating sequence can be simplified if the collating sequence provides

weights for all 256 code points. The weight of each character can be determined

using the code point of the character.

In all cases, the DB2 database uses the collation table that was specified at database

creation time. If you want the multi-byte characters to be sorted the way that they

appear in their code point table, you must specify IDENTITY as the collation

sequence when you create the database.

Note: For Unicode databases, the various collating sequences supported are

described in the “Unicode implementation in the DB2 database” topic.

Once a collating sequence is defined, all future character comparisons for that

database will be performed with that collating sequence. Except for character data

defined as FOR BIT DATA or BLOB data, the collating sequence will be used for

all SQL comparisons and ORDER BY clauses, and also in setting up indexes and

statistics.

Potential problems can occur in the following cases:

v An application merges sorted data from a database with application data that

was sorted using a different collating sequence.

v An application merges sorted data from one database with sorted data from

another, but the databases have different collating sequences.

v An application makes assumptions about sorted data that are not true for the

relevant collating sequence. For example, numbers collating lower than

alphabetics might or might not be true for a particular collating sequence.

A final point to remember is that the results of any sort based on a direct

comparison of character code points will only match query results that are ordered

using an identity collating sequence.

 Related concepts:

v “Character comparisons based on collating sequences” in Developing SQL and

External Routines

v “Character conversion” in SQL Reference, Volume 1

v “Unicode implementation in DB2 Database for Linux, UNIX, and Windows” on

page 357

Collating Thai characters

 Thai contains special vowels (″leading vowels″), tonal marks and other special

characters that are not sorted sequentially.

 Restrictions:

 You must either create your database with a Thai locale and code set, or create a

Unicode database.

 Procedure:

 When you create a database using Thai and corresponding code set, use the

COLLATE USING NLSCHAR clause on the CREATE DATABASE command. When

you create a Unicode database, use the COLLATE USING UCA400_LTH clause on

the CREATE DATABASE command.

352 Administration Guide: Planning

Related concepts:

v “Collating sequences” on page 351

 Related reference:

v “CREATE DATABASE command” in Command Reference

Date and time formats by territory code

 The character string representation of date and time formats is the default format

of datetime values associated with the territory code of the application. This

default format can be overridden by specifying the DATETIME format option

when the program is precompiled or bound to the database.

Following is a description of the input and output formats for date and time:

v Input Time Format

– There is no default input time format

– All time formats are allowed as input for all territory codes.
v Output Time Format

– The default output time format is equal to the local time format.
v Input Date Format

– There is no default input date format

– Where the local format for date conflicts with an ISO, JIS, EUR, or USA date

format, the local format is recognized for date input. For example, see the UK

entry in Table 102.
v Output Date Format

– The default output date format is shown in Table 102.

Note: Table 102 also shows a listing of the string formats for the various

territory codes.

 Table 102. Date and Time Formats by Territory Code

Territory Code Local Date

Format

Local Time

Format

Default Output

Date Format

Input Date

Formats

355 Albania yyyy-mm-dd JIS LOC LOC, USA, EUR,

ISO

785 Arabic dd/mm/yyyy JIS LOC LOC, EUR, ISO

001 Australia (1) mm-dd-yyyy JIS LOC LOC, USA, EUR,

ISO

061 Australia dd-mm-yyyy JIS LOC LOC, USA, EUR,

ISO

032 Belgium dd/mm/yyyy JIS LOC LOC, EUR, ISO

055 Brazil dd.mm.yyyy JIS LOC LOC, EUR, ISO

359 Bulgaria dd.mm.yyyy JIS EUR LOC, USA, EUR,

ISO

001 Canada mm-dd-yyyy JIS USA LOC, USA, EUR,

ISO

002 Canada

(French)

dd-mm-yyyy ISO ISO LOC, USA, EUR,

ISO

Appendix B. National language support (NLS) 353

Table 102. Date and Time Formats by Territory Code (continued)

Territory Code Local Date

Format

Local Time

Format

Default Output

Date Format

Input Date

Formats

385 Croatia yyyy-mm-dd JIS ISO LOC, USA, EUR,

ISO

042 Czech

Republic

yyyy-mm-dd JIS ISO LOC, USA, EUR,

ISO

045 Denmark dd-mm-yyyy ISO ISO LOC, USA, EUR,

ISO

358 Finland dd/mm/yyyy ISO EUR LOC, EUR, ISO

389 FYR

Macedonia

dd.mm.yyyy JIS EUR LOC, USA, EUR,

ISO

033 France dd/mm/yyyy JIS EUR LOC, EUR, ISO

049 Germany dd/mm/yyyy ISO ISO LOC, EUR, ISO

030 Greece dd/mm/yyyy JIS LOC LOC, EUR, ISO

036 Hungary yyyy-mm-dd JIS ISO LOC, USA, EUR,

ISO

354 Iceland dd-mm-yyyy JIS LOC LOC, USA, EUR,

ISO

091 India dd/mm/yyyy JIS LOC LOC, EUR, ISO

972 Israel dd/mm/yyyy JIS LOC LOC, EUR, ISO

039 Italy dd/mm/yyyy JIS LOC LOC, EUR, ISO

081 Japan mm/dd/yyyy JIS ISO LOC, USA, EUR,

ISO

082 Korea mm/dd/yyyy JIS ISO LOC, USA, EUR,

ISO

001 Latin

America (1)

mm-dd-yyyy JIS LOC LOC, USA, EUR,

ISO

003 Latin

America

dd-mm-yyyy JIS LOC LOC, EUR, ISO

031 Netherlands dd-mm-yyyy JIS LOC LOC, USA, EUR,

ISO

047 Norway dd/mm/yyyy ISO EUR LOC, EUR, ISO

048 Poland yyyy-mm-dd JIS ISO LOC, USA, EUR,

ISO

351 Portugal dd/mm/yyyy JIS LOC LOC, EUR, ISO

086 China mm/dd/yyyy JIS ISO LOC, USA, EUR,

ISO

040 Romania yyyy-mm-dd JIS ISO LOC, USA, EUR,

ISO

007 Russia dd/mm/yyyy ISO LOC LOC, EUR, ISO

381 Serbia/

Montenegro

yyyy-mm-dd JIS ISO LOC, USA, EUR,

ISO

042 Slovakia yyyy-mm-dd JIS ISO LOC, USA, EUR,

ISO

386 Slovenia yyyy-mm-dd JIS ISO LOC, USA, EUR,

ISO

354 Administration Guide: Planning

Table 102. Date and Time Formats by Territory Code (continued)

Territory Code Local Date

Format

Local Time

Format

Default Output

Date Format

Input Date

Formats

034 Spain dd/mm/yyyy JIS LOC LOC, EUR, ISO

046 Sweden dd/mm/yyyy ISO ISO LOC, EUR, ISO

041 Switzerland dd/mm/yyyy ISO EUR LOC, EUR, ISO

088 Taiwan mm-dd-yyyy JIS ISO LOC, USA, EUR,

ISO

066 Thailand (2) dd/mm/yyyy JIS LOC LOC, EUR, ISO

090 Turkey dd/mm/yyyy JIS LOC LOC, EUR, ISO

044 UK dd/mm/yyyy JIS LOC LOC, EUR, ISO

001 USA mm-dd-yyyy JIS USA LOC, USA, EUR,

ISO

084 Vietnam dd/mm/yyyy JIS LOC LOC, EUR, ISO

Notes:

1. Countries/Regions using the default C locale are assigned territory code 001.

2. yyyy in Buddhist era is equivalent to Gregorian + 543 years (Thailand only).

 Related reference:

v “BIND command” in Command Reference

v “PRECOMPILE command” in Command Reference

Unicode character encoding

 The Unicode character encoding standard is a fixed-length, character encoding

scheme that includes characters from almost all of the living languages of the

world.

Information on Unicode can be found in the latest edition of The Unicode Standard

book, and from The Unicode Consortium web site (www.unicode.org).

Unicode uses two encoding forms: 8-bit and 16-bit. The default encoding form is

16-bit, that is, each character is 16 bits (two bytes) wide, and is usually shown as

U+hhhh, where hhhh is the hexadecimal code point of the character. While the

resulting 65 000+ code elements are sufficient for encoding most of the characters

of the major languages of the world, the Unicode standard also provides an

extension mechanism that allows the encoding of as many as one million more

characters. The extension mechanism uses a pair of high and low surrogate

characters to encode one extended or supplementary character. The first (or high)

surrogate character has a code value between U+D800 and U+DBFF, and the

second (or low) surrogate character has a code value between U+DC00 and

U+DFFF.

UCS-2

The International Standards Organization (ISO) and the International

Electrotechnical Commission (IEC) standard 10646 (ISO/IEC 10646) specifies the

Universal Multiple-Octet Coded Character Set (UCS) that has a 16-bit (two-byte)

version (UCS-2) and a 32-bit (four-byte) version (UCS-4). UCS-2 is identical to the

Unicode 16-bit form without surrogates. UCS-2 can encode all the (16-bit)

characters defined in the Unicode version 3.0 repertoire. Two UCS-2 characters — a

Appendix B. National language support (NLS) 355

http://www.unicode.org

high followed by a low surrogate — are required to encode each of the new

supplementary characters introduced starting in Unicode version 3.1. These

supplementary characters are defined outside the original 16-bit Basic Multilingual

Plane (BMP or Plane 0).

UTF-8

Sixteen-bit Unicode characters pose a major problem for byte-oriented ASCII-based

applications and file systems. For example, non-Unicode aware applications may

misinterpret the leading 8 zero bits of the uppercase character ’A’ (U+0041) as the

single-byte ASCII NULL character.

UTF-8 (UCS Transformation Format 8) is an algorithmic transformation that

transforms fixed-length Unicode characters into variable-length ASCII-safe byte

strings. In UTF-8, ASCII and control characters are represented by their usual

single-byte codes, and other characters become two or more bytes long. UTF-8 can

encode both non-supplementary and supplementary characters.

UTF-16

ISO/IEC 10646 also defines an extension technique for encoding some UCS-4

characters using two UCS-2 characters. This extension, called UTF-16, is identical

to the Unicode 16-bit encoding form with surrogates. In summary, the UTF-16

character repertoire consists of all the UCS-2 characters plus the additional one

million characters accessible via the surrogate pairs.

When serializing 16-bit Unicode characters into bytes, some processors place the

most significant byte in the initial position (known as big-endian order), while

others place the least significant byte first (known as little-endian order). The

default byte ordering for Unicode is big-endian.

The number of bytes for each UTF-16 character in UTF-8format can be determined

from Table 103.

 Table 103. UTF-8 Bit Distribution

Code Value

(binary)

UTF-16

(binary)

1st byte

(binary)

2nd byte

(binary)

3rd byte

(binary)

4th byte

(binary)

00000000

0xxxxxxx

00000000

0xxxxxxx

0xxxxxxx

00000yyy

yyxxxxxx

00000yyy

yyxxxxxx

110yyyyy 10xxxxxx

zzzzyyyy

yyxxxxxx

zzzzyyyy

yyxxxxxx

1110zzzz 10yyyyyy 10xxxxxx

uuuuu

zzzzyyyy

yyxxxxxx

110110ww

wwzzzzyy

110111yy

yyxxxxxx

11110uuu

(where

uuuuu =

wwww+1)

10uuzzzz 10yyyyyy 10xxxxxx

356 Administration Guide: Planning

In each of the above, the series of u’s, w’s, x’s, y’s, and z’s is the bit representation

of the character. For example, U+0080 transforms into 11000010 10000000 in binary,

and the surrogate character pair U+D800 U+DC00 becomes 11110000 10010000

10000000 10000000 in binary.

 Related concepts:

v “Unicode handling of data types” on page 360

v “Unicode implementation in DB2 Database for Linux, UNIX, and Windows” on

page 357

v “Unicode literals” on page 364

 Related tasks:

v “Creating a Unicode database” on page 362

Unicode implementation in DB2 Database for Linux, UNIX, and

Windows

 DB2 Database for Linux, UNIX, and Windows supports UTF-8 and UCS-2.

When a Unicode database is created, CHAR, VARCHAR, LONG VARCHAR, and

CLOB data are stored in UTF-8 form, and GRAPHIC, VARGRAPHIC, LONG

VARGRAPHIC, and DBCLOB data are stored in UCS-2 big-endian form.

In versions of DB2 products prior to Version 7.2 FixPak 4, DB2 treats the two

characters in a surrogate pair as two independent Unicode characters. Therefore

transforming the pair from UTF-16/UCS-2 to UTF-8 results in two three-byte

sequences. Starting in DB2 Universal Database Version 7.2 FixPak 4, DB2

recognizes surrogate pairs when transforming between UTF-16/UCS-2 and UTF-8,

thus a pair of UTF-16 surrogates will become one UTF-8 four-byte sequence. In

other usages, DB2 continues to treat a surrogate pair as two independent UCS-2

characters. You can safely store supplementary characters in DB2 Unicode

databases, provided you know how to distinguish them from the

non-supplementary characters.

DB2 treats each Unicode character, including those (non-spacing) characters such as

the COMBINING ACUTE ACCENT character (U+0301), as an individual character.

Therefore DB2 would not recognize that the character LATIN SMALL LETTER A

WITH ACUTE (U+00E1) is canonically equivalent to the character LATIN SMALL

LETTER A (U+0061) followed by the character COMBINING ACUTE ACCENT

(U+0301).

The default collating sequence for a UCS-2 Unicode database is IDENTITY, which

orders the characters by their code points. Therefore, by default, all Unicode

characters are ordered and compared according to their code points. For

non-supplementary Unicode characters, their binary collation orders when encoded

in UTF-8 and UCS-2 are the same. But if you have any supplementary character

that requires a pair of surrogate characters to encode, then in UTF-8 encoding the

character will be collated towards the end, but in UCS-2 encoding the same

character will be collated somewhere in the middle, and its two surrogate

characters can be separated. The reason is the extended character, when encoded in

UTF-8, has a four-byte binary code value of 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx,

which is greater than the UTF-8 encoding of U+FFFF, namely X’EFBFBF’. But in

UCS-2, the same supplementary character is encoded as a pair of UCS-2 high and

Appendix B. National language support (NLS) 357

low surrogate characters, and has the binary form of 1101 1000 xxxx xxxx 1101 1100

xxxx xxxx, which is less than the UCS-2 encoding of U+FFFF.

A Unicode database can also be created with the IDENTITY_16BIT collation option.

The IDENTITY_16BIT collator implements the CESU-8 Compatibility Encoding

Scheme for UTF-16: 8-Bit algorithm as specified in the Unicode Technical Report #26

available at the Unicode Technical Consortium web site (www.unicode.org).

CESU-8 is binary identical to UTF-8 except for the Unicode supplementary

characters, that is, those characters that are defined outside the 16-bit Basic

Multilingual Plane (BMP or Plane 0). In UTF-8 encoding, a supplementary

character is represented by one four-byte sequence, but the same character in

CESU-8 requires two three-byte sequences. Using the IDENTITY_16BIT collation

option will yield the same collation order for both character and graphic data.

DB2 UDB Version 8.2 supports three new collation sequence keywords for Unicode

databases: UCA400_NO, UCA400_LSK, and UCA400_LTH. The UCA400_NO

collators implements the UCA (Unicode Collation Algorithm) based on the

Unicode Standard version 4.00 with normalization implicitly set to on. The

UCA400_LSK and UCA400_LTH collator also implement the UCA version 4.00.

UCA400_LSK will sort all Slovakian characters in the appropriate order, and

UCA400_LTH will sort all Thai characters as per the Royal Thai Dictionary order.

Details of the UCA can be found in the Unicode Technical Standard #10 available

at the Unicode Consortium web site (www.unicode.org).

All culturally sensitive parameters, such as date or time format, decimal separator,

and others, are based on the current territory of the client.

A Unicode database allows connection from every code page supported by DB2.

The database manager automatically performs code page conversion for character

and graphic strings between the client’s code page and Unicode.

Every client is limited by the character repertoire, the input method, and the fonts

supported by its environment, but the UCS-2 database itself accepts and stores all

UCS-2 characters. Therefore, every client usually works with a subset of UCS-2

characters, but the database manager allows the entire repertoire of UCS-2

characters.

When characters are converted from a local code page to Unicode, there may be

expansion in the number of bytes. Prior to Version 8, based on the semantics of

SQL statements, character data may have been marked as being encoded in the

client’s code page, and the database server would have manipulated the entire

statement in the client’s code page. This manipulation could have resulted in

potential expansion of the data. Starting in Version 8, once an SQL statement enters

the database server, it operates only on the database server’s code page. In this

case there is no size change. However, specifying string units for some string

functions might result in internal codepage conversions. If this occurs, the size of

the data string might change.

AIX, UNIX, and Linux distributions and code pages

Newer versions of AIX, some UNIX platforms, and many Linux distributions use

Unicode (UTF-8) as the default code page instead of traditional non-Unicode code

pages. If the operating system is upgraded on a system and the upgrade includes

this change in the default code page, then:

v Applications that used to run may fail because the default active code page is

modified.

358 Administration Guide: Planning

v Any new database created after the operating system upgrade is created using

the UTF-8 Unicode code page unless a code page is explicitly specified when

creating a new database. All existing datbases retain their original code page

settings; that is, the setting established during database creation.

To determine the active code page the system is running on Linux, run:

 locale

Not all of the information displayed from running this command is important or

relevant, however the DB2 database manager uses the following items in the order

presented to determine the active code page:

v LC_ALL

v LC_CTYPE

v LANG

To determine which code page a database is using, run:

 db2 get db cfg for <database name>

and check the value for the “Database code page” parameter.

Code Page/CCSID Numbers

Within IBM, the UCS-2 code page has been registered as code page 1200, with a

growing character set; that is, when new characters are added to a code page, the

code page number does not change. Code page 1200 always refers to the current

version of Unicode.

A specific version of the UCS standard, as defined by Unicode 2.0 and ISO/IEC

10646-1, has also been registered within IBM as CCSID 13488. This CCSID has been

used internally by DB2 for storing graphic string data in IBM eucJP (Japan) and

IBM eucTW (Taiwan) databases. CCSID 13488 and code page 1200 both refer to

UCS-2, and are handled the same way, except for the value of their ″double-byte″

(DBCS) space:

 CP/CCSID Single-byte (SBCS) space Double-byte (DBCS) space

1200 N/A U+0020

13488 N/A U+3000

Note: In a UCS-2 database, U+3000 has no special meaning.

Regarding the conversion tables, since code page 1200 is a superset of CCSID

13488, the same (superset) tables are used for both.

Within IBM, UTF-8 has been registered as CCSID 1208 with growing character set

(sometimes also referred to as code page 1208). As new characters are added to the

standard, this number (1208) will not change.

The MBCS code page number is 1208, which is the database code page number,

and the code page of character string data within the database. The double-byte

code page number for UCS-2 is 1200, which is the code page of graphic string data

within the database.

Appendix B. National language support (NLS) 359

Thai and Unicode collation algorithm differences

The collation algorithm used in a Thai Industrial Standard (TIS) TIS620-1 (code

page 874) Thai database with the NLSCHAR collation option is similar, but not

identical to, the collation algorithm used in a Unicode database with the

UCA400_LTH collation option. The differences are as follows:

v When sorting TIS620-1 data, each character only has one weight, and that weight

is used to compare with another character’s weight during collation. When

sorting Unicode data, each character has several weights, and all the weights of

that character can be used during collation.

v When sorting TIS620-1 data, the space character X’20’, hyphen character X’2D’,

and full stop character X’2E’ all have smaller weights than all the Thai

characters. When sorting Unicode data, however, those three characters are

considered as punctuation marks; and are used for comparison only when all

other characters in the two strings being compared are equal.

v The Paiyannoi character X’CF’ and the Maiyamok character X’E6’ in a TIS620-1

database are treated as punctuation marks when they follow other Thai

characters, and as normal characters, with their own weights, when they appear

at the beginning of a string. The same two characters in a Unicode database

(U+0E2F and U+0E46 respectively) are always treated as punctuation marks, and

will be used for comparison when all other characters in the two strings being

compared are equal.

More information on Thai characters can be found in chapter 10.1 Thai of the

Unicode Standard book, version 4.0, ISBN 0-321-18578-1.

 Related concepts:

v “Unicode character encoding” on page 355

v “Unicode handling of data types” on page 360

v “Unicode literals” on page 364

 Related tasks:

v “Creating a Unicode database” on page 362

 Related reference:

v “Character strings” in SQL Reference, Volume 1

Unicode handling of data types

 All data types supported by DB2 Database for Linux, UNIX, and Windows are also

supported in a UCS-2 database. In particular, graphic string data is supported for a

UCS-2 database, and is stored in UCS-2/Unicode. Every client, including SBCS

clients, can work with graphic string data types in UCS-2/Unicode when

connected to a UCS-2 database.

A UCS-2 database is like any MBCS database where character string data is

measured in number of bytes. When working with character string data in UTF-8,

one should not assume that each character is one byte. In multibyte UTF-8

encoding, each ASCII character is one byte, but non-ASCII characters take two to

four bytes each. This should be taken into account when defining CHAR fields.

Depending on the ratio of ASCII to non-ASCII characters, a CHAR field of size n

bytes can contain anywhere from n/4 to n characters.

360 Administration Guide: Planning

Using character string UTF-8 encoding versus the graphic string UCS-2 data type

also has an impact on the total storage requirements. In a situation where the

majority of characters are ASCII, with some non-ASCII characters in between,

storing UTF-8 data may be a better alternative, because the storage requirements

are closer to one byte per character. On the other hand, in situations where the

majority of characters are non-ASCII characters that expand to three- or four-byte

UTF-8 sequences (for example ideographic characters), the UCS-2 graphic-string

format may be a better alternative, because every three-byte UTF-8 sequence

becomes a 16-bit UCS-2 character, while each four-byte UTF-8 sequence becomes

two 16-bit UCS-2 characters.

In MBCS environments, SQL functions that operate on character strings, such as

SUBSTR, POSSTR, MAX, MIN, and the like, operate on the number of ″bytes″

rather than number of ″characters″. The behavior is the same in a UCS-2 database,

but you should take extra care when specifying offsets and lengths for a UCS-2

database, because these values are always defined in the context of the database

code page. That is, in the case of a UCS-2 database, these offsets should be defined

in UTF-8. Since some single-byte characters require more than one byte in UTF-8,

SUBSTR indexes that are valid for a single-byte database may not be valid for a

UCS-2 database. If you specify incorrect indexes, SQLCODE -191 (SQLSTATE

22504) is returned.

Note: Not all SQL functions that operate on character strings are limited to

processing ″bytes″. The CHARACTER_LENGTH, LENGTH, LOCATE,

POSITION, and SUBSTRING functions include a parameter that allows you

to specify a predefined set of string units. This means that the functions can

process strings using the specified units instead of bytes or double bytes.

SQL CHAR data types are supported (in the C language) by the char data type in

user programs. SQL GRAPHIC data types are supported by sqldbchar in user

programs. Note that, for a UCS-2 database, sqldbchar data is always in big-endian

(high byte first) format. When an application program is connected to a UCS-2

database, character string data is converted between the application code page and

UTF-8, and graphic string data is converted between the application graphic code

page and UCS-2 by DB2.

When retrieving data from a Unicode database to an application that does not use

an SBCS, EUC, or Unicode code page, the defined substitution character is

returned for each blank padded to a graphic column. DB2 pads fixed-length

Unicode graphic columns with ASCII blanks (U+0200), a character that has no

equivalent in pure DBCS code pages. As a result, each ASCII blank used in the

padding of the graphic column is converted to the substitution character on

retrieval. Similarly, in a DATE, TIME or TIMESTAMP string, any SBCS character

that does not have a pure DBCS equivalent is also converted to the substitution

character when retrieved from a Unicode database to an application that does not

use an SBCS, EUC, or Unicode code page.

Note: Prior to Version 8, graphic string data was always assumed to be in UCS-2.

To provide backward compatibility to applications that depend on the

previous behavior of DB2, the registry variable

DB2GRAPHICUNICODESERVER has been introduced. Its default value is

OFF. Changing the value of this variable to ON will cause DB2 to use its

earlier behavior and assume that graphic string data is always in UCS-2.

Additionally, the DB2 server will check the version of DB2 running on the

client, and will simulate DB2 Universal Database Version 7 behavior if the

client is running DB2 UDB Version 7.

Appendix B. National language support (NLS) 361

Related concepts:

v “Unicode character encoding” on page 355

v “Unicode implementation in DB2 Database for Linux, UNIX, and Windows” on

page 357

Creating a Unicode database

 By default, databases are created in the code page of the application creating them.

Therefore, if you create your database from a Unicode (UTF-8) client, your

database will be created as a Unicode database. Alternatively, you can explicitly

specify “UTF-8” as the CODESET name, and use any valid TERRITORY code

supported by DB2 Database for Linux, UNIX, and Windows.

In a future release of the DB2 database manager, the default code set will be

changed to UTF-8 when creating a database, regardless of the application code

page.

 Procedure:

 To create a Unicode database with the territory code for the United States of

America:

 DB2 CREATE DATABASE dbname USING CODESET UTF-8 TERRITORY US

To create a Unicode database using the sqlecrea API, you should set the values in

sqledbterritoryinfo accordingly. For example, set SQLDBCODESET to UTF-8, and

SQLDBLOCALE to any valid territory code (for example, US).

 Related concepts:

v “Unicode implementation in DB2 Database for Linux, UNIX, and Windows” on

page 357

 Related tasks:

v “Converting non-Unicode databases to Unicode” on page 362

 Related reference:

v “sqlecrea API - Create database” in Administrative API Reference

v “CREATE DATABASE command” in Command Reference

v “Supported territory codes and code pages” on page 313

Converting non-Unicode databases to Unicode

 There are some cases where you might need to convert an existing non-Unicode

database to a Unicode database. For example, because XML columns are only

supported in Unicode databases, if you want to add an XML column to an existing

non-Unicode database, you will need to convert the database to a Unicode

database before you can add the XML column.

 Prerequisites:

 You must have enough free disk space to export the data from the non-Unicode

database. Also, if you are not reusing the existing table spaces, you will need

enough free disk space to create new table spaces for the data.

362 Administration Guide: Planning

Restrictions:

 XML data can only be stored in single-partition databases defined with the UTF-8

code set.

 Procedure:

 The following steps illustrate how to convert an existing non-Unicode database to

a Unicode database:

1. Export your data using the db2move command:

 cd <export-dir>

 db2move sample export

where <export-dir> is the directory to which you want to export your data

and SAMPLE is the existing database name.

2. Generate a DDL script for your existing database using the db2look command:

 db2look -d sample -e -o unidb.ddl -l -x -f

where SAMPLE is the existing database name and unidb.ddl is the file name

for the generated DDL script. The -l option generates DDL for user defined

table spaces, database partition groups and buffer pools, the -x option

generates authorization DDL, and the -f option generates an update command

for database configuration parameters.

3. Create the Unicode database:

 CREATE DATABASE UNIDB USING CODESET UTF-8 TERRITORY US

where UNIDB is the name of the Unicode database.

4. Edit the unidb.ddl script and change all occurrences of the database name to

the new Unicode database name:

 CONNECT TO UNIDB

To keep the existing database, you must also change the file name specification

for table spaces in the unidb.ddl file. Otherwise, you can drop the existing

database and use the same table space files:

 DROP DATABASE SAMPLE

5. Recreate your database structure by running the DDL script that you edited:

 db2 -tvf unidb.ddl

6. Import your data into the new Unicode database using the db2move command:

 cd <export-dir>

 db2move unidb import

where <export-dir> is the directory where you exported your data and UNIDB

is the Unicode database name.

 Related concepts:

v “Unicode implementation in DB2 Database for Linux, UNIX, and Windows” on

page 357

v “Native XML data store overview” in XML Guide

v “XML data type” in XML Guide

 Related tasks:

v “Creating a Unicode database” on page 362

Appendix B. National language support (NLS) 363

Related reference:

v “db2look - DB2 statistics and DDL extraction tool command” in Command

Reference

v “db2move - Database movement tool command” in Command Reference

v “DROP DATABASE command” in Command Reference

v “CONNECT (Type 1) statement” in SQL Reference, Volume 2

v “CONNECT (Type 2) statement” in SQL Reference, Volume 2

Unicode literals

 Unicode literals can be specified in two ways:

v As a graphic string constant, using the G’...’ or N’....’ format. Any literal

specified in this way will be converted by the database manager from the

application code page to 16-bit Unicode.

v As a Unicode hexadecimal string, using the UX’....’ or GX’....’ format. The

constant specified between the quotation marks after UX or GX must be a

multiple of four hexadecimal digits in big-endian order. Each four-digit group

represents one 16-bit Unicode code point. Note that surrogate characters always

appear in pairs, therefore you need two four-digit groups to represent the high

and low surrogate characters.

When using the command line processor (CLP), the first method is easier if the

UCS-2 character exists in the local application code page (for example, when

entering any code page 850 character from a terminal that is using code page 850).

The second method should be used for characters that are outside of the

application code page repertoire (for example, when specifying Japanese characters

from a terminal that is using code page 850).

 Related concepts:

v “Unicode character encoding” on page 355

v “Unicode implementation in DB2 Database for Linux, UNIX, and Windows” on

page 357

 Related reference:

v “Constants” in SQL Reference, Volume 1

String comparisons in a Unicode database

 Pattern matching is one area where the behavior of existing MBCS databases is

slightly different from the behavior of a UCS-2 database.

For MBCS databases in DB2 Database for Linux, UNIX, and Windows, the current

behavior is as follows: If the match-expression contains MBCS data, the pattern can

include both SBCS and non-SBCS characters. The special characters in the pattern

are interpreted as follows:

v An SBCS halfwidth underscore refers to one SBCS character.

v A non-SBCS fullwidth underscore refers to one non-SBCS character.

v A percent (either SBCS halfwidth or non-SBCS fullwidth) refers to zero or more

SBCS or non-SBCS characters.

364 Administration Guide: Planning

In a Unicode database, there is really no distinction between ″single-byte″ and

″non-single-byte″ characters. Although the UTF-8 format is a ″mixed-byte″

encoding of Unicode characters, there is no real distinction between SBCS and

non-SBCS characters in UTF-8. Every character is a Unicode character, regardless of

the number of bytes in UTF-8 format. In a Unicode graphic column, every

non-supplementary character, including the halfwidth underscore (U+005F) and

halfwidth percent (U+0025), is two bytes in width. For Unicode databases, the

special characters in the pattern are interpreted as follows:

v For character strings, a halfwidth underscore (X’5F’) or a fullwidth underscore

(X’EFBCBF’) refers to one Unicode character. A halfwidth percent (X’25’) or a

fullwidth percent (X’EFBC85’) refers to zero or more Unicode characters.

v For graphic strings, a halfwidth underscore (U+005F) or a fullwidth underscore

(U+FF3F) refers to one Unicode character. A halfwidth percent (U+0025) or a

fullwidth percent (U+FF05) refers to zero or more Unicode characters.

Note: You need two underscores to match a Unicode supplementary graphic

character because such a character is represented by two UCS-2 characters in

a GRAPHIC column. Only one underscore is needed to match a Unicode

supplementary character in a CHAR column.

For the optional ″escape expression″, which specifies a character to be used to

modify the special meaning of the underscore and percent sign characters, the

expression can be specified by any one of:

v A constant

v A special register

v A host variable

v A scalar function whose operands are any of the above

v An expression concatenating any of the above

with the restrictions that:

v No element in the expression can be of type LONG VARCHAR, CLOB, LONG

VARGRAPHIC, or DBCLOB. In addition, it cannot be a BLOB file reference

variable.

v For CHAR columns, the result of the expression must be one character or a

binary string containing exactly one (1) byte (SQLSTATE 22019). For GRAPHIC

columns, the result of the expression must be one character (SQLSTATE 22019).

 Related concepts:

v “Unicode character encoding” on page 355

v “Unicode implementation in DB2 Database for Linux, UNIX, and Windows” on

page 357

 Related reference:

v “Character strings” in SQL Reference, Volume 1

v “Graphic strings” in SQL Reference, Volume 1

Appendix B. National language support (NLS) 365

Installing the previous tables for converting between code page 1394

and Unicode

 The conversion tables for code page 1394 (also known as Shift JIS X0213) and

Unicode have been enhanced. The conversion between Japanese Shift JIS X0213

(1394) and Unicode now conforms to the final ISO/IEC 10646-1:2000 Amendment-1

for JIS X0213 characters. The previous version of the conversion tables is available

via FTP from ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/conv/.

 Procedure:

 To install the previous definitions for converting between Shift JIS X0213 and

Unicode:

1. Stop the DB2 Database for Linux, UNIX, and Windows instance.

2. Point your Web browser to ftp://ftp.software.ibm.com/ps/products/db2/
info/vr8/conv/ or use FTP to connect to the ftp.software.ibm.com site. This

FTP server is anonymous.

3. If you are connecting via the command line, log in by entering anonymous as

your user ID and your e-mail address as your password.

4. After logging in, change to the conversion tables directory:

cd ps/products/db2/info/vr8/conv

5. Copy the two files, 1394ucs4.cnv and ucs41394.cnv, in binary form to your

sqllib/conv/ directory.

6. Restart the DB2 instance.

 Related concepts:

v “Unicode implementation in DB2 Database for Linux, UNIX, and Windows” on

page 357

 Related reference:

v “Supported territory codes and code pages” on page 313

Alternative Unicode conversion table for the coded character set

identifier (CCSID) 943

 There are several IBM coded character set identifiers (CCSIDs) for Japanese code

pages. CCSID 943 is registered as the Microsoft Japanese Windows Shift-JIS code

page. You might encounter the following two problems when converting characters

between CCSID 943 and Unicode. The problems are the result of differences

between the IBM code page conversion tables and the Microsoft code page

conversion tables.

 Problem 1::

 For historical reasons, over 300 characters in the CCSID 943 code page are

represented by two or three code points each. The use of input method editors

(IMEs) and code page conversion tables cause only one of these equivalent code

points to be entered. For example, the lower case character for Roman numeral one

(“i”) has two equivalent code points: X’EEEF’ and X’FA40’. Microsoft Windows

IMEs always generate X’FA40’ when “i” is entered. In general, IBM and Microsoft

use the same primary code point to represent the character, except for the

following 13 characters:

366 Administration Guide: Planning

Table 104. CCSID 943 Shift-JIS code point conversion

Character name (Unicode

code point)

IBM primary Shift-JIS code

point

Microsoft Shift-JIS primary

code point

Roman numeral one

(U+2160)

X’FA4A’ X’8754’

Roman numeral two

(U+2161)

X’FA4B’ X’8755’

Roman numeral three

(U+2162)

X’FA4C’ X’8756’

Roman numeral four

(U+2163)

X’FA4D’ X’8757’

Roman numeral five

(U+2164)

X’FA4E’ X’8758’

Roman numeral six (U+2165) X’FA4F’ X’8759’

Roman numeral seven

(U+2166)

X’FA50’ X’875A’

Roman numeral eight

(U+2167)

X’FA51’ X’875B’

Roman numeral nine

(U+2168)

X’FA52’ X’875C’

Roman numeral ten (U+2169) X’FA53’ X’875D’

Parenthesized ideograph

stock (U+3231)

X’FA58’ X’878A’

Numero sign (U+2116) X’FA59’ X’8782’

Telephone sign (U+2121) X’FA5A’ X’8784’

IBM products such as DB2 database manager primarily use IBM code points, for

example X’FA4A’, to present the upper case Roman numeral “I”, but Microsoft

products use X’8754’ to represent the same character. A Microsoft ODBC

application can insert the “I” character as X’8754’ into a DB2 database of CCSID

943, and the DB2 Control Center can insert the same character as X’FA4A’ into the

same CCSID 943 database. However, Microsoft ODBC applications can find only

those rows that have “I” encoded as X’8754’, and the DB2 Control Center can

locate only those rows that have encoded “I” as X’FA4A’. To enable the DB2

Control Center to select “I” as X’8754’, you need to replace the default IBM

conversion tables from Unicode to CCSID 943 with the alternate Microsoft

conversion table provided by the DB2 database manager.

 Problem 2::

 The following list of characters, when converted from CCSID 943 to Unicode, will

result in different code points depending on whether the IBM conversion table or

the Microsoft conversion table is used. For these characters, the IBM conversion

table conforms to the character names as specified in the Japanese Industry

Standard JISX0208, JISX0212, and JISX0221.

 Table 105. CCSID 943 to Unicode code point conversion

Shift-JIS code point

(character name)

IBM primary code point

(Unicode name)

Microsoft primary code

point (Unicode name)

X’815C’ (EM Dash) U+2014 (EM Dash) U+2015 (Horizontal Bar)

Appendix B. National language support (NLS) 367

Table 105. CCSID 943 to Unicode code point conversion (continued)

Shift-JIS code point

(character name)

IBM primary code point

(Unicode name)

Microsoft primary code

point (Unicode name)

X’8160’ (Wave Dash) U+301C (Wave Dash) U+FF5E (Fullwidth Tilde)

X’8161’ (Double vertical line) U+2016 (Double vertical line) U+2225 (Parallel To)

X’817C’ (Minus sign) U+2212 (Minus sign) U+FF0D (Fullwidth

hyphen-minus)

X’FA55’ (Broken bar) U+00A6 (Broken bar) U+FFE4 (Fullwidth broken

bar)

For example, the character EM dash with the CCSID 943 code point of X’815C’ is

converted to the Unicode code point U+2014 when using the IBM conversion table,

but is converted to U+2015 when using the Microsoft conversion table. This can

create potential problems for Microsoft ODBC applications because they would

treat U+2014 as an invalid code point. To avoid these potential problems, you need

to replace the default IBM conversion table from CCSID 943 to Unicode with the

alternate Microsoft conversion table provided by the DB2 database manager.

The use of the alternate Microsoft conversion tables between CCSID 943 and

Unicode should be restricted to closed environments, where the DB2 clients and

the DB2 databases that are running CCSID 943 and are all using the same alternate

Microsoft conversion tables. If you have a DB2 client using the default IBM

conversion tables and another client using the alternate Microsoft conversion

tables, and both clients are inserting data to the same DB2 database of CCSID 943,

the same character may be stored as different code points in the database.

 Related concepts:

v “Unicode character encoding” on page 355

 Related tasks:

v “Replacing the Unicode conversion tables for coded character set identifier

(CCSID) 943 with Microsoft conversion tables” on page 368

Replacing the Unicode conversion tables for coded character set

identifier (CCSID) 943 with Microsoft conversion tables

 When you convert between coded character set identifier (CCSID) 943 and

Unicode, the DB2 Database for Linux, UNIX, and Windows database manager

default code page conversion tables are used. If you want to use a different version

of the conversion tables, such as the Microsoft version, you must manually

override the default conversion tables.

 Prerequisites:

 If the code page conversion table file you want to override already exists in the

conv subdirectory of the sqllib directory, you should back up that file in case you

want to revert to the default table.

 Restrictions:

 For conversion table replacement to be effective, the conversion table on the

database server and all of its clients must be changed.

368 Administration Guide: Planning

Procedure:

 To replace the DB2 default conversion tables for converting between CCSID 943

and Unicode:

1. When replacing conversion tables on the client, stop all the applications that are

using the database. If you have any CLP sessions running, issue the

TERMINATE command for each session. When replacing conversion tables on

the database server, stop all instances on all nodes by issuing the db2stop

command.

2. Copy sqllib/conv/ms/0943ucs2.cnv to sqllib/conv/0943ucs2.cnv.

3. Copy sqllib/conv/ms/ucs20943.cnv to sqllib/conv/ucs20943.cnv.

4. Restart all the applications.

 Related concepts:

v “Alternative Unicode conversion table for the coded character set identifier

(CCSID) 943” on page 366

Alternative Unicode conversion table for the coded character set

identifier (CCSID) 954

 There are several IBM coded character set identifiers (CCSIDs) for Japanese code

pages. CCSID 954 is registered as the Japanese EUC code page. CCSID 954 is a

common encoding for Japanese UNIX and Linux platforms. When using Microsoft

ODBC applications to connect to a DB2 database using CCSID 954, you might

encounter potential problems when converting data in CCSID 954 to Unicode. The

problems are the result of differences between IBM’s code page conversion table

and Microsoft’s code page conversion table.

The following list of characters, when converted from CCSID 954 to Unicode, will

result in different code points depending on which conversion table (IBM or

Microsoft) is used. For these characters, the IBM conversion table conforms to the

character names as specified in the Japanese Industry Standard (JIS) JISX0208,

JISX0212, and JISX0221.

 Table 106. CCSID 954 to Unicode code point conversion

EUC-JP code point

(character name)

IBM primary code point

(Unicode name)

Microsoft primary code

point (Unicode name)

X’A1BD’ (EM Dash) U+2014 (EM Dash) U+2015 (Horizontal Bar)

X’A1C1’ (Wave Dash) U+301C (Wave Dash) U+FF5E (Fullwidth Tilde)

X’A1C2’ (Double vertical

line)

U+2016 (Double vertical line) U+2225 (Parallel To)

X’A1DD’ (Minus sign) U+2212 (Minus sign) U+FF0D (Fullwidth

hyphen-minus)

X’8FA2C3’ (Broken bar) U+00A6 (Broken bar) U+FFE4 (Fullwidth broken

bar)

For example, the character EM dash with the CCSID 954 code point of X’A1BD’ is

converted to the Unicode code point U+2014 when using the IBM conversion table,

but is converted to U+2015 when using the Microsoft conversion table. This can

create potential problems for Microsoft ODBC applications because they would

treat U+2014 as an invalid code point. To avoid these potential problems, you need

Appendix B. National language support (NLS) 369

to replace the default IBM conversion table from CCSID 954 to Unicode with the

alternate Microsoft conversion table provided by the DB2 database manager.

 Related concepts:

v “Replacing the Unicode conversion table for coded character set identifier

(CCSID) 954 with the Microsoft conversion table” on page 370

v “Unicode character encoding” on page 355

Replacing the Unicode conversion table for coded character set

identifier (CCSID) 954 with the Microsoft conversion table

 When you convert from coded character set identifier (CCSID) 954 to Unicode, the

DB2 database manager default code page conversion table is used. If you want to

use a different version of the conversion table such as the Microsoft version, you

must manually override the default conversion table.

 Prerequisites::

 If the code page conversion table file you want to override already exists in the

conv subdirectory of the sqllib directory, you should back up that file in case you

want to revert to the default table.

 Restrictions::

 For conversion table replacement to be effective, every DB2 client that connects to

the same database must have its conversion table changed. If your client is

Japanese Windows whose ANSI code page is Shift-JIS (CCSID 943), you will also

need to change the default conversion tables between CCSID 943 and Unicode to

the Microsoft version. Otherwise, the different clients might store the same

character using different code points.

 Procedure::

 To replace the DB2 default conversion table for converting from CCSID 954 to

Unicode, follow these steps:

1. When replacing conversion tables on the client, stop all the applications that are

using the database. If you have any CLP sessions running, issue the

TERMINATE command for each session. When replacing conversion tables on

the database server, stop all instances on all nodes by issuing the db2stop

command.

2. Copy sqllib/conv/ms/0954ucs2.cnv to sqllib/conv/0954ucs2.cnv.

3. Restart all the applications.

To replace the DB2 default conversion tables for converting between CCSID 943

and Unicode, follow these steps:

1. When replacing conversion tables on the client, stop all the applications that are

using the database. If you have any CLP sessions running, issue the

TERMINATE command for each session. When replacing conversion tables on

the database server, stop all instances on all nodes by issuing the db2stop

command.

2. Copy sqllib/conv/ms/0943ucs2.cnv to sqllib/conv/0943ucs2.cnv.

3. Copy sqllib/conv/ms/ucs20943.cnv to sqllib/conv/ucs20943.cnv.

4. Restart all the applications.

370 Administration Guide: Planning

Related concepts:

v “Alternative Unicode conversion table for the coded character set identifier

(CCSID) 954” on page 369

v “Unicode character encoding” on page 355

Alternative Unicode conversion table for the coded character set

identifier (CCSID) 5026

 There are several IBM coded character set identifiers (CCSIDs) for Japanese code

pages. CCSID 5026 is registered as a Japanese EBCDIC code page. When using

Microsoft ODBC applications to connect to a DB2 host database of CCSID 5026,

you might encounter potential problems when converting data in CCSID 5026 to

Unicode. The problems are the result of differences between IBM’s code page

conversion table and Microsoft’s code page conversion table. The following list of

characters, when converted from CCSID 5026 to Unicode, will result in different

code points depending on which conversion table (IBM or Microsoft) is used. For

these characters, the IBM conversion table conforms to the character names as

specified in the Japanese Industry Standard (JIS) JISX0208, JISX0212, and JISX0221.

 Table 107. CCSID 5026 to Unicode code point conversion

EBCDIC code point

(character name)

IBM primary code point

(Unicode name)

Microsoft primary code

point (Unicode name)

X’444A’ (EM Dash) U+2014 (EM Dash) U+2015 (Horizontal Bar)

X’43A1’ (Wave Dash) U+301C (Wave Dash) U+FF5E (Fullwidth Tilde)

X’447C’ (Double vertical line) U+2016 (Double vertical line) U+2225 (Parallel To)

X’4260’ (Minus sign) U+2212 (Minus sign) U+FF0D (Fullwidth

hyphen-minus)

X’426A’ (Broken bar) U+00A6 (Broken bar) U+FFE4 (Fullwidth broken

bar)

For example, the character EM dash with the CCSID 5026 code point of X’444A’ is

converted to the Unicode code point U+2014 when using the IBM conversion table,

but is converted to U+2015 when using the Microsoft conversion table. This can

create potential problems for Microsoft ODBC applications because they would

treat U+2014 as an invalid code point. To avoid these potential problems, you need

to replace the default IBM conversion table from CCSID 5026 to Unicode with the

alternate Microsoft conversion table provided by the DB2 database manager.

 Related concepts:

v “Replacing the Unicode conversion table for coded character set identifier

(CCSID) 5026 with the Microsoft conversion table” on page 371

v “Unicode character encoding” on page 355

Replacing the Unicode conversion table for coded character set

identifier (CCSID) 5026 with the Microsoft conversion table

 When you convert from coded character set identifier (CCSID) 5026 to Unicode,

the DB2 database manager default code page conversion table is used. If you want

to use a different version of the conversion table such as the Microsoft version, you

must manually override the default conversion table.

Appendix B. National language support (NLS) 371

Prerequisites::

 If the code page conversion table file you want to override already exists in the

conv subdirectory of the sqllib directory, you should back up that file in case you

want to revert to the default table.

 Restrictions::

 For conversion table replacement to be effective, every DB2 client that connects to

the same database must have its conversion table changed.

This Microsoft conversion table is only for data encoded in CCSID 5026 or 930, and

cannot be used for data encoded in CCSID 1390. Since the DB2 database manager

uses the same conversion table for data encoded in CCSIDs 5026, 930, and 1390,

this means that once the default IBM conversion table has been replaced with the

Microsoft conversion table, you should not select any data that is encoded in

CCSID 1390.

Activating this alternate Microsoft conversion table does not change the code page

conversion behavior of graphic data encoded in 5026 to Unicode. To enable graphic

data encoded in 5026 conversion to Unicode using the alternate Microsoft

conversion table, you must also copy the file sqllib/conv/ms/0939ucs2.cnv to

sqllib/conv/1399ucs2.cnv in addition to the procedure outlined below. Once you

complete these steps, the conversion of both character data and graphic data to

Unicode from the following CCSIDs will also use the Microsoft conversion table:

5026, 930, 1390, 5035, 939, and 1399.

 Procedure::

 To replace the DB2 default conversion table for converting from CCSID 5026 to

Unicode, follow these steps:

1. When replacing conversion tables on the client, stop all the applications that are

using the database. If you have any CLP sessions running, issue the db2

terminate command for each session.

2. Copy sqllib/conv/ms/0930ucs2.cnv to sqllib/conv/1390ucs2.cnv.

3. Restart all the applications.

 Related concepts:

v “Alternative Unicode conversion table for the coded character set identifier

(CCSID) 5026” on page 371

Alternative Unicode conversion table for the coded character set

identifier (CCSID) 5035

 There are several IBM coded character set identifiers (CCSIDs) for Japanese code

pages. CCSID 5035 is registered as a Japanese EBCDIC code page. When using

Microsoft ODBC applications to connect to a DB2 host database of CCSID 5035,

you might encounter potential problems when converting data in CCSID 5035 to

Unicode. The problems are the result of differences between IBM’s code page

conversion table and Microsoft’s code page conversion table. The following list of

characters, when converted from CCSID 5035 to Unicode, will result in different

code points depending on which conversion table (IBM or Microsoft) is used. For

these characters, the IBM conversion table conforms to the character names as

specified in the Japanese Industry Standard (JIS) JISX0208, JISX0212, and JISX0221.

372 Administration Guide: Planning

Table 108. CCSID 5035 to Unicode code point conversion

EBCDIC code point

(character name)

IBM primary code point

(Unicode name)

Microsoft primary code

point (Unicode name)

X’444A’ (EM Dash) U+2014 (EM Dash) U+2015 (Horizontal Bar)

X’43A1’ (Wave Dash) U+301C (Wave Dash) U+FF5E (Fullwidth Tilde)

X’447C’ (Double vertical line) U+2016 (Double vertical line) U+2225 (Parallel To)

X’4260’ (Minus sign) U+2212 (Minus sign) U+FF0D (Fullwidth

hyphen-minus)

X’426A’ (Broken bar) U+00A6 (Broken bar) U+FFE4 (Fullwidth broken

bar)

For example, the character EM dash with the CCSID 5035 code point of X’444A’ is

converted to the Unicode code point U+2014 when using the IBM conversion table,

but is converted to U+2015 when using the Microsoft conversion table. This can

create potential problems for Microsoft ODBC applications because they would

treat U+2014 as an invalid code point. To avoid these potential problems, you need

to replace the default IBM conversion table from CCSID 5035 to Unicode with the

alternate Microsoft conversion table provided by the DB2 database manager.

 Related concepts:

v “Unicode character encoding” on page 355

v “Replacing the Unicode conversion table for coded character set identifier

(CCSID) 5035 with the Microsoft conversion table” on page 373

Replacing the Unicode conversion table for coded character set

identifier (CCSID) 5035 with the Microsoft conversion table

 When you convert from coded character set identifier (CCSID) 5035 to Unicode,

the DB2 database manager default code page conversion table is used. If you want

to use a different version of the conversion table such as the Microsoft version, you

must manually override the default conversion table.

 Prerequisites::

 If the code page conversion table file you want to override already exists in the

conv subdirectory of the sqllib directory, you should back up that file in case you

want to revert to the default table.

 Restrictions::

 For conversion table replacement to be effective, every DB2 client that connects to

the same database must have its conversion table changed.

This Microsoft conversion table is only for data encoded in CCSID 5039 or 939, and

cannot be used for data encoded in CCSID 1399. Since the DB2 database manager

uses the same conversion table for data encoded in CCSIDs 5035, 939, and 1399,

this means that once the default IBM conversion table has been replaced with the

Microsoft conversion table, you should not select any data that is encoded in

CCSID 1399.

Appendix B. National language support (NLS) 373

Once you have replaced the default IBM conversion table with the Microsoft

conversion table, the conversion of graphic data to Unicode from the following

CCSIDs will also use this Microsoft conversion table: 930, 1390, 939, and 1399.

 Procedure::

 To replace the DB2 default conversion table for converting from CCSID 5035 to

Unicode, follow these steps:

1. When replacing conversion tables on the client, stop all the applications that are

using the database. If you have any CLP sessions running, issue the

TERMINATE command for each session.

2. Copy sqllib/conv/ms/0939ucs2.cnv to sqllib/conv/1399ucs2.cnv.

3. Restart all the applications.

 Related concepts:

v “Alternative Unicode conversion table for the coded character set identifier

(CCSID) 5035” on page 372

v “Unicode character encoding” on page 355

Alternative Unicode conversion table for the coded character set

identifier (CCSID) 5039

 There are several IBM coded character set identifiers (CCSIDs) for Japanese code

pages. CCSID 943 is registered as the the Microsoft Japanese Windows Shift-JIS

code page. However, the Shift-JIS code page on the HP-UX platform is registered

as CCSID 5039. CCSID 5039 contains only Japanese Industry Standard (JIS)

characters, and does not have any vendor-defined characters. When using

Microsoft ODBC applications, you might encounter potential problems when

converting data in CCSID 5039 to Unicode. The problems are the result of

differences between IBM’s code page conversion table and Microsoft’s code page

conversion table.

The following list of characters, when converted from CCSID 5039 to Unicode, will

result in different code points depending on which conversion table (IBM or

Microsoft) is used. For these characters, the IBM conversion table conforms to the

character names as specified in the Japanese Industry Standard (JIS) JISX0208, and

JISX0221.

 Table 109. CCSID 5039 to Unicode code point conversion

Shift-JIS code point

(character name)

IBM primary code point

(Unicode name)

Microsoft primary code

point (Unicode name)

X’815C’ (EM Dash) U+2014 (EM Dash) U+2015 (Horizontal Bar)

X’8160’ (Wave Dash) U+301C (Wave Dash) U+FF5E (Fullwidth Tilde)

X’8161’ (Double vertical line) U+2016 (Double vertical line) U+2225 (Parallel To)

X’817C’ (Minus sign) U+2212 (Minus sign) U+FF0D (Fullwidth

hyphen-minus)

For example, the character EM dash with the CCSID 5039 code point of X’815C’ is

converted to the Unicode code point U+2014 when using the IBM conversion table,

but is converted to U+2015 when using the Microsoft conversion table. This can

create potential problems for Microsoft ODBC applications because they would

treat U+2014 as an invalid code point. To avoid these potential problems, you need

374 Administration Guide: Planning

to replace the default IBM conversion table from CCSID 5039 to Unicode with the

alternate Microsoft conversion table provided by the DB2 database manager.

 Related concepts:

v “Replacing the Unicode conversion table for coded character set identifier

(CCSID) 5039 with the Microsoft conversion table” on page 375

v “Unicode character encoding” on page 355

Replacing the Unicode conversion table for coded character set

identifier (CCSID) 5039 with the Microsoft conversion table

 When you convert from coded character set identifier (CCSID) 5039 to Unicode,

the DB2 database manager default code page conversion table is used. If you want

to use a different version of the conversion table such as the Microsoft version, you

must manually override the conversion table.

 Prerequisites::

 If the code page conversion table file you want to override already exists in the

conv subdirectory of the sqllib directory, you should back up that file in case you

want to revert to the default table.

 Restrictions::

 For conversion table replacement to be effective, every DB2 client that connects to

the same database must have its conversion table changed.

 Procedure::

 To replace the DB2 default conversion table for converting from CCSID 5039 to

Unicode, follow these steps:

1. When replacing conversion tables on the client, stop all the applications that are

using the database. If you have any CLP sessions running, issue the

TERMINATE command for each session.

2. Copy sqllib/conv/ms/5039ucs2.cnv to sqllib/conv/5039ucs2.cnv.

3. Restart all the applications.

 Related concepts:

v “Alternative Unicode conversion table for the coded character set identifier

(CCSID) 5039” on page 374

v “Unicode character encoding” on page 355

Appendix B. National language support (NLS) 375

376 Administration Guide: Planning

Appendix C. DB2 Database technical information

Overview of the DB2 technical information

 DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF CD)

– printed books
v Command line help

– Command help

– Message help
v Sample programs

IBM periodically makes documentation updates available. If you access the online

version on the DB2 Information Center at ibm.com®, you do not need to install

documentation updates because this version is kept up-to-date by IBM. If you have

installed the DB2 Information Center, it is recommended that you install the

documentation updates. Documentation updates allow you to update the

information that you installed from the DB2 Information Center CD or downloaded

from Passport Advantage as new information becomes available.

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install

the documentation updates as they become available, or refer to the DB2

Information Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and Redbooks™ online at ibm.com. Access the DB2 Information

Management software library site at http://www.ibm.com/software/data/sw-
library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how we can improve the DB2 documentation, send an e-mail to

db2docs@ca.ibm.com. The DB2 documentation team reads all of your feedback, but

cannot respond to you directly. Provide specific examples wherever possible so

that we can better understand your concerns. If you are providing feedback on a

specific topic or help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

© Copyright IBM Corp. 1993, 2006 377

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Related concepts:

v “Features of the DB2 Information Center” in Online DB2 Information Center

v “Sample files” in Samples Topics

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 383

 Related reference:

v “DB2 technical library in hardcopy or PDF format” on page 378

DB2 technical library in hardcopy or PDF format

 The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. DB2 Version 9 manuals in PDF

format can be downloaded from www.ibm.com/software/data/db2/udb/support/
manualsv9.html.

Although the tables identify books available in print, the books might not be

available in your country or region.

The information in these books is fundamental to all DB2 users; you will find this

information useful whether you are a programmer, a database administrator, or

someone who works with DB2 Connect or other DB2 products.

 Table 110. DB2 technical information

Name Form Number Available in print

Administration Guide:

Implementation

SC10-4221 Yes

Administration Guide: Planning SC10-4223 Yes

Administrative API Reference SC10-4231 Yes

Administrative SQL Routines and

Views

SC10-4293 No

Call Level Interface Guide and

Reference, Volume 1

SC10-4224 Yes

Call Level Interface Guide and

Reference, Volume 2

SC10-4225 Yes

Command Reference SC10-4226 No

Data Movement Utilities Guide

and Reference

SC10-4227 Yes

Data Recovery and High

Availability Guide and Reference

SC10-4228 Yes

Developing ADO.NET and OLE

DB Applications

SC10-4230 Yes

Developing Embedded SQL

Applications

SC10-4232 Yes

378 Administration Guide: Planning

http://www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/db2/udb/support/manualsv9.html
http://www.ibm.com/software/data/db2/udb/support/manualsv9.html

Table 110. DB2 technical information (continued)

Name Form Number Available in print

Developing SQL and External

Routines

SC10-4373 No

Developing Java Applications SC10-4233 Yes

Developing Perl and PHP

Applications

SC10-4234 No

Getting Started with Database

Application Development

SC10-4252 Yes

Getting started with DB2

installation and administration on

Linux and Windows

GC10-4247 Yes

Message Reference Volume 1 SC10-4238 No

Message Reference Volume 2 SC10-4239 No

Migration Guide GC10-4237 Yes

Net Search Extender

Administration and User’s Guide

Note: HTML for this

document is not installed from

the HTML documentation CD.

SH12-6842 Yes

Performance Guide SC10-4222 Yes

Query Patroller Administration

and User’s Guide

GC10-4241 Yes

Quick Beginnings for DB2

Clients

GC10-4242 No

Quick Beginnings for DB2

Servers

GC10-4246 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC18-9749 Yes

SQL Guide SC10-4248 Yes

SQL Reference, Volume 1 SC10-4249 Yes

SQL Reference, Volume 2 SC10-4250 Yes

System Monitor Guide and

Reference

SC10-4251 Yes

Troubleshooting Guide GC10-4240 No

Visual Explain Tutorial SC10-4319 No

What’s New SC10-4253 Yes

XML Extender Administration

and Programming

SC18-9750 Yes

XML Guide SC10-4254 Yes

XQuery Reference SC18-9796 Yes

 Table 111. DB2 Connect-specific technical information

Name Form Number Available in print

DB2 Connect User’s Guide SC10-4229 Yes

Appendix C. DB2 Database technical information 379

Table 111. DB2 Connect-specific technical information (continued)

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC10-4244 Yes

Quick Beginnings for DB2

Connect Servers

GC10-4243 Yes

 Table 112. WebSphere Information Integration technical information

Name Form Number Available in print

WebSphere Information

Integration: Administration Guide

for Federated Systems

SC19-1020 Yes

WebSphere Information

Integration: ASNCLP Program

Reference for Replication and

Event Publishing

SC19-1018 Yes

WebSphere Information

Integration: Configuration Guide

for Federated Data Sources

SC19-1034 No

WebSphere Information

Integration: SQL Replication

Guide and Reference

SC19-1030 Yes

Note: The DB2 Release Notes provide additional information specific to your

product’s release and fix pack level. For more information, see the related

links.

 Related concepts:

v “Overview of the DB2 technical information” on page 377

v “About the Release Notes” in Release notes

 Related tasks:

v “Ordering printed DB2 books” on page 380

Ordering printed DB2 books

 If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation CD are unavailable in print. For example, neither volume of the DB2

Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation CD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation CD are available in print.

380 Administration Guide: Planning

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/
db2help/.

 Procedure:

 To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

– Locate the contact information for your local representative from one of the

following Web sites:

- The IBM directory of world wide contacts at www.ibm.com/planetwide

- The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
– When you call, specify that you want to order a DB2 publication.

– Provide your representative with the titles and form numbers of the books

that you want to order.

 Related concepts:

v “Overview of the DB2 technical information” on page 377

 Related reference:

v “DB2 technical library in hardcopy or PDF format” on page 378

Displaying SQL state help from the command line processor

 DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

 Procedure:

 To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

Appendix C. DB2 Database technical information 381

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

 For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

 Related tasks:

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 383

Displaying topics in your preferred language in the DB2 Information

Center

 The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

 Procedure:

 To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the fonts

required to display the topics in the preferred language.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the Tools —> Options —> Languages button. The Languages panel is

displayed in the Preferences window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button to select a language

from the Add Languages window.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

382 Administration Guide: Planning

http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Related concepts:

v “Overview of the DB2 technical information” on page 377

Updating the DB2 Information Center installed on your computer or

intranet server

 If you have a locally-installed DB2 Information Center, updated topics can be

available for download. The 'Last updated' value found at the bottom of most

topics indicates the current level for that topic.

To determine if there is an update available for the entire DB2 Information Center,

look for the 'Last updated' value on the Information Center home page. Compare

the value in your locally installed home page to the date of the most recent

downloadable update at http://www.ibm.com/software/data/db2/udb/support/
icupdate.html. You can then update your locally-installed Information Center if a

more recent downloadable update is available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to determine if update packages are available from

IBM.

Note: Updates are also available on CD. For details on how to configure your

Information Center to install updates from CD, see the related links.
If update packages are available, use the Update feature to download the

packages. (The Update feature is only available in stand-alone mode.)

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center service on your computer.

 Procedure:

 To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the C:\Program

Files\IBM\DB2 Information Center\Version 9 directory.

c. Run the help_start.bat file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>\doc\bin\help_start.bat

v On Linux:

Appendix C. DB2 Database technical information 383

http://www.ibm.com/software/data/db2/udb/support/icupdate.html
http://www.ibm.com/software/data/db2/udb/support/icupdate.html

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9

directory.

b. Run the help_start script using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, run the help_end.bat file using the fully qualified path for the

DB2 Information Center:

<DB2 Information Center dir>\doc\bin\help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file.

Do not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, run the help_end script using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do

not use any other method to terminate the help_start script.
7. Restart the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 start

The updated DB2 Information Center displays the new and updated topics.

 Related concepts:

v “DB2 Information Center installation options” in Quick Beginnings for DB2 Servers

 Related tasks:

v “Installing the DB2 Information Center using the DB2 Setup wizard (Linux)” in

Quick Beginnings for DB2 Servers

v “Installing the DB2 Information Center using the DB2 Setup wizard (Windows)”

in Quick Beginnings for DB2 Servers

384 Administration Guide: Planning

DB2 tutorials

 The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

 Before you begin:

 You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

 DB2 tutorials:

 To view the tutorial, click on the title.

Native XML data store

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

 Related concepts:

v “Visual Explain overview” in Administration Guide: Implementation

DB2 troubleshooting information

 A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

 Related concepts:

v “Introduction to problem determination” in Troubleshooting Guide

v “Overview of the DB2 technical information” on page 377

Appendix C. DB2 Database technical information 385

http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

Terms and Conditions

 Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

386 Administration Guide: Planning

Appendix D. Notices

 IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2006 387

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

388 Administration Guide: Planning

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Itanium®, Pentium®, and Xeon® are trademarks of Intel Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix D. Notices 389

http://www.ibm.com/legal/copytrade.shtml

390 Administration Guide: Planning

Index

A
alternative unicode conversion tables

CCSID 5026 371

APIs
heuristic 230

append mode tables 167

application design
collating sequences, guidelines 351

applications
incompatibility 285

Asian fonts
Linux 334

audit activities 71

audit context records
incompatibility 285

authentication
about 20

description 20

authority
incompatibility 285

authorization
about 20

database design considerations 71

description 21

automatic client reroute 219

automatic features
automatic reorganization 32

enabled by default 30

statistics collection 33

automatic maintenance 29, 31

about 29

backup 25

maintenance windows 35

offline 36

online 36

automatic reorganization
description 32

enabling 32

automatic statistics collection
description 30, 33

storage for 35

automatic statistics profiling
description 34

enabling 34

storage for 35

automatic storage
description 30

B
backups

automated 25

automatic 31

BEA Tuxedo, configuring 238

bidirectional CCSID support
DB2 345

DB2 Connect 349

list of CCSIDs 347

block identifier (BID) 177

block indexes
benefits 175

composite 183

insert using 183

MDC table considerations 188

query performance 180

block maps 185

blocks
multidimensional clustering

(MDC) 177

buffer pools
description 3

IBMDEFAULTBP 145

business rules
description 17

transitional 70

C
CALL statement

incompatibility 285

capacity
for each environment 42

casting FOR BIT DATA
incompatibility 285

catalog table spaces 112, 163

CCSID
5026 371

CCSID (coded character set

identifier) 366, 368

bidirectional support
DB2 345

DB2 Connect 349

types listed 347

CCSID 5026
alternative unicode conversion

tables 371

replacing unicode converstion

tables 371

CCSID 5035
Microsoft conversion table 373

unicode conversion table 372

CCSID 5039
Microsoft conversion table 375

unicode conversion table 374

CCSID 954
Microsoft conversion table 370

unicode conversion table 369

changed behavior
from previous releases 260

CHAR function
incompatibility 285

character conversion
effect on application

performance 338

character strings
Unicode 360

check constraints
as business rules 17

choosing
extent size 144

choosing (continued)
multidimensional table

dimensions 189

table spaces 112

CHR function
incompatibility 285

client reroute
automatic 219

clustering
automatic 183

clustering, data 172

code page 950
IBM and Microsoft differences 313

code page conversion
incompatibility 285

code pages
923 and 924 336, 343

converting 1394 to Unicode, previous

conversion tables 366

converting Shift JIS X0213 to Unicode,

previous conversion tables 366

DB2 supported 313

with euro symbol 336, 339

code point 351, 366

code sets
DB2 supported 313

coded character set identifier
5026 371

coded character set identifier 5035
Microsoft conversion table 373

unicode conversion table 372

coded character set identifier 5039
Microsoft conversion table 375

unicode conversion table 374

coded character set identifier 943
considerations when using 366

coded character set identifier 954
Microsoft conversion table 370

unicode conversion table 369

Coded character set identifiers
5026 371

collating algorithm differences
Thai and Unicode 357

collating sequences
code point 351

concerns, general 351

identity sequence 351

multi-byte characters 351

overview 351

Thai characters 352

Unicode 357

collocation, table 91

column expressions, multidimensional

tables 197

columns
defining for a table 56

commit
errors during two-phase 213

two-phase 210

comparison of indexes
clustering and block-based 173

© Copyright IBM Corp. 1993, 2006 391

comparison of tables
regular and multidimensional

clustering 173

compatibility
partition 91

composite block index 188

composite keys
primary keys 58

Configuration Advisor
description 30

configuration files
description 12

location 12

configuration parameters
DB2 transaction manager

considerations 207

description 12

incompatibility 285

configurations
multiple partition 42

configure automatic maintenance

wizard 31

connection failure
automatic client reroute 219

constants
Unicode 364

constraints
check 17

foreign key 17

informational 17, 65

NOT NULL 17

primary key 17

referential 65

table check 65

unique 17, 65

contacting IBM 393

containers
description 3

DMS table spaces
addition of containers to 129

dropping containers from 137

extension of containers in 129

reduction of containers in 137

CONTROL privilege on packages
incompatibility 285

conversions
Unicode to CCSID 943 366, 368

coordinator partition 41

CREATE TABLE
OVERFLOW clause 171

creating
multidimensional tables 197

Unicode databases 362

D
data

distribution 41

large object (LOB) 79

long field 78

security 20

data distribution
table 99

data organization
table 99

data organization schemes
combining 99

data organization schemes (continued)
comparison 105

description 105

data partitioning
see table partitioning 93

data partitions
description 92

data types
database design considerations 71

Unicode handling 360

data types and scrollable cursors
incompatibility 285

database connection
incompatibility 285

database design
additional considerations 71

logical 53

physical 73

database directories
structure described 73

database objects
database partition groups 3

databases 3

indexes 3

instances 3

recovery history file 25

recovery log file 25

schemas 3

system catalog tables 3

table space change history file 25

table spaces 3

tables 3

views 3

database partition groups
collocation 87

description 3, 85

designing 87

determining data location 88

IBMCATGROUP 112

IBMDEFAULTGROUP 112

IBMTEMPGROUP 112

database partitioning
database 99

database partitions
database 41

description 41

database-managed space (DMS)
containers 129

description 120, 123

overview 3

reducing containers 137

databases
about 3

accessing in a single transaction 204

description 3

distributed 22

estimating size requirements 75

host system 204

language, selecting 344

nonrecoverable 25

recoverable 25

dates
formats 353

DB2 Connect
for multisite updates 204

incompatibility 285

DB2 Information Center
updating 383

versions 382

viewing in different languages 382

DB2 sync point manager (SPM) 210

DB2 transaction manager 206

DB2_LIKE_VARCHAR
incompatibility 285

DB2_NO_MPFA_FOR _NEW_DB 117,

144, 197

DB2_OPT_MAX_TEMP_SIZE 83

DB2_PARALLEL_IO registry

variable 164

DB2_SMS_TRUNC

_TMPTABLE_THRESH 83

DB2_SMS_TRUNC_TMPTABLE

_THRESH 162

DB2_USE_PAGE_CONTAINER_TAG

environment variable 164

db2empfa command 119

db2empfa utility 117, 144, 197

db2set command 14

declustering
partial 41

defining
columns 56

delete rule
with referential constraint 65

dependent row 65

dependent table 65

deprecated features 243

descendent row 65

descendent table 65

DESCRIBE statement output
incompatibility 285

designing
database partition groups 87

tables spaces 112

dimension block index 177

dimension block indexes 180

dimension values
updating 187

dimensions
multidimensional tables 189

disabling
euro symbol support 336, 339

disaster recovery
high availability feature 23

discontinued features 243

displaying
Indic characters 336

distributed relational databases
units of work 22

distributed transaction processing
application program 215

configuration considerations 232

database connection

considerations 219

error handling 227

resource manager 215

security considerations 231

transaction manager 215

updating host and iSeries

databases 227

distributing data
description 41

392 Administration Guide: Planning

distribution keys
description 89

distribution maps
description 88

DMS (database managed space) 3, 120

DMS device
buffering behavior 124

caching behavior 124

DMS table spaces
adding containers 129

compared to SMS table spaces 140

dropping containers 137

extending containers 129

reducing containers 137

documentation 377, 378

terms and conditions of use 386

downlevel servers, tools, and clients
incompatibility 285

DTP (distributed transaction

processing) 215

E
entities, database 53

environment variables
profile registry 14

estimating size requirements
index space 80

large object (LOB) data 79

log file space 82

long field data 78

euro code page conversion tables
incompatibility 285

euro symbol
conversion table files 339

enabling and disabling 336

EXECUTE privilege
incompatibility 285

extent size
choosing 144

database objects 3

description 112

extents
extent map pages (EMP)for DMS table

spaces 123

for SMS table spaces 119

F
first normal form 61

first-fit order 77

foreign key constraint
incompatibility 285

foreign key constraints
enforcing business rules 17

foreign keys
constraints 65

fourth normal form 61

fragment by expression
comparison with table

partitioning 105

functions and procedures
incompatibility 285

G
global level profile registry 14

graphic strings
Unicode 360

H
hardware environments 42

logical database partitions 42

partitions with multiple

processors 42

partitions with one processor 42

single partition, multiple

processors 42

single partition, single processor 42

types of parallelism 42

health monitor
description 30

help
displaying 382

for SQL statements 381

heuristic decisions 227

heuristic operations
resolving indoubt transactions 227

high availability disaster recovery

(HADR)
database design considerations 71

overview 23

historical data, design considerations 71

host databases
updating with XA transaction

managers 227

host variables
incompatibility 285

I
I/O considerations

table space 141

I/O parallelism 37

using RAID devices 164

IBM TXSeries CICS
configuring 236

IBM TXSeries Encina
configuring 236

IBMCATGROUP 112

IBMDEFAULTGROUP 112

IBMTEMPGROUP 112

identifying candidate key columns 58

identity columns
overview 60

identity sequence 351

IMPLEMENTED column
incompatibility 285

incompatibilities
COLNAMES (planned) 243

description 243

FK_COLNAMES (planned) 243

PK_COLNAMES (planned) 243

planned 243

Version 8 285

with previous releases 260

index keys 3

index space
estimating size requirements for 80

indexes
block-based 175

description 3

dimension block 177

unique 3

Indic characters
displaying 336

indoubt transactions
recovering 213, 215

resolving 227

resynchronizing 213

Information Center
updating 383

versions 382

viewing in different languages 382

informational constraints
description 65

insert rule with referential constraint 65

instance level profile registry 14

instance profile registry 14

instances
description 3

inter-partition parallelism
used with intra-partition

parallelism 37

inter-query parallelism 37

intra-partition parallelism
used with inter-partition

parallelism 37

intra-query parallelism 37

iSeries databases
updating with XA transaction

managers 227

J
joins

paths 54

K
key columns

identifying 58

keys
description 58

distribution 89

foreign 65

parent 65

partitioning, table 96

table partitioning 96

unique 65

L
languages

available 313

compatibility between DAS and

instance 344

DB2 supported 313

large object (LOB) data types
caching behavior 124

column definition 56

estimating data size requirements 79

Linux
Asian fonts 334

Index 393

LIST INDOUBT TRANSACTIONS

command 227

literals
Unicode 364

load utility
incompatibility 285

loading data
multidimensional clustering

tables 188

LOB (large object) data types
caching behavior 124

column definition 56

estimating size requirements 79

LOB locator switching
incompatibility 285

locale coding set
simplified chinese 335

locales
compatibility between DAS and

instance 344

locking
discrete 172

log file space
estimating size requirements 82

logging
MDC table updates 188

logical database design
deciding what data to record 53

defining tables 54

relationships 54

logical database partitions 42

long fields
caching behavior 124

estimating data size requirements

for 78

M
maintenance

automatic 29

maintenance windows
about 35

map pages
extent 123

space 123

mapping
table spaces to buffer pools 145

table spaces to database partition

groups 146

tables to table spaces 166

maps
table space 125

materialized query tables (MQTs)
database design considerations 71

replicated 111

MDC (multidimensional clustering) 172

MDC (multidimensional clustering)

tables 197

choosing dimensions 189

messages
incompatibility 285

Microsoft conversion table
CCSID 5035 373

CCSID 5039 375

CCSID 954 370

mode change to tables
incompatibility 285

monotonicity 197

moving a DBCLOB
incompatibility 285

moving data
to multidimensional tables 197

MPP environment 42

MQTs (materialized query tables)
database design considerations 71

replicated 111

multi-partition database partition

group 85

multidimensional clustering (MDC) tables
block index considerations 188

block maps 185

choosing dimensions 189

creating 197

deletion of records 187

density of values 189

in SMS table spaces 197

load considerations 188

logging considerations 188

moving data to 197

table types 167

updating 187

using column expressions as

dimensions 197

working with 177

multipage_alloc configuration parameter
effect on memory 119

setting for SMS table spaces 119

multiple partition configurations 42

multisite updates
host or iSeries applications accessing a

DB2 server 210

multiple databases 205

single database 204

N
national language support (NLS)

bidirectional CCSIDs 347

national languages
available 313

NLS (national language support)
bidirectional CCSIDs 347

node level profile registry 14

non-Unicode databases
converting to Unicode 362

nonrecoverable databases
backup and recovery 25

nonthread safe library support,

incompatibilities 285

normalizing tables 61

NOT NULL constraints 17

notices 387

NULL value
in column definitions 56

O
OBJCAT views

incompatibility 285

offline maintenance
about 36

online maintenance
about 36

ordering DB2 books 380

organizing data
approaches 99

P
parallelism

and different hardware

environments 42

and index creation 37

database backup and restore

utilities 37

I/O 37, 164

inter-partition 37

intra-partition
description 37

load utility 37

overview 41

query 37

utility 37

parent key 65

parent row 65

parent table 65

partial declustering 41

partitioned databases
description 41

transaction access 219

partitioned tables
description 104

restrictions 104

table partitioning 93

partitioning data
table partitioning 93

partitioning keys, table
description 96

guidelines 96

partitions
compatibility 91

with multiple processors 42

with one processor 42

partitions, data
description 92

pattern matching
Unicode databases 364

performance
table space 164

permissions 21

physical database design 73

precompiler and host variable
incompatibility 285

primary indexes 58

primary keys
constraints 17

description 58

generating unique values 60

printed books
ordering 380

privileges
planning 21

problem determination
online information 385

tutorials 385

profile registry 14

394 Administration Guide: Planning

Q
queries

multidimensional clustering 189

parallelism 37

query performance
block indexes 180

R
RAID (Redundant Array of Independent

Disks) devices
optimizing table space

performance 164

range partition
see data partition 92

range partitioning
see table partitioning 93

range-clustered tables
advantages 168

comparison with other table

types 167

description 168

out-of-range record keys 171

table locks 172

range-partitioned tables
partitioned tables 104

record deletion
from an MDC table 187

recoverable databases
description 25

recovery
strategy overview 25

Redundant Array of Independent Disks

(RAID)
optimizing performance 164

reference types
description 56

referential constraints
description 65

referential integrity
constraints 65

registry variables
DB2_NO_MPFA_FOR

_NEW_DB 117, 144, 197

DB2_OPT_MAX_TEMP_SIZE 83

DB2_SMS_TMPTABLE

_THRESH 161

DB2_SMS_TRUNC

_TMPTABLE_THRESH 83

DB2_SMS_TRUNC_TMPTABLE

_THRESH 162

environment variables 14

regular tables 167

relationships
many-to-many 54

many-to-one 54

one-to-many 54

one-to-one 54

release to release incompatibilities
description 243

remote unit of work
updating a single database 203

reorganization
automatic 31

replacing unicode converstion tables
CCSID 5026 371

replicated materialized query tables 111

resolving indoubt transactions 227

resource managers (RM)
described 215

setting up a database as 219

root types 56

rows
dependent 65

descendent 65

parent 65

self-referencing 65

S
savepoint naming

incompatibility 285

scalability 42

schemas
description 3

scope
reference type 56

scrollable cursors
incompatibility 285

second normal form 61

security
authentication 20

data 20

database design considerations 71

self tuning memory
description 30

self-referencing row 65

self-referencing table 65

SET INTEGRITY
incompatibility 285

set integrity pending state 65

Shift JIS X0213 code page
previous conversion tables 366

simplified Chinese
locale coding set 335

single partition
multiple processor environment 42

single processor environment 42

size requirements
estimating 75

temporary tables
estimating 83

SMP cluster environment 42

SMS (system managed space) 3

table spaces
compared to DMS table

spaces 140

descriptions 117

SNA (Systems Network Architecture)
updating databases 210

snapshots
storage 146

space map pages (SMP), DMS table

spaces 123

SPM (sync point manager) 207

SQL optimizer 3

SQL statements
displaying help 381

SQLDBCON configuration file 12

statistics collection
automatic 31, 33

statistics profiling
automatic 31

STMG_CONTAINER table 148

STMG_CURR_THRESHOLD table 148

STMG_DATABASE table 148

STMG_DBPARTITION table 148

STMG_DBPGROUP table 148

STMG_HIST_THRESHOLD table 148

STMG_INDEX table 148

STMG_OBJECT table 148

STMG_OBJECT_TYPE table 148

STMG_ROOT_OBJECT table 148

STMG_TABLE table 148

STMG_TABLESPACE table 148

STMG_TBPARTITION table 148

STMG_THRESHOLD_REGISTRY

table 148

storage management snapshots 146

storage management tool
storage management view 146

stored procedures 147

storage management view
tables in 148

storage managment
thresholds 160

storage objects
buffer pools 3

container 3

table spaces 3

storage requirements
XML documents 84

stored procedures
for storage management tool 147

strings
Unicode comparisons 364

stripe sets 125

structured types
database design considerations 71

in column definitions 56

SUBSTR function
incompatibility 285

subtypes
inheritance 56

supertypes
in structured type hierarchies 56

surrogate characters
Unicode 355, 357

sync point manager (SPM)
description 207

SYSCAT views
incompatibility 285

SYSCATSPACE table spaces 112

SYSPROC.CAPTURE_STORAGEMGMT

_INFO stored procedure 147

SYSPROC.CREATE_STORAGEMGMT

_TABLES stored procedure 147

SYSPROC.DROP_STORAGEMGMT

_TABLES stored procedure 147

system catalog tables
description 3

estimating initial size 76

system managed space (SMS) 3, 117

described 119

system temporary table spaces 112

Systems Network Architecture

(SNA) 210

SYSTOOLSPACE table spaces
uses 115

Index 395

SYSTOOLSTMPSPACE table spaces
uses 115

T
table partitioning

benefits 93

description 93

table partitioning keys
description 96

guidelines 96

table spaces
catalogs 112, 163

choice by optimizer 112

database managed space (DMS) 120

description 3

design
description 112

OLTP workload 143

query workload 143

workload considerations 143

disk I/O considerations 141

DMS 123

mapping to buffer pools 145

mapping to database partition

groups 146

maps 125

OLTP workload 143

performance 164

query workload 143

SYSCATSPACE 112

system managed space (SMS) 117

temporary 112, 161

TEMPSPACE1 112

types
SMS or DMS 140

user 112

USERSPACE1 112

workload considerations 143

tables
append mode 167

check constraints
types 65

collocation 91

dependent 65

descendent 65

description 3

estimating size requirements 75

introduction 167

mapping to table spaces 166

multidimensional clustering 167

multidimensional clustering

(MDC) 173

normalization 61

parent 65

partitioned 93, 167

partitioned tables 104

range-clustered 167, 168

regular 167

self-referencing 65

system catalog 76

temporary 162

transition 70

user 77

targets
rows 56

tables 56

targets (continued)
types 56

views 56

temporary table spaces
design 112

recommendations 161

temporary tables
size requirements 83

SMS table spaces 162

temporary work spaces
size requirements 83

TEMPSPACE1 table space 112

terms and conditions
use of publications 386

territory codes
DB2 supported 313

Thai characters
sorting 352

third normal form 61

thresholds
about 160

time
formats

description 353

TPM values 221

TPMONNAME values 221

transaction managers
BEA Tuxedo 238

DB2 transaction manager 206

distributed transaction

processing 215

IBM TXSeries CICS 236

IBM TXSeries Encina 236

IBM WebSphere Application

Server 236

multiple database updates 205

problem determination 235

XA architecture 233

transaction processing monitors
BEA Tuxedo 238

configuration considerations 232

IBM TXSeries CICS 236

IBM TXSeries Encina 236

security considerations 231

transactions
accessing partitioned databases 219

description 22

global 215

loosely coupled 215

non-XA 215

tightly coupled 215

two-phase commit 215

triggers
business rules for data 17

cascading 70

description 70

troubleshooting
online information 385

tutorials 385

tutorials
troubleshooting and problem

determination 385

Visual Explain 385

Tuxedo
configuring 238

two-phase commit
error handling 213

two-phase commit (continued)
process 210

updating
a single database in a

multi-database transaction 204

multiple databases 205

TXSeries CICS 236

TXSeries Encina 236

type 1 connection
incompatibility 285

type hierarchy 56

typed tables
database design considerations 71

description 56

typed views
description 56

U
UCS-2

see Unicode (UCS-2) 355

UDFs (user-defined functions)
description 56

uncommitted units of work on UNIX
incompatibility 285

Unicode (UCS-2) 355

CCSID 357

character strings 360

code page 357

constants 364

conversion tables 368

converting code page 1394 to
previous conversion tables 366

converting Shift JIS X0213 to
previous conversion tables 366

database 362

DB2 supported 357

graphic strings 360

literals 364

pattern matching 364

string comparisons 364

surrogate characters 355

unicode conversion table
CCSID 5035 372

CCSID 5039 374

CCSID 954 369

uniprocessor environment 42

unique constraints
about 17

definition 65

unique keys
description 58, 65

units of work (UOW) 22

remote 203

update rule, with referential

constraints 65

updates
DB2 Information Center 383

Information Center 383

user table page limits 77

user table spaces 112

user temporary table spaces
designing 112

user-defined functions (UDFs)
description 56

incompatibility 285

396 Administration Guide: Planning

user-defined types (UDTs)
column definition 56

USERSPACE1 table space 112

UTF-16 355

UTF-8 355, 357

utility parallelism 37

utility throttling
description 30

V
variables

transition 70

VERSION option
incompatibility 285

views
description 3

Visual Explain
tutorial 385

W
WebSphere Application Server

configuring 236

weight, definition 351

X
X/Open distributed transaction

processing (DTP) model 215

XA interface
distributed transaction processing

model 215

XA specification 233

XA switch 233

XA transaction managers
configuration considerations 232

security considerations 231

troubleshooting 235

updating host and iSeries

databases 227

XML documents
storage 84

storage requirements 84

XML storage object
overview 84

Index 397

398 Administration Guide: Planning

Contacting IBM

 To contact IBM in your country or region, check the IBM Directory of Worldwide

Contacts at http://www.ibm.com/planetwide

To learn more about DB2 products, go to

http://www.ibm.com/software/data/db2/.

© Copyright IBM Corp. 1993, 2006 399

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/udb/

400 Administration Guide: Planning

����

Printed in USA

SC10-4223-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
DB

2
Ve

rs
io

n
9

Ad
m

in
is

tra
tio

n
Gu

id
e:

Pl

an
ni

ng

�
�

�

	Contents
	About this book
	Who should use this book
	How this book is structured

	Part 1. Database concepts
	Chapter 1. Basic relational database concepts
	About databases
	Database objects
	Configuration parameters
	Environment variables and the profile registry
	Business rules for data
	Data security
	Authentication
	Authorization
	Units of work
	High availability disaster recovery (HADR) feature overview
	Developing a backup and recovery strategy

	Chapter 2. Automatic maintenance
	About automatic maintenance
	Automatic features enabled by default
	Automatic database backup
	Automatic reorganization
	Automatic statistics collection by table
	Automatic statistics profiling using automatic statistics collection
	Storage used by automatic statistics collection and profiling
	Maintenance windows
	Offline maintenance
	Online maintenance

	Chapter 3. Parallel database systems
	Parallelism
	Input/output parallelism
	Query parallelism
	Intrapartition parallelism
	Interpartition parallelism
	Simultaneous intrapartition and interpartition parallelism

	Utility parallelism

	Partitioned database environments
	Database partition and processor environments
	Single database partition on a single processor
	Capacity and scalability

	Single database partition with multiple processors
	Capacity and scalability

	Multiple database partition configurations
	Database partitions with one processor
	Database partitions with multiple processors
	Logical database partitions

	Summary of parallelism best suited to each hardware environment

	Part 2. Database design
	Chapter 4. Logical database design
	What to record in a database
	Database relationships
	One-to-many and many-to-one relationships
	Many-to-many relationships
	One-to-one relationships
	Ensure that equal values represent the same entity

	Column definitions
	Primary keys
	Identifying candidate key columns

	Identity columns
	Normalization
	First normal form
	Second normal form
	Third normal form
	Fourth normal form

	Constraints
	Unique constraints
	Referential constraints
	Insert rule
	Update rule
	Delete rule

	Table check constraints
	Informational constraints

	Triggers
	Additional database design considerations

	Chapter 5. Physical database design
	Database directories and files
	Space requirements for database objects
	Space requirements for system catalog tables
	Space requirements for user table data
	Space requirements for long field data
	Space requirements for large object data
	Space requirements for indexes
	Space requirements for log files
	Space requirements for temporary tables
	XML storage object overview
	Guidelines for storage requirements for XML documents
	Database partition groups
	Database partition group design
	Distribution maps
	Distribution keys
	Table collocation
	Database partition compatibility
	Data partitions
	Table partitioning
	Table partitioning keys
	Data organization schemes
	Partitioned tables
	Data organization schemes in DB2 and Informix databases
	Replicated materialized query tables
	Table space design
	SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces
	System managed space
	SMS table spaces
	Database managed space
	DMS table spaces
	DMS device considerations
	Table space maps
	How containers are added and extended in DMS table spaces
	Rebalancing
	Without rebalancing (using stripe sets)

	How containers are dropped and reduced in DMS table spaces
	Comparison of SMS and DMS table spaces
	Table space disk I/O
	Workload considerations in table space design
	Extent size
	Relationship between table spaces and buffer pools
	Relationship between table spaces and database partition groups
	Storage management view
	Stored procedures for the storage management tool
	Storage management view tables
	Thresholds
	Temporary table space design
	Temporary tables in SMS table spaces
	Catalog table space design
	Optimizing table space performance when data is on RAID devices
	Considerations when choosing table spaces for your tables
	DB2 table types
	Range-clustered tables
	Range-clustered tables and out-of-range record key values
	Range-clustered table locks
	Multidimensional clustering tables
	Comparison of regular and MDC tables
	Block indexes
	Working with an MDC table
	Block indexes and query performance
	Maintaining clustering automatically during INSERT operations
	Block maps
	Deletion from an MDC table
	Updating an MDC table
	Load considerations for MDC tables
	Logging considerations for MDC tables
	Block index considerations for MDC tables
	Designing multidimensional clustering (MDC) tables
	Multidimensional clustering (MDC) table creation, placement, and use

	Chapter 6. Designing partitioned databases
	Updating a single database in a transaction
	Using multiple databases in a single transaction
	Updating a single database in a multi-database transaction
	Updating multiple databases in a transaction
	DB2 transaction manager
	DB2 Database transaction manager configuration
	DB2 Database for Linux, UNIX, and Windows and DB2 Universal Database for z/OS, OS/390, and iSeries V5 using TCP/IP Connectivity
	Configuration parameters for transaction managers

	Updating a database from a host or iSeries client
	Two-phase commit
	Error recovery during two-phase commit
	Error recovery if autorestart=off

	Chapter 7. Designing for XA-compliant transaction managers
	X/Open distributed transaction processing model
	Application program (AP)
	Transaction manager (TM)
	Resource managers (RM)

	Resource manager setup
	Database connection considerations
	Automatic client reroute (ACR)
	Transactions accessing partitioned databases

	xa_open string formats
	Updating host or iSeries database servers with an XA-compliant transaction manager
	Resolving indoubt transactions manually
	Indoubt transaction management APIs
	Security considerations for XA transaction managers
	Configuration considerations for XA transaction managers
	XA function supported by DB2 Database for Linux, UNIX, and Windows
	XA switch usage and location
	Using the DB2 Database for Linux, UNIX, and Windows XA switch
	Linux and UNIX
	Windows
	Example C Code

	XA interface problem determination
	XA transaction manager configuration
	Configuring IBM WebSphere Application Server
	Configuring IBM TXSeries CICS
	Configuring IBM TXSeries Encina
	Configuring DB2 Database for Linux, UNIX, and Windows
	Configuring Encina for Each Resource Manager
	Referencing a DB2 Database for Linux, UNIX, and Windows database from an Encina application

	Configuring BEA Tuxedo

	Part 3. Appendixes
	Appendix A. Incompatibilities between releases
	Deprecated and discontinued features
	Version 9 incompatibilities with previous releases and changed behaviors
	Version 8 incompatibilities with previous releases

	Appendix B. National language support (NLS)
	National language versions
	Supported territory codes and code pages
	Availability of Asian fonts (Linux)
	Simplified Chinese locale coding set
	Displaying Indic characters in the DB2 GUI tools
	Enabling and disabling euro symbol support
	Character-conversion guidelines
	Conversion table files for euro-enabled code pages
	Conversion tables for code pages 923 and 924
	Choosing a language for your database
	Locale setting for the DB2 Administration Server

	Enabling bidirectional support
	Bidirectional-specific CCSIDs
	Bidirectional support with DB2 Connect
	Collating sequences
	Collating Thai characters
	Date and time formats by territory code
	Unicode character encoding
	UCS-2
	UTF-8
	UTF-16

	Unicode implementation in DB2 Database for Linux, UNIX, and Windows
	AIX, UNIX, and Linux distributions and code pages
	Code Page/CCSID Numbers
	Thai and Unicode collation algorithm differences

	Unicode handling of data types
	Creating a Unicode database
	Converting non-Unicode databases to Unicode
	Unicode literals
	String comparisons in a Unicode database
	Installing the previous tables for converting between code page 1394 and Unicode
	Alternative Unicode conversion table for the coded character set identifier (CCSID) 943
	Replacing the Unicode conversion tables for coded character set identifier (CCSID) 943 with Microsoft conversion tables
	Alternative Unicode conversion table for the coded character set identifier (CCSID) 954
	Replacing the Unicode conversion table for coded character set identifier (CCSID) 954 with the Microsoft conversion table
	Alternative Unicode conversion table for the coded character set identifier (CCSID) 5026
	Replacing the Unicode conversion table for coded character set identifier (CCSID) 5026 with the Microsoft conversion table
	Alternative Unicode conversion table for the coded character set identifier (CCSID) 5035
	Replacing the Unicode conversion table for coded character set identifier (CCSID) 5035 with the Microsoft conversion table
	Alternative Unicode conversion table for the coded character set identifier (CCSID) 5039
	Replacing the Unicode conversion table for coded character set identifier (CCSID) 5039 with the Microsoft conversion table

	Appendix C. DB2 Database technical information
	Overview of the DB2 technical information
	Documentation feedback

	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix D. Notices
	Trademarks

	Index
	Contacting IBM

