
IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Version

8.2

SC18-7359-01

���

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Version

8.2

SC18-7359-01

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

279.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

copyright

law

protects

it.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative:

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

Preface

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Who

should

read

this

guide?

.

.

.

.

.

.

.

. vii

Terminology

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

DB2

Information

Integrator

offerings

.

.

.

.

.

. vii

Chapter

1.

Introduction

to

information

integration

development

.

.

.

.

.

.

.

. 1

Overview

of

information

integration

solutions

.

.

. 1

Introduction

to

information

integration

.

.

.

. 1

What

is

information

integration?

.

.

.

.

.

.

. 1

Why

is

information

integration

important

to

your

enterprise?

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Why

information

integration

makes

application

development

easier

.

.

.

.

.

.

.

.

.

.

. 3

Introducing

scenarios

used

throughout

this

guide

11

Information

integration

components

.

.

.

.

. 13

Planning

and

testing

your

applications

.

.

.

. 20

Chapter

2.

Developing

Web

services

.

. 25

Introduction

to

Web

services

provider

.

.

.

.

. 25

Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF

.

.

.

.

.

.

.

.

.

.

. 25

Security

in

DADX

Web

services

.

.

.

.

.

. 26

Using

Web

services

provider

with

iSeries

.

.

. 28

Definition

of

a

DADX

file

.

.

.

.

.

.

.

. 29

Web

services

provider

features

.

.

.

.

.

.

. 30

Web

service

provider

operations

used

with

DADX

files

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Overview

of

the

Web

services

process

.

.

.

. 32

Installing

and

configuring

the

Web

services

provider

34

Web

services

provider

software

requirements

for

UNIX

and

Windows

.

.

.

.

.

.

.

.

.

. 34

Web

services

provider

software

requirements

for

OS/390

and

z/OS

.

.

.

.

.

.

.

.

.

.

. 35

Configuring

the

Web

services

provider

for

WebSphere

Application

Server

on

UNIX,

Windows,

z/OS,

and

OS/390

.

.

.

.

.

.

. 36

Configuring

Web

services

provider

for

Apache

Jakarta

Tomcat

on

UNIX

and

Windows

.

.

.

. 50

Installing

the

Web

services

provider

software

requirements

for

Apache

Jakarta

Tomcat

on

iSeries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Installing

and

deploying

the

WORF

examples

in

iSeries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Administering

and

troubleshooting

the

Web

services

provider

.

.

.

.

.

.

.

.

.

.

. 55

Developing

applications

that

use

the

Web

services

provider

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Defining

a

group

of

Web

services

.

.

.

.

.

. 58

Defining

the

web.xml

and

group.properties

files

59

Defining

the

web.xml

and

group.properties

files

in

the

iSeries

platform

.

.

.

.

.

.

.

.

.

. 62

Customizing

the

group.properties

file

.

.

.

. 64

The

DADX

file

.

.

.

.

.

.

.

.

.

.

.

. 66

Converting

a

document

type

definition

to

an

XML

schema

.

.

.

.

.

.

.

.

.

.

.

.

. 86

WSDL

from

a

DADX

file

.

.

.

.

.

.

.

.

. 87

WSDL

for

UDDI

registration

.

.

.

.

.

.

.

. 88

Dynamic

database

queries

that

use

the

Web

services

provider

.

.

.

.

.

.

.

.

.

.

. 90

Configuring

and

running

dynamic

database

queries

as

part

of

Web

services

provider

.

.

.

. 91

Dynamic

query

services-example

queries

.

.

. 93

Dynamic

query

service

operations

in

the

Web

services

provider

.

.

.

.

.

.

.

.

.

.

. 99

db2WebRowSet

.

.

.

.

.

.

.

.

.

.

.

. 105

Verifying

and

testing

Web

services

provider

(WORF)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Testing

Web

services

applications

–

a

scenario

109

Testing

the

Web

service

.

.

.

.

.

.

.

.

. 109

Accessing

the

Web

service

with

GET,

POST,

and

SOAP

bindings

.

.

.

.

.

.

.

.

.

.

.

. 111

SOAP

binding

.

.

.

.

.

.

.

.

.

.

.

. 113

Web

services

description

language

.

.

.

.

. 115

UDDI

business

registries

.

.

.

.

.

.

.

. 119

XML

schema

definitions

.

.

.

.

.

.

.

.

. 119

Web

services

that

exist

from

Web

services

provider

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Web

services

documentation

.

.

.

.

.

.

. 126

Web

services

automatic

reloading

.

.

.

.

. 127

Web

services

samples

–

PartOrders.dadx

.

.

. 127

Deploying

and

testing

your

Web

application

.

.

. 131

Installing

Web

applications

.

.

.

.

.

.

.

. 131

Java

2

Enterprise

Edition

applications

.

.

.

. 131

Installing

the

application

server

for

DB2

in

DB2

Information

Integrator

.

.

.

.

.

.

.

.

. 132

Starting

and

stopping

the

application

server

for

DB2

in

Information

Integrator

.

.

.

.

.

.

. 132

Generating

deployment

descriptors

.

.

.

.

. 133

Apache

SOAP

configurations

.

.

.

.

.

.

. 135

Preparing

and

creating

the

Web

archive

file

.

. 136

Web

services

provider

tracing

.

.

.

.

.

.

. 137

Enabling

tracing

for

the

DB2

Web

services

provider-Apache

Tomcat

Version

4.0

or

later

Web

application

server

.

.

.

.

.

.

.

.

. 139

Enabling

tracing

for

the

DB2

Web

services

provider–WebSphere

application

server

.

.

.

. 139

Enabling

tracing

for

the

DB2

Web

services

provider-WebSphere

Studio

Application

Developer

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Publishing

your

Web

services

.

.

.

.

.

.

. 142

Installing

and

using

the

Web

services

consumer

143

Installation

of

the

Web

services

consumer

user-defined

functions

.

.

.

.

.

.

.

.

. 143

The

Web

service

consumer

functions

.

.

.

. 145

Web

services

consumer

user-defined

functions

146

Tracing

Web

services

consumer

events

.

.

.

. 148

Web

services

consumer—using

the

WebSphere

Studio

User-Defined

Function

tool

.

.

.

.

. 149

©

Copyright

IBM

Corp.

2003,

2004

iii

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

How

to

generate

the

user-defined

functions

from

WebSphere

Studio

.

.

.

.

.

.

.

.

. 149

Using

the

Web

services

consumer

UDFs

.

.

. 159

Web

services

consumer

examples

.

.

.

.

.

. 161

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

.

.

.

.

.

.

.

.

.

.

.

. 163

Developing

applications

that

use

a

federated

server

163

Advantages

of

a

federated

system

.

.

.

.

. 163

Advantages

of

designing

queries

in

IBM

DB2

Information

Integrator

.

.

.

.

.

.

.

.

. 164

Enterprise

beans

in

a

federated

system

.

.

.

. 165

Employee

skills

scenario

–

solution

design

.

. 166

Employee

database

scenario

-

solution

design

170

Creating

and

deploying

a

container-managed

persistence

bean

.

.

.

.

.

.

.

.

.

.

. 174

Designing

applications

for

a

federated

solution—Cottonwood

Distributors,

Incorporated

.

.

.

.

.

.

.

.

.

.

.

. 175

Developing

the

application

for

a

federated

solution—Cottonwood

Distributors,

Inc.

.

.

. 178

Deploying

a

federated

application

.

.

.

.

. 181

Extending

the

data

warehouse

.

.

.

.

.

.

.

. 184

Business

solutions:

extending

the

DB2

Warehouse

Manager

.

.

.

.

.

.

.

.

.

. 184

Discovering

the

data—Cottonwood

Distributors,

Inc.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Designing

applications—Cottonwood

Distributors,

Inc.

warehouse

scenario

.

.

.

. 186

Deploying

the

application—Cottonwood

Distributors,

Inc.

solution

.

.

.

.

.

.

.

. 189

Developing

database

applications

that

use

WebSphere

Message

Queue

functions

.

.

.

.

. 190

Installing

DB2

WebSphere

MQ

functions

.

.

. 190

Overview

of

WebSphere

MQ

and

DB2

application

integration

.

.

.

.

.

.

.

.

. 192

How

to

use

WebSphere

MQ

functions

within

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Application-to-application

connectivity

.

.

.

. 203

Asynchronous

messaging

in

DB2

Information

Integrator

.

.

.

.

.

.

.

.

.

.

.

.

. 204

MQListener

in

DB2

Information

Integrator

.

. 205

Configuring

and

running

MQListener

.

.

.

. 207

Configuring

MQListener

to

run

in

the

DB2

Universal

Database

environment

.

.

.

.

.

. 207

Configuring

WebSphere

MQ

for

MQListener

209

Configuring

MQListener

.

.

.

.

.

.

.

. 210

Creating

a

stored

procedure

to

use

with

MQListener

.

.

.

.

.

.

.

.

.

.

.

.

. 211

MQListener

examples

.

.

.

.

.

.

.

.

. 212

Parameters

used

in

MQListener

configuration

214

WebSphere

MQ

queues

used

in

MQListener

.

. 215

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

.

.

.

.

.

.

.

. 217

Appendix

B.

DADX

environment

checker

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Installing

the

DADX

environment

checker

.

.

.

. 237

Running

the

DADX

environment

checker

.

.

.

. 238

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Sample

files

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Indicating

errors

and

warnings

in

the

output

text

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Error

checking

by

the

DADX

environment

checker

240

Checking

errors

in

the

web.xml

file

.

.

.

.

.

. 241

Checking

errors

in

the

NST

files

.

.

.

.

.

.

. 242

Checking

errors

in

the

DAD

files

.

.

.

.

.

.

. 243

Checking

errors

in

the

DADX

files

.

.

.

.

.

. 244

Appendix

C.

XML

schema

for

the

DADX

file

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Appendix

D.

Web

services

encoding

algorithm

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Appendix

E.

Web

services

command

reference

.

.

.

.

.

.

.

.

.

.

.

.

. 263

DB2

Information

Integrator

documentation

.

.

.

.

.

.

.

.

.

.

. 265

Accessing

DB2

Information

Integrator

documentation

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Documentation

about

replication

function

on

z/OS

267

Documentation

about

event

publishing

function

for

DB2

Universal

Database

on

z/OS

.

.

.

.

.

. 268

Documentation

about

event

publishing

function

for

IMS

and

VSAM

on

z/OS

.

.

.

.

.

.

.

.

. 268

Documentation

about

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

269

Documentation

about

federated

function

on

z/OS

270

Documentation

about

federated

function

on

Linux,

UNIX,

and

Windows

.

.

.

.

.

.

.

.

.

.

. 270

Documentation

about

enterprise

search

function

on

Linux,

UNIX,

and

Windows

.

.

.

.

.

.

.

. 272

Release

notes

and

installation

requirements

.

.

. 272

Accessibility

.

.

.

.

.

.

.

.

.

.

.

. 275

Keyboard

input

and

navigation

.

.

.

.

.

.

. 275

Keyboard

input

.

.

.

.

.

.

.

.

.

.

.

. 275

Keyboard

navigation

.

.

.

.

.

.

.

.

.

. 275

Keyboard

focus

.

.

.

.

.

.

.

.

.

.

.

. 275

Accessible

display

.

.

.

.

.

.

.

.

.

.

.

. 275

Font

settings

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Non-dependence

on

color

.

.

.

.

.

.

.

. 276

Compatibility

with

assistive

technologies

.

.

.

. 276

Accessible

documentation

.

.

.

.

.

.

.

.

. 276

Bibliography

.

.

.

.

.

.

.

.

.

.

.

. 277

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

iv

Application

Developer’s

Guide

||

||

|
||

||
|
||
||
||
|
||
||
||
||

|

|

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 287

Product

information

.

.

.

.

.

.

.

.

.

.

. 287

Comments

on

the

documentation

.

.

.

.

.

.

. 287

Contents

v

vi

Application

Developer’s

Guide

Preface

This

book

shows

you

why

IBM®

DB2

Information

Integrator

is

the

solution

to

help

you

integrate

data

through

unified

views

and

data

placement.

It

also

shows

you

how

to

use

information

to

your

best

advantage.

Who

should

read

this

guide?

Data

administrators,

information

analysts,

system

integrators,

Web

integrators,

data

librarians,

data

architects,

and

application

developers

can

use

the

IBM

DB2

Information

Integrator

solutions

to

create

a

strategic

and

open

information

integration

platform.

Terminology

IBM

DB2

Information

Integrator

uses

standard

terminology

for

database,

connectivity,

Structured

Query

Language

(SQL),

and

local

area

network

(LAN)

concepts.

All

the

DB2

Information

Integrator

concepts

that

are

used

in

this

book

are

defined

in

the

glossary.

Unless

otherwise

specified,

assume

the

following

meanings:

Data

A

raw

fact.

It

can

be

structured,

unstructured,

or

semi-structured.

Data

is

usually

organized

for

analysis.

Data

also

helps

you

to

make

decisions.

Information

Data

in

a

usable

form,

usually

processed

or

interpreted

in

some

way.

DB2

Information

Integrator

offerings

IBM

DB2

Information

Integrator

is

available

in

several

offerings.

Read

the

license

agreement

carefully

for

the

terms

and

conditions

of

use

for

the

edition

that

you

install.

For

information

about

the

installation

and

configuration

of

Information

Integrator,

see

DB2

Information

Integrator

Installation

Guide.

For

more

information

about

the

evolution

of

information

integration,

see

the

information

integration

support

site

http://www.ibm.com/software/data/integration/db2ii/support.html.

©

Copyright

IBM

Corp.

2003,

2004

vii

|
|
|
|
|
|

http://www.ibm.com/software/data/integration/db2ii/support.html

viii

Application

Developer’s

Guide

Chapter

1.

Introduction

to

information

integration

development

This

section

describes

the

concepts

and

procedures

for

developing

applications

that

integrate

information

in

your

enterprise.

Overview

of

information

integration

solutions

Businesses

face

many

information

integration

challenges.

The

rapidly

changing

economic

climate

is

driving

the

need

for

improved

access

to

information,

flexible

analytical

capabilities,

and

formal

information

inventories.

Introduction

to

information

integration

IBM®

has

delivered

world-class

data

management

technology

for

over

thirty

years.

IBM

continues

to

enhance

its

enterprise

offerings

by

developing

information

integration

for

small,

medium,

and

large

businesses.

Information

integration

builds

on

the

solid

foundation

of

existing

data

management

solutions.

Information

integration

provides

an

end-to-end

solution

for

transparently

managing

both

the

volume

and

diversity

of

data

that

is

in

the

marketplace

today.

The

cost

of

doing

business

involves

the

need

to

integrate

diverse

and

unconnected

infrastructures.

Businesses

need

the

following

goals:

v

To

integrate

seamlessly

with

new

businesses

and

link

business

applications

with

legacy

systems

v

To

control

the

accelerating

costs

of

managing

disparate

systems

and

integrating

across

heterogeneous

pockets

of

automation

v

To

mitigate

the

shortages

of

people

and

skills

while

quickly

reaching

new

markets

The

need

for

a

solution

to

efficiently

access

and

manage

information

crosses

product

and

industry

boundaries.

Related

concepts:

v

“DB2

Information

Integrator—the

solution

to

integration”

on

page

5

v

“What

is

information

integration?”

on

page

1

v

“Why

is

information

integration

important

to

your

enterprise?”

on

page

2

What

is

information

integration?

Information

integration

is

a

collection

of

technologies

that

combines

database

management

systems,

Web

services,

replication,

federated

systems,

and

warehousing

functions

into

a

common

platform.

It

also

includes

a

variety

of

programming

interfaces

and

data

models.

Using

the

information

integration

technology,

you

can

access

diverse

types

of

data

(structured,

unstructured,

and

semi-structured).

You

can

transform

that

data

into

a

format

that

provides

easy

access

to

information

across

the

enterprise.

Information

integration

enables

the

integration

of

data

and

content

sources

with

the

following

functions:

©

Copyright

IBM

Corp.

2003,

2004

1

v

Provides

real-time

read

and

write

access

v

Transforms

data

for

business

analysis

and

data

interchange

v

Manages

data

placement

for

performance,

currency,

and

availability

Related

concepts:

v

“DB2

Information

Integrator—the

solution

to

integration”

on

page

5

Why

is

information

integration

important

to

your

enterprise?

The

IBM®

information

integration

strategy:

v

Provides

users

with

the

ability

to

manipulate

legacy

data.

v

Provides

users

with

the

ability

to

take

advantage

of

familiar

software

to

use

known

assets

and

resources.

v

Provides

users

with

the

ability

to

acquire

and

easily

maintain

new

data.

v

Provides

users

with

the

ability

to

use

existing

data

management

tools

to

access

data

wherever

it

is

located.

IBM

has

identified

five

types

of

integration

that

are

based

on

an

open

services

infrastructure.

You

can

use

these

types

of

integration

together

or

separately

to

solve

business

issues.

The

five

types

of

integration

that

are

listed

here

represent

the

various

integration

challenges

that

face

businesses

today.

Information

integration

is

at

the

core

of

these

integration

types.

User

interaction

A

user

can

work

with

a

single,

tailored

user

interface,

which

is

available

through

virtually

any

device,

with

full

transactional

support.

The

user

interaction

results

are

integrated

into

multiple

business

systems.

Process

integration

A

business

can

change

how

it

operates

through

modeling,

automation,

and

monitoring

of

processes

across

people

and

heterogeneous

systems,

both

inside

and

outside

of

the

enterprise.

Application

connectivity

Applications

can

connect

to

one

another

so

that

they

share

and

use

information

for

better

use

at

the

enterprise

level.

Build

to

integrate

Users

can

build

and

deploy

integration-ready

applications

by

using

Web

services

and

existing

assets.

You

can

integrate

new

solutions

with

existing

business

assets.

Information

integration

Diverse

forms

of

business

information

can

be

integrated

across

the

enterprise.

Integration

enables

coherent

search,

access,

replication,

transformation,

and

analysis

over

a

unified

view

of

information

assets

to

meet

business

needs.

IBM

DB2®

Information

Integrator

is

a

technology

that

provides

a

comprehensive

solution

to

address

customer

requirements

for

information

integration.

The

DB2

Information

Integrator

functions

include

information

access,

information

integration,

and

information

analysis.

Most

modern

integration

needs

are

a

mix

of

both

application

and

information

integration.

Solution

providers

have

multiple

ways

to

integrate,

share,

and

distribute

information.

It

is

more

important

to

match

the

benefits

of

the

different

2

Application

Developer’s

Guide

|

|

|
|

|

|
|

approaches

to

the

different

business

integration

requirements

than

to

clearly

define

the

boundary

of

the

different

types

of

integration.

Related

concepts:

v

“What

is

information

integration?”

on

page

1

v

“What

problems

does

DB2

Information

Integrator

solve?”

on

page

3

Why

information

integration

makes

application

development

easier

The

enterprise

systems

that

exist

today

include

customers,

suppliers,

partners,

and

electronic

marketplaces.

These

systems

interact

with

databases,

application

servers,

content

management

systems,

data

warehouses,

workflow

systems,

search

engines,

message

queues,

Web

crawlers,

mining

and

analysis

packages,

and

other

enterprise

applications.

The

enterprise

systems

require

a

variety

of

programming

interfaces,

such

as

open

database

connectivity,

Java

database

connectivity,

Web

services,

Java

objects,

and

Java

2

Platform,

Enterprise

Edition.

Enterprise

systems

need

to

work

with

a

variety

of

data

models

and

languages,

such

as

Structured

Query

Language,

Extensible

Markup

Language,

Web

Services

Description

Language,

and

Simple

Object

Access

Protocol.

Information

integration

is

a

technology

approach

that

combines

core

elements

from

data

management

systems,

data

warehouses,

Web

services,

and

other

enterprise

applications

into

a

common

platform.

What

problems

does

DB2

Information

Integrator

solve?

IBM®

DB2®

Information

Integrator

provides

solutions

to

many

of

your

enterprise

problems.

DB2

Information

Integrator

helps

you

to

do

the

following

things:

v

Manage

all

forms

of

information.

You

can

do

this

by

using

the

storage,

consolidation,

archiving,

transformation,

loading,

monitoring

access,

replication

security,

and

the

cleansing

techniques

that

are

provided

with

DB2

Information

Integrator

v

Unify

your

query

models

of

local

and

federated

data

that

are

using

XML,

SQL,

Web

services,

and

messaging

applications

v

Analyze

information

efficiently

using

mining,

categorization,

summarization,

and

real-time

decision

making

The

following

table

outlines

some

typical

customer

problems.

In

all

of

these

examples,

DB2

Information

Integrator

and

the

related

technologies

provide

the

software

and

framework

for

the

solution.

Table

1.

Typical

customer

problems

Typical

customer

problem

Solution

Results,

or

value

added

Technical

requirements

Enhance

effectiveness

of

telephone

sales.

Record

the

sales

conversation

and

store

in

a

text

format.

Combine

data

and

text

mining

techniques

over

sales

and

transaction

data

and

sales

conversation

data.

Improved

sales

offerings

and

strategies

by

examining

patterns

that

would

not

be

visible

had

the

structured

and

unstructured

data

remained

isolated.

Integration

of

structured

data

and

unstructured

data;

mining

techniques

needed

over

the

integrated

data.

Chapter

1.

Introduction

to

information

integration

development

3

|
|

|
|
|
|

|
|

|
|

Table

1.

Typical

customer

problems

(continued)

Typical

customer

problem

Solution

Results,

or

value

added

Technical

requirements

Integrate

disparate

groups

of

information

to

improve

business

effectiveness.

This

might

include

home-grown

applications,

packaged

applications,

or

applications

acquired

through

mergers

or

acquisitions.

Use

Extensible

Markup

Language

(XML)

to

integrate

and

exchange

information

across

the

enterprise.

Build

enterprise

models

around

XML

to

be

used

by

newer

applications.

Extract

competitive

value

from

existing

information.

Increase

profitability

through

operational

efficiencies.

Shorten

business

cycle

and

decision

making

process.

Integration

of

structured

and

unstructured

data

including

application

data.

Application

and

process

integration

(messaging,

workflow).

Mining

of

text

data

(categorization

and

search).

Improve

profitability

of

current

customer

base.

Analyze

customer

accounts

and

behavior.

Consolidate

business

data

in

a

warehouse

through

replication.

Use

Intelligent

Miner™

for

Data

to

mine

information

and

MQ

messaging

to

flow

information

to

business

users.

Targeted

product

offerings

can

be

based

on

customer

profiles;

higher

profit

per

customer.

Replication,

mining

of

relevant

information,

reliable

distribution

mechanism.

Scientific

users

require

integrated

view

of

chemical

and

biological

information

stored

in

distributed

Oracle

sources,

and

external

nonrelational

sources.

DiscoveryLink

specialized

data

source

support

across

multiple

heterogeneous

data

sources.

Scientific

mining

algorithms.

Real

time

access

to

information.

Complex

query

optimization;

mining

of

relevant

information.

Improve

ordering

process

to

accommodate

varying

customer

demands.

Integrate

with

existing

operational

systems.

Create

new

parts

ordering

architecture.

Enter

orders

in

database.

Use

replication

and

federated

systems

to

transfer

orders

to

older

systems.

Improved

order

response

time

(reduced

billing

cycle,

improved

cash

flow).

Replication,

Federated

systems,

WebSphere®.

Provide

improved

customer

service-integrate

information

across

several

divisions

of

a

company

to

provide

seamless

customer

relationship

information.

Integrate

client

information

across

diverse

business

units

to

provide

an

integrated

view

of

customers

either

as

individuals

or

as

a

group.

Personalized

recommendations

to

customers

in

response

to

customer

electronic

mail

(e-mail).

Provide

loyalty

point

tracking

across

the

enterprise.

Warehousing,

federated

systems,

replication,

WebSphere.

Related

concepts:

v

“The

DB2

Universal

Database

family—a

foundation

for

information

integration”

on

page

13

4

Application

Developer’s

Guide

v

“DB2

Information

Integrator—the

solution

to

integration”

on

page

5

v

“Introduction

to

information

integration”

on

page

1

v

“Planning

for

the

information

integration

architecture”

on

page

5

The

foundation

of

information

integration

The

foundation

of

information

integration

is

the

ability

to

model

diverse

data

sources,

such

as

relational,

Extensible

Markup

Language

(XML),

or

flat

files.

Using

the

technologies

of

information

integration,

you

can

get

transformation

capabilities

over

these

modeled

data

sources.

You

can

subsequently

represent

the

merged

view

in

ways

that

your

business

finds

useful,

such

as

with

SQL

statements

embedded

in

applications,

or

Web

services

applications.

A

well-planned

database

architecture

is

useful

and

necessary

in

the

information

integration

technologies

for

these

reasons:

v

Database

management

systems

(DBMSs)

have

proven

that

they

can

manage

the

information

explosion

that

has

occurred

in

traditional

business

applications.

Database

administrators

understand

the

problems

of

storage,

retrieval,

transformation,

scalability,

reliability,

and

availability.

v

The

database

industry

is

learning

to

adapt

to

the

diversity

of

data

and

access

patterns

in

e-business

applications.

The

applications

and

functions

that

are

within

the

database

industry

use

built-in

object-relational

support,

and

Extensible

Markup

Language

(XML)

capabilities.

These

functions

support

federated

access

to

external

data

sources.

v

The

investment

in

database

technology

continues

to

grow

and

includes

databases,

supporting

tools,

application

development

environments,

and

people

who

are

skilled

in

database

techniques.

Related

concepts:

v

“The

DB2

Universal

Database

family—a

foundation

for

information

integration”

on

page

13

v

“DB2

Information

Integrator—the

solution

to

integration”

on

page

5

v

“What

problems

does

DB2

Information

Integrator

solve?”

on

page

3

DB2

Information

Integrator—the

solution

to

integration

The

information

integration

solution

for

the

enterprise

is

IBM®

DB2®

Information

Integrator.

DB2

Information

Integrator

is

a

framework

for

the

complete

integration

of

data

and

the

processes

that

support

the

data.

There

is

a

variety

of

challenges

that

the

technologies

of

DB2

Information

Integrator

can

address.

The

best

solution

for

your

enterprise

might

be

a

combination

of

the

individual

Information

Integrator

technologies

and

companion

products.

Having

a

multiple

set

of

solutions

available

to

you

makes

it

even

more

important

to

be

able

to

move

easily

from

one

technology

to

another.

DB2

Information

Integrator

delivers

complete

data

integration

with

technologies

that

work

together

seamlessly.

Related

concepts:

v

“Introduction

to

information

integration”

on

page

1

v

“What

problems

does

DB2

Information

Integrator

solve?”

on

page

3

Planning

for

the

information

integration

architecture

In

planning

the

architecture

of

your

integration

environment,

you

can

use

Web

service

tools,

database

management

tools,

and

warehouse

tools.

You

can

use

the

language

of

integration,

which

is

XML.

You

can

use

the

language

of

database

technologies,

which

is

SQL.

Chapter

1.

Introduction

to

information

integration

development

5

Extensible

Markup

Language

(XML)

is

a

technology

that

you

can

use

for

Web

applications,

that

packages

data

along

with

its

metadata.

XML

is

a

key

element

in

the

strategy

to

integrate

information.

XML

provides

a

common

language

that

enables

business-to-business

communication.

It

provides

an

easy

way

to

send

semi-structured

data

across

the

Web

so

that

nothing

gets

lost

in

translation.

It

masks

the

differences

in

endpoint

infrastructures.

XML

renders

information

appropriately

for

a

variety

of

devices,

because

it

separates

the

document

content

from

the

document

presentation.

XML

acts

intelligently

based

on

the

content,

or

decision

support,

because

it

includes

a

description

of

the

data

and

how

it

relates

to

other

pieces

of

data.

XML

can

help

your

company

produce

smarter

search

results

because

it

provides

a

context

for

search

arguments.

SQL

is

an

ANSI

(American

National

Standards

Institute)

standard

for

accessing

relational

database

management

systems.

SQL

provides

access

to

relational,

federated

and

nonrelational

data.

By

using

SQL-based

queries

in

Web

services,

you

can

send

SQL

statements

and

stored

procedure

calls

to

DB2®

Universal

Database.

Then,

the

Web

services

returns

the

results

with

some

default

tagging.

SQL-based

queries

are

useful

on

the

Web

when

the

returned

data

uses

only

a

simple

mapping

of

SQL

data

types,

with

column

names

as

elements.

Use

DB2

XML

Extender

and

SQL-based

queries

when

you

need

user-defined

mappings

of

SQL

data

to

XML

elements

and

attributes.

If

you

are

using

DB2

XML

Extender

to

store

XML

documents

within

a

single

column

of

a

table,

you

can

use

SQL-based

queries

to

retrieve

those

documents

intact

as

a

character

large

object

(CLOB).

Also,

you

can

use

DB2

XML

Extender

with

SQL-based

queries

to

invoke

the

user-defined

functions

that

extract

parts

of

the

document.

You

can

use

SQL-based

queries

to

invoke

DB2

UDB

stored

procedures.

Stored

procedures

are

natural

for

conversion

to

Web

services

since

they

are

themselves

an

encapsulation

of

programming

logic

and

database

access.

A

Web

service

invocation

of

a

stored

procedure

makes

it

possible

to

dynamically

provide

input

parameters

and

to

retrieve

results.

The

architecture

of

information

integration

includes

three

layers.

v

The

data

layer.

The

data

layer

is

the

foundation

of

integration.

This

layer

provides

storage,

retrieval,

and

transformation

of

data

from

base

sources

in

different

formats.

This

layer

is

based

on

a

federated

DBMS

architecture.

Data

is

stored

as

structured

relational

tables,

semi-structured

XML

documents,

or

in

unstructured

formats.

A

hybrid

XML

and

relational

storage

and

retrieval

infrastructure

ensure

high

performance

and

data

durability.

This

data

layer

uses

the

federated

database

technology

with

a

flexible

wrapper

architecture

to

integrate

external

data

sources,

which

can

be

traditional

data

servers,

enterprise

applications,

or

workflows.

v

The

services

layer.

Information

integration

is

about

accessing

the

data

and

determining

how

to

use

the

data.

This

layer

provides

an

infrastructure

to

transparently

embed

data

access

services

into

enterprise

applications

and

business

processes.

This

includes

query

processing,

text

search

and

mining,

transformation,

and

replication.

v

The

application

layer.

Information

integration

is

about

programming

interfaces

that

can

use

the

data.

The

application

layer

provides

standards-based

programming

model

and

query

language

to

the

other

layers.

You

can

base

the

interfaces

on

Web

services,

or

traditional

application

programming

interfaces.

The

application

layer

enhances

standard

query

languages.

6

Application

Developer’s

Guide

Each

layer

is

a

separate

entity,

but

must

also

depend

on

and

work

with

the

other

layers

to

provide

a

more

complete

integration

strategy.

Figure

1

on

page

7

shows

the

data

layer,

the

services

layer,

and

the

application

layer.

Related

concepts:

v

“DB2

Information

Integrator—the

solution

to

integration”

on

page

5

v

“What

problems

does

DB2

Information

Integrator

solve?”

on

page

3

v

“Why

is

information

integration

important

to

your

enterprise?”

on

page

2

DB2

Information

Integrator—relational

federated

technologies

Federated

database

management

systems

offer

help

in

accessing

and

manipulating

disparate

data.

Federated

systems

provide

a

single-site

image

of

distributed

data

that

is

stored

or

generated

in

a

variety

of

formats.

Federated

systems

offer

a

common

interface

for

accessing

this

data.

The

federated

database

management

system

of

IBM®

DB2®

Information

Integrator

features

an

extended

catalog.

This

catalog

is

capable

of

maintaining

statistics

about

remote

data

and

using

these

statistics

to

globally

optimize

data

access.

By

using

the

federated

systems,

you

can

gather

statistics

about

remote

data

sources

and

use

this

information

in

the

query

User
applications WebSphere MQSI Workflow

Web services

JDBC ODBC XQuery SQLX

SQLApplication Interface

Services TierQuery

Text search

Mining Asset Management Transformation

Caching

Replication

Versioning

Data Tier

Storage Federation

Structured
Data

Unstructured
Data

Web
Content

Metadata

Structured data
store

XML data
store

Applications

DB2
Informix
Oracle
Sybase
SQLServer
ODBC
JDBC

Extended Search
File Systems
Documentum

Yahoo
Google
Syndicated Content
Aggregations

WebSphere
Web Services
WebSphere MQ Workflow

Figure

1.

Integration

layers

Chapter

1.

Introduction

to

information

integration

development

7

optimizer

technology

that

is

provided

by

DB2

Universal

Database™.

This

allows

you

to

access

data

fast.

Federated

systems

use

the

query

rewrite

facility

of

DB2

Universal

Database

to

rewrite

slower

performing

queries

into

their

faster

equivalent

form.

In

a

federated

database

engine,

you

access

data

sources

through

software

components

that

are

called

wrappers.

Each

wrapper

contains

information

about

the

data

source,

such

as

the

default

mappings

between

the

data

source

data

types

and

the

DB2

Universal

Database

data

types.

To

implement

a

wrapper,

the

server

uses

routines

that

are

stored

in

a

library

called

a

wrapper

module.

These

routines

allow

the

server

to

perform

operations

such

as

connecting

to

a

data

source

and

iteratively

retrieving

data

from

it.

To

use

the

wrappers

to

query,

retrieve,

and

manipulate

data,

you

must

install

the

wrappers.

Then,

you

must

register

each

wrapper

to

add

them

to

your

federated

system.

For

more

information

on

the

federated

systems

technology,

including

the

definitions

of

the

federated

systems

objects,

see

Federated

Systems

Guide.

DB2

Information

Integrator

federated

technology

provides

a

virtual

database

for

multiple

data

sources.

The

data

sources

can

do

the

following

things:

v

Run

on

different

hardware

and

different

operating

system

platforms

v

Be

provided

by

different

vendors

v

Use

different

application

programming

interfaces

and

different

SQL

dialects

The

federated

systems

databases

enables

programmers

to

customize

their

database

management

system

to

access

a

data

source

of

their

choosing,

whether

relational

or

nonrelational.

Relational

federated

wrappers

can

query

data

in

other

relational

database

management

systems

(RDBMSs),

such

as

the

ones

listed

on

page

8.

Relational

and

nonrelational

wrappers

provide

transparent

access

to

these

other

database

systems

by

mapping

these

sources

to

DB2

UDB.

You

can

access

these

data

sources

with

a

single

query,

and

make

use

of

the

performance

techniques

and

query

rewrite

functionality

that

is

provided

by

federated

systems

and

DB2

UDB.

Among

the

relational

wrappers

that

are

offered

by

the

federated

relational

technology

are

wrappers

for

the

non-IBM

relational

databases

and

Informix®

databases.

You

need

the

relational

wrappers

if

you

want

to

access

data

that

is

stored

in

some

of

the

following

data

sources:

v

Oracle

v

Sybase

v

Microsoft®

SQL

Server

v

IBM

DB2

family

of

products

v

Teradata

v

Open

Database

Connectivity

(ODBC)

sources

Related

concepts:

v

“Tuning

query

processing”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Global

optimization”

in

the

Federated

Systems

Guide

8

Application

Developer’s

Guide

DB2

Information

Integrator—nonrelational

federated

technologies

Nonrelational

federated

technologies

consist

of

wrappers

that

provide

access

to

nonrelational

data.

With

these

wrappers,

you

can

access

table-structured

files,

Excel

files,

Extensible

Markup

Language

(XML)

documents,

BLAST

search

algorithms,

Documentum

data,

Entrez

sources,

HMMER

sources,

BioRS,

Extended

Search

sources,

business

applications

and

Web

service

providers

that

are

described

by

Web

service

description

language

files.

Through

the

extended

search

sources

you

can

get

access

to

a

wide

variety

of

unstructured

data

sources.

Some

of

these

sources

include

Domino™,

Microsoft®

Exchange,

Microsoft

Index

Server,

and

Lightweight

Directory

Access

Protocol

(LDAP)

directories,

among

others.

For

more

information

on

federated

systems

see

Federated

Systems

Guide.

For

more

information

on

wrappers

and

how

to

create

them,

see

DB2

Information

Integrator

Wrapper

Developer’s

Guide.

The

nonrelational

set

of

wrappers

contains

several

components

that

you

can

install:

Scientific

data

sources

These

might

include

some

unstructured

data.

Some

of

that

data

might

contain

genomic,

proteomic,

bioinformatic,

and

cheminformatic

information

that

are

developed

for

the

life

sciences

industry.

These

wrappers

enable

a

federated

system

to

integrate

genetic,

chemical,

biological,

and

other

research

data

from

distributed

sources.

For

example,

you

can

use

one

SQL

statement

to

integrate

protein

sequence

data

from

a

database

in

Switzerland,

chemical

structure

data

from

a

database

in

Japan,

and

spectroscopic

data

that

is

stored

in

table-structured

flat

files

on

your

local

area

network.

The

data

appears

as

if

it

is

in

one

virtual

database.

Structured

file

data

sources

These

contain

data

that

is

stored

in

files

with

a

defined,

repeatable

structure.

For

example,

this

might

be

an

Excel

spreadsheet

or

a

flat

file

where

each

record

contains

the

same

number

of

fields,

separated

by

a

delimiter.

Application

data

sources

Application

wrappers

use

an

application

to

access

the

underlying

data.

The

raw

data

can

be

in

a

number

of

standard

and

nonstandard

formats.

Web

services

provider

sources

The

purpose

of

the

Web

services

wrapper

is

to

let

DB2®

UDB

and

SQL

users

access

Web

service

providers

described

by

Web

services

description

language

(WSDL)

files.

The

Web

service

is

invoked

by

exchanging

SOAP

messages

between

the

Web

services

provider

and

the

consumer.

Web

services

wrappers

use

Web

services

just

as

the

SOAP

user-defined

functions

use

Web

services.

You

can

issue

SQL

statements

with

federated

nicknames

and

views

that

access

Web

services,

or

you

can

issue

a

set

of

user-defined

functions

to

access

Web

services.

Web

services

can

be

discovered

by

specifying

the

WSDL

and

then

the

necessary

nicknames

can

be

created

based

on

information

in

the

WSDL.

You

query

the

nicknames

to

access

the

Web

services

to

modify

or

access

information.

Examples

of

the

data

sources

that

need

the

nonrelational

wrappers

include

some

of

the

following

data

sources.

This

list

is

only

an

example

list.

For

complete

wrapper

information,

see

the

DB2

Information

Integrator

Data

Source

Configuration

Guide.

v

BLAST

v

Excel

v

Table-structured

files

Chapter

1.

Introduction

to

information

integration

development

9

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

v

Documentum

v

HMMER

v

Entrez

v

Extended

search

v

BioRS

v

Web

services

v

Business

applications

that

are

accessible

through

WebSphere®

Business

Integration,

including

SAP,

PeopleSoft,

and

Siebel

Related

concepts:

v

“Data

type

mappings

for

nonrelational

data

sources”

in

the

Federated

Systems

Guide

v

“The

Web

service

consumer

functions”

on

page

145

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

in

the

IBM

DB2

Information

Integrator

Data

Source

Configuration

Guide

WebSphere

Portal

examples

and

DB2

Information

Integrator

You

can

use

DB2®

Information

Integrator

in

a

WebSphere®

portal

environment,

along

with

WebSphere

Application

Server

as

the

runtime

environment

to

help

achieve

your

customer

goals

without

requiring

significant

investments

in

Web-enabled

application

development

skills.

DB2

Information

Integrator

works

with

WebSphere

Portal

and

WebSphere

Application

Server

to

enable

Web

applications

or

components

to

access

disparate

data

sources

through

a

single

API

(SQL)

so

that

the

amount

of

complex

application

logic

required

to

access

and

merge

the

disparate

data

is

greatly

reduced.

You

can

also

use

DB2

Information

Integrator

to

display

full

data

content

from

the

source,

and

with

some

configurations,

write

to

a

data

source.

DB2

optimization

capabilities

help

ensure

that

data

is

retrieved

efficiently

from

remote

data

sources.

One

example

of

a

business

situation

where

DB2

Information

Integrator

can

be

used

with

a

WebSphere

portal

to

improve

development

efficiency

involves

the

use

of

portals

to

deliver

different

information

and

services

to

employees

in

a

single

view.

The

fictitious

insurance

company,

Cotton-wood

Insurance

Corporation,

needed

a

way

to

deliver

a

variety

of

claim

related

information

to

its

customer

support

representatives

in

a

single

view.

All

the

data

that

customer

support

representatives

needed

to

work

with

was

spread

across

disparate

relational

and

non

relational

data

stores

including:

v

Customer

account

information

in

a

DB2

UDB

for

z/OS™

database

v

Adjuster

appraisal

forms

and

daily

operational

notes

in

a

Lotus®

Domino™

server

v

Police

reports

stored

as

XML

files

v

New

insurance

claims

written

to

WebSphere

MQ

queues

to

initiate

new

claims

processing

The

developers

at

Cotton-wood

created

a

simple

portal

to

aid

service

representatives

in

serving

their

insurance

customers

by

providing

all

related

claims

information

within

a

single

web

based

view.

Within

the

portal,

several

portlets

are

used

to

deliver

information

or

services

to

the

portal.

DB2

Information

Integrator

helped

the

developers

at

Cotton-wood

to

access

insurance

company

data

with

a

unified

view

across

all

of

the

data

sources.

The

Cotton-wood

developers

worked

with

standard

WebSphere

portlets

and

DB2

Information

Integrator

to

minimize

the

code

required

to

access

the

different

data

sources.

Instead

of

writing

code

to

work

10

Application

Developer’s

Guide

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|
|

with

each

native

API

for

the

different

data

source

formats,

the

developers

used

SQL

to

access

DB2

Information

Integrator

to

query

the

data,

allowing

the

complex

access

and

join

logic

to

be

handled

by

the

DB2

Information

Integrator.

One

portlet

the

Cotton-wood

developers

created,

provided

customer

service

representatives

with

a

single

view

of

all

open

claims.

This

required

the

accessing

and

merging

of

customer

account

information

stored

in

DB2

UDB,

police

reports

stored

as

XML

files,

and

adjuster

appraisal

forms

stored

in

a

Lotus

Domino

server.

Without

DB2

Information

Integrator,

the

developers

would

have

had

to

access

each

of

the

data

sources

and

then

write

the

portlet

code

required

to

merge

all

the

data

together

and

display

it

back

to

the

user.

Instead,

the

development

team

only

needed

to

develop

one

portlet

and

were

able

to

utilize

a

single

SQL

statement

to

run

against

the

DB2

UDB,

XML,

and

Lotus

Domino

data.

When

the

portlet

runs,

the

SQL

query

travels

from

the

portal

application

to

the

DB2

Information

Integrator

federated

server.

The

federated

server

accesses

all

the

necessary

data,

making

disparate

data

sources

appear

to

be

a

single

resource.

This

eliminates

the

need

for

developers

to

write

code

to

manage

multiple

connections,

queries,

and

join

logic

that

would

otherwise

be

required.

After

collecting

the

data

from

the

various

sources,

the

federated

server

returns

a

single

result

set

to

the

client,

providing

the

customer

service

representative

all

the

relevant

claims

information

that

is

integrated

from

the

DB2

UDB,

XML,

and

Lotus

Domino

data

sources.

This

example

shows

how

DB2

Information

Integrator

can

significantly

reduce

the

amount

of

customized

code,

skill

requirements,

and

time

needed

to

develop

application

logic

necessary

for

accessing

and

merging

data

from

disparate

relational

and

nonrelational

sources.

By

providing

a

single

API

for

your

development

team

to

work

with,

and

utilizing

data

merging

and

optimization

features

from

DB2

UDB,

DB2

Information

Integrator

allows

developers

to

focus

more

on

the

usability

of

your

application

rather

than

how

to

access

and

merge

the

data

together.

For

additional

information

on

WebSphere

Portal

and

DB2

Information

Integrator

see

Sample

code

for

the

WebSphere

Portal

and

DB2

Information

Integrator.

Related

concepts:

v

“Advantages

of

a

federated

system”

on

page

163

v

“DB2

Information

Integrator—nonrelational

federated

technologies”

on

page

9

Related

tasks:

v

“Deploying

a

federated

application”

on

page

181

Introducing

scenarios

used

throughout

this

guide

This

section

introduces

the

scenarios

that

are

discussed

throughout

this

guide.

They

are

based

on

actual

customer

experiences,

but

represent

a

composite

of

several

companies.

The

company

names

are

fictitious.

The

Cottonwood

Distributors,

Inc.—a

warehouse

example

Cottonwood

Distributors,

Incorporated

(CDI)

is

an

existing,

well-established

distribution

company.

CDI

acts

as

a

broker

for

commodity

parts.

The

company

has

been

in

business

for

many

years

and

has

been

a

loyal

DB2®

Universal

Database

customer.

CDI

uses

a

relational

database

(DB2)

to

store

their

information.

This

information

consists

of

hundreds

of

thousands

of

parts,

thousands

of

suppliers

for

Chapter

1.

Introduction

to

information

integration

development

11

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

ftp://www.redbooks.ibm.com/redbooks/SG246433/

those

parts,

and

the

customers

that

want

to

order

those

parts.

They

have

sales

representatives

that

enter

orders

through

their

client

applications.

Sales

representatives

take

orders

over

the

phone,

and

supply

bids

to

customers

that

are

looking

for

different

parts.

Customer

sales

follow-up

is

outsourced

to

an

external

vendor

(who

also

managed

their

human

resources

processes).

CDI

uses

Extensible

Markup

Language

(XML)

for

their

correspondence

and

reporting.

The

system

has

been

under

the

care

of

very

skilled

database

administrators

that

have

fine-tuned

it

and

kept

the

system

stable

for

many

years.

CDI

has

challenges

pertaining

to

the

size

and

location

of

the

data.

The

challenges

intensify

when

they

acquire

two

of

their

competitors

in

the

industry,

MyDogwood,

Incorporated,

and

MyOak,

Incorporated.

The

two

new

companies

have

similar

operations,

and

just

as

much

data

as

the

parent

company,

but

the

data

exists

in

different

databases.

MyDogwood,

Incorporated

has

data

in

an

Oracle

database,

and

MyOak,

Incorporated

has

data

in

an

Informix®

database.

Following

the

merger,

CDI

has

heterogeneous

data

sources

in

a

variety

of

formats.

These

data

sources

are

on

systems

that

are

already

loaded

and

configured

to

run

successfully,

with

lots

of

untrusted

users.

The

processes

must

handle

millions

of

parts

and

thousands

of

suppliers.

So

that

CDI

can

stay

competitive,

they

must

replace

the

sales

representatives

on

the

phone

with

thousands

of

Web

users

that

request

bids

and

place

their

orders

online.

In

addition,

suppliers

want

to

be

able

to

submit

quotes

for

parts

on

the

Internet.

So,

CDI

introduces

a

Web-based

brokerage

exchange.

Customers

will

access

the

parts

information

and

order

parts

on

the

internet.

Suppliers

will

access

the

internet

and

provide

quotes

on

parts.

The

sales

follow-up

and

human

resources

processes

continue

as

outsourced

functions.

CDI

must

now

handle

the

added

challenges

of

managing

issues

of

accessibility

of

data,

currency

of

data,

and

real-time

updates

across

multiple

databases.

Related

reference:

v

Appendix

A,

“Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios,”

on

page

217

Discovering

the

data—the

employee

skills

scenario

A

company

called

YBar,

Incorporated,

specializes

in

human

resources,

identifying

skills

and

company

needs,

and

looking

at

resumes

and

assigning

new

hires.

The

company

has

an

employee

database

that

contains

information

about

people

and

their

work

skills.

They

have

to

work

with

a

flat

file

that

is

managed

by

an

unrelated

application

existing

outside

of

the

database.

This

application

manages

job

profiles.

In

addition,

they

have

to

deal

with

an

application

owned

by

a

solutions

provider

outside

of

the

company.

They

have

two

major

challenges.

1.

They

must

identify

the

best

candidates

to

fill

job

openings.

These

are

mostly

internal

job

openings,

and

they

base

their

search

on

skills

that

are

found

on

personnel

resumes.

They

have

a

Web

application

that

collects

resumes

from

candidates

in

an

Extensible

Markup

Language

(XML)

format.

The

Human

Resources

system

(HR)

keeps

track

of

current

job

profiles

for

all

employees.

2.

They

must

send

the

list

of

employees

(including

their

current

job

description)

to

the

external

education

provider

so

they

can

offer

customized

classes

to

the

right

people.

12

Application

Developer’s

Guide

They

will

use

WebSphere®

MQ

for

sending

messages

in

their

applications.

Then,

they

can

use

federated

systems

to

join

the

employee

database

and

the

job

database,

and

publish

the

list

over

WebSphere

MQ.

YBar,

Incorporated

has

a

table

called

Employee

that

contains

information

about

the

employees

in

the

company.

It

also

has

a

table

called

Job

that

describes

the

jobs.

Table

2.

YBar,

Inc.

Employee

and

Job

tables

and

columns

EMPLOYEE

JOB

Emp_ID

Job_ID

Lastname

Job_Description

Firstname

Title

Dept_ID

Responsibilities

Current_Job_ID

Related

concepts:

v

“Employee

database

scenario

-

solution

design”

on

page

170

Related

reference:

v

Appendix

A,

“Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios,”

on

page

217

Information

integration

components

Information

integration

uses

proven

data

management

technologies

(the

DB2

Universal

Database

family)

as

the

foundation

of

IBM

DB2

Information

Integrator.

DB2

Universal

Database

uses

parallelism

within

a

single

system

and

over

clustered

systems

and

can

support

thousands

of

concurrent

users

and

terabytes

of

data.

Its

object-relational

underpinnings

provide

an

extensible

framework

for

adding

new

data

types

with

tailored

functions.

The

information

integration

infrastructure

provides

client

application

programming

interfaces

(APIs)

that

use

messaging

and

workflow

facilities,

such

as

those

that

are

provided

by

IBM

WebSphere.

A

database

event,

such

as

the

arrival

of

a

new

piece

of

information,

can

transparently

create

a

notification,

such

as

putting

a

new

message

on

a

queue.

WebSphere

Studio

provides

an

open,

integrated

development

environment

for

Java-based

database

and

federated

database

applications.

It

provides

graphical

capabilities

to

perform

various

functions

such

as

the

following

tasks:

v

Create

SQL

requests

v

Understand

join

paths

v

Develop

stored

procedures

v

Extend

the

database

with

user-defined

functions

v

Turn

database

requests

into

Web

services

v

Develop

Extensible

Markup

Language

(XML)

schemas

and

document

type

definitions

(DTDs)

The

DB2

Universal

Database

family—a

foundation

for

information

integration

DB2®

Universal

Database

is

the

foundation

technology

of

IBM®

DB2

Information

Integrator.

DB2

Universal

Database™

can

manage

various

kinds

of

information

whether

the

information

is

stored

in

DB2

Universal

Database,

Oracle,

Sybase,

or

other

databases.

Chapter

1.

Introduction

to

information

integration

development

13

|
|
|
|

DB2

Extenders™

can

manage

images,

video,

audio,

or

voice

recordings,

Extensible

Markup

Language

(XML)

documents,

complex

text

documents,

spatial

objects,

and

more.

DB2

Universal

Database

Data

Links

Manager

can

manage

data

in

an

external

file

system.

DB2

Universal

Database

can

handle

referential

integrity,

access

control,

consistency,

and

recovery.

DB2

XML

Extenders,

Net

Search

Extender,

and

Spatial

Extenders

provide

data

type-specific

extensions

to

query,

access,

update,

and

manage

various

data

objects.

For

example,

with

DB2

extenders,

you

can

access

XML

documents,

query

by

image

shape

or

color,

or

query

by

a

given

location.

DB2

Universal

Database

and

its

associated

components

provide

you

with

the

ability

to

store

and

retrieve

the

following

types

of

data:

v

Structured

relational

tables

v

Semi-structured

XML

documents

v

Unstructured

content

such

as

byte

streams

and

scanned

images

For

more

information

about

DB2

Universal

Database,

see

http://www.ibm.com/software/data/db2/.

DB2

XML

Extender

DB2

XML

Extender

serves

as

a

repository

for

XML

documents

and

their

document

type

definitions

(DTDs).

It

also

provides

data

management

functions,

such

as

data

integrity,

security,

recoverability,

and

manageability.

You

can

store

an

entire

document

as

an

XML

user-defined

column

or

decompose

the

document

into

multiple

tables

and

columns.

XML

elements

and

attributes

can

use

indexes

to

ensure

a

faster

search.

You

can

retrieve

an

entire

document

or

extract

XML

elements

and

attributes

dynamically

in

an

SQL

query.

In

addition,

the

XML

Extender

provides

stored

procedures

to

create

XML

documents

from

existing

data.

DB2

XML

Extender

can

use

functions

and

stored

procedures

that

allow

access

to

DB2

Universal

Database

message

queuing

functions

directly

from

DB2

XML

applications.

You

can

use

WebSphere®

MQ

tools

to

develop

the

message

query

functions

and

stored

procedures.

DB2

XML

Extender

contains

some

message

query

functions.

With

these

functions,

your

application

can

do

the

following

things:

v

Use

SQL

statements

to

send,

read,

or

receive

documents

as

XML

messages

in

the

service

points

(queues)

as

defined

in

the

application

messaging

interface.

v

Compose

an

XML

message

from

tables

and

send

it

directly

to

the

message

queue,

or

decompose

an

XML

message

from

the

queue

into

relational

tables.

Net

Search

Extender

You

can

use

IBM

Net

Search

Extender

with

the

built-in

federated

support

of

DB2

Information

Integrator

to

index

and

search

text

data

that

is

stored

in

DB2

Universal

Database

and

Informix®

IDS

databases.

You

can

also

use

IBM

Net

Search

Extender

in

federated

sources

such

as

Oracle,

Sybase,

and

Microsoft®

SQL

Server.

Integration

with

the

intelligent

strategies

of

the

database

manager

optimizer

ensures

high

performance

and

a

full-text

search

that

works

seamlessly

within

an

SQL

full

select.

Spatial

Extender

With

DB2

Spatial

Extender,

you

can

obtain

facts

and

figures

that

pertain

to

objects

that

can

be

defined

geographically

(such

as

in

terms

of

their

location

on

earth,

or

within

a

region

of

the

earth).

These

facts

and

figures

are

the

spatial

information,

and

the

things

are

the

geographic

features.

For

example,

you

can

use

DB2

Spatial

Extender

to

determine

whether

any

populated

areas

overlap

the

proposed

site

for

a

14

Application

Developer’s

Guide

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|

http://www.ibm.com/software/data/db2/

landfill.

The

populated

areas

and

the

proposed

site

are

features.

A

finding

as

to

whether

any

overlap

exists

is

an

example

of

spatial

information.

If

overlap

exists,

the

extent

of

it

is

also

be

an

example

of

spatial

information.

To

produce

spatial

information,

DB2

Spatial

Extender

must

process

data

that

defines

the

locations

of

features.

Such

data,

called

spatial

data,

consists

of

coordinates

that

reference

the

locations

on

a

map

or

similar

projection.

For

example,

to

determine

whether

one

feature

overlaps

another,

DB2

Spatial

Extender

must

determine

where

the

coordinates

of

one

of

the

features

are

situated

with

respect

to

the

coordinates

of

the

other.

You

can

use

DB2

Spatial

Extender

to

exchange

spatial

data

between

your

database

and

the

external

data

sources.

More

precisely,

you

can

import

spatial

data

from

external

sources

by

transferring

it

to

your

database

in

files,

called

data

exchange

files.

You

can

also

export

spatial

data

from

your

database

to

data

exchange

files

from

which

external

sources

can

acquire

it.

DB2

Warehouse

Manager

A

data

warehouse

is

a

collection

of

data

that

is

obtained

from

a

variety

of

data

sources.

End

users

obtain

the

data

in

a

way

that

they

can

understand

and

use

in

a

business

context.

You

can

group

the

data

about

the

business

or

organizational

structure

by

using

warehouse

tools

to

build,

manage,

and

analyze

data

that

is

extracted

from

heterogeneous

environments.

DB2

Warehouse

Manager

provides

SQL-based

extract,

transform,

and

load

capabilities

to

move

and

transform

data.

In

addition,

DB2

Warehouse

Manager

includes

a

metadata

management

solution,

the

Information

Catalog

Center.

The

Information

Catalog

Manager

also

provides

an

integration

point

for

third-party

independent

software

vendors

to

perform

bidirectional

metadata

and

job-scheduling

exchange.

DB2

Warehouse

Manager

includes

a

distributed

extract,

transform,

and

load

job-scheduling

system.

DB2

Warehouse

Manager

agents

support

direct

data

movement

between

source

systems

and

target

systems

without

the

added

cost

of

a

centralized

server.

DB2

Warehouse

Manager

supports

full

refresh,

incremental

updates,

and

data

movement

options

including

IBM’s

integrated

data

replication

functions.

Replication

With

replication

technology,

you

can

replicate

data

between

your

central

database

and

regional

transactional

databases.

Replication

makes

business

data

available

to

the

regional

databases

for

prompt

transaction

processing.

In

a

replication

environment,

your

business

can

capture

data

changes

from

a

source

database

and

propagate

the

changes

to

any

target

database,

without

requiring

application

changes.

Replication

provides

data

transformation

that

uses

standard

SQL,

including

multitable

joins

and

stored

procedures.

Replication

supports

point-in-time

and

near

real-time

replication

with

embedded

transformation

for

populating

data

warehouses

and

data

marts.

Replication

also

supports

the

ability

to

reconstruct

DB2

Universal

Database

transactions

and

publish

those

transactions

as

messages

in

XML.

Replication

can

also

send

the

transactions

as

messages

to

WebSphere

MQ

message

queues

that

can

then

be

consumed

by

a

message

subscribing

application

or

the

Q

Apply

program.

Event

publishing

captures

data

by

means

of

the

Q

Capture

program,

another

component

of

Q

Replication.

Event

publishing

allows

you

to

publish

committed

transactional

or

row-level

data

from

DB2

Universal

Database

tables

as

messages

in

Chapter

1.

Introduction

to

information

integration

development

15

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

WebSphere

MQ

message

queues.

The

messages

can

be

read

and

interpreted

directly

by

user

applications,

or

they

can

first

be

interpreted

by

a

message

broker

such

as

WebSphere

Business

Integration

Message

Broker

or

a

DB2

MQ

listener

daemon.

Related

concepts:

v

“What

solutions

does

data

warehousing

provide?”

in

the

Data

Warehouse

Center

Administration

Guide

v

“Introduction

to

XML

Extender”

in

the

DB2

XML

Extender

Administration

and

Programming

v

“How

XML

data

is

handled

in

DB2”

in

the

DB2

XML

Extender

Administration

and

Programming

v

“Replication

in

the

Data

Warehouse

Center”

in

the

Data

Warehouse

Center

Administration

Guide

v

“Introduction

to

Q

replication—Overview”

in

the

IBM

DB2

Information

Integrator

Replication

and

Event

Publishing

Guide

and

Reference

v

“Introduction

to

event

publishing—Overview”

in

the

IBM

DB2

Information

Integrator

Replication

and

Event

Publishing

Guide

and

Reference

v

“The

purpose

of

DB2

Spatial

Extender”

in

the

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

“How

to

use

DB2

Spatial

Extender”

in

the

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

v

“How

features,

spatial

information,

spatial

data,

and

geometries

fit

together”

in

the

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

Related

tasks:

v

“Method

for

retrieving

an

XML

document”

in

the

DB2

XML

Extender

Administration

and

Programming

v

“Planning

for

SQL

replication”

in

the

IBM

DB2

Information

Integrator

SQL

Replication

Guide

and

Reference

Related

reference:

v

“Fullselect”

in

the

SQL

Reference,

Volume

1

Web

services

capabilities

in

information

integration

Web

services

are

key

innovations

for

integration:

v

Web

services

promote

interoperability:

Web

services

design

the

interaction

between

a

service

provider

and

a

service

requester

to

be

completely

platform

independent

and

language

independent.

v

Web

services

enable

just-in-time

integration:

As

service

requesters

use

service

brokers

to

find

service

providers,

the

discovery

takes

place

dynamically.

v

Web

services

reduce

complexity

through

encapsulation:

Service

requesters

and

providers

concern

themselves

with

the

interfaces

necessary

to

interact

with

each

other.

As

a

result,

a

service

requester

has

no

idea

how

a

service

provider

implements

its

service,

and

a

service

provider

has

no

idea

how

a

service

requester

uses

its

service.

Web

services

encapsulates

those

details

inside

the

requesters

and

providers.

v

Web

services

technologies

allow

you

to

cast

older

applications

as

a

Web

service.

This

means

that

you

can

use

the

applications

and

packages

that

are

already

in

place

in

your

enterprise

in

interesting

new

ways.

In

addition,

the

infrastructure

16

Application

Developer’s

Guide

|
|
|
|

associated

with

the

older

applications

(such

as

security,

directory

services,

and

transactions)

can

be

wrapped

as

a

set

of

services

as

well.

Web

services

provide

a

simple

interface

between

the

provider

and

consumer

of

application

resources

using

a

Web

Service

Description

Language

(WSDL).

Web

services

provider

A

Web

services

client

application

can

obtain

access

to

a

DB2®

Universal

Database

with

a

Web

services

description

language

(WSDL)

interface.

You

can

create

a

WSDL

interface

to

DB2

UDB

data

by

using

the

Web

services

Object

Runtime

Framework

(WORF),

also

known

as

Document

Access

Definition

Extension

(DADX)

files.

After

you

define

the

operations

to

access

DB2

UDB

data

with

the

DADX

file,

then

you

deploy

the

DADX

file

and

its

runtime

environment

(Apache

SOAP

version

2.3

or

Apache

Axis

version

1.2)

to

a

supported

Java™

Web

application

server

environment

(Apache

Jakarta

Tomcat

or

IBM®

WebSphere®

Application

Server).

After

you

have

the

DB2

Web

service

tested

and

deployed,

any

Web

services

client

can

start

using

the

DB2

Web

service.

Web

services

consumer

-

the

user-defined

functions

When

DB2

Universal

Database™

becomes

the

consumer,

Web

services

can

take

advantage

of

the

optimization

that

is

built

within

the

database.

By

using

SQL

statements,

you

can

consume

and

integrate

Web

services

data.

By

using

SQL

to

access

Web

services

data,

you

can

reduce

some

application

programming

efforts

because

the

data

can

be

manipulated

within

the

context

of

an

SQL

statement

before

that

data

is

returned

to

the

client

application.

You

can

convert

an

existing

WSDL

interface

into

a

DB2

UDB

table

or

scalar

function

by

using

tools

that

are

provided

in

WebSphere

Studio

version

5

and

later.

During

the

execution

of

an

SQL

statement,

you

establish

a

connection

with

the

Web

service

provider,

and

then

you

receive

a

response

document

as

a

relation

table

or

a

scalar

value.

Web

services

consumer

-

the

Web

services

wrapper

Within

the

federated

systems,

a

Web

services

wrapper

is

available

to

allow

users

to

access

Web

services

with

SQL

statements

on

nicknames

and

views

that

invoke

Web

services.

You

can

create

a

Web

services

wrapper

and

nicknames

that

specify

input

to

the

Web

service

and

access

the

output

from

the

Web

service

with

SELECT

statements.

Figure

2

on

page

18

shows

the

participation

by

DB2

Universal

Database

in

the

Web

services

environment:

Chapter

1.

Introduction

to

information

integration

development

17

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

IBM

DB2

Information

integrator

uses

many

Web

services

capabilities,

such

as

the

following

capabilities:

v

The

ability

to

expose

stored

procedure

functionality

as

a

Web

service.

By

using

the

Web

Services

Object

Runtime

framework

(WORF)

and

Document

Access

Definition

Extension

(DADX),

application

servers

can

serve

these

Web

services

to

clients.

The

applications

servers

might

be

WebSphere

Application

Server

or

Apache

Tomcat.

v

The

ability

for

all

SQL

statements

that

DB2

UDB

executes,

including

stored

procedures

to

become

SOAP

clients

and

request

Web

services

from

SOAP

servers.

The

Web

service

then

presents

the

data

either

as

a

SQL

value

or

as

a

table

that

you

can

combine

with

other

SQL

data.

The

WebSphere

Application

Server

is

infrastructure

software

for

dynamic

e-business.

The

WebSphere

Studio

application

development

environment

provides

the

tools

that

you

need

to

build,

deploy,

and

integrate

your

e-business.

WebSphere

Application

Server

is

a

J2EE-compliant

application

server

that

provides

an

environment

for

open

distributed

computing.

WebSphere

Application

Server

provides

a

middle

ground

between

a

client

and

the

resource

management

systems

DB2 UDB

DB2
client

DB2
(JDBC/SQL)

SELECT
average (salary) getRate("USA","Canada"), job
FROM staff
GROUP BY job
ORDER BY 1;

getRate ()

Internet

DB2 as a
Web services consumer

DB2 as a
Web services provider

DB2 UDB

DADx
WebSphere
application

server

Apache SOAP

Browser
client

SQL statement

<Part>
<Number>128</Quanity>
<Price>380.00</Price>
<Part>

Stored procedure

SOAP
(XML/HTTP)

Figure

2.

Web

services

provider

and

the

SOAP

user-defined

functions

18

Application

Developer’s

Guide

(such

as

databases).

It

allows

clients

(such

as

applets

or

C++

clients)

to

interact

with

data

resources

(such

as

relational

databases

or

WebSphere

MQ)

and

with

existing

applications.

Related

concepts:

v

“Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF”

on

page

25

v

“Web

services

provider

features”

on

page

30

v

“The

Web

service

consumer

functions”

on

page

145

v

“Overview

of

the

Web

services

process”

on

page

32

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

in

the

IBM

DB2

Information

Integrator

Data

Source

Configuration

Guide

Related

tasks:

v

“Registering

nicknames

for

Web

services

data

sources”

in

the

IBM

DB2

Information

Integrator

Data

Source

Configuration

Guide

WebSphere

MQ

IBM®

WebSphere®

MQ

(formerly

known

as

IBM

MQSeries®)

is

used

for

dynamic

integration.

It

connects

applications

through

a

simple

consistent

programming

interface

or

noninvasive

adapters

on

a

variety

of

platforms

across

all

of

the

major

networking

systems.

WebSphere

MQ

allows

systems

to

operate

independently,

but

assures

delivery

of

information.

It

includes

message

encryption

through

a

Secure

Sockets

Layer

(SSL)

for

extra

security

and

enhanced

performance.

Because

of

its

reliability

and

robustness,

you

can

use

WebSphere

MQ

in

mission-critical,

high-value

solutions

across

all

industries

today.

WebSphere

MQ

provides

support

for

applications

with

a

number

of

application

programming

interfaces:

Message

Queuing

Interface

Message

queuing

is

one

method

of

program-to-program

communication.

Message

Queuing

allows

programs

to

send

and

receive

application-specific

data

without

direct

connections.

Programs

communicate

by

sending

or

retrieving

messages

to

or

from

named

queues.

Programs

do

not

need

to

know

the

location

of

the

named

queues.

You

can

replicate

programs

for

availability

or

performance.

You

can

relocate

programs

or

queues.

Application

Messaging

Interface

The

MQSeries

Application

Messaging

Interface

is

a

simple

application

programming

interface

that

provides

support

for

point-to-point

messaging

and

publish

and

subscribe

messaging.

The

Application

Messaging

Interface

simplifies

application

development

by

moving

function

from

the

application

program

into

a

data

repository.

The

three

essential

parts

of

the

Application

Messaging

Interface

syntax

are

the

service,

the

policy,

and

the

message.

The

service

defines

where

to

send

the

message.

The

policy

defines

how

to

send

the

message.

The

message

is

what

is

sent.

The

service

encapsulates

local

or

remote

queues.

The

policy

encapsulates

options

for

the

message

such

as

priority

or

retry.

The

message

part

might

contain

application

message

data

and

attributes

such

as

format

or

correlation

identifiers.

Java™

Messaging

Services

The

Java

Messaging

Services

application

programming

interfaces

allow

applications

to

create,

send,

receive,

and

read

messages.

They

enable

asynchronous

and

reliable

communications.

Chapter

1.

Introduction

to

information

integration

development

19

Use

the

WebSphere

messaging

facilities

to

receive,

process,

and

store

information.

Then

use

DB2®

Warehouse

Manager

to

coordinate

the

collection

and

process

the

message

data.

IBM

DB2

Information

Integrator

acts

as

the

source

and

destination

for

Extensible

Markup

Language

(XML)

information

that

is

processed

by

MQSeries

Integrator.

The

WebSphere

messaging

functions

speed

implementation

of

distributed

applications

by

simplifying

application

development

and

testing,

and

by

using

a

consistent

application

programming

interface

across

all

platforms.

Related

concepts:

v

“DB2

Information

Integrator—the

solution

to

integration”

on

page

5

v

“How

to

use

WebSphere

MQ

functions

within

DB2”

on

page

200

Related

tasks:

v

“Installing

DB2

WebSphere

MQ

functions”

on

page

190

Planning

and

testing

your

applications

You

need

to

plan

for

the

kinds

of

data

objects

(for

example

databases,

tables,

nicknames)

that

you

will

be

using,

and

how

you

can

best

use

those

objects.

Then

you

need

to

determine

how

to

deploy

the

objects.

For

example,

you

can

define

views

for

abstract

models.

Then

support

more

complex

models

by

nesting

views.

You

can

use

a

view

to

mask

multiple

tables

that

use

a

variety

of

data

sources.

Then,

you

can

manipulate

the

view

in

a

Web

application,

and

make

it

available

on

the

Internet.

Installation

planning

Planning

for

the

installation

of

the

information

integration

infrastructures

involves

understanding

your

current

environment,

and

knowing

what

components

solve

your

business

solutions

the

best.

Most

of

the

tools

and

environments

that

you

need

require

at

least

256

MB

of

random

access

memory

(RAM)

on

a

Windows®

platform.

You

also

need

to

examine

the

software

and

hardware

configuration

requirements

for

each

component

in

terms

of

disk

space,

communication

setups,

prerequisites,

and

maintenance.

See

DB2

Information

Integrator

Installation

Guide

for

more

information

on

considerations

for

installing

federated

systems.

Related

concepts:

v

“DB2

Information

Integrator—the

solution

to

integration”

on

page

5

v

“Planning

for

the

information

integration

architecture”

on

page

5

Related

reference:

v

“DB2

Information

Integrator

installation

worksheet”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Configuring

your

applications

and

environments

Configure

your

database

client

and

server

so

that

they

can

connect

to

each

other.

You

can

use

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP)

as

a

communications

network.

On

a

Windows®

environment,

you

can

add

entries

into

the

services

file

on

each

system

to

specify

a

service

name

and

port

number.

In

a

typical

configuration,

the

WebSphere®

Message

Queue

server

and

the

DB2®

servers

reside

on

the

same

machine.

The

DB2

clients

can

be

local

or

remote,

using

WebSphere

servlets,

Enterprise

Java™

beans,

or

Web

applications.

20

Application

Developer’s

Guide

The

federated

systems

technologies

do

not

require

that

you

install

any

software

on

the

machine

that

hosts

the

data

source.

The

federated

databases

communicate

with

the

data

source

through

a

client

server

architecture,

using

the

source’s

normal

client.

In

this

way,

the

federated

data

source

looks

like

just

another

application

to

the

source.

You

create

a

federated

system

by

installing

the

DB2

Universal

Database™

engine,

and

then

enabling

the

federated

functionality.

You

then

configure

the

federated

system

to

talk

to

the

data

sources.

There

are

several

steps

to

add

a

new

data

source

to

a

federated

system.

First,

you

must

install

a

wrapper

for

the

source.

Then

you

must

tell

the

federated

database

where

to

find

this

wrapper.

Do

this

by

issuing

a

CREATE

WRAPPER

statement.

You

only

need

one

wrapper

for

multiple

sources

if

they

have

the

same

type.

For

example,

even

if

the

federated

system

includes

five

Oracle

database

instances,

possibly

on

different

machines,

you

only

need

one

Oracle

wrapper.

You

issue

one

CREATE

WRAPPER

statement.

However,

you

must

identify

each

separate

source

to

the

system

with

a

CREATE

SERVER

statement.

If

there

are

five

Oracle

database

instances,

then

issue

five

CREATE

SERVER

statements.

Be

sure

to

set

the

properties

on

the

database

for

the

server

and

the

federated

systems

(SVCENAME,

FEDERATED).

Connect

to

the

database

from

the

server.

For

each

data

source

you

want

to

access,

create

the

necessary

wrapper

objects,

server

objects,

and

user

mappings.

Related

concepts:

v

“Federated

systems”

in

the

Federated

Systems

Guide

v

“How

you

interact

with

a

federated

system”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Configuring

and

running

MQListener”

on

page

207

Related

reference:

v

“Checklist

for

planning

your

federated

system

configuration”

in

the

IBM

DB2

Information

Integrator

Data

Source

Configuration

Guide

db2

update

dbm

cfg

using

svcename

myID

authentication

server

db2

update

dbm

cfg

using

federated

yes

db2

connect

reset

db2stop

db2start

db2

connect

to

rdjdb

user

user1

using

pass1word

db2

create

wrapper

net8

options

(DB2_FENCED

’N’)

db2

create

server

oracle8

type

oracle

version

8.1.5

wrapper

net8

authorization

oracleuser1

password

oraclepwd

options

(node

’orafcle8.world’,

password

’Y’,

pushdown

’Y’)

db2

create

user

mapping

for

user1

server

oracle8

options

(REMOTE_AUTHOID

’oracleuser1’,

REMOTE_PASSWORD

’oraclepwd’)

...

Figure

3.

Example

of

database

connection

and

wrapper

set

up

Chapter

1.

Introduction

to

information

integration

development

21

Performance

and

tuning

planning—

materialized

query

tables

in

a

federated

system

A

materialized

query

table

is

a

table

that

is

defined

based

on

the

result

of

a

query.

A

materialized

query

table

mechanism

allows

administrators

to

define

materialized

views

of

data

in

a

set

of

underlying

tables,

or

nicknames.

See

the

Federated

Systems

Guide

for

more

information

on

federated

systems

objects

and

their

definitions.

For

certain

classes

of

queries,

the

database

can

automatically

determine

whether

the

materialized

query

table

can

answer

a

query,

without

accessing

the

base

tables.

By

using

materialized

query

tables,

you

can

transparently

route

read-only

queries

to

the

data

cache,

while

you

transparently

route

updates

to

the

database.

Replication

asynchronously

propagates

the

changed

data

to

the

cache

according

to

a

user-specified

policy.

By

using

federated

caching

and

replication,

a

user

can

ask

complex

queries

more

effectively.

You

can

use

materialized

views

that

use

aggregate

tables

for

better

performance

in

an

e-business

environment.

For

example,

in

e-commerce,

you

can

use

materialized

views

to

cache

product

catalog

information

on

mid-tier

servers

to

improve

the

performance

of

browsing

the

catalog,

without

involving

the

summary

data.

DB2®

Universal

Database

supports

caching

by

allowing

you

to

define

materialized

views

over

nicknames

that

are

used

to

define

a

remote

table.

You

populate

the

materialized

view

by

pulling

data

from

the

remote

table

and

storing

it

locally,

which

results

in

significant

performance

benefits.

You

get

the

best

performance

when

you

include

the

REFRESH

DEFERRED

parameter

with

the

materialized

views.

The

materialized

query

tables,

or

materialized

views,

keep

the

frequently

referenced

data

close

to

the

application

server.

The

materialized

query

tables

or

views

also

provide

a

means

to

buffer

the

finely

tuned

systems

from

the

traffic

generated

by

Web

applications.

You

can

define

materialized

query

tables

on

nicknames.

A

nickname

is

an

identifier

that

is

used

to

reference

the

object

located

at

the

data

source

that

you

want

to

access.

The

nicknames

identify

objects,

known

as

data

source

objects.

By

using

a

nickname

to

reference

a

materialized

query

table,

the

local

DB2

UDB

instance

can

cache

the

remote

data.

The

caching

capability

results

in

better

performance

for

federated

queries,

because

the

queries

access

the

remote

data

locally.

If

the

remote

table

is

not

available,

DB2

UDB

can

use

the

materialized

query

table

that

is

defined

on

the

remote

table

if

it

meets

the

routing

criteria.

The

results

of

this

technique

are

improved

availability

and

performance.

The

REFRESH

IMMEDIATE

option

is

not

applicable

to

a

materialized

query

table

that

refers

to

nicknames.

By

using

materialized

query

tables,

you

can

avoid

repeating

calculations,

such

as

represented

by

the

SUM

table,

for

each

query.

Assume

that

you

have

a

table

called

CUSTOMER_ORDER

that

stores

customer

orders

for

several

years.

The

table

has

over

one

million

records,

with

an

average

row

width

of

400

bytes.

Now,

assume

that

you

need

to

run

multiple

queries

on

orders

for

the

year

2001

and

that

you

only

need

three

columns

from

the

table.

Here

is

a

typical

SQL

statement

to

get

the

information

from

the

three

columns:

select

SUM(AMOUNT),

trans_dt

from

db2inst2.CUSTOMER_ORDER

where

trans_dt

between

’1/1/2001’

and

’12/31/2001’

group

by

trans_dt

If

there

are

good

indexes

on

the

CUSTOMER_ORDER

table,

then

the

access

path

shows

an

index

scan

for

this

statement.

22

Application

Developer’s

Guide

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

However,

you

can

create

a

materialized

query

table

that

contains

the

columns

and

rows

that

you

need,

including

the

calculation

for

the

grand

total:

CREATE

TABLE

DB2INST2.SUMMARY_CUSTOMER_ORDER_2001

AS

(SELECT

SUM(AMOUNT)

AS

TOTAL_SUM,

TRANS_DT,

STATUS

FROM

DB2INST2.CUSTOMER_ORDER

WHERE

TRANS_DT

BETWEEN

’1/1/2001’

AND

’12/31/2001’

GROUP

BY

TRANS_DT,

STATUS)

DATA

INITIALLY

DEFERRED

REFRESH

DEFERRED;

If

you

use

the

clause

DATA

INITIALLY

DEFERRED,

your

data

is

not

inserted

into

the

table

as

part

of

the

CREATE

TABLE

statement.

Issue

a

REFRESH

TABLE

statement

to

populate

the

table.

The

data

in

the

table

reflects

the

result

of

the

query

as

a

snapshot

at

the

time

that

you

issue

the

REFRESH

TABLE

statement.

To

populate

the

materialized

query

table

that

you

created,

issue

the

following

statement:

REFRESH

TABLE

DB2INST2.SUMMARY_CUSTOMER_ORDER_2001;

The

queries

that

run

on

the

materialized

query

table

are

faster.

The

materialized

query

table

is

smaller

in

size

and

its

rows

are

short

(just

45

bytes,

as

opposed

to

400

bytes

in

the

base

table).

By

using

materialized

query

tables,

you

can

optimize

queries

that

join

multiple

tables

across

several

servers

on

the

LAN.

With

materialized

query

tables,

you

can

cache

the

answer

set

on

a

single

server,

and

update

that

cache

when

data

changes

in

any

of

the

servers.

Any

type

of

federated

relational

data

can

be

a

candidate

for

these

types

of

joins.

This

includes

Oracle

tables,

SQL

Server,

Sybase,

message

queues,

Web

services,

and

other

relational

data

sources.

Plan

to

use

a

data

warehouse

to

remove

direct

access

to

your

operational,

or

day-to-day

data.

Performance

is

improved

because

you

are

accessing

the

warehouse

data

for

ad

hoc

queries.

By

placing

your

date

in

a

data

warehouse,

you

create

stores

of

informational

data

that

you

can

extract

from

the

operational

data

and

then

transform

for

decision

making.

For

example,

create

the

following

table,

joining

a

customers

table

and

an

account

table,

to

store

the

customer

and

account

information

for

bad

accounts:

CREATE

TABLE

bad_account

AS

(SELECT

customer_name,

customer_id,

a.balance

FROM

account

a,

customers

c

WHERE

status

IN

(’delinquent’,

’problematic’,

’hot’)

AND

a.customer_id

=

c.customer_id)

DATA

INITIALLY

DEFERRED

REFRESH

DEFERRED

If

a

user

asks

whether

an

account

is

delinquent,

the

DB2

Universal

Database™

optimizer

recognizes

that

the

materialized

query

table

has

cached

the

requested

information.

Instead

of

accessing

the

base

table

account,

DB2

Universal

Database

accesses

table

bad_account.

This

provides

a

better

response

time

and

returns

the

customer

information.

IBM®

federated

systems

includes

a

cost-based

optimizer.

The

optimizer

considers

not

only

standard

database

statistics,

such

as

cardinality

and

indices,

but

also

network

and

server

resources,

and

the

query

power

available

in

the

data

source

engine.

Related

concepts:

Chapter

1.

Introduction

to

information

integration

development

23

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

v

“Nickname

characteristics

affecting

pushdown

opportunities”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Creating

a

materialized

query

table”

in

the

Administration

Guide:

Implementation

Security

and

authorization

In

distributed

computing

systems,

where

users,

application

servers,

and

resource

managers,

are

often

spread

out

across

the

world,

securing

computing

system

resources

is

a

complicated

task.

A

good

security

service

provides

two

main

functions:

authentication

and

authorization.

Authentication

takes

place

when

a

principal

(a

user

or

a

computer

process)

initially

tries

to

gain

access

to

a

computing

resource.

At

that

point,

the

security

service

challenges

the

principal

to

prove

that

the

principal

is

valid.

Human

users

typically

prove

their

identity

by

entering

their

user

IDs

and

passwords.

A

process

normally

presents

an

encrypted

key.

If

the

password

or

key

is

valid,

the

security

service

gives

the

user

a

token

or

ticket.

This

token

identifies

the

principal

and

authenticates

the

principal.

After

the

authentication,

the

principal

tries

to

use

the

resources

within

the

boundaries

of

the

computing

system

protected

by

the

security

service.

However,

a

principal

can

use

a

particular

computing

resource

only

with

the

proper

authorization.

Authorization

takes

place

when

an

authenticated

principal

requests

the

use

of

a

resource.

The

security

service

determines

if

the

user

can

use

that

resource.

Typically,

you

associate

access

control

lists

(ACLs)

with

resources

to

handle

authorization.

The

resources

define

which

users

or

processes

(or

groups

of

users

or

processes)

are

authorized

to

use

the

resource.

If

the

security

service

authorizes

the

principal,

the

principal

gains

access

to

the

resource.

In

a

distributed

computing

environment,

principals

and

resources

must

be

mutually

suspicious

of

the

identity

of

each

other

until

each

has

proven

their

identity

to

the

other.

This

is

necessary

because

a

principal

might

fake

its

identity

to

get

access

to

a

resource.

That

resource

might

get

valuable

information

from

the

principal.

To

solve

this

problem,

the

security

service

contains

a

security

server

that

acts

as

a

trusted

third

party.

It

authenticates

principals

and

resources

so

that

these

entities

can

prove

their

identities

to

each

other.

The

authenticated

user

must

have

the

appropriate

privileges

(such

as

SELECT,

INSERT,

UPDATE,

or

DELETE).

The

privileges

must

be

on

both

the

nickname

in

the

federated

database

and

on

the

underlying

table

or

other

object

at

the

remote

data

source.

This

is

how

the

federated

database

can

accept

the

request.

It

is

not

sufficient

to

have

the

privileges

on

the

local

DB2®

Universal

Database.

See

the

Federated

Systems

Guide

for

more

information

on

the

authorizations

and

privileges.

Related

concepts:

v

“Advantages

of

designing

queries

in

IBM

DB2

Information

Integrator”

on

page

164

v

“Security

in

DADX

Web

services”

on

page

26

24

Application

Developer’s

Guide

Chapter

2.

Developing

Web

services

This

section

explains

the

development

and

use

of

Web

services.

IBM

DB2

Information

Integrator

contains

a

Web

services

provider

(WORF),

and

two

types

of

Web

services

consumers

(the

SOAP

user-defined

functions,

and

Web

services

wrappers).

Introduction

to

Web

services

provider

Web

services

are

sets

of

business

functions

that

applications

or

other

Web

services

can

invoke

programmatically

over

the

Internet

by

using

a

Web

Service

client

interface.

In

IBM

DB2

Information

Integrator,

you

can

define

a

basic

Web

service

by

using

standard

SQL

statements,

and

DB2

XML

Extender

stored

procedures.

For

Web

services

that

involve

advanced

transformations

between

XML

and

relational

data,

use

the

DB2

XML

Extender.

Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF

You

can

use

Web

services

to

enable

remote

access

to

DB2®

Universal

Database

information.

Web

services

include

a

set

of

application

functions

that

perform

some

useful

service

on

the

behalf

of

a

consumer,

or

a

requester,

such

as

informational

or

transactional

functions.

Web

services

perform

functions,

which

can

be

anything

from

simple

requests

to

complicated

business

processes.

The

consumer

generally

only

needs

to

know

the

Web

services

description

language

interface

to

the

Web

service.

In

addition,

the

Web

service

can

change

usually

without

affecting

the

consumer,

unless

a

change

is

made

in

the

interface.

Web

services

promote

interoperability.

The

reality

of

interoperability

assumes

that

the

information

technology

industry

uses

a

set

of

standards

that

provide

guidance

on

the

development

and

integration

of

Web

services.

The

Web

Services

Interoperability

Organization

is

an

open

industry

effort

that

is

chartered

to

promote

and

ensure

Web

services

interoperability

across

platforms,

applications

and

programming

languages.

The

Web

Services

Interoperability

Organization

uses

specifications

that

are

developed

by

the

World

Wide

Web

Consortium

(W3C)

and

the

UDDI.org.

Web

services

interoperability

means

that

you

can

create

your

Web

services

on

a

variety

of

SOAP

or

Web

Services

platforms,

including

Apache

SOAP,

Apache

Axis,

or

Microsoft®

Visual

Studio.Net.

The

Web

service

application

programmer

designs

the

interaction

between

a

service

provider,

and

a

consumer,

or

service

requester

to

be

completely

independent

of

platforms

and

languages.

You

can

use

just-in-time

integration,

because

service

requesters

can

find

service

providers

dynamically.

Web

services

reduce

complexity

through

encapsulation.

Service

requesters

and

providers

are

concerned

only

with

the

interfaces

necessary

to

interact

with

each

other,

not

their

underlying

implementation.

Web

services

give

new

life

to

legacy

applications

because

you

can

cast

an

existing

application

as

a

Web

service.

The

basic

elements

of

Web

services

include

simple

object

access

protocol

(SOAP),

Universal

Description,

Discovery,

and

Integration

(UDDI),

and

Web

services

description

language

(WSDL).

©

Copyright

IBM

Corp.

2003,

2004

25

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

http://www.ws-i.org/
http://www.ws-i.org/
http://www.w3c.org/
http://www.uddi.org/

Web

services

allow

you

to

access

data

from

a

variety

of

databases

and

internet

locations.

After

you

have

accessed

the

data,

a

Web

service

consumer

can

search,

mine,

and

then

transform

the

data

to

use

it

with

a

data

warehouse

for

further

analysis.

You

can

define

a

Web

service

to

access

data

in

the

database

by

using

a

simple

Document

Access

Definition

Extension

(DADX)

file.

You

can

create

this

DADX

file,

which

is

an

XML

file,

by

using

a

simple

text

editor,

or

by

using

the

WebSphere®

Studio

Application

Developer

and

the

wizards

available

from

WebSphere

Studio.

The

DADX

file

drives

the

Web

services

run-time

environment,

which

includes

various

database

management

tools

and

the

Web

Object

Runtime

Framework

(WORF).

The

WORF

runtime

environment

provides

a

simple

mapping

of

XML

schema

to

SQL

data

types.

The

DADX

file

can

contain

standard

SQL

statements,

such

as

SELECT,

INSERT,

UPDATE,

DELETE,

and

CALL

statements

to

query

and

update

a

database

and

call

stored

procedures.

If

you

want

to

process

SQL

statements

at

runtime,

then

you

must

enable

the

dynamic

query

service

(DQS)

that

is

provided

by

WORF

by

using

a

DADX

file

that

includes

only

the

<DQS⁄>

tag.

If

you

do

not

use

the

WORF

runtime

environment,

you

need

to

write

your

own

program

to

handle

the

details

of

creating

the

Web

service,

such

as

developing

your

own

WSDL.

Some

of

the

functions

that

WORF

provides

include

the

following:

v

Analyzing

the

Web

service

request

v

Connecting

to

the

database

v

Executing

the

SQL

request

v

Encoding

the

output

message

from

the

SQL

results

v

Returning

the

message

back

to

the

client

The

DADX

file

can

also

contain

DB2

XML

Extender

elements,

such

as

Document

Access

Definition

(DAD)

file

references,

XML

collection

operations

to

generate

and

store

XML

documents,

or

user-defined

types

(UDT),

and

user-defined

functions

(UDF).

The

DAD

file

defines

a

mapping

between

XML

and

relational

data.

DB2

XML

Extender

allows

XML

documents

to

be

stored

intact,

and

optionally

indexed

in

side

tables.

DB2

XML

Extender

does

this

by

using

the

XML

column

access

method,

or

as

a

collection

of

relational

tables

by

using

the

XML

collection

access

method.

WORF

is

available

with

IBM®

DB2

Information

Integrator,

as

well

as

DB2

Universal

Database™

Version

8

and

WebSphere

Studio

Version

5.

WORF

also

works

with

Informix®.

Related

concepts:

v

“Web

services

provider

features”

on

page

30

v

“Definition

of

a

DADX

file”

on

page

29

v

“Overview

of

the

Web

services

process”

on

page

32

Security

in

DADX

Web

services

You

can

secure

Web

services

by

using

the

security

mechanisms

of

your

application

server.

The

mechanisms

discussed

here

are

authentication,

encryption,

and

securing

the

database

user

ID.

Authentication

26

Application

Developer’s

Guide

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|
|

You

can

secure

the

DADX

Web

service

endpoints

by

enabling

authentication.

When

you

enable

authentication,

you

ensure

that

only

those

people

who

are

authenticated

can

call

your

Web

service.

Access

control

in

Java™

2

Enterprise

Edition

(J2EE)

is

specified

by

the

URL.

Each

DADX

Web

service

uses

URLs

for

different

parts

of

the

Web

service,

such

as

the

endpoint

and

during

the

generation

of

the

actual

WSDL,

and

in

the

test

page.

For

each

URL

that

DADX

uses,

you

can

specify

which

roles

(and

as

part

of

that

definition

you

can

specify

which

users)

are

allowed

to

access

that

URL.

The

process

of

setting

authorizations

for

authenticated

users

of

Web

services

is

similar

to

granting

SELECT

privileges

on

a

DB2®

Universal

Database

table.

The

following

list

shows

examples

of

URLs

and

URL

patterns

that

you

can

use

to

protect

Web

services,

specific

operations,

or

services

provided

by

WORF

:

v

Enable

access

control

for

all

URLs

of

a

DADX,

the

test

pages,

and

the

WSDL

generation

by

using

the

following

URL:

http://hostname:port/myContext/myGroup/myDadx.dadx/*

v

Enable

access

control

for

only

the

test

page

by

using

the

following

URL:

http://hostname:port/myContext/myGroup/myDadx.dadx/TEST

v

Enable

access

control

for

all

of

the

DADX

Web

services

in

a

group

by

using

the

following

URL:

http://hostname:port/myContext/myGroup/*

You

can

define

security

constraints

in

the

Application

Server

Toolkit

or

Application

Assembly

tool

of

WebSphere®

Application

Server

Version

5.

You

can

also

define

security

constraints

in

the

Web

perspective

of

WebSphere

Studio

Application

Developer

Version

5.

The

constraints

that

you

define

can

include

role

names,

so

that

anyone

with

that

particular

role

name

can

access

the

Web

area.

Encryption

You

can

secure

the

DADX

Web

services

by

encrypting

messages

through

HTTPS.

Encryption

ensures

that

nobody

can

read

the

messages

that

are

exchanged

between

the

Web

service

client

and

the

Web

service

provider.

See

the

documentation

that

is

part

of

your

application

server

to

determine

how

to

enable

HTTPS.

Database

security

In

WebSphere

Application

Server

Version

5,

you

can

specify

the

database

user

ID

on

the

application

server

for

a

JNDI

data

source.

In

the

group.properties

file,

you

can

refer

to

that

JNDI

data

source

so

that

the

DB2

Web

service

provider

uses

the

user

ID

that

you

specify

in

WebSphere.

Your

database

user

password

is

encrypted

on

the

application

server.

For

more

information

on

authentication,

encryption

and

data

source

authentication,

see

the

information

related

to

your

particular

application

server.

Also

see

the

following

WebSphere

documentation

for

specific

information

on

security:

v

IBM

WebSphere

Application

Server,

Version

5:

Security

v

IBM

WebSphere

V5.0

Security

WebSphere

Handbook

Series

Related

concepts:

v

“WebSphere

Studio”

in

the

Application

Development

Guide:

Programming

Client

Applications

Chapter

2.

Developing

Web

services

27

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|

|

|

|
|

Related

tasks:

v

“Preparing

and

creating

the

Web

archive

file”

on

page

136

v

“Customizing

the

group.properties

file”

on

page

64

Related

reference:

v

Appendix

E,

“Web

services

command

reference,”

on

page

263

v

Appendix

D,

“Web

services

encoding

algorithm,”

on

page

261

Using

Web

services

provider

with

iSeries

Web

services

are

sets

of

business

functions

that

applications

or

other

Web

services

can

invoke

programmatically

over

the

Internet.

One

use

for

Web

services

is

the

enabling

of

remote

access

to

DB2®

Universal

Database

information.

Web

services

include

a

set

of

application

functions

that

perform

some

useful

service

on

the

behalf

of

a

requester

such

as

informational

or

transactional

functions.

Web

services

perform

functions,

which

can

be

anything

from

simple

requests

to

complicated

business

processes.

The

requester

generally

only

needs

to

know

the

application

programming

interfaces

(APIs)

to

the

Web

service.

In

addition,

the

Web

service

can

usually

change

without

affecting

the

requester.

Web

services

promote

interoperability.

Web

services

design

the

interaction

between

a

service

provider,

and

a

service

requester

to

be

completely

independent

of

platforms

and

languages.

You

can

use

just-in-time

integration,

because

service

requesters

can

find

service

providers

dynamically.

Web

services

reduce

complexity

through

encapsulation.

Service

requesters

and

providers

are

concerned

only

with

the

interfaces

necessary

to

interact

with

each

other,

not

their

underlying

implementation.

Web

services

give

new

life

to

legacy

applications

because

you

can

cast

an

existing

application

as

a

Web

service.

The

basic

elements

of

Web

services

include

simple

object

access

protocol

(SOAP),

Universal

Description,

Discovery,

and

Integration

(UDDI),

and

Web

services

description

language

(WSDL).

Web

services

allow

you

to

collect

data

from

a

variety

of

databases

and

Internet

locations.

After

you

have

collected

the

data,

the

Web

services

consumer

can

search

and

mine

the

data

and

transform

it

with

subsets

of

the

data

warehoused

for

further

analysis.

You

can

define

a

Web

service

that

implements

standard

SQL

statements,

such

as

SELECT,

INSERT,

UPDATE,

DELETE,

and

CALL

statements.

You

can

also

define

these

Web

services

by

using

the

DB2

XML

Extender

stored

procedures.

DB2

XML

Extender

uses

an

XML

document

format

called

Document

Access

Definition

(DAD)

to

define

the

mapping

between

XML

and

relational

data.

The

Document

Access

Definition

Extension

(DADX)

file

specifies

a

Web

service.

It

does

this

by

using

a

set

of

operations

that

are

defined

by

SQL

statements,

by

a

list

of

parameters,

and

by

DAD

file

references.

Operations

are

similar

to

programming

methods

that

you

can

invoke.

You

can

use

XML

collection

operations

to

generate

and

store

XML

documents.

You

can

use

SQL

operations

to

query

and

update

the

database

and

call

stored

procedures.

You

can

access

DB2

Universal

Database™

stored

procedures

and

data

from

a

Web

service

by

using

available

database

management

tools

and

the

Web

Object

Runtime

Framework

(WORF).

These

tools

allow

you

to

invoke

stored

procedures

and

SQL

statements

as

Web

service

operations,

in

addition

to

specifying

storage

and

retrieval

operations

on

XML

data.

WORF

provides

simple

mapping

of

XML

schema

to

SQL

data

types.

28

Application

Developer’s

Guide

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

When

using

stored

procedures,

you

must

authorize

the

*PGM

object

that

is

created

for

each

CREATE

PROCEDURE

statement.

When

you

use

Java™

stored

procedures,

you

should

authorize

the

user

(or

*PUBLIC)

to

the

Java

class

file.

When

you

use

Java

stored

procedures,

store

all

of

the

class

files

in

the

following

directory:

/QIBM/UserData/OS400/SQLLib/Function

Make

sure

that

Spserver.class

is

in

this

directory.

The

stored

procedure

SAMPLE.TESTRS

is

the

only

stored

procedure

that

is

an

SQL

stored

procedure.

It

has

no

dependency

on

the

Java

class.

To

define

the

sample

stored

procedures

and

catalog

them

in

DB2

Universal

Database,

use

the

following

steps:

1.

>qsh

2.

>cd

/QIBM/UserData/WebASAEs4/worf/

installedApps/servicesApp.ear/services.war/WEB-INF/

classes/groups/dxx_sample

where

WebASAEs4

is

the

version

of

WebSphere®,

and

worf

is

the

name

of

the

WebSphere

instance.

3.

>db2

-f

Spcreate.db2

To

remove

the

stored

procedure

definitions,

execute

the

following

command:

>db2

-f

Spdrop.db2

WORF

is

available

as

part

of

IBM®

DB2

Information

Integrator.

It

is

also

available

with

DB2

Universal

Database

Version

8

and

WebSphere

Studio

Version

4

and

Version

5.

When

delivered

with

WebSphere

Studio,

you

can

use

the

tools

to

automate

the

building

of

DADX

Web

services.

These

tools

include

a

wizard

to

create

DADX

files

that

are

based

on

SQL

statements

or

DAD

files.

It

also

includes

tools

to

create

DAD

files.

WORF

also

works

with

Informix®.

You

can

use

DB2

XML

Extender

to

implement

Web

services

by

using

the

WORF

runtime

environment

with

DB2.

DB2

XML

Extender

consists

of

stored

procedures,

user-defined

types

(UDT),

and

user-defined

functions

(UDF).

You

can

use

these

features

to

store

and

retrieve

XML

data

by

using

DB2.

DB2

XML

Extender

allows

XML

documents

to

be

stored

intact,

and

optionally

indexed

in

side

tables.

It

does

this

by

using

the

XML

column

access

method,

or

as

a

collection

of

relational

tables

by

using

the

XML

collection

access

method.

DB2

XML

Extender

uses

an

XML

document

format

called

Document

Access

Definition

(DAD)

to

define

the

mapping

between

XML

and

relational

data.

Related

concepts:

v

“Overview

of

the

Web

services

process”

on

page

32

Related

tasks:

v

“Defining

the

web.xml

and

group.properties

files

in

the

iSeries

platform”

on

page

62

v

“Installing

and

deploying

the

WORF

examples

in

iSeries”

on

page

54

v

“Installing

the

Web

services

provider

software

requirements

on

iSeries”

on

page

37

Definition

of

a

DADX

file

A

document

access

definition

extension

(DADX)

file

specifies

how

to

create

a

Web

service.

A

Web

service

is

a

function

that

you

invoke

over

the

Web.

You

can

create

Chapter

2.

Developing

Web

services

29

|
|

the

Web

service

by

using

a

set

of

operations

that

are

defined

by

SQL

statements,

stored

procedure

calls,

or

DAD

files.

Web

services

store

Extensible

Markup

Language

(XML)

documents

or

retrieve

XML

documents,

including

some

that

are

managed

by

DB2®

XML

Extender.

Web

services

that

are

specified

in

a

DADX

file

are

called

DADX

Web

services,

or

IBM®

DB2

Information

Integrator

Web

services.

WORF

provides

the

run-time

support

for

invoking

DADX

documents

as

Web

services.

These

Web

services

use

the

Apache

Simple

Object

Access

Protocol

(SOAP)

(Version

2.3

or

later)

engine,

or

the

Apache

Axis

engine

(Version

1.2).

Both

of

these

SOAP

engines

are

supported

by

WebSphere®

Application

Server

and

Apache

Jakarta

Tomcat.

The

contents

of

the

DADX

file

determine

if

the

Web

service

will

use

a

set

of

predetermined

SQL

operations

or

dynamic

SQL

operations.

If

the

DADX

file

contains

a

dynamic

query

services

tag

(<DQS⁄>),

then

you

can

specify

the

SQL

operations

from

a

browser

or

embed

the

operations

in

an

application

if

you

installed

the

WORF

test

Web

application.

You

can

create

DADX

documents

by

using

a

simple

text

editor,

or

with

tools

that

are

provided

in

WebSphere

Studio

with

only

minimal

knowledge

of

XML

or

SQL.

Related

concepts:

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

v

“Dynamic

database

queries

that

use

the

Web

services

provider”

on

page

90

Related

reference:

v

“A

simple

DADX

file”

on

page

75

Web

services

provider

features

WORF

provides

the

following

features:

v

“Resource-based

deployment”

v

Automatic

service

redeployment,

at

development

time,

when

defining

resource

changes

v

Hypertext

Transfer

Protocol

(HTTP)

GET

and

POST

bindings,

in

addition

to

SOAP

v

WSDL

and

XSD

file

generation,

including

support

for

UDDI

best

practices,

which

represents

industry

standards

v

Documentation

and

test

page

generation

v

Generation

of

the

Web

service

inspection

language

(WSIL)

page

in

HTML

and

XML

format

A

key

feature

of

WORF

is

that

it

supports

resource-based

deployment

of

Web

services.

Resource

files,

such

as

DADX

files,

describe

the

Web

services

to

WORF,

so

that

WORF

can

generate

the

appropriate

Web

services

from

these

files.

When

you

request

the

resource

file,

WORF

loads

the

file

and

makes

it

available

as

a

Web

service.

If

you

edit

the

resource

file

and

request

it

again,

WORF

detects

the

change

and

loads

the

new

version

automatically.

This

process

of

automatically

reloading

the

resource

file

makes

Web

service

development

more

productive.

You

can

create

your

own

resource

files.

The

resource

files

must

conform

to

specific

syntax

and

semantic

rules.

The

resource

files

can

make

references

to

each

other

(for

30

Application

Developer’s

Guide

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|

|
|

example,

a

DADX

file

can

contain

references

to

DAD

files).

These

references

must

be

correct

so

that

you

can

deploy

the

Web

services

properly.

In

addition

to

specifying

storage

and

retrieval

operations

on

Extensible

Markup

Language

(XML)

data,

WORF

allows

stored

procedures

and

SQL

statements

to

be

exposed

as

invokable

Web

service

operations.

You

can

expose

any

database

stored

procedure.

WORF

assumes

that

your

stored

procedure

result

sets

have

fixed

metadata.

Fixed

metadata

refers

to

data

with

a

fixed

number

and

a

fixed

shape,

which

implies

a

certain

number

of

columns,

with

certain

column

names

and

data

types.

The

operation

signature

includes

the

input

and

output

parameters.

You

can

execute

stored

procedures

when

you

use

dynamic

query

services

(DQS)

provided

by

WORF,

with

no

fixed

set

of

metadata

or

result

sets

that

are

required

You

can

also

specify

SQL

statements

to

select,

insert,

update

and

delete

data.

And,

WORF

provides

simple

mapping

of

Extensible

Markup

Language

(XML)

schema

to

SQL

data

types.

These

particular

features

do

not

require

the

XML

Extender.

Related

concepts:

v

“WSDL

from

a

DADX

file”

on

page

87

v

“Accessing

the

Web

service

with

GET,

POST,

and

SOAP

bindings”

on

page

111

v

“Web

services

automatic

reloading”

on

page

127

v

“Web

services

documentation”

on

page

126

v

“Web

services

that

exist

from

Web

services

provider”

on

page

120

Related

reference:

v

“Syntax

of

the

DADX

file”

on

page

67

Web

service

provider

operations

used

with

DADX

files

DADX

files

support

three

kinds

of

Web

service

operations:

non-dynamic

SQL

operations,

dynamic

SQL

operations,

and

XML

collection

operations.

SQL-based

querying

is

the

ability

to

send

SQL

statements,

including

stored

procedure

calls,

to

DB2®

and

to

return

results

with

a

default

tagging.

Your

application

returns

the

data

by

using

only

a

simple

mapping

of

SQL

data

types,

using

column

names

as

elements.

SQL

operations:

non-dynamic

The

SQL

operations

can

be

non-dynamic.

Non-dynamic

operations

are

those

that

are

predefined

within

the

DADX

file.

There

are

three

elements

that

make

up

the

predefined

SQL

operations

type:

<query>

Queries

the

database

<update>

Inserts

into

a

database,

deletes

from

a

database,

or

updates

a

database

<call>

Calls

stored

procedures

that

can

return

0

or

more

result

sets

SQL

operations:

dynamic

The

SQL

operations

can

be

dynamic

operations,

depending

on

the

content

of

the

DADX

file.

Dynamic

operations

are

those

that

are

generated

in

a

SOAP

message

with

no

predefined

SQL

operations.

The

following

elements

are

dynamic

operations:

<getTables>

Retrieves

a

description

of

available

tables.

Chapter

2.

Developing

Web

services

31

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

||

|
|
|
|
|

|
|

<getColumns>

Retrieves

a

description

of

columns.

<executeQuery>

Issues

a

single

SQL

statement.

<executeUpdate>

Issues

a

single

INSERT,

UPDATE,

DELETE.

<executeCall>

Calls

a

single

stored

procedure.

<execute>

Issues

a

single

SQL

statement.

Extensible

Markup

Language

(XML)

collection

operations

(requires

DB2

XML

Extender)

These

storage

and

retrieval

operations

help

you

to

map

XML

document

structures

to

DB2

Universal

Database™

tables.

You

can

either

compose

XML

documents

from

existing

DB2

data,

or

decompose

(storing

untagged

elements

or

attribute

content)

XML

documents

into

DB2

data.

This

method

is

useful

for

data

interchange

applications,

particularly

when

the

application

frequently

updates

the

contents

of

XML

documents.

There

are

two

elements

that

make

up

the

XML

collection

operation

type:

<retrieveXML>

Generates

XML

documents

<storeXML>

Stores

XML

documents

The

DAD

file

provides

fine-grained

control

over

the

mapping

of

XML

documents

to

a

DB2

database

for

both

storage

and

retrieval.

Related

concepts:

v

“Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF”

on

page

25

v

“Testing

Web

services

applications

–

a

scenario”

on

page

109

v

“Dynamic

database

queries

that

use

the

Web

services

provider”

on

page

90

Related

reference:

v

“DADX

operation

examples”

on

page

80

v

“Dynamic

query

service

operations

in

the

Web

services

provider”

on

page

99

Overview

of

the

Web

services

process

The

following

is

an

overview

of

the

steps

that

are

needed

to

make

DB2®

Universal

Database

a

Web

services

provider.

The

Web

application

developer

creates

the

following

general

hierarchy

with

the

steps:

Web

application

—>

group

—>

DADX

file

(the

Web

service)

—>

the

SQL

operations

If

you

use

enterprise

archive

files,

then

the

general

hierarchy

is:

Enterprise

application

—>

Web

application

—>

group

—>

DADX

file

(the

Web

service)

—>

the

SQL

operations

1.

The

database

administrator

sets

up

the

databases.

2.

The

database

administrator

optionally

enables

the

databases

for

DB2

XML

Extender.

The

retrieveXML

and

storeXML

operations

require

DB2

XML

32

Application

Developer’s

Guide

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|

|
|
|

|
|

Extender.

Using

the

XML

column

also

requires

the

DB2

XML

Extender.

See

the

administration

chapters

of

DB2

XML

Extender

Administration

and

Programming

to

learn

how

to

enable

the

databases

for

XML

Extender.

3.

A

Web

application

developer

creates

an

enterprise

archive

or

Web

archive

(EAR

or

WAR)

file.

When

the

EAR

or

WAR

file

is

deployed,

it

becomes

a

folder

containing

the

Web

application

where

he

can

do

further

modifications.

The

EAR

file

is

an

enterprise

application

that

is

described

in

the

Java™

2

Enterprise

Edition

specification

(J2EE).

WAR

files

are

also

described

in

the

J2EE

specification.

The

Web

application

folder

is

on

a

server

that

is

a

collection

of

related

files

and

tools.

Web

applications

include

the

interfaces,

program

flow,

program

logic,

and

data

access

information

to

create

an

infrastructure

for

doing

business

over

the

Internet.

See

the

following

documentation

to

learn

more:

v

WebSphere®

Application

Server

Advanced

Edition

Version

5

documentation

You

can

create

WAR

or

EAR

files

on

WebSphere

Application

Server.

v

Apache

Jakarta

Tomcat

documentation

You

can

create

only

WAR

files

on

Tomcat.
4.

The

Web

application

developer

then

creates

a

group

and

a

group.properties

file

for

that

group.

The

group.properties

file

contains

information

about

the

database

connection

and

other

related

information

used

by

WORF.

A

group

is

a

number

of

Web

services

operations

that

access

a

database.

You

can

have

one

group

for

each

database

or

even

multiple

groups

for

the

same

database,

and

within

that

group,

you

can

define

one

or

more

DADX

files.

The

DADX

file,

which

specifically

defines

the

Web

service

contains

the

operations

that

execute

the

Web

service.

See

Defining

the

web.xml

and

group.properties

files

for

more

information

on

group

properties.

5.

The

database

developer

optionally

creates

the

DAD

to

map

XML

and

relational

data

conversion

(required

when

you

use

XML

Extender

stored

procedures).

6.

The

Web

services

developer

creates

the

DADX

document.

The

content

of

the

DADX

file

determines

if

you

can

use

dynamic

queries

in

your

Web

application.

A

DADX

file

with

a

dynamic

query

services

tag

(</DQS>)

contains

only

that

tag

which

acts

as

a

switch

to

enable

dynamic

queries.

A

non-dynamic

DADX

file

defines

a

set

of

operations

and

contains

information

that

is

used

to

create

the

Web

service.

See

Syntax

of

the

DADX

file

for

more

information

on

the

rules

for

creating

DADX

files.

7.

Optional:

When

you

use

the

WebSphere

Application

Server

configuration

manager

for

Windows®

or

UNIX®,

the

Web

service

developer

creates

and

deploys

a

deployment

descriptor

for

the

Web

service.

A

deployment

descriptor

is

either

an

isd

file

(used

with

the

Apache

SOAP

engine)

or

a

deploy.wsdd

file

(used

with

the

Apache

Axis

engine),

that

identifies

configuration

and

deployment

information.

On

the

Apache

Axis

engine,

deployment

descriptors

are

created

automatically

by

WORF.

Each

Web

service

that

uses

Apache

SOAP

can

contain

one

*.isd

file.

A

Web

application

can

contain

multiple

Web

services.

Copy

all

the

isd

or

wsdd

files

into

the

dds.xml

file.

(This

step

is

automatic

for

users

of

Apache

Jakarta

Tomcat).

See

Generating

deployment

descriptors

for

more

information

on

deployment

descriptors.

8.

You

can

verify

the

Web

service

by

using

the

DADX

test

page

that

is

available

if

you

deploy

the

WORF

examples

that

are

shipped

with

IBM®

DB2

Information

Integrator.

You

can

copy

the

Java

Server

Pages

from

the

WORF

directory

in

the

apache-services.war

file

or

the

axis-services.war

file

to

test

some

of

the

WORF

functionality

in

your

application.

Keep

in

mind

that

in

some

environments,

these

tasks

might

be

performed

by

a

single

individual.

Chapter

2.

Developing

Web

services

33

|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://jakarta.apache.org/tomcat/

Related

concepts:

v

“Dynamic

database

queries

that

use

the

Web

services

provider”

on

page

90

v

“Defining

a

group

of

Web

services”

on

page

58

Related

tasks:

v

“Deploying

a

federated

application”

on

page

181

v

“Generating

deployment

descriptors”

on

page

133

v

“Defining

the

web.xml

and

group.properties

files”

on

page

59

v

“Deploying

WORF

examples

on

WebSphere

Application

Server

Version

4.0.4

for

z/OS

or

OS/390”

on

page

44

v

“Deploying

WORF

examples

on

WebSphere

Application

Server

Version

5.1

or

later

for

Windows

and

UNIX”

on

page

41

Related

reference:

v

“Syntax

of

the

DADX

file”

on

page

67

Installing

and

configuring

the

Web

services

provider

Determine

the

capacity

of

your

system

and

plan

for

the

software

that

needs

to

be

installed

for

your

application

programming

interfaces

and

web

service

applications.

Web

services

provider

software

requirements

for

UNIX

and

Windows

You

set

up

Web

services

object

runtime

framework

(WORF),

or

the

Web

services

provider,

on

any

of

the

following

operating

systems:

v

Windows

NT®

v

Windows

2000®

v

Linux

v

AIX®

v

Solaris

Operating

Environment

In

addition

to

being

packaged

with

IBM

DB2

Information

Integrator,

WORF

is

also

part

of

DB2

Universal

Database

Extended

Server

Edition,

Version

8,

and

WebSphere

Studio

Version

5.

WORF

is

in

the

following

path

in

DB2

Universal

Database

Version

8:

<DB2

UDB

installed

location>\samples\java\Websphere\dxxworf.zip.

You

can

use

the

following

database

environments:

v

IBM

DB2

Universal

Database™

Version

8

or

later

http://www.ibm.com/software/data/db2.

This

includes

DB2

XML

Extender.

v

Informix

Dynamic

Server

(IDS)

Version

9.3

Additionally,

use

the

following

software

(depending

on

the

server

that

you

use,

most

of

this

software

might

already

be

part

of

your

environment):

v

Java™

Java

Development

Kit

(JDK)

Version

1.2

or

1.3

(http://java.sun.com,

or

http://www.ibm.com/java)

v

One

of

the

following

Web

servers

34

Application

Developer’s

Guide

|
|
|
|
|

|
|

|
|

|

http://www.ibm.com/software/data/db2/
http://java.sun.com/
http://www.ibm.com/software/data/db2/udb/ad/v8/java/

–

WebSphere

Application

Server

Advanced

Edition

Version

5,

(http://www.ibm.com/software/webservers/appserv/)

–

Apache

Web

server:

-

Apache

Jakarta

Tomcat

Version

3.3.1

through

4.0.3

or

later

(http://www.apache.org/)

v

Apache

Jakarta

Tomcat

Version

4

standard

comes

with

the

appropriate

Xerces

v

For

Apache

Jakarta

Tomcat

versions

earlier

than

Version

4,

you

must

add

the

Xerces

parser

to

your

CLASSPATH

to

use

it

as

the

XML

parser
–

Apache

SOAP

2.3

or

later

binary,

or

Apache

Axis

1.2

(http://xml.apache.org/

(requires

Document

Object

Model,

level

2

(DOM

2),

which

is

supported

by

Xerces

Java

1.4.4

or

later.)

–

Xerces

Java

parser

Version

1.4.4

(http://xml.apache.org/)

–

JavaMail

Version

1.2

(http://java.sun.com/)

–

JavaBeans™

Activation

Framework

Version

1.0.1

(http://java.sun.com/).

Apache

SOAP

requires

JavaBeans

Activation

Framework

Version.

–

j2ee.jar,

version

1.3

or

later

(http://java.sun.com/)

–

qname.jar

(http://java.sun.com/)

–

wsdl4j.jar.

You

can

download

this

file

from

http://oss.software.ibm.com/developerworks/projects/wsdl4j

Related

concepts:

v

“Definition

of

a

DADX

file”

on

page

29

Related

tasks:

v

“Installing

and

deploying

the

WORF

examples

on

Apache

Jakarta

Tomcat”

on

page

52

v

“Installing

the

Web

services

provider

software

requirements”

on

page

36

Web

services

provider

software

requirements

for

OS/390

and

z/OS

You

can

set

up

the

Web

services

provider

(Web

object

runtime

framework)

in

any

of

the

following

operating

systems:

v

OS/390

Version

2.8

or

later

v

z/OS

Version

1.1

or

later

You

can

use

the

following

database

environments:

v

IBM

DB2

Universal

Database

for

OS/390

Version

7

or

DB2

Universal

Database

for

z/OS

(http://www.ibm.com/software/data/db2/os390)

v

IBM

DB2

XML

Extender

for

OS/390

Version

7

or

later

(http://www.ibm.com/software/data/db2/extenders/xmlext/index.html).

Required

for

store

and

retrieve

operations

Additionally,

use

the

following

software:

v

WebSphere

Application

Server

Version

4.01

Service

Level

W401505

or

later

v

JavaMail

Version

1.2

(http://java.sun.com/)

v

JavaBeans

Activation

Framework

Version

1.0.1(http://java.sun.com/)

v

j2ee.jar,

version

1.3

or

later

(http://java.sun.com/)

v

qname.jar

(http://java.sun.com/)

Chapter

2.

Developing

Web

services

35

|
|

|

|
|

|
|

|
|

|
|
|

|

|

|
|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|
|
|

|

|

|

|

|

|

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.apache.org/
http://xml.apache.org/
http://xml.apache.org/
http://xml.apache.org/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://oss.software.ibm.com/developerworks/projects/wsdl4j
http://www.ibm.com/software/data/db2/os390/library.html
http://www.ibm.com/software/data/db2/extenders/xmlext/index.html
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/

v

IBM

XML

Toolkit

for

z/OS

and

OS/390

Version

1.4

with

program

temporary

fix

(PTF)

UW95866

(http://www.ibm.com/servers/eserver/zseries/software/xml/)

v

wsdl4j.jar.

You

can

download

this

file

from

http://oss.software.ibm.com/developerworks/projects/wsdl4j.

Related

tasks:

v

“Testing

the

Web

service”

on

page

109

v

“Deploying

WORF

examples

on

WebSphere

Application

Server

Version

4.0.4

for

z/OS

or

OS/390”

on

page

44

Configuring

the

Web

services

provider

for

WebSphere

Application

Server

on

UNIX,

Windows,

z/OS,

and

OS/390

You

can

run

Web

services

on

WebSphere®

Application

Server

Advanced

Edition.

Web

services

object

runtime

framework

(WORF)

provides

the

run-time

support

for

invoking

document

access

definition

extension

(DADX)

documents

as

Web

services

over

Hypertext

Transfer

Protocol

(HTTP)

with

Apache

SOAP

2.3

(or

later)

or

Apache

Axis

1.2

(or

later).

WebSphere

Application

Server

5

or

higher,

and

other

servlet

engines

support

this.

WebSphere

lets

you

secure

your

SOAP

Web

services.

See

the

WebSphere

documentation

on

securing

SOAP

services

for

more

information.

The

following

sections

describe

the

Web

services.

Installing

the

Web

services

provider

software

requirements

Prerequisites:

Ensure

that

you

have

the

required

software

installed.

See

Web

services

provider

software

requirements

for

UNIX

and

Windows

to

verify

your

installation

in

Windows

and

UNIX.

You

need

the

DB2®

XML

Extender

for

advanced

mapping

control

between

XML

and

relational

data.

Verify

the

DB2

UDB

installation

by

creating

the

DB2

UDB

SAMPLE

database,

if

it

is

not

already

created.

The

Web

services

requires

Java

Database

Connectivity

(JDBC)

2.0,

which

is

the

default

in

DB2

Universal

Database

Version

8.

See

Web

services

provider

software

requirements

for

OS/390

and

z/OS

to

verify

your

z/OS

installation.

Procedure:

The

procedures

to

prepare

the

Web

services

environment

in

UNIX

and

Windows

are

as

follows:

1.

Stop

any

services

that

use

DB2

Universal

Database

(such

as

WebSphere

Application

Server)

2.

Stop

DB2.

3.

For

DB2

Universal

Database

versions

earlier

than

Version

8,

select

Java

Database

Connectivity

(JDBC)

2.0.

Run

the

C:\SQLLIB\java12\usejdbc2.bat

file,

assuming

that

you

installed

DB2

in

C:\SQLLIB\

when

using

a

Windows

environment.

4.

Restart

DB2.

5.

Start

WebSphere

Application

Server

Advanced

Edition

5.1

from

its

install

directory.

These

instructions

assume

that

you

installed

WebSphere

Application

Server

in

a

Windows

environment

in

C:\WebSphere\Appserver.

36

Application

Developer’s

Guide

|
|

|
|
|
|
|

|
|
|

http://oss.software.ibm.com/developerworks/projects/wsdl4j

The

procedures

to

prepare

the

Web

services

environment

on

OS/390

or

z/OS

are

as

follows:

1.

Create

a

new

directory

to

store

application

extensions,

if

one

does

not

already

exist

2.

Set

the

APP_EXT_DIR

environment

variable

in

your

designated

J2EE

server

instance

to

this

application

extensions

directory

3.

Add

the

following

JAR

files

to

the

application

extensions

directory:

xerces.jar

This

file

is

in

the

IBM

XML

Toolkit

for

z/OS

which

you

can

download

from

http://www.ibm.com/servers/eserver/zseries/software/xml/.

mail.jar

This

file

is

in

JavaMail

activation.jar

This

file

is

in

the

Java

Beans

Activation

Framework

j2ee.jar

You

can

download

this

file

from

http://java.sun.com/products

qname.jar

You

can

download

this

file

from

http://java.sun.com/products

wsdl4j.jar

You

can

download

this

file

from

http://oss.software.ibm.com/developerworks/projects/wsdl4j.
4.

Verify

the

configuration

of

the

J2EE

server

instance

with

the

following

steps:

v

Ensure

that

the

soap.jar

included

with

WebSphere

Application

Server

is

part

of

your

CLASSPATH

v

Add

to

the

jvm.properties

file

of

the

J2EE

server

instance

the

following

settings:

com.ibm.ws390.server.classloadermode=2

com.ibm.ws.classloader.ejbDelegationMode=false

5.

Restart

the

J2EE

server.

Related

tasks:

v

“Web

services

provider

software

requirements

for

OS/390

and

z/OS”

on

page

35

v

“Installing

or

migrating

WORF

on

Apache

Jakarta

Tomcat”

on

page

51

v

“Installing

or

migrating

WORF

to

work

with

WebSphere

Application

Server

Version

5

or

later

for

Windows

and

UNIX”

on

page

39

Related

reference:

v

“Web

services

provider

software

requirements

for

UNIX

and

Windows”

on

page

34

Installing

the

Web

services

provider

software

requirements

on

iSeries

Prerequisites:

Ensure

that

you

have

the

required

software

installed.

Create

the

SAMPLE

database

from

interactive

SQL

with

the

following

command:

CALL

QSYS/CREATE_SQL_SAMPLE(’SAMPLE’)

Chapter

2.

Developing

Web

services

37

|
|

|
|

|

http://java.sun.com/
http://java.sun.com/
http://oss.software.ibm.com/developerworks/projects/wsdl4j

You

need

the

DB2

XML

Extender

for

advanced

mapping

control

between

XML

and

relational

data.

To

use

DB2

Universal

Database

XML

Extenders,

make

sure

that

you

install

the

product.

You

can

verify

that

you

have

DB2

Universal

Database

XML

Extenders

on

your

system

by

issuing

the

CL

command,

GO

LICPGM.

For

DB2

for

iSeries,

V5R2,

if

you

have

DB2

Universal

Database

XML

Extenders,

the

following

entries

display

as

a

result

of

the

GO

LICPGM

command:

v

5722DE1

*COMPATIBLE

DB2

UDB

Extenders

v

5722DE1

*COMPATIBLE

DB2

UDB

Text

Extender

v

5722DE1

*COMPATIBLE

DB2

UDB

XML

Extender

v

5722DE1

*COMPATIBLE

Text

Search

Engine

Enable

DB2

Universal

Database

XML

extenders

with

the

following

CL

command:

CALL

PGM(QDBXM/QZXMADM)

PARM(enable_db

LOCALRDB).

LOCALRDB

is

the

*LOCAL

database

name

in

the

relational

database

directory.

To

work

with

the

relational

database

entries,

issue

the

following

CL

command:

WRKRDBDIRE.

If

you

use

the

document

type

definitions

(DTDs)

that

are

in

the

sample

files,

execute

the

script

setup-dxx.cmd.

WORF

requires

Java

Database

Connectivity

(JDBC)

2.0,

which

is

the

default

in

DB2

Universal

Database

Version

8.

Procedure:

The

procedures

to

prepare

the

WORF

environment

are

as

follows:

1.

Stop

any

services

that

use

DB2

(such

as

WebSphere

Application

Server)

2.

For

DB2

Universal

Database

versions

earlier

than

Version

8,

select

Java

Database

Connectivity

(JDBC)

2.0.

Run

the

C:\SQLLIB\java12\usejdbc2.bat

file,

assuming

that

you

installed

DB2

in

C:\SQLLIB\

when

using

a

Windows

environment.

3.

Start

WebSphere

Application

Server

Advanced

Edition

4.01

or

5.0,

assuming

that

you

installed

WebSphere

Application

Server

in

C:\WebSphere\Appserver.

Related

concepts:

v

“Using

Web

services

provider

with

iSeries”

on

page

28

Related

tasks:

v

“Installing

the

Web

services

provider

software

requirements

for

Apache

Jakarta

Tomcat

on

iSeries”

on

page

53

v

“Defining

the

web.xml

and

group.properties

files

in

the

iSeries

platform”

on

page

62

v

“Installing

and

deploying

the

WORF

examples

in

iSeries”

on

page

54

DTD

definitions

for

XML

Extender

Ensure

that

the

database

administrator

has

set

up

any

databases

or

subsystems

required

for

the

application,

and

enables

them

for

use

by

DB2

XML

Extender

(if

you

use

XML

Extender).

The

following

table

lists

the

default

locations

that

the

XML

Extender

samples

reference.

Table

3.

XML

Extender

samples

reference

the

following

document

type

definitions

(DTDs)

Platform

Default

location

of

DTDs

DB2

UDB

Version

7.2

FixPak

7

or

later

Windows

c:\dxx\samples\dtd\

getstart.dtd

c:\dxx\dtd\dad.dtd

38

Application

Developer’s

Guide

||

||

|
|
|
|

|

Table

3.

XML

Extender

samples

reference

the

following

document

type

definitions

(DTDs)

(continued)

Platform

Default

location

of

DTDs

DB2

UDB

Version

8

Windows

c:\<DB2

UDB

installed

location>\samples\

db2xml\dtd\getstart.dtd

c:\<DB2

UDB

installed

location>\samples\

db2xml\dtd\dad.dtd

DB2

UDB

Version

8

on

Solaris

Operating

Environment

/opt/IBMdb2/V8.1/samples/

db2xml/dtd/dad.dtd

DB2

UDB

Version

8

on

AIX

/usr/opt/db2_08_01/

samples/db2xml/dtd/dad.dtd

DB2

UDB

Version

8

on

Linux

/usr/IBMdb2/V8.1/samples/

db2xml/dtd/dad.dtd

DB2

UDB

Version

7

on

OS/390

and

z/OS

or

DB2

UDB

Version

8

on

OS/390

and

z/OS

/u/USER/dxx/dtd/dad.dtd

The

following

is

a

list

of

some

of

the

files

that

reference

dad.dtd:

v

department.dad

v

department2.dad

v

departmentStd.dad

v

order.dad

v

order-public.dad

v

getstart.xml

v

order-10.xml

v

sales_db.nst

Related

tasks:

v

“Converting

a

document

type

definition

to

an

XML

schema”

on

page

86

Related

reference:

v

“DADX

operation

examples”

on

page

80

Installing

or

migrating

WORF

to

work

with

WebSphere

Application

Server

Version

5

or

later

for

Windows

and

UNIX

Prerequisites:

Install

WebSphere

Application

Server

on

your

work

station

in

a

path

such

as

C:\WebSphere\Appserver

(in

a

Windows

environment).

Procedure:

To

migrate

to

WORF

Version

8.2

from

an

earlier

version,

refer

to

the

Migration

summary

section.

To

install

WORF

Version

8.2,

complete

the

following

steps:

1.

Unzip

dxxworf.zip

to

a

directory,

such

as

C:\worf

so

that

the

directory

has

the

following

contents:

v

readme.html

Chapter

2.

Developing

Web

services

39

|
|

||

||
|
|

|
|
|

|
|
|
|

||
|

||
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|
|

|
|

|

v

lib\apache-services.war

and

lib\axis-services.war

-

sample

Web

applications

that

contain

Web

services

which

use

WORF.

v

lib\worf.jar

-

WORF

library.

You

install

this

on

the

class

path

of

the

servlet

engine

v

lib\worf-servlets.jar

v

schemas\

-

Extensible

Markup

Language

(XML)

schemas

for

the

DADX

and

namespace

tables

(NST)

XML

files,

including

wsdl.xsd,

db2WebRowSet.xsd,

and

dadx.xsd.

v

tools\

-

The

tools

directory

contains

the

DAD

and

DADX

checker

tools.
2.

Verify

that

the

directory

of

the

server

you

are

using

(such

as

WebSphere

Application

Server)

contains

the

appropriate

Web

services

engine

jar

files.

If

the

files

are

not

in

the

directory,

copy

the

jar

files

from

the

directory

that

contains

the

Apache

Axis

or

Apache

SOAP

files

so

that

you

can

enable

the

appropriate

Web

services

engine.

v

If

you

are

using

the

Apache

Axis

framework,

copy

axis.jar

to

c:\WebSphere\AppServer\lib.

Then,

copy

the

contents

of

axis/lib

to

c:\WebSphere\AppServer\lib

to

access

the

other

Apache

Axis

JAR

files.

v

If

you

are

using

the

Apache

SOAP

framework

copy

soap.jar

to

WebSphere\AppServer\lib.
3.

Copy

worf.jar

to

C:\WebSphere\AppServer\lib.

4.

If

your

WebSphere

server

is

a

release

earlier

than

WebSphere

5.0.2,

you

must

download

a

file

from

http://java.sun.com/xml/downloads/saaj.html,

named

saaj.jar.

Copy

saaj.jar

to

C:\WebSphere\AppServer\lib.

5.

Start

the

WebSphere

Application

Server.

6.

Open

the

Administrator’s

console

by

selecting

Start—>

Programs

—>IBM

WebSphere

—>Administrator’s

Console.

7.

Configure

WebSphere

to

run

with

your

DB2

UDB

environment:

a.

From

the

left

navigation

pane,

click

Servers

—>

Application

Servers.

b.

Find

the

name

of

your

server

in

the

right

content

pane

and

click

on

the

server

name.

c.

Click

Process

Definition

—>

Java

Virtual

Machine.

d.

On

the

Configuration

page,

specify

the

class

path

as

the

path

to

the

Java

database

information.

If

you

installed

DB2

Universal

Database

in

directory

sqllib\,

and

you

use

the

group.properties

file

that

comes

with

the

WORF

samples,

the

following

example

is

a

valid

path:

C:\SQLLIB\java\db2java.zip

e.

Click

Apply

or

OK.

f.

Save

the

configuration.
8.

Stop

the

WebSphere

Application

Server.

Migration

summary

To

migrate

to

WORF

Version

8.2

from

an

earlier

version

of

WORF:

1.

Replace

the

worf.jar

file

by

copying

the

lib\worf.jar

from

the

Version

8.2

dxxworf.zip

to

C:\WebSphere\AppServer\lib.

The

dxxworf.zip

is

located

in

the

following

path:

<DB2

UDB

installed

location>\samples\java\Websphere\dxxworf.zip.

2.

For

each

application

that

you

deployed,

replace

the

JSP

files

in

the

worf

directory

of

that

application,

with

the

files

in

the

worf

directory

of

the

apache-services.war,

or

the

axis-services.war.

Then

re-deploy

the

application.

40

Application

Developer’s

Guide

|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|
|

|
|

|

|
|
|

|

|
|

|

|

|
|

|

|
|
|
|

|

|

|

|

|

|

|
|
|
|

|
|
|

Related

concepts:

v

“Defining

a

group

of

Web

services”

on

page

58

Related

tasks:

v

“Installing

the

Web

services

provider

software

requirements”

on

page

36

Deploying

WORF

examples

on

WebSphere

Application

Server

Version

5.1

or

later

for

Windows

and

UNIX

Prerequisites:

v

Install

WebSphere

Application

Server

on

your

work

station

in

a

path

such

as

C:\WebSphere\Appserver

(on

your

Windows

environment).

v

Install

WORF.

Procedure:

To

install

and

deploy

the

WORF

examples,

complete

the

following

steps:

1.

Start

the

WebSphere

Administration

Server.

2.

Open

the

Administrator’s

console

by

selecting

Start

—>

Programs

—>

IBM

WebSphere

—>

Administrator’s

Console.

3.

Select

Applications

—>

Enterprise

Applications.

The

content

window

displays

all

of

the

enterprise

applications

that

you

installed

on

the

current

server.

4.

Install

apache-services.war

or

axis-services.war

as

an

enterprise

application

by

clicking

the

Install

push

button.

a.

From

the

Local

path

field,

click

the

Browse

push

button

to

locate

the

path

to

the

correct

services

file

that

is

included

in

the

c:\WORF\lib

directory.

WORF

ships

two

services

files

for

you

to

choose

from

when

running

the

samples.

These

files

are

apache-services.war

and

axis-services.war.

Select

the

correct

services

file

for

the

SOAP

engine

that

you

are

running.

b.

Specify

a

context

name

for

the

Web

application

in

the

Context

Root

field.

To

execute

the

examples

discussed

here,

you

must

specify

services

as

the

Context

Root

name.

Figure

4

on

page

42

shows

the

WebSphere

Application

Server

Administrator’s

Console

during

the

installation

of

the

application:

Chapter

2.

Developing

Web

services

41

|

|

|

|

|
|

|

|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

c.

Click

Next.

d.

Accept

all

of

the

other

defaults

and

click

Next

for

the

remainder

of

the

Wizard.

On

the

Map

virtual

hosts

for

web

modules

window,

select

the

.WAR

file

and

click

Next.

On

the

Map

modules

to

application

servers

window,

select

the

.WAR

file

and

click

Next.

The

configuration

options

specify

a

virtual

host

(for

example:

default_host)

and

an

application

server

(for

example:

Default

Server).

At

the

end

of

the

Wizard,

click

Finish.

e.

The

final

window

displays

the

Save

to

Configuration.

Click

Save.

5.

Verify

that

the

database

settings

are

correct

(especially

user

ID

and

password)

in

the

group.properties

files.

6.

Issue

setup.cmd

in

a

DB2

Universal

Database

command

window

in

a

Windows

environment

(the

DB2

UDB

Command

Line

Processor

window),

or

setup.sh

in

a

UNIX

environment

command

window

in

each

of

the

database

directories

to

create

the

database.

For

example,

run

setup.cmd

in

the

dxx_sales_db

directory

to

set

up

the

SALES_DB

database

that

uses

DB2

XML

Extender.

Attention:

If

you

issue

the

setup

command

in

the

dxx_sample

directory,

the

command

drops

and

then

recreates

the

SAMPLE

database.

If

you

use

the

SAMPLE

database

that

is

shipped

with

the

DB2

Universal

Database

product,

be

aware

that

you

will

lose

modifications

that

you

have

made

to

the

database.

7.

If

you

deployed

your

own

application,

copy

the

worf-servlets.jar

file

from

the

WORF

directory

to

WebSphere/AppServer/installedApps/<host>/<application

WAR

directory>/WEB-INF/lib

.

8.

Stop

the

current

server.

9.

Restart

the

server.

10.

Verify

that

services.war

is

already

running

by

selecting

Applications

—>

Enterprise

Applications.

Figure

4.

Specification

of

the

application

or

module

42

Application

Developer’s

Guide

|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|

|
|

11.

Open

a

browser

window

to

test

the

installation

by

accessing

the

Web

application

welcome

page.

The

specific

port

number

varies

according

to

the

WebSphere

Application

Server

configuration.

If

you

have

used

the

defaults,

the

services

Web

application

welcome

page

might

be

http://localhost:9080/services.

Remember

that

services

is

the

name

of

the

application

that

you

created

in

an

earlier

step.

The

page

should

look

like

the

screens

shown

in

Figure

5

and

Figure

6:

12.

Click

on

some

of

the

links

to

verify

that

the

sample

services

work.

The

test

page

consists

of

a

tree

view

of

the

operations,

an

input

view

and

a

results

view.

You

access

the

test

page

from

the

TEST

link

within

the

Welcome

Page

of

Figure

5.

WORF

sample

page

Figure

6.

Web

services

sample

page-the

test

links

Chapter

2.

Developing

Web

services

43

|
|

|
|
|
|
|
||

|
|
|

the

samples,

or

by

typing

the

following

in

your

browser:

<your-Web-
server>:9080/<context_root_name>/<group_name>/<dadx

file>/TEST.

Related

tasks:

v

“Installing

or

migrating

WORF

to

work

with

WebSphere

Application

Server

Version

5

or

later

for

Windows

and

UNIX”

on

page

39

v

“Defining

the

web.xml

and

group.properties

files”

on

page

59

Related

reference:

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

v

“Indicating

errors

and

warnings

in

the

output

text

file”

on

page

239

v

“Running

the

DADX

environment

checker”

on

page

238

Deploying

WORF

examples

on

WebSphere

Application

Server

Version

4.0.4

for

z/OS

or

OS/390

These

steps

are

for

deploying

Web

applications

for

use

in

WORF

on

the

z/OS

or

OS/390

platform.

You

can

also

verify

that

you

have

correctly

installed

and

configured

WORF

and

its

prerequisites.

Procedure:

To

install

WORF,

complete

the

following

steps:

1.

Download

and

unpax

dxxworf.pax

to

an

empty

directory,

such

as

/u/USER/worf/.

You

can

unpax

the

file

using

the

command:

pax

-rvf

dxxworf.pax

After

you

expand

the

file,

the

directory

has

the

following

contents:

v

readme.txt

v

lib/apache-services.war

and

lib/axis-services.war

-

sample

Web

applications

that

contain

Web

services

which

use

WORF.

Note:

Note:

the

commands

and

instructions

that

are

included

here

refer

to

services.war

or

services.ear.

Please

use

the

correct

SOAP

files

for

the

SOAP

engine

you

choose

to

run.

For

example,

an

example

might

refer

to

a

services.war

file,

but

if

you

installed

the

Apache

SOAP

engine,

then

the

file

is

apache-services.war.

v

lib/worf.jar

-

WORF

library.

v

lib/worf-servlets.jar

v

schemas/

-

Extensible

Markup

Language

(XML)

schemas

for

the

DADX

and

NST

XML

files

v

tools/

–

The

tools

directory

contains

the

DAD

and

DADX

checker

tools.

See

Installing

the

DADX

environment

checker

for

more

explanation.

2.

Copy

worf.jar

to

the

application

extensions

directory

of

your

J2EE

server

instance.

3.

Start

(or

restart)

the

J2EE

Server

To

install

and

deploy

the

WORF

examples,

complete

the

following

steps:

1.

Configure

the

System

Management

Scripting

application

programming

interface

(API).

For

more

information

on

configuring

the

scripting

API

on

your

OS/390

or

z/OS

system,

see

IBM

WebSphere

Application

Server

V4

for

z/OS

and

OS/390:

44

Application

Developer’s

Guide

|
|

|
|

|
|
|
|
|

Installation

and

Customization

and

IBM

WebSphere

Application

Server

V4.0.1

for

z/OS

and

OS/390:

System

Management

Scripting

API.

2.

Prepare

an

enterprise

archive

file

(EAR).

You

use

EAR

files

to

deliver

Java

2

platform

enterprise

edition

(J2EE)

applications.

They

consist

of

Web

archive

files

(WAR)

and

Java

archive

files

(JAR).

a.

In

UNIX

System

Services

(USS),

copy

the

apache-services.war

or

the

axis-services.war

to

a

temporary,

writable

directory

and

change

your

current

directory

to

that

location.

b.

Enter

the

following

command

from

the

USS

command

line

(all

on

one

line):

390fy

-op

""

-context_root

"/services"

-display_name

"ServicesApp"

services.war

The

command

creates

an

initial

EAR

file

with

the

name

services.ear

in

the

current

directory.

The

EAR

file

has

a

Context

Root

of

“/services”

and

a

Display

Name

of

“ServicesApp”.

The

Context

Root

is

the

part

of

the

Uniform

Resource

Locator

(URL)

that

directs

WebSphere

Application

Server

to

your

application.

The

Display

Name

is

a

string

that

identifies

your

application

in

the

Systems

Management

End

User

Interface

(SM/EUI)

and

in

USS.

You

can

edit

the

Context

Root

and

Display

Name

to

any

name

you

choose.

c.

Resolve

the

Java

Naming

and

Directory

Interface

(JNDI)

name

mapping

for

services.ear.

Do

this

by

issuing

the

following

command

from

the

USS

command

line

(all

on

one

line):

390fy

-JNDIejbp

"/<Sysplex>/<J2EE

Server>"

-op

"_resolved"

services.ear

The

terms

used

in

the

above

example

have

the

following

definitions:

<J2EE

Server>

The

name

of

the

J2EE

server

onto

which

you

will

deploy

the

application

<Sysplex>

The

name

of

the

Sysplex

on

which

your

J2EE

server

exists

This

command

creates

a

new

file

with

the

name

services_resolved.ear

in

the

current

directory.
3.

Deploy

the

application

Note:

When

executing

the

commands

for

this

step,

you

must

be

logged

into

USS

with

a

user

ID

that

is

registered

as

a

Systems

Management

Administrator

for

WebSphere.

a.

Copy

the

following

sample

files

from

the

WebSphere

Application

Server

sample

directory

(<WAS_Home>/samples/smapi/)

to

the

temporary

directory

that

contains

the

EAR

file

you

just

created.

v

inputcreateconversation.xml

v

inputprocessearfile.xml

v

inputcommitconversation.xml

b.

Set

the

environment

variable

DEFAULT_CLIENT_XML_PATH

to

the

temporary

directory

that

contains

the

EAR

file.

c.

Edit

the

file

inputcreateconversation.xml

and

specify

a

conversation

name

and

optionally

a

description

of

the

name.

The

conversation

name

and

description

can

be

any

text

that

you

want.

However,

the

conversation

name

Chapter

2.

Developing

Web

services

45

|

|
|

|
|
|
|
|
|
|
|

must

remain

the

same

when

you

process

the

input

files

in

the

next

steps.

Here

is

an

example

of

the

conversation

name

and

description:

<inputcreateconversation

conversationname="WORFSamples"

conversationdescription="WORF

Sample

Test"

/>

Save

the

file

inputcreateconversation.xml.

d.

Type

the

following

command

(all

on

one

line)

from

the

USS

command

line:

CB390CFG

-action

createconversation

-xmlinput

inputcreateconversation.xml

-output

createconv.out

This

command

creates

a

file

createconv.out

in

the

temporary

directory

of

your

system

and

contains

the

results

of

the

operation.

This

file

is

not

needed

except

to

verify

the

success

of

the

application

deployment.

e.

Edit

the

file

inputprocessearfile.xml.

Specify

the

target

J2EE

server

and

the

EAR

file

to

deploy.

The

following

is

an

example

of

specifying

the

J2EE

server

and

the

EAR

file:

<inputprocessearfile

conversationname="WORFSamples"

j2eeservername="BBOASR2"

earfilename="/tmp/worfsamp/services_resolved.ear"

processingmode="standard"

/>

Save

the

file

inputprocessearfile.xml.

f.

Type

the

following

command

(all

on

one

line)

from

the

USS

command

line:

CB390CFG

-action

processearfile

-xmlinput

inputprocessearfile.xml

-output

processear.out

This

command

creates

a

file

processear.out

in

the

temporary

directory

of

your

system

and

contains

the

results

of

the

operation.

This

file

is

not

needed

except

to

verify

the

success

of

the

application

deployment.

g.

Edit

the

file

inputcommitconversation.xml.

Specify

the

conversation

name

that

you

used

in

the

previous

steps.

For

example:

<inputcommitconversation

conversationname="WORFSamples"

/>

Save

the

file

inputcommitconversation.xml.

h.

Type

the

following

command

(all

on

one

line)

from

the

USS

command

line:

CB390CFG

-action

commitconversation

-xmlinput

inputcommitconversation.xml

-output

commitconv.out

This

command

creates

a

file

commitconv.out

in

the

temporary

directory

of

your

system

and

contains

the

results

of

the

operation.

This

file

is

not

needed

except

to

verify

the

success

of

the

application

deployment.
4.

Set

up

the

Web

server.

a.

Ensure

that

the

J2EE

server

allows

the

Context

Root

that

you

named

in

Step

2

on

page

45.

In

the

file

webcontainer.conf

of

the

server,

ensure

that

at

least

one

host

has

a

specification

as

in

the

following

example:

host.<host_alias>.contextroots=/somewebapp,/services

To

accept

any

Context

Root,

you

can

use

the

following

line

of

text:

host.<host_alias>.contextroots=/*

Note:

Using

this

method

to

specify

the

context

root

allows

you

to

skip

this

step

when

you

deploy

future

applications

46

Application

Developer’s

Guide

|

|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|
|
|

b.

If

you

use

the

Web

server

plug-in

to

access

your

J2EE

server,

add

a

Service

statement

to

the

file

httpd.conf

of

your

Web

server.

This

statement

specifies

the

Context

Root

of

your

deployed

application.

As

an

example,

if

you

specified

“/services”

as

your

Context

Root

in

Step

2

on

page

45,

your

new

Service

statement

is

like

the

following

example:

Service

/services/*

<WAS_Home>/WebServerPlugIn/bin/was400plugin.so:service_exit

The

<WAS_Home>

is

the

directory

in

which

WebSphere

Application

Server

is

installed.

Note:

The

Service

statement

should

be

all

on

a

single

line

c.

Restart

the

Web

server.
5.

Verify

the

WORF

configuration.

a.

Access

the

WORF

Web

Services

Sample

Page

that

is

included

in

the

sample

WAR

file.

If

you

set

the

Context

Root

in

Step

2

on

page

45

to

“/services”,

type

the

following

URL:

http://<hostname>/services/

b.

In

Figure

7,

the

first

section

of

samples,

titled

Installation

Verification,

shows

a

single

DADX

file,

ivt.dadx.

Click

on

the

TEST

link.

The

built-in

test

facility

of

WORF

opens.

Figure

7.

WORF

sample

page

Chapter

2.

Developing

Web

services

47

|
|
|
|

c.

From

the

WORF

test

facility,

Figure

8,

select

the

“testInstallation”

operation.

Click

on

Invoke.

d.

An

XML

document

displays

in

the

bottom

frame

of

the

window.

Verify

that

the

current

time

of

day

appears

in

the

document,

such

as

in

the

following

example:

<CURTIME>14:38:26.000Z</CURTIME>

Figure

8.

WORF

test

facility

48

Application

Developer’s

Guide

|
|
|

|

|

e.

If

this

test

fails,

you

have

something

wrong

with

the

configuration.

Verify

that

you

correctly

installed

the

software

requirements.

Also,

verify

that

you

configured

the

WebSphere

Application

Server

and

that

you

have

the

authorization

to

access

DB2

Universal

Database.
6.

Prepare

and

run

the

examples.

a.

On

the

sample

page

(see

Step

5a

on

page

47),

there

are

DADX

samples

that

are

shipped

with

the

services.war

application.

Before

you

run

the

samples,

follow

the

setup

instructions

that

are

contained

within

each

category.

b.

Execute

an

individual

Web

service

by

selecting

the

TEST

link

for

each

sample.

Select

the

WSDL,

WSDLservice,

WSDLbinding,

and

XSD

links

to

run

those

examples.

After

you

deploy

the

application,

you

can

modify

the

application.

You

can

also

create

additional

WAR

files

for

deployment.

After

you

create

a

WAR

file,

deploy

the

Web

application

by

using

Step

2

on

page

45,

Step

3

on

page

45,

and

Step

4

on

page

46.

Related

concepts:

v

“Overview

of

the

Web

services

process”

on

page

32

Related

tasks:

Figure

9.

Result

of

WORF

test-expected

output

Chapter

2.

Developing

Web

services

49

v

“Installing

and

deploying

the

WORF

examples

in

iSeries”

on

page

54

v

“Installing

and

deploying

the

WORF

examples

on

Apache

Jakarta

Tomcat”

on

page

52

Related

reference:

v

“Installing

the

DADX

environment

checker”

on

page

237

Configuring

Web

services

provider

for

Apache

Jakarta

Tomcat

on

UNIX

and

Windows

You

can

run

Web

services

on

Apache

Jakarta

Tomcat.

The

following

sections

describe

these

Web

services.

Installing

the

Web

services

provider

software

requirements

for

Apache

Jakarta

Tomcat

on

UNIX

and

Windows

Ensure

that

you

have

the

required

software

installed.

Verify

your

installation

for

your

particular

platform

with

the

specific

documentation.

Prerequisites:

You

need

the

DB2

XML

Extender

for

advanced

mapping

control

between

XML

and

relational

data.

Verify

the

installation

by

creating

the

DB2

SAMPLE

database.

WORF

requires

Java

Database

Connectivity

(JDBC)

2.0,

which

is

the

default

in

DB2

Universal

Database

Version

8.

Procedure:

The

procedures

to

prepare

the

WORF

environment

are

as

follows:

1.

Stop

DB2.

2.

If

you

are

not

running

DB2

Universal

Database

Version

8,

select

JDBC

2.0.

Run

C:\SQLLIB\java12\usejdbc2.bat,

assuming

that

you

installed

DB2

in

C:\SQLLIB\

in

a

Windows

environment.

3.

Restart

DB2

4.

Install

the

following

Internet

software:

v

From

Apache:

–

Apache

Jakarta

Tomcat

Version

4.0.6

or

later

binary

from

http://jakarta.apache.org/site/binindex.html.

(Apache

Jakarta

Tomcat

Version

4

standard

comes

with

the

appropriate

Xerces

parser.

For

earlier

versions

you

must

add

the

Xerces

parser

to

your

CLASSPATH

to

use

it

as

the

XML

parser.)

–

Apache

SOAP

2.3

or

later

binary

from

http://xml.apache.org/soap

–

Apache

Axis

1.2

from

http://www.apache.org/.

–

Xerces

1.4.4

from

http://xml.apache.org/
v

From

Sun

(http://java.sun.com/products):

–

JavaMail

1.2

–

JavaBeans

Activation

Framework

(JAF)

1.0

1

–

j2ee.jar,

version

1.3

or

later.

–

qname.jar
v

wsdl4j.jar.

You

can

download

this

file

from

http://oss.software.ibm.com/developerworks/projects/wsdl4j.

50

Application

Developer’s

Guide

|
|
|
|
|

|

|

|

|

|
|

http://jakarta.apache.org/site/binindex.html
http://xml.apache.org/soap
http://www.apache.org/
http://xml.apache.org/
http://java.sun.com/
http://oss.software.ibm.com/developerworks/projects/wsdl4j

Related

tasks:

v

“Web

services

provider

software

requirements

for

OS/390

and

z/OS”

on

page

35

Related

reference:

v

“Web

services

provider

software

requirements

for

UNIX

and

Windows”

on

page

34

Installing

or

migrating

WORF

on

Apache

Jakarta

Tomcat

Procedure:

To

migrate

to

WORF

Version

8.2

from

an

earlier

version,

refer

to

the

Migration

summary

section.

To

install

WORF

Version

8.2

on

Apache

Jakarta

Tomcat,

complete

the

following

steps:

:

v

To

run

WORF

with

Apache

SOAP,

or

with

Apache

Axis,

add

the

following

JAR

files

to

the

class

path

on

your

application

server:

–

soap.jar

for

the

Apache

SOAP

engine,

or

axis.jar

for

the

Apache

axis

engine.

–

xerces.jar

(or

the

jars

of

your

Java

XML

parser)

–

mail.jar

–

activation.jar

–

worf.jar

–

j2ee.jar,

version

1.3

or

later

–

qname.jar

–

wsdl4j.jar.

You

can

download

this

file

from

http://oss.software.ibm.com/developerworks/projects/wsdl4j.

–

jaxrpc.jar

–

log4j-1.2.8.jar

–

commons-logging.jar

–

commons-logging-api.jar

–

commons-discovery.jar

–

db2java.zip,

or

jcc.jar

(or

the

JDBC

implementation

jar

of

your

database

server).

The

name

of

the

driver

class

depends

on

the

driver

package

that

you

use.

You

can

modify

the

driver

package

that

you

use

in

the

group.properties

file.
v

Modify

the

files

listed

in

Table

4

on

page

52.

The

modifications

that

you

make

depend

on

your

Apache

Jakarta

Tomcat

version

and

platform.

Add

a

line

for

each

of

the

jar

files

mentioned

above.

Replace

<jarfile>

with

the

actual

location

of

the

jar

file.

If

you

run

Apache

Jakarta

Tomcat

in

an

integrated

development

environment,

make

sure

that

all

these

jars

are

on

the

CLASSPATH

that

you

use

for

starting

Tomcat.

The

files

that

you

need

to

modify

are

all

in

the

directory

in

which

you

start

Apache

Jakarta

Tomcat.

You

should

start

and

stop

the

server

with

the

startup.bat

or

shutdown.bat

or

startup.sh

or

shutdown.sh

that

is

in

the

app_server/bin

directory.

Chapter

2.

Developing

Web

services

51

|
|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|

http://oss.software.ibm.com/developerworks/projects/wsdl4j

Table

4.

Class

path

designations

Platform

Server

software

File

to

modify

Command

to

add

UNIX

Apache

Jakarta

Tomcat

3.2.x

\bin\tomcat.sh

(before

″export

CLASSPATH″)

CLASSPATH

=

$CLASSPATH:

<jarfile>

Apache

Jakarta

Tomcat

3.3.x

\bin\tomcat.sh

(before

″export

CLASSPATH″)

CLASSPATH

=

$CLASSPATH:

<jarfile>

Apache

Jakarta

Tomcat

4.x

\bin\setclasspath.sh

(before

″export

CLASSPATH″)

CLASSPATH

=

$CLASSPATH:

<jarfile>

Windows

Apache

Jakarta

Tomcat

3.2.x

\bin\tomcat.bat

(:setClasspath

section)

set

CP

=

%CP%;

<jarfile>

Apache

Jakarta

Tomcat

3.3.x

\bin\tomcat.bat

set

CLASSPATH

=

%CLASSPATH%;

<jarfile>

Apache

Jakarta

Tomcat

4.x

\bin\setclasspath.bat

set

CLASSPATH

=

%CLASSPATH%;

<jarfile>

v

If

your

WebSphere

server

is

a

release

earlier

than

WebSphere

5.0.2,

you

must

download

a

file

from

http://java.sun.com/xml/downloads/saaj.html,

named

saaj.jar.

Copy

saaj.jar

to

C:\WebSphere\AppServer\lib.

Migration

summary

To

migrate

to

WORF

Version

8.2

from

an

earlier

version

of

WORF:

1.

Replace

the

worf.jar

file

by

copying

the

lib\worf.jar

from

the

Version

8.2

dxxworf.zip

to

C:\WebSphere\AppServer\lib.

The

dxxworf.zip

is

located

in

the

following

path:

<DB2

UDB

installed

location>\samples\java\Websphere\dxxworf.zip.

2.

For

each

application

that

you

deployed,

replace

the

JSP

files

in

the

worf

directory

of

that

application,

with

the

files

in

the

worf

directory

of

the

apache-services.war,

or

the

axis-services.war.

Then

re-deploy

the

application.

Related

tasks:

v

“Installing

and

deploying

the

WORF

examples

in

iSeries”

on

page

54

v

“Installing

and

deploying

the

WORF

examples

on

Apache

Jakarta

Tomcat”

on

page

52

v

“Installing

or

migrating

WORF

to

work

with

WebSphere

Application

Server

Version

5

or

later

for

Windows

and

UNIX”

on

page

39

Installing

and

deploying

the

WORF

examples

on

Apache

Jakarta

Tomcat

Procedure:

To

install

the

WORF

examples,

do

the

following

tasks:

1.

Unjar

the

apache-services.war

or

axis-services.war

into

your

tomcat\webapps

directory

(depending

on

the

SOAP

engine

that

you

install).

52

Application

Developer’s

Guide

||

||
|
||

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|

||
|

|
|
|

||
|

|

|
|
|

|

|

|
|
|
|

|
|
|

|
|

If

you

already

have

a

apache-services.war

or

axis-services.war

file

installed,

perform

the

following

tasks:

a.

Stop

Apache

Jakarta

Tomcat.

b.

Delete

the

services

subdirectory

under

webapps

and

all

of

its

contents.

Note:

Any

of

your

previously

deployed

Web

services

in

the

“services”

web

application

will

be

lost

with

this

action,

so

make

sure

that

this

is

acceptable.

c.

Restart

Apache

Jakarta

Tomcat.
2.

Stop

and

start

Apache

Jakarta

Tomcat

(unless

you

deleted

the

services

directory

in

the

previous

step).

The

services

context

starts:

ContextManager:

Adding

context

Ctx(\services)

3.

Verify

the

installation

by

entering

the

following

uniform

resource

locator

(URL).

The

port

number,

designated

here

by

8080

depends

on

your

own

current

machine:

http://localhost:8080/services

The

specific

port

address

might

vary

depending

on

your

environment.

You

should

get

a

page

that

looks

like

Figure

5

on

page

43.

To

learn

more

about

the

Web

services

sample

page,

see

Testing

the

Web

service.

4.

Verify

that

your

database

settings

are

correct

in

the

group.properties

file,

especially

the

user

ID

and

password.

Try

the

verification.dadx

on

your

system

(the

dynamic

test

page

and

the

WSDL).

5.

To

display

the

Extensible

Markup

Language

(XML)

document,

use

Internet

Explorer

Version

5

or

a

text

editor.

6.

List

the

deployed

SOAP

services

in

your

services

context

in

your

system.

WORF

automatically

deploys

the

services,

for

each

test

you

run.

Click

on

the

SOAP

administration

link

from

the

Web

services

Sample

Page.

Related

concepts:

v

“Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF”

on

page

25

Related

tasks:

v

“Testing

the

Web

service”

on

page

109

v

“Installing

the

Web

services

provider

software

requirements

for

Apache

Jakarta

Tomcat

on

UNIX

and

Windows”

on

page

50

v

“Installing

the

Web

services

provider

software

requirements”

on

page

36

Installing

the

Web

services

provider

software

requirements

for

Apache

Jakarta

Tomcat

on

iSeries

Prerequisites:

Ensure

that

you

have

the

required

software

installed.

You

need

the

DB2

XML

Extender

for

advanced

mapping

control

between

XML

and

relational

data.

To

use

DB2

Universal

Database

XML

Extenders,

make

sure

that

you

install

the

product.

You

can

verify

that

you

have

DB2

Universal

Database

XML

Extenders

on

your

system

by

issuing

the

CL

command,

GO

LICPGM.

For

DB2

Universal

Database

for

iSeries,

V5R2,

if

you

have

DB2

Universal

Database

XML

Extenders,

the

following

entries

display

as

a

result

of

the

GO

LICPGM

command:

Chapter

2.

Developing

Web

services

53

|
|

|

|

|
|
|

|

|
|
|

|

|
|
|

|
|
|
|
|
|
|

v

5722DE1

*COMPATIBLE

DB2

UDB

Extenders

v

5722DE1

*COMPATIBLE

DB2

UDB

Text

Extender

v

5722DE1

*COMPATIBLE

DB2

UDB

XML

Extender

v

5722DE1

*COMPATIBLE

Text

Search

Engine

Enable

DB2

Universal

Database

XML

extenders

with

the

following

CL

command:

CALL

PGM(QDBXM/QZXMADM)

PARM(enable_db

LOCALRDB).

LOCALRDB

is

the

*LOCAL

database

name

in

the

relational

database

directory.

To

work

with

the

relational

database

entries,

issue

the

following

CL

command:

WRKRDBDIRE.

If

you

use

the

document

type

definition

documents

(DTDs)

that

are

in

the

sample

files,

execute

the

script

setup-dxx.cmd.

WORF

requires

Java

Database

Connectivity

(JDBC)

2.0,

which

is

the

default

in

DB2

Universal

Database

Version

8.

Procedure:

The

procedures

to

prepare

the

WORF

environment

are

as

follows:

1.

If

you

are

not

running

DB2

Universal

Database

Version

8,

select

JDBC

2.0.

Run

C:\SQLLIB\java12\usejdbc2.bat,

assuming

that

you

installed

DB2

in

C:\SQLLIB\

in

a

Windows

environment.

2.

Install

the

following

Internet

software:

v

From

Apache:

–

Apache

Jakarta

Tomcat

Version

4.0.3

or

later

binary

from

http://jakarta.apache.org/site/binindex.html.

(Apache

Jakarta

Tomcat

Version

4

standard

comes

with

the

appropriate

Xerces

parser.

For

earlier

versions

you

must

add

the

Xerces

parser

to

your

CLASSPATH

to

use

it

as

the

XML

parser.)

–

Xerces

1.4.4

from

http://xml.apache.org/
v

From

Sun

(http://java.sun.com/products):

–

JavaMail

1.2

–

JavaBeans

Activation

Framework

(JAF)

1.0

1

–

j2ee.jar,

version

1.3

or

later.

–

qname.jar
v

wsdl4j.jar.

You

can

download

this

file

from

http://oss.software.ibm.com/developerworks/projects/wsdl4j.

Related

concepts:

v

“Using

Web

services

provider

with

iSeries”

on

page

28

Related

tasks:

v

“Defining

the

web.xml

and

group.properties

files

in

the

iSeries

platform”

on

page

62

v

“Installing

and

deploying

the

WORF

examples

in

iSeries”

on

page

54

v

“Installing

the

Web

services

provider

software

requirements

on

iSeries”

on

page

37

Installing

and

deploying

the

WORF

examples

in

iSeries

Procedure:

To

install

the

WORF

examples,

do

the

following

tasks:

54

Application

Developer’s

Guide

|

|

|

|

|
|
|
|
|
|

|

|

|
|

http://jakarta.apache.org/site/binindex.html
http://xml.apache.org/
http://java.sun.com/
http://oss.software.ibm.com/developerworks/projects/wsdl4j

1.

Make

sure

that

the

worf.jar

file

is

in

/QIBM/UserData/WebASAEs4/worf/lib/app

where

WebASAEs4

is

the

version

of

WebSphere,

and

worf

is

the

name

of

the

WebSphere

instance.

2.

If

file

runtime.zip

is

not

in

directory

/QIBM/UserData/java400/ext,

execute

the

following

commands:

a.

>qsh

b.

>ln

-s

/QIBM/ProdData/OS400/Java400/ext/runtime.zip

/QIBM/UserData/Java400/ext/runtime.zip

3.

Copy

the

services.war

into

your

tomcat\webapps

directory.

If

you

already

have

a

services.war

file

installed,

then

perform

the

following

tasks:

a.

Stop

Apache

Jakarta

Tomcat.

b.

Delete

the

services

subdirectory

under

webapps

and

all

of

its

contents.

CAUTION:

Any

of

your

previously

deployed

Web

services

in

the

“services”

web

application

will

be

lost

with

this

action,

so

make

sure

this

is

acceptable.

c.

Restart

Apache

Jakarta

Tomcat.
4.

Stop

and

start

Apache

Jakarta

Tomcat

(unless

you

deleted

the

services

directory

in

the

previous

step).

The

services

context

starts:

ContextManager:

Adding

context

Ctx(\services)

5.

Invoke

the

examples

in

the

sample

application

by

accessing

the

test

page

at

http://<system>:<port>/services

v

Invoke

a

sample

with

no

parameters:

http://<system>:<port>/services/travel/ZipCodes.dadx/findAll

v

Invoke

a

sample

with

parameters:

http://<system>:<port>/services/

travel/ZipCodes.dadx/findCityByZipCode?zipcode=55901

6.

Verify

that

your

database

settings

are

correct,

especially

user

ID

and

password,

in

group.properties.

If

you

do

not

use

a

value

for

user

ID,

the

Web

services

code

runs

under

QEJBSVR.

Therefore,

authorize

this

profile

to

any

database

objects

that

you

want

to

access.

Try

the

verification.dadx

on

your

system

(the

dynamic

test

page

and

the

WSDL).

Related

concepts:

v

“Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF”

on

page

25

Related

tasks:

v

“Installing

the

Web

services

provider

software

requirements

for

Apache

Jakarta

Tomcat

on

iSeries”

on

page

53

v

“Installing

the

Web

services

provider

software

requirements”

on

page

36

Administering

and

troubleshooting

the

Web

services

provider

This

chapter

describes

some

performance

suggestions

and

a

troubleshooting

guide

for

the

Web

services

provider.

Chapter

2.

Developing

Web

services

55

|
|

Using

connection

pooling

to

improve

performance

Each

time

a

resource

attempts

to

access

a

database,

it

must

connect

to

that

database.

A

database

connection

requires

resources

to

create

the

connection,

maintain

it,

and

then

release

it

when

it

is

no

longer

required.

The

database

resources

required

for

a

Web-based

application

can

be

high

because

Web

users

connect

and

disconnect

more

frequently.

You

can

use

IBM

WebSphere

Application

Server

to

help

create

and

maintain

a

pool

of

database

connections.

These

database

connections

can

be

shared

by

applications

on

an

application

server

to

address

the

resource

problems.

Connection

pooling

spreads

the

connection

overhead

across

several

user

requests,

thereby

conserving

resources

for

future

requests

and

improving

performance.

You

can

configure

a

pool

for

each

unique

data

source.

You

can

read

more

about

connection

pooling

in

Chapter

10

of

the

WebSphere

handbook.

Prerequisites:

1.

Create

the

JDBC

provider

if

one

does

not

exist

that

you

want

to

use.

2.

Create

a

data

source.

Procedure:

Installed

applications

use

JDBC

providers

to

access

data

from

databases.

To

adjust

some

of

the

connection

pooling

parameters

for

a

particular

data

source

within

a

JDBC

provider

from

WebSphere

Application

Server,

Version

5,

perform

the

following

steps:

1.

Configure

the

data

source

parameters.

2.

Update

the

connection

pooling

information,

as

in

Figure

10.

WebSphere

Application

Server

provides

a

Java

Naming

service

(JNDI)

to

facilitate

the

connection

to

DB2

Universal

Database.

The

pool

is

shared

by

all

applications

connecting

to

the

same

data

source.

3.

Edit

the

group.properties

file

in

the

groups

subdirectory

and

add

the

following

lines

of

text:

initialContextFactory=<your

context

factory>

datasourceJNDI=<your

DataSource>

Figure

10.

Adjusting

connection

pooling

parameters

56

Application

Developer’s

Guide

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246161.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246161.pdf

For

example:

initialContextFactory=com.ibm.websphere.naming.WsnInitialContextFactory

datasourceJNDI=jdbc/sampleDataSource

4.

Restart

the

Web

application

if

you

have

made

any

changes

to

the

group.properties

file

so

they

will

take

effect.

Related

tasks:

v

“Defining

the

web.xml

and

group.properties

files”

on

page

59

Troubleshooting

Web

services

Table

5

describes

problems

that

can

occur

when

you

use

WORF

on

WebSphere

Application

Server

5.1.

The

table

provides

recommended

solutions.

Table

5.

Errors

and

solutions

Problem

Solution

Error

500:

Server

caught

unhandled

exception

from

servlet

[isd_demos]:

org.apache.soap.rpc.

SOAPContext:

method

setClassLoader

(java\lang\ClassLoader;)

not

found

SOAP

2.2

or

later

(soap.jar)

is

missing.

Clicking

on

the

Invoke

button

from

the

Web

services

test

page

in

Internet

Explorer

results

in

a

’The

page

cannot

be

found’

error.

To

view

a

more

helpful

error

message

use

Netscape

to

debug

the

problem.

Or,

edit

the

Internet

Explorer

environment

by

doing

the

following

steps:

1.

Open

the

Tools

menu

from

the

Internet

Explorer

menu

bar.

2.

Select

Internet

Options

from

the

menu

to

open

the

Internet

Options

window.

3.

Click

on

the

Advanced

tab.

4.

Clear

the

check

box

next

to

Show

friendly

HTTP

error

messages

Error

400:

service

’http://tempuri.org

/***/***.dadx’

unknown

You

have

to

generate

a

deployment

descriptor

from

the

DADX

file

and

restart

your

Web

application

before

invoking

the

service.

Error

400:

Unable

to

get

DAD;unable

to

get

Input

Stream

for:

xxxxxx

There

is

no

access

to

the

specified

XML

Extender

DAD

file

(for

example,

the

DAD

that

is

specified

in

the

*.nst

file)

Error

400:

database

connection

error

v

Database

is

not

started.

v

The

database

objects

that

are

referenced

in

the

DADX

file

do

not

exist.

v

The

JDBC

driver

is

not

found.

Error

400:

unable

to

get

input

stream

for

/groups/xxx/yyy.dadx

The

DADX

file

is

not

in

the

group

folder,

or

it

is

not

accessible.

Error

404:

File

not

found:

aaaa/abc.dadx

The

servlet

mapping

’aaaa’

does

not

exist

in

the

web.xml

file.

blank

page

results

If

you

are

using

a

version

of

WebSphere

Application

Server

that

is

earlier

than

Version

5.0.2,

you

might

be

missing

jaas.jar.

Open

SystemErr.log

in

the

server

directory

to

determine

if

other

JAR

files

are

missing.

Chapter

2.

Developing

Web

services

57

|
|

||

||

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|
|
|

|
|

|
|
|
|

||
|
|
|
|

To

obtain

information

about

runtime

events

and

diagnostics

from

the

Web

service

provider

to

troubleshoot

your

Web

service

after

it

is

deployed,

you

can

use

the

trace

facility

of

the

Web

application

server

on

which

your

application

runs.

The

trace

information

that

you

receive

from

the

Web

application

server

includes

messages

and

event

activity.

Even

if

the

tracing

is

not

enabled,

errors

are

captured

in

the

application

server

error

logs.

To

learn

more

about

how

to

trace

your

Web

service

provider

events,

see

Web

services

provider

tracing

Related

concepts:

v

“Web

services

provider

tracing”

on

page

137

Related

tasks:

v

“Generating

deployment

descriptors”

on

page

133

Related

reference:

v

“Web

services

provider

software

requirements

for

UNIX

and

Windows”

on

page

34

Developing

applications

that

use

the

Web

services

provider

The

following

sections

describe

the

overview

and

details

of

using

Web

services

provider.

Defining

a

group

of

Web

services

Groups

are

containers

for

Web

services

that

share

common

configuration

options.

Configuration

options

can

be

the

following:

v

database

configuration

v

namespace

setup

v

message

encoding

setup

The

groups

directory

contains

the

resources

for

all

DADX

Web

service

groups.

The

WORF

Web

application

creates

this

directory

during

the

application

configuration.

This

directory

is

in

the

WEB-INF\classes\groups\

subdirectory

of

the

Web

application’s

base

directory.

DADX

files

contain

a

description

of

the

Web

services.

WORF

contains

the

implementation

of

the

Web

services

and

are

therefore

similar

to

Java™

classes.

The

classes

directory

is

part

of

the

Java

CLASSPATH

for

the

Web

application.

This

means

that

the

Java

class

loader

can

load

your

DADX

files.

Within

the

groups

directory,

WORF

stores

each

group

of

DADX

Web

services

in

a

directory

with

the

same

name

as

its

servlet

instance.

The

application

server

looks

for

the

right

servlet

instance

to

call

by

the

given

URL

which

is

based

on

the

web.xml

file.

Another

resource

that

is

used

by

WORF

is

the

group.imports

file.

This

is

an

optional

resource

that

helps

the

various

Web

service

consumers

or

tools

that

use

the

generated

WSDL

to

find

the

schemas

that

are

used.

If

the

group.imports

file

exists,

then

the

WSDL

generates

the

imports

elements

based

on

the

content

of

the

group.imports

file

and

the

scope

of

the

element.

If

no

group.imports

file

exists,

then

no

import

elements

are

generated

for

WSDLs

for

non-dynamic

query

services.

For

dynamic

query

services,

the

WSDL

contains

some

data

types

that

are

in

58

Application

Developer’s

Guide

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

db2WebRowSet.xsd.

With

no

group.imports

to

define

a

location

of

db2WebRowSet.xsd,

WORF

assumes

that

this

schema

file

is

in

the

default

location,

such

as

in

the

following

example:

http://<server>:<port>/<contextRoot>/db2WebRowSet.xsd

In

the

examples

relating

to

the

DB2®

Web

services,

the

WORF

application

stores

the

DADX

files

in

the

WEB-INF\classes\groups\dxx_sample\

directory,

the

WEB-INF\classes\groups\dxx_sales_db\

directory,

and

the

WEB-
INF\classes\groups\dxx_travel\

directory.

Related

tasks:

v

“Preparing

and

creating

the

Web

archive

file”

on

page

136

v

“Customizing

the

group.properties

file”

on

page

64

v

“Generating

deployment

descriptors”

on

page

133

Related

reference:

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

Defining

the

web.xml

and

group.properties

files

Procedure:

To

define

a

new

group

of

DADX

Web

services,

complete

the

following

steps.

(You

can

also

create

these

files

by

using

WebSphere

Studio

version

5.

For

more

information

see

the

WebSphere

Studio

Information

Center

(http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp).

If

you

are

migrating

to

a

new

version

of

WORF,

make

sure

that

the

web.xml

and

group.properties

files

contain

the

values

that

you

expect

for

your

environment.

1.

Choose

a

group

name

for

the

DADX

group

that

reflects

your

application.

These

instructions

use

the

name

myapp_group.

2.

Edit

the

web.xml

file

in

the

WEB-INF

directory,

to

define

the

group

name.

If

you

want

to

use

WebSphere

Version

5

data

sources

(WebSphere

Studio

or

WebSphere

Application

Server),

that

conform

to

Java

2

Enterprise

Edition

Version

1.3,

make

sure

that

you

change

the

web-app_2.2.dtd

to

web-app_2.3.dtd

in

the

web.xml

file.

You

can

have

multiple

group

names

in

the

same

web.xml

file.

The

following

figure

shows

an

example

of

the

web.xml

file.

The

servlet-mapping

element

is

in

bold

with

the

values

defined

below.

Chapter

2.

Developing

Web

services

59

|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

The

<servlet>

section

defines

a

new

servlet

instance

for

the

group.

At

least

one

<servlet>

element

must

exist

for

each

group,

but

a

group

can

have

multiple

<servlet-mapping>

elements.

See

the

Java

servlet

specification

at

http://java.sun.com/products/servlet/.

In

this

example,

the

<servlet-name>

element

defines

a

group

named

myapp_group.

When

updating

this

file,

you

provide

the

information

for

the

following

elements:

<servlet-name>

This

is

a

child

tag

in

the

<servlet>

section

and

in

the

<servlet-mapping>

section

and

defines

the

name

of

the

group.

The

servlet

name

must

be

a

valid

directory

name

under

the

groups

directory.

You

use

this

name

to

store

the

DADX

resources

for

this

group

of

Web

services.

For

example:

myapp_group

is

defined

in

both

the

<servlet>

and

<servlet-mapping>

elements.

<servlet-mapping>

You

must

have

at

least

one

<servlet-mapping>

section

to

introduce

a

mapping

between

a

URL

and

the

group.

The

child

tag

<servlet-name>,

defines

the

group

name

and

must

be

the

same

as

the

directory

name

for

the

group,

which

also

means

that

the

<servlet-name>

must

be

the

same

as

in

the

<servlet>

group.

The

<servlet-name>

tag

is

the

link

between

the

<servlet>

and

the

<servlet-mapping>

tag.

<url-pattern>

The

uniform

resource

locator

(URL)

associated

with

the

group.

The

<servlet-mapping>

element

associates

the

dxx_sales_db

servlet

with

URLs

of

the

form

/url_pattern/*.

The

URL

pattern

must

be

of

this

<!DOCTYPE

web-app

PUBLIC

"-//Sun

Microsystems,

Inc.//DTD

Web

Application

2.2//EN"

"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>

<servlet>

<servlet-name>myapp_group</servlet-name>

<servlet-class>com.ibm.etools.

webservice.rt.dxx.servlet.

DxxInvoker

</servlet-class>

<init-param

id=InitParam_1076524994485>

<param-name>faultListener</param-name>

<param-value>

org.apache.soap.server.DOMFaultListener

</param-value>

</init-param>

<init-param

id=InitParam_1076524994488>

<param-name>soap-engine</param-name>

<param-value>apache-soap</param-value>

</init-param>

<load-on-startup>-1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>myyapp_group</servlet-name>

<url-pattern>/myapp/*</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

Figure

11.

web.xml

60

Application

Developer’s

Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

form

for

WORF

to

operate

correctly.

For

example:

/myapp/*.

The

servlet

name

in

this

example

is

myapp_group.

<init-param>

You

can

update

the

name

of

the

SOAP

engine

that

you

want

to

use.

The

parameter

name

to

specify

the

soap

engine

is

<soap-engine>.

If

you

want

to

use

Apache

SOAP,

then

the

parameter

value

is

apache-soap.

If

you

want

to

use

Apache

Axis,

then

the

parameter

value

is

apache-axis.

If

you

do

not

specify

a

<soap-engine>

parameter,

the

default

soap

engine

is

apache-soap.

Note:

The

default

encoding

for

the

web.xml

file

is

UTF-8.

You

update

the

file

in

UTF-8

when

on

OS/390

or

z/OS

platforms,

by

sending

the

web.xml

file

to

a

UNIX

or

Windows

system.

You

can

send

the

file

by

using

the

File

Transfer

Protocol

(FTP)

binary

transfer.

Then

update

the

file,

and

return

the

file

to

the

original

system.

3.

From

the

groups

directory,

create

a

subdirectory

with

the

name

of

the

group

specified

in

the

<servlet-name>

element

added

in

the

previous

step.

The

subdirectory

eventually

contains

the

resources

for

this

group.

4.

In

the

group

directory,

create

a

group.properties

file,

which

defines

the

database

connection

information

and

other

common

attributes

for

each

group

of

DADX

Web

services.

The

following

is

an

example

of

what

the

group.properties

might

look

like

for

the

new

group:

Related

concepts:

v

“Web

services

description

language”

on

page

115

v

“Dynamic

database

queries

that

use

the

Web

services

provider”

on

page

90

Related

tasks:

v

“Customizing

the

group.properties

file”

on

page

64

Related

reference:

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

v

“Checking

errors

in

the

web.xml

file”

on

page

241

#

myapp_group

group

properties

dbDriver=COM.ibm.db2.jdbc.app.DB2Driver

dbURL=jdbc:db2:sample

userID=

password=

namespaceTable=myapp.nst

autoReload=true

reloadIntervalSeconds=5

for

Informix,

use

the

following

database

driver

and

URL:

dbDriver=com.informix.jdbc.IfxDriver

dbURL=jdbc\:informix-sqli://::informixserver=

For

OS/390

and

z/OS,

use

the

following

database

driver

and

URL:

dbDriver=COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

dbURL=jdbc:db2os390:

Figure

12.

group.properties

example

Chapter

2.

Developing

Web

services

61

|
|

|
|
|
|
|
|
|

|
|
|
|
|

Defining

the

web.xml

and

group.properties

files

in

the

iSeries

platform

Procedure:

To

define

a

new

group

of

DADX

Web

services,

complete

the

following

steps:

1.

Choose

a

group

name

for

the

DADX

group

that

reflects

your

application.

These

instructions

use

the

name

myapp_group.

2.

v

For

iSeries,

in

the

WEB-INF

directory,

edit

the

web.xml

file

to

define

the

group

name.

You

can

have

multiple

group

names

in

the

same

web.xml

file.

If

you

want

to

use

WebSphere

Version

5

data

sources

(WebSphere

Studio

or

WebSphere

Application

Server),

that

conform

to

Java

2

Enterprise

Edition

Version

1.3,

make

sure

that

you

change

the

web-app_2.2.dtd

to

web-app_2.3.dtd

in

the

web.xml

file.

The

sample

application

includes

a

servlet

that

applies

a

style

sheet

to

the

generated

Extensible

Markup

Language

(XML).

The

servlet

class

and

source

are

in

the

following

directory:

/QIBM/UserData/WebASAEs4/worf/

installedApps/servicesApp.ear/

services.war/WEB-INF/classes

The

sample

file

contains

the

following

setting:

serveServletsByClassnameEnabled=″true″.

Invoke

the

servlet

by

executing

the

following

file:

/QIBM/UserData/WebASAEs4/worf/

installedApps/servicesApp.ear/

services.war/WEB-INF/ibm-web-ext.xmi

You

can

recompile

the

servlet

inside

qshell

by

executing

the

following

compile

statement:

javac

-J-Djava.ext.dirs=/qibm/proddata/webasaes4/lib

-d

.

SampleXSLTServlet.java

Invoke

the

servlet

from

the

Internet

by

executing

the

following

file:

http://<system>:<port>/services/servlet/

SampleXSLTServlet?XML=

http://<system>:<port>/services/travel/ZipCodes.dadx/

findAll&XSL=

file:///home/zipcodes.xsl

The

above

example

assumes

that

the

zipcodes.xsl

is

in

the

/home

directory.

You

can

locate

the

file

anywhere.

You

can

use

this

servlet

example

for

any

combination

of

XML

Web

services

and

Extensible

Stylesheet

Language

(XSL)

style

sheets.

The

following

figure

shows

an

example

of

the

web.xml

file.

The

servlet-mapping

element

is

in

bold

with

the

values

defined

below.

62

Application

Developer’s

Guide

|
|
|
|
|
|

The

<servlet>

section

defines

a

new

servlet

instance

for

the

group.

At

least

one

<servlet>

element

must

exist

for

each

group,

but

a

group

can

have

multiple

<servlet-mapping>

elements.

See

the

Java

servlet

specification

at

http://java.sun.com/products/servlet/.

In

this

example,

the

<servlet-name>

element

defines

a

group

named

myapp_group.

When

updating

this

file,

you

provide

the

information

for

the

following

elements:

<servlet-name>

This

is

a

child

tag

in

the

<servlet>

section

and

in

the

<servlet-mapping>

section

and

defines

the

name

of

the

group.

The

servlet

name

must

be

a

valid

directory

name

under

the

groups

directory.

You

use

this

name

to

store

the

DADX

resources

for

this

group

of

Web

services.

For

example:

myapp_group

is

defined

in

both

the

<servlet>

and

<servlet-mapping>

elements.

<servlet-mapping>

You

must

have

at

least

one

<servlet-mapping>

section

to

introduce

a

mapping

between

a

URL

and

the

group.

The

child

tag

<servlet-name>,

defines

the

group

name

and

must

be

the

same

as

the

directory

name

for

the

group,

which

also

means

that

the

<servlet-name>

must

be

the

same

as

in

the

<servlet>

group.

The

<servlet-name>

tag

is

the

link

between

the

<servlet>

and

the

<servlet-mapping>

tag.

<url-pattern>

The

uniform

resource

locator

(URL)

associated

with

the

group.

The

<servlet-mapping>

element

associates

the

dxx_sales_db

servlet

with

URLs

of

the

form

/url_pattern/*.

The

URL

pattern

must

be

of

this

form

for

WORF

to

operate

correctly.

For

example:

/myapp/*.

The

servlet

name

in

this

example

is

myapp_group.

<!DOCTYPE

web-app

PUBLIC

"-//Sun

Microsystems,

Inc.//DTD

Web

Application

2.2//EN"

"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>

<servlet>

<servlet-name>myapp_group</servlet-name>

<servlet-class>com.ibm.etools.

webservice.rt.dxx.servlet.DxxInvoker</servlet-class>

<init-param>

<param-name>faultListener</param-name>

<param-value>

org.apache.soap.server.DOMFaultListener

</param-value>

</init-param>

<load-on-startup>-1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>myyapp_group</servlet-name>

<url-pattern>/myapp/*</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

Figure

13.

web.xml

Chapter

2.

Developing

Web

services

63

<init-param>

You

can

update

the

name

of

the

SOAP

engine

that

you

want

to

use.

The

parameter

name

to

specify

the

soap

engine

is

<soap-engine>.

If

you

want

to

use

Apache

SOAP,

then

the

parameter

value

is

apache-soap.

If

you

want

to

use

Apache

Axis,

then

the

parameter

value

is

apache-axis.

If

you

do

not

specify

a

<soap-engine>

parameter,

the

default

soap

engine

is

apache-axis.
3.

From

the

groups

directory,

create

a

subdirectory

with

the

name

of

the

group

specified

in

the

<servlet-name>

element

added

in

the

previous

step.

The

subdirectory

contains

the

resources

for

this

group.

4.

In

the

group

directory,

create

a

group.properties

file,

which

defines

the

database

connection

information

and

other

common

attributes

for

each

group

of

DADX

Web

services.

The

following

is

an

example

of

what

the

group.properties

might

look

like

for

the

new

group:

Related

tasks:

v

“Customizing

the

group.properties

file”

on

page

64

Related

reference:

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

Customizing

the

group.properties

file

The

group.properties

file

is

a

standard

Java

properties

file.

You

must

define

the

group.properties

with

at

least

one

of

the

following

parameters:

When

using

group.properties

for

connection

pooling

Define

group.properties

using

parameter

initialContextFactory

with

datasourceJNDI

When

using

group.properties

for

regular

JDBC

database

connections

Define

group.properties

using

parameter

dbURL

with

dbDriver

If

you

define

both

types

of

connections,

the

application

tries

the

DataSource

first.

If

WORF

cannot

obtain

the

DataSource,

then

it

tries

the

JDBC.

The

complete

set

of

properties

is

listed

below.

Procedure:

To

modify

the

group.properties

file,

use

the

following

definitions

for

your

environment:

#

myapp_group

group

properties

dbDriver=COM.ibm.db2.jdbc.app.DB2Driver

dbURL=jdbc:db2:*local/SAMPLE

userID=

password=

namespaceTable=myapp.nst

autoReload=true

reloadIntervalSeconds=5

In

the

example

in

Figure

14

on

page

64,

the

use

of

SAMPLE

in

the

dbURL

parameter

is

the

database

or

collection

that

you

want

to

use.

Figure

14.

group.properties

example

64

Application

Developer’s

Guide

|
|
|
|
|
|
|

Database

configuration

parameters

initialContextFactory

This

parameter

is

used

with

datasourceJNDI,

and

is

required

for

WebSphere

connection

pooling.

The

parameter

specifies

the

Java

class

name

of

the

JNDI

initial

context

factory

that

is

used

to

locate

the

DataSource

for

the

database.

This

property,

along

with

the

datasourceJNDI

property,

enables

connection

pooling.

datasourceJNDI

This

parameter

is

used

with

initialContextFactory,

and

is

required

for

WebSphere

connection

pooling.

The

parameter

specifies

the

JNDI

name

of

the

DataSource

for

the

database.

When

you

use

this

with

initialContextFactory,

it

defines

a

DataSource

for

the

database

connection.

This

property

enables

connection

pooling.

You

must

define

either

the

DataSource

or

the

Java

Database

Connectivity

(JDBC)

connection.

dbDriver

This

parameter

specifies

the

Java

class

name

of

the

Java

Database

Connectivity

(JDBC)

driver

for

connecting

to

the

database.

dbURL

This

parameter

is

used

with

dbDriver,

and

specifies

the

JDBC

uniform

resource

locator

(URL)

of

the

database.

userID

Optional.

The

default

is

the

user

ID

under

which

the

WORF

executes,

which

can

be

the

same

user

ID

used

for

connecting

to

the

database.

This

specifies

the

user

ID

for

the

database.

password

Optional,

but

used

with

user

ID.

This

specifies

the

password

for

the

database.

There

are

algorithms

that

are

available

to

help

you

encode

and

decode

your

password.

enableXmlClob

Optional.

This

specifies

whether

retrieveXML

operations

will

use

the

CLOB-based

XML

Extender

stored

procedures.

The

default

value

is

true.

This

parameter

is

available

only

for

backward

compatibility.

For

OS/390

and

z/OS

platforms,

either

do

not

define

this

property,

or

always

set

the

value

to

true.

Web

Service

configuration

parameters

groupNamespaceUri

Optional.

This

parameter

defines

the

target

namespace

that

is

used

in

the

generated

Web

service

description

language

(WSDL)

and

Extensible

Markup

Language

(XML)

schema

files

(XSD).

The

target

namespace

is

for

Web

services

in

this

group.

useDocumentStyle

Optional.

The

default

value

is

false,

which

means

that

the

Web

services

at

runtime

use

RPC

encoding.

If

you

set

this

value

to

true,

then

the

Web

services

at

runtime

use

document

style

and

literal

encoding.

The

IBM

DB2

Information

Integrator

Web

services

provider

contains

samples

that

are

set

to

use

RPC

style.

For

new

applications,

you

should

use

document

style

for

maximum

interoperability.

Chapter

2.

Developing

Web

services

65

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

namespaceTable

Optional.

This

specifies

the

resource

name

of

the

namespace

table.

It

references

a

Namespace

Table

(NST)

resource

that

defines

the

mapping

from

DB2

XML

Extender

DTDIDs

to

XML

Schema

(XSD)

namespaces

and

locations.

See

Figure

24

on

page

83

for

an

example

of

an

NST

file.

Runtime

configuration

parameters:

autoReload

Optional,

but

used

with

reloadIntervalSeconds.

This

specifies

whether

to

reload

a

resource.

Values

can

be

true

or

false.

The

default

is

false.

reloadIntervalSeconds

Optional,

but

used

with

autoReload.

This

controls

resource

loading

and

caching.

It

specifies

the

integer

automatic

reloading

time

interval

in

seconds.

The

default

is

0,

which

means

that

WORF

will

check

for

a

newer

resource

on

every

request.

The

options

autoReload

and

reloadIntervalSeconds

control

resource

loading

and

caching.

If

autoReload

is

absent

or

false,

then

there

is

no

resource

reloading,

and

the

application

ignores

reloadIntervalSeconds.

If

autoReload

is

true,

then,

when

WORF

accesses

a

resource

(such

as

one

of

the

following

files:

DAD,

DADX,

document

type

definition

(DTD),

NST),

it

compares

the

current

time

with

the

time

at

which

the

resource

was

previously

loaded.

If

more

than

the

value

of

reloadIntervalSeconds

has

passed,

then

WORF

checks

the

file

system

for

a

newer

version

and

reloads

the

changed

resource.

Automatic

reloading

is

useful

at

development

time,

in

which

case

set

reloadIntervalSeconds

to

zero.

If

the

Web

services

are

in

production,

set

autoReload

to

false,

or

set

reloadIntervalSeconds

to

a

large

value

to

avoid

impacting

server

performance.

Related

concepts:

v

“Web

services

description

language”

on

page

115

v

“Defining

a

group

of

Web

services”

on

page

58

Related

tasks:

v

“Defining

the

web.xml

and

group.properties

files

in

the

iSeries

platform”

on

page

62

v

“Defining

the

web.xml

and

group.properties

files”

on

page

59

The

DADX

file

This

section

describes

the

properties,

syntax,

and

operation

of

the

DADX

file.

Defining

the

Web

service

with

the

document

access

definition

extension

file

The

document

access

definition

extension

(DADX)

file

specifies

a

Web

service.

It

does

this

by

using

SQL

statements,

a

list

of

parameters,

and

optionally,

document

access

definition

(DAD)

file

references

that

define

a

set

of

operations.

You

can

define

a

set

of

dynamic

Web

service

operations

with

a

DADX

file

that

contains

only

the

dynamic

query

service

tag

(<DQS⁄>).

Operations

are

similar

to

methods

that

you

can

invoke.

You

can

define

the

operations

in

a

DADX

Web

service

by

the

following

operation

types:

v

SQL

Operations

(non-dynamic)

66

Application

Developer’s

Guide

|
|
|
|
|
|
|

|

<query>

Queries

the

database

by

using

a

select

operation

<update>

Performs

an

update,

insert

or

delete

operation

on

the

database

<call>

Calls

stored

procedures
v

SQL

Operations

(dynamic

query

services)

<getTables>

Retrieves

a

description

of

available

tables.

<getColumns>

Retrieves

a

description

of

columns.

<executeQuery>

Issues

a

single

SQL

statement.

<executeUpdate>

Issues

a

single

INSERT,

UPDATE,

DELETE.

<executeCall>

Calls

a

single

stored

procedure.

<execute>

Issues

a

single

SQL

statement.
v

Extensible

Markup

Language

(XML)

collection

operations

(requires

DB2®

XML

Extender)

<retrieveXML>

Generates

XML

documents

<storeXML>

Stores

XML

documents

Related

concepts:

v

“Web

service

provider

operations

used

with

DADX

files”

on

page

31

Related

reference:

v

“Syntax

of

the

DADX

file”

on

page

67

Syntax

of

the

DADX

file

The

DADX

file

is

an

Extensible

Markup

Language

(XML)

document.

“DADX

syntax

definitions”

on

page

68

and

Figure

15

on

page

68

describe

the

elements

of

the

DADX.

The

DADX

schema

is

in

XML

schema

for

the

DADX

file.

The

numbers

next

to

the

nodes

and

elements

in

“DADX

syntax

definitions”

on

page

68

identify

the

child

groupings.

The

numbering

scheme

expresses

the

XML

document

hierarchy.

For

example,

when

the

identifiers

change

from

1.3

(result_set_metadata)

to

1.3.1

(column),

this

means

that

the

column

is

a

child

of

result_set_metadata.

A

change

from

1.1

(documentation)

to

1.2

(implements)

means

that

these

elements

are

siblings.

Chapter

2.

Developing

Web

services

67

|
|

|
|

||

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

0.

Root

element:

<DADX>

Attributes:

xmlns:dadx

The

namespace

of

the

DADX.

xmlns:xsd

The

namespace

of

the

Extensible

Markup

Language

(XML)

Schema

specification

Children:

0.1

<documentation>

Specifies

a

comment

or

statement

about

the

purpose

and

content

of

the

Web

service.

You

can

use

XHTML

tags.

1.

DADX

functions

that

specify

non-dynamic

operations

1.2

<implements>

Specifies

the

namespace

and

location

of

the

Web

service

description

files.

It

allows

the

service

implementer

to

declare

that

the

DADX

Web

service

implements

a

standard

Web

service

described

by

a

reusable

WSDL

document

defined

elsewhere;

for

example,

in

an

UDDI

registry.

DADX -

dadx:documentation +

dadx:DQS

dadx:result_set_metadata -

dadx:implements

dadx:column

dadx:documentation

dadx:operation -

dadx:DAD_ref

dadx:collection_name

no_override

SQL_override

dadx:parameter

dadx:DAD_ref

dadx:collection_name

XML_override

SQL_query

dadx:XML_result

dadx:parameter

SQL_query

dadx:parameter
dadx:update

dadx:query

dadx:retrieveXML

dadx:storeXML

SQL_call

dadx:parameter

dadx:result_set

dadx:call

Figure

15.

DADX

syntax

68

Application

Developer’s

Guide

|
|
|

|

|
|
|
|
|
|

1.3

<result_set_metadata>

Stored

procedures

can

return

one

or

more

result

sets.

You

can

include

them

in

the

output

message.

Metadata

for

a

stored

procedure

result

set

must

be

defined

explicitly

in

the

non-dynamic

DADX

using

the

<result_set_metadata>

element.

At

run-time,

you

obtain

the

metadata

of

the

result

set.

The

metadata

must

match

the

definition

contained

in

the

DADX

file.

Note:

You

can

only

invoke

stored

procedures

that

have

result

sets

with

fixed

metadata.

This

restriction

is

necessary

in

order

to

have

a

well-defined

WSDL

file

for

the

Web

Service.

A

single

result

set

metadata

definition

can

be

referenced

by

several

<call>

operations,

using

the

<result_set>

element.

The

result

set

metadata

definitions

are

global

to

the

DADX

and

must

precede

all

of

the

operation

definition

elements.

Attributes:

name

Identifies

the

root

element

for

the

result

set.

rowname

Used

as

the

element

name

for

each

row

of

the

result

set.

Children:

1.3.1

<column>

Defines

the

column.

The

order

of

the

columns

must

match

that

of

the

result

set

returned

by

the

stored

procedure.

Each

column

has

a

name,

type,

and

nullability,

which

must

match

the

result

set.

Attributes:

name

Required.

This

specifies

the

name

of

the

column.

type

Required

if

you

do

not

specify

element.

It

specifies

the

type

of

column.

element

Required

if

you

do

not

specify

type.

It

specifies

the

element

of

column.

as

Optional.

This

provides

a

name

for

a

column.

nullable

Optional.

Nullable

is

either

true

or

false.

It

indicates

whether

column

values

can

be

null.

1.4

<operation>

Specifies

a

Web

service

operation.

The

operation

element

and

its

children

specify

the

name

of

an

operation,

and

the

type

of

operation

the

Web

service

performs.

Web

services

can

compose

an

XML

document,

query

the

database,

or

call

a

stored

procedure.

A

single

DADX

file

can

contain

Chapter

2.

Developing

Web

services

69

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

||

|
|
|

|

|
|
|
|
|

|

||
|

||
|

|
|
|

||
|

|
|
|
|

|
|
|
|
|
|

multiple

operations

on

a

single

database

or

location.

The

following

list

describes

these

elements.

v

Attribute:

name

A

unique

string

that

identifies

the

operation.

The

string

must

be

unique

within

the

DADX

file.

For

example:

"findByColorAndMinPrice"

v

Children:

Document

the

operation

with

the

following

element:

1.4.1

<dadx:documentation>

Specifies

a

comment

or

statement

about

the

purpose

and

content

of

the

operation.

You

can

use

XHTML

tags.

1.4.2

<retrieveXML>

This

element

specifies

to

generate

zero

or

one

XML

documents

from

a

set

of

relational

tables

when

using

the

XML

collection

access

method.

Depending

on

whether

you

specify

a

DAD

file

or

an

XML

collection

name,

the

operation

calls

the

appropriate

XML

Extender

composition

stored

procedure.

Children:

–

Specify

which

of

these

stored

procedures

you

want

to

use.

You

do

this

by

passing

either

the

name

of

a

DAD

file,

or

the

name

of

the

collection

by

using

one

of

the

following

elements:

1.4.2.1

<DAD_ref>

The

content

of

this

element

is

the

name

and

path

of

a

DAD

file.

If

you

specify

a

relative

path

for

the

DAD

file,

then

the

application

assumes

that

the

current

working

directory

is

the

group

directory.

1.4.2.2

<collection_name>

The

content

of

this

element

is

the

name

of

the

XML

collection.

You

define

collections

by

using

the

XML

Extender

administration

interfaces,

as

described

in

DB2

XML

Extender

Administration

and

Programming.
–

Specify

override

values

with

one

of

the

following

elements:

1.4.2.3

<no_override/>

Specifies

that

the

values

in

the

DAD

file

are

not

overridden.

Required

if

you

do

not

specify

either

<SQL_override>

or

<XML_override>.

70

Application

Developer’s

Guide

|
|

|

||
|
|

|

|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

1.4.2.4

<SQL_override>

Specifies

to

override

the

SQL

statement

in

a

DAD

file

that

uses

SQL

mapping.

1.4.2.5

<XML_override>

Specifies

to

override

the

XML

conditions

in

a

DAD

file

that

uses

RDB

mapping.
–

Define

parameters

by

using

the

following

element:

1.4.2.6

<parameter>

Required

when

referencing

a

parameter

in

an

<SQL_override>

or

an

<XML_override>

element.

This

element

specifies

a

parameter

for

an

operation.

Use

a

separate

parameter

element

for

each

parameter

referenced

in

the

operation.

Each

parameter

name

must

be

unique

within

the

operation.

A

parameter

must

have

its

contents

defined

by

either

an

XML

Schema

element

(a

complex

type)

or

a

simple

type.

Attributes:

name

The

unique

name

of

the

parameter.

element

Use

the

"element"

attribute

to

specify

an

XML

Schema

element.

type

Use

the

"type"

attribute

to

specify

a

simple

type.

kind

Specifies

whether

a

parameter

passes

input

data,

returns

output

data,

or

does

both.

The

valid

values

for

this

attribute

are:

-

in

1.4.3

<storeXML>

This

element

specifies

to

store

(decompose)

an

XML

document

in

a

set

of

relational

tables

using

the

XML

collection

access

method.

Depending

on

whether

you

specify

a

DAD

file

or

an

XML

collection

name,

the

operation

calls

the

appropriate

XML

Extender

decomposition

stored

procedure.

Children:

–

Specify

which

of

these

stored

procedures

you

want

to

use.

You

do

this

by

passing

either

the

name

of

a

DAD

file,

or

the

name

of

the

collection

by

using

one

of

the

following

elements:

Chapter

2.

Developing

Web

services

71

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

||
|

|
|
|
|

||
|

||
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|
|
|
|

1.4.3.1

<DAD_ref>

The

content

of

this

element

is

the

name

and

path

of

a

DAD

file.

If

you

specify

a

relative

path

for

the

DAD

file,

the

application

assumes

that

the

current

working

directory

is

the

group

directory.

1.4.3.2

<collection_name>

The

content

of

this

element

is

the

name

of

an

XML

collection.

You

define

collections

by

using

the

XML

Extender

administration

interfaces,

as

described

in

DB2

XML

Extender

Administration

and

Programming.

1.4.4

<query>

Specifies

a

query

operation.

You

define

the

operation

by

using

an

SQL

SELECT

statement

in

the

<SQL_select>

element.

The

statement

can

have

zero

or

more

named

input

parameters.

If

the

statement

has

input

parameters

then

each

parameter

is

described

by

a

<parameter>

element.

This

operation

maps

each

database

column

from

the

result

set

to

a

corresponding

XML

element.

You

can

specify

XML

Extender

user-defined

types

(UDTs)

in

the

<query>

operation.

However,

this

requires

an

<XML_result>

element

and

a

supporting

document

type

definition

(DTD)

that

defines

the

type

of

the

XML

column

queried.

Children:

1.4.4.1

<SQL_query>

Specifies

an

SQL

SELECT

statement.

1.4.4.2

<XML_result>

Optional.

This

defines

a

named

column

that

contains

XML

documents.

The

XML

Schema

element

of

its

root

must

define

the

document

type.

Attributes:

name

Specifies

the

root

element

of

the

XML

document

stored

in

the

column.

element

Specifies

the

particular

element

within

the

column

1.4.4.3

<parameter>

Required

when

referencing

a

parameter

in

the

<SQL_query>

element.

It

specifies

a

parameter

for

an

operation.

Use

a

separate

parameter

element

for

each

parameter

referenced

in

the

operation.

72

Application

Developer’s

Guide

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|

||
|
|

|
|
|

|
|
|
|
|
|

Each

parameter

name

must

be

unique

within

the

operation.

A

parameter

must

have

its

contents

defined

by

one

of

the

following:

an

XML

Schema

element

(a

complex

type)

or

a

simple

type.

Attributes:

name

The

unique

name

of

the

parameter.

element

Use

the

"element"

attribute

to

specify

an

XML

Schema

element.

type

Use

the

"type"

attribute

to

specify

a

simple

type.

kind

Specifies

whether

a

parameter

passes

input

data,

returns

output

data,

or

does

both.

The

valid

values

for

this

attribute

are:

–

in

1.4.5

<update>

The

operation

is

defined

by

an

SQL

INSERT,

DELETE,

or

UPDATE

statement

in

the

<SQL_update>

element.

The

statement

can

have

zero

or

more

named

input

parameters.

If

the

statement

has

input

parameters

then

each

parameter

is

described

by

a

<parameter>

element.

Children:

1.4.5.1

<SQL_update>

This

specifies

an

SQL

INSERT,

UPDATE,

or

DELETE

statement.

1.4.5.2

<parameter>

Required

when

referencing

a

parameter

in

the

<SQL_update>

element.

It

specifies

a

parameter

for

an

operation.

Use

a

separate

parameter

element

for

each

parameter

referenced

in

the

operation.

Each

parameter

name

must

be

unique

with

the

operation.

A

parameter

must

have

its

contents

defined

by

one

of

the

following:

an

XML

Schema

element

(a

complex

type)

or

a

simple

type.

Attributes:

name

The

unique

name

of

the

parameter.

element

Use

the

"element"

attribute

to

specify

an

XML

Schema

element.

type

Use

the

"type"

attribute

to

specify

a

simple

type.

Chapter

2.

Developing

Web

services

73

|
|
|
|
|

|

||
|

|
|
|

||
|

||
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

||
|

|
|
|

||
|

kind

Specifies

whether

a

parameter

passes

input

data,

returns

output

data,

or

does

both.

The

valid

values

for

this

attribute

are:

–

in

1.4.6

<call>

Specifies

a

call

to

a

stored

procedure.

The

processing

is

similar

to

the

update

operation,

but

the

parameters

for

the

call

operation

can

be

defined

as

’in’,

’out’,

or

’in/out’.

The

default

parameter

kind

is

’in’.

The

’out’

and

’in/out’

parameters

appear

in

the

output

message.

1.4.6.1

<SQL_call>

Specifies

a

stored

procedure

call.

1.4.6.2

<parameter>

Required

when

referencing

a

parameter

in

an

<SQL_call>

element.

This

specifies

a

parameter

for

an

operation.

Use

a

separate

parameter

element

for

each

parameter

referenced

in

the

operation.

Each

parameter

name

must

be

unique

within

the

operation.

A

parameter

must

have

its

contents

defined

by

one

of

the

following:

an

XML

Schema

element

(a

complex

type)

or

a

simple

type.

Attributes:

name

The

unique

name

of

the

parameter.

element

Use

the

″element″

attribute

to

specify

an

XML

Schema

element.

type

Use

the

″type″

attribute

to

specify

a

simple

type.

kind

Specifies

whether

a

parameter

passes

input

data,

returns

output

data,

or

does

both.

The

valid

values

for

this

attribute

are:

–

in

–

out

–

in/out

1.4.6.3

<result_set>

This

defines

a

result

set

and

must

follow

any

<parameter>

elements.

The

result

set

element

has

a

name

which

must

be

unique

among

all

the

parameters

and

result

sets

of

the

operation.

It

must

refer

to

a

<result_set_metadata>

element.

One

<result_set>

element

must

be

defined

for

each

result

set

returned

from

the

stored

procedure.

74

Application

Developer’s

Guide

||
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

||
|

|
|
|

||
|

||
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|

Attributes:

name

A

unique

identifier

for

the

result

sets

in

the

SOAP

response.

metadata

A

result

set

metadata

definition

in

the

DADX

file.

The

identifier

must

refer

to

the

name

of

an

element.

2.

<DQS>

Dynamic

query

services.

Related

concepts:

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

v

“Definition

of

a

DADX

file”

on

page

29

Related

reference:

v

“A

simple

DADX

file”

on

page

75

v

Appendix

C,

“XML

schema

for

the

DADX

file,”

on

page

247

A

simple

DADX

file

The

following

example

is

a

simple

DADX

file

that

contains

one

operation

with

an

SQL

query.

This

DADX

file

is

for

non-dynamic

queries.

See

Configuring

and

running

dynamic

database

queries

as

part

of

Web

services

provider

for

an

example

of

a

DADX

file

used

to

enable

dynamic

query

services.

Figure

16

shows

a

DADX

file

that

defines

a

simple

Web

service:

This

simple

DADX

file

defines

a

Web

service

with

a

single

operation

named

listDepartments

which

lists

the

contents

of

the

DEPARTMENT

table.

The

operation

name

identifies

the

Web

service

activity,

and

is

similar

to

a

method

name

in

programming

languages.

Related

concepts:

<?xml

version="1.0"

encoding="UTF-8"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

>

<documentation>

Simple

DADX

example

that

accesses

the

SAMPLE

database.

</documentation>

<operation

name="listDepartments">

<documentation>

Lists

the

departments.

</documentation>

<query>

<SQL_query>SELECT

*

FROM

DEPARTMENT</SQL_query>

</query>

</operation>

</DADX>

Figure

16.

Simple

DADX

file

Chapter

2.

Developing

Web

services

75

|

||
|

|
|
|
|
|

|
|

|
|
|
|

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

v

“Definition

of

a

DADX

file”

on

page

29

v

“Dynamic

database

queries

that

use

the

Web

services

provider”

on

page

90

Related

tasks:

v

“Configuring

and

running

dynamic

database

queries

as

part

of

Web

services

provider”

on

page

91

XML

collection

operations

You

can

generate

or

store

XML

documents

with

the

<retrieveXML>

or

<storeXML>

operations.

These

operations

call

XML

Extender

stored

procedures

and

require

a

DAD

file

or

an

XML

collection

reference.

These

stored

procedures

generate

or

store

XML

documents

by

using

the

mapping

in

a

DAD

file,

or

by

referring

to

an

enabled

XML

collection.

See

DB2

XML

Extender

Administration

and

Programming

to

learn

how

to

create

a

DAD

file.

The

following

example

shows

a

more

complex

DADX

file

that

generates

an

XML

document

from

a

DAD

file.

It

references

a

stored

procedure

by

using

the

<RetrieveXML>

element.

The

<DAD_ref>

element

specifies

the

name

of

a

DAD

file.

The

Web

service

generated

from

this

DADX

file

calls

the

dxxGenXML

stored

procedure

and

generates

XML

documents.

The

stored

procedure

refers

to

the

getstart_xcollection.dad

file

to

determine

which

tables

to

use

when

generating

the

XML

documents,

and

the

XML

document

structure.

Related

concepts:

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

v

“Testing

Web

services

applications

–

a

scenario”

on

page

109

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xhtml="http://www.w3.org/1999/xhtml">

<documentation>

Provides

queries

for

part

order

information

at

myco.com.

See

<xhtml:a

href="../documentation/PartOrders.html"

target="_top">PartOrders.html

</xhtml:a>

for

more

information.

</documentation>

<operation

name="findAll">

<documentation>

Returns

all

the

orders

with

their

complete

details.

</documentation>

<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>

<no_override/>

</retrieveXML>

</operation>

</DADX>

Figure

17.

DADX

file

that

generates

an

XML

document

76

Application

Developer’s

Guide

Related

reference:

v

“DADX

operation

examples”

on

page

80

Using

overrides

in

the

DADX

file

The

DADX

file

can

override

Extensible

Markup

Language

(XML)

values

and

SQL

statements

in

the

DAD

file

by

using

the

<XML_override>

and

<SQL_override>

elements.

The

type

of

override

is

determined

by

whether

the

DAD

file

uses

SQL

mapping

or

RDB

mapping.

If

you

do

not

need

to

override

the

DAD

values,

use

the

<no_override/>

element,

shown

in

Figure

17

on

page

76.

The

following

example

uses

an

SQL

override

statement.

Although

you

can

override

the

SQL

statement,

the

new

SQL

statement

must

produce

a

result

set

that

is

compatible

with

the

SQL

mapping

defined

in

the

DAD

file.

For

example,

the

column

names

that

appear

in

the

DAD

file

must

also

appear

in

the

SQL

override.

If

the

DAD

file

uses

RDB

node

mapping,

you

have

to

override

the

RDB

nodes

by

using

the

<XML_override>

element.

RDB

node

elements

define

DB2

Universal

Database

tables,

columns,

and

conditions

that

are

to

contain

XML

data.

The

example

in

Figure

19

on

page

78

shows

a

DADX

file

that

references

an

RDB

node

DAD

file.

The

<XML_override>

element

content

overrides

the

conditions

specified

in

the

DAD

file.

The

override

string

can

contain

input

parameters

using

the

host

variable

syntax.

You

must

define

the

name

and

type

of

all

parameters

in

a

list

of

parameter

elements

that

are

uniquely

named

within

this

operation.

In

this

example,

the

override

parameter

overrides

the

query

by

limiting

the

price

to

be

greater

than

$50.00

and

restricting

the

date

to

be

greater

than

1998-12-01.

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xhtml="http://www.w3.org/1999/xhtml">

<documentation

>

Provides

queries

for

part

order

information

at

myco.com.

See

<xhtml:a

href="../documentation/PartOrders.html"

target="_top">

PartOrders.html</xhtml:a>

for

more

information.

</documentation>

<operation

name="findAll">

<documentation

>

Returns

all

the

orders

with

their

complete

details.

</documentation>

<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>

<SQL_override>

select

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

quantity,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

table(select

substr(char(timestamp(generate_unique())),16)

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

where

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

order

by

order_key,

part_key,

ship_id

</SQL_override>

</retrieveXML>

</operation>

</DADX>

Figure

18.

Example

of

a

DADX

file

that

generates

an

XML

document

with

an

SQL

override

Chapter

2.

Developing

Web

services

77

Related

concepts:

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

Related

reference:

v

“DADX

operation

examples”

on

page

80

v

“A

simple

DADX

file”

on

page

75

Declaring

and

referencing

parameters

in

the

DADX

file

You

can

use

parameters

in

each

of

the

operations.

The

<SQL_query>,

<SQL_update>,

and

<SQL_call>

statements

for

the

SQL

operations

can

reference

parameters.

The

Extensible

Markup

Language

(XML)

and

SQL

overrides

that

you

use

in

the

<retrieveXML>

and

<storeXML>

operations

can

also

reference

parameters.

You

declare

the

parameters

by

using

the

<parameter>

element.

The

parameters

have

simple

XML

Schema

types

that

correspond

to

the

built-in

SQL

data

types.

Table

6

describes

the

supported

types.

Table

6.

Supported

XML

Schema

and

SQL

types

XML

Schema

Simple

Type

SQL

Type

string

CHAR,

VARCHAR,

CLOB,

LONGVARCHAR

decimal

DECIMAL,

NUMERIC

int

INTEGER

short

SMALLINT

float

FLOAT

double

REAL,

DOUBLE

PRECISION

date

DATE

time

TIME

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xhtml="http://www.w3.org/1999/xhtml">

<documentation

>

Provides

queries

for

part

order

information

at

myco.com.

See

<xhtml:a

href="../documentation/PartOrders.html"

target="_top">

PartOrders.html</xhtml:a>

for

more

information.

</documentation>

<operation

name="findByExtendedPriceAndShipDate">

<documentation

>

Returns

all

the

orders

with

an

extended

price

greater

than

$50.00

and

a

ship

date

later

than

1998-12-01.

</documentation>

<retrieveXML>

<DAD_ref>order_rdb.dad</DAD_ref>

<XML_override>

/Order/Part/ExtendedPrice

>

50.00

AND

Order/Part/Shipment/ShipDate

>

’1998-12-01’

</XML_override>

</retrieveXML>

</operation>

</DADX>

Figure

19.

Example

of

a

DADX

file

that

generates

an

XML

document

with

an

XML

override

78

Application

Developer’s

Guide

||

||

||

||

||

||

||

||

||

||

Table

6.

Supported

XML

Schema

and

SQL

types

(continued)

XML

Schema

Simple

Type

SQL

Type

timestamp

TIMESTAMP

long

BIGINT

byte

TINYINT

To

reference

a

parameter,

use

a

colon

prefix.

For

example:

<SQL_query>

select

*

from

order_tab

where

customer_name

=:customer_name

</SQL_query>

To

define

the

parameter,

use

the

<parameter>

element,

as

in

the

following

example:

<parameter

name="customer_name"

type="xsd:string"/>

You

must

define

each

parameter

that

you

reference

with

a

<parameter>

element.

The

name

attribute

for

this

element

identifies

the

parameter

and

must

be

unique

within

the

operation.

The

example

in

Figure

20

on

page

79

shows

a

query

operation

that

retrieves

a

set

of

relational

data

by

using

an

SQL

SELECT

statement.

The

statement

contains

one

input

parameter

by

using

the

parameter

syntax.

The

example

in

Figure

21

on

page

80

shows

parameters

in

an

SQL

override

that

are

used

by

a

retrieveXML

operation:

<operation

name="findCustomerOrders">

<documentation>Returns

all

the

orders

for

a

given

customer.

</documentation>

<query>

<SQL_query>select

*

from

order_tab

where

customer_name

=

:customer_name</SQL_query>

<parameter

name="customer_name"

type="xsd:string"/>

</query>

</operation>

Figure

20.

Query

operation

with

a

parameter

Chapter

2.

Developing

Web

services

79

|

||

||

||

||
|

You

can

modify

the

WHERE

clause

of

the

SQL

statement

to

include

search

conditions.

The

SQL

override

can

include

one

or

more

parameters

that

are

identified

by

using

a

colon.

In

this

example,

findByColorAndMinPrice

references

:color

and

:minprice.

You

declare

the

parameters

with

a

<parameter>

element.

The

parameters

have

simple

XML

schema

file

(XSD)

types

that

correspond

to

the

built-in

SQL

data

types.

Related

concepts:

v

“XML

schema

definitions”

on

page

119

Related

reference:

v

“A

simple

DADX

file”

on

page

75

v

“Syntax

of

the

DADX

file”

on

page

67

v

Appendix

C,

“XML

schema

for

the

DADX

file,”

on

page

247

DADX

operation

examples

The

following

samples

show

DADX

files

with

the

various

operations.

Example

1:

Query

operation

This

example

shows

a

Query

operation,

using

the

default

tags.

This

example

does

not

need

XML

Extender.

This

operation

selects

all

of

the

orders

for

a

given

customer.

To

run

this

sample,

you

need

the

sales_db

XML

Extender

sample

database.

<operation

name="findByColorAndMinPrice">

<documentation>Returns

all

the

orders

that

have

the

specified

color

and

at

least

the

specified

minimum

price.

</documentation>

<retrieveXML>

<DAD_ref>getstart_xcollection.dad

</DAD_ref>

<SQL_override>

select

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

quantity,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

table(select

substr(char(timestamp(generate_unique())),16)

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

where

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

and

color

=

:color

and

price

>=

:minprice

order

by

order_key,

part_key,

ship_id

</SQL_override>

<parameter

name="color"

type="xsd:string">

<parameter

name="minprice"

type="xsd:decimal">

</retrieveXML>

</operation>

Figure

21.

SQL

override

used

by

a

retrieveXML

operation

80

Application

Developer’s

Guide

A

list

of

parameter

elements

that

are

uniquely

named

within

this

operation

must

define

the

input

parameters.

If

you

need

more

control

over

the

mapping,

then

you

can

use

a

DAD

file.

You

can

use

the

Query

operation

to

use

the

XML

Extender

user-defined

types

(UDT)

and

user-defined

functions

(UDF).

This

operation

allows

you

to

query,

extract,

and

update

data

from

an

XML

column

that

contains

XML

documents.

These

XML

documents

require

that

you

create

a

document

type

definition

(DTD)

that

defines

the

type

of

the

<XML_result>

element.

This

element

specifies

the

column

name

and

the

root

element

of

the

XML

document

contained

in

it.

The

example

in

Figure

23

on

page

82

shows

a

Query

operation

that

uses

the

VARCHAR

UDT

declared

by

the

<XML_result>

element.

The

retrieveOrders

operation

retrieves

all

the

XML

order

documents

from

the

SALES_TAB

table

by

using

the

UDF

db2xml.varchar.

You

store

the

documents

by

using

the

XML

Extender

UDT

XMLVARCHAR.

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<documentation>

mycompany

part

orders

service.

</documentation>

<implements

namespace="http://www.poia.org/part_orders.wsdl"

location="http://www.poia.org/part_orders.wsdl"/>

<operation

name="findCustomerOrders">

<documentation>Returns

all

the

orders

for

a

given

customer.

</documentation>

<query>

<SQL_query>select

*

from

order_tab

where

customer_name

=

:customer_name

</SQL_query>

<parameter

name="customer_name"

type="xsd:string"/>

</query>

</operation>

Figure

22.

DADX

with

Query

operation

Chapter

2.

Developing

Web

services

81

When

you

have

XML

documents

in

a

column

and

you

want

the

WSDL

to

refer

to

the

type

of

this

document,

you

can

use

the

XML_result

tag.

In

Figure

23

on

page

82

the

example

specifies

that

the

ORDER

column

contains

fragments

of

element

dtd1:Order.

The

element

<XML_result

name

=

"ORDER"

element

=

"dtd1:Order"/>

refers

to

the

namespace

declaration.

XML

Extender

stores

XML

documents

that

have

no

namespaces

and

that

are

defined

by

DTDs.

Web

services

use

XML

Schemas

(XSD)

instead

of

DTDs,

and

make

use

of

namespaces.

You

associate

a

namespace

with

a

DTD

by

making

an

entry

in

the

namespace

table.

WORF

adds

the

namespace

when

it

retrieves

an

XML

document

and

removes

the

namespace

when

it

stores

a

document.

WORF

also

automatically

translates

DTDs

to

XSD.

The

line,

<XML_result

name

=

"ORDER"

element

=

"dtd1:Order"/>

defines

column

information

in

file

order.dtd.

The

specific

declaration

that

it

refers

to

is

in

the

following

example:

<?xml

encoding="US-ASCII"?>

<!ELEMENT

Order

(Customer,

Part+)>

<!ATTLIST

Order

key

CDATA

#REQUIRED>

...

To

point

to

the

DTD,

use

a

namespace

table

file,

(NST)

file.

Refer

to

Figure

24

on

page

83

as

an

example.

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:dtd1="http://schemas.myco.com/sales/order.dtd">

<documentation>

Queries

part

orders

at

myco.com.

</documentation>

<operation

name="retrieveOrders">

<documentation>

Retrieves

all

the

Order

documents.

</documentation>

<query>

<SQL_query>

select

db2xml.varchar(order)

from

sales_tab

</SQL_query>

<XML_result

name="ORDER"

element="dtd1:Order"/>

</query>

</operation>

</DADX>

Figure

23.

Query

operation

with

UDF

and

UDT

82

Application

Developer’s

Guide

You

must

reference

this

file

in

the

group.properties

file.

See

the

example

in

Figure

12

on

page

61

to

learn

more

about

this

file.

Example

2:

Update

operation

The

example

in

Figure

25

on

page

83

shows

an

operation

that

updates

the

electronic

mail

(e-mail)

address

of

a

customer

for

a

given

order.

The

update

operation

can

contain

SQL

INSERT,

DELETE,

or

UPDATE

statements

in

the

<SQL_update>

element.

Example

3:

Call

operation

These

examples

show

Call

operations

that

call

stored

procedures.

If

your

stored

procedure

returns

result

sets,

you

must

define

these

result

sets

in

the

result_set_metadata

tag

in

the

DADX

file.

This

is

to

let

WORF

generate

the

WSDL

and

XML

schema

files

(XSD)

for

this

Web

service

operation.

Figure

26

on

page

84

shows

the

definition

of

a

result

set

metadata

that

is

referenced

two

times.

<?xml

version="1.0"?>

<namespaceTable

xmlns="http://schemas.ibm.com/db2/dxx/nst">

<mapping

dtdid="c:\dxx\samples\dtd\getstart.dtd"

namespace="http://schemas.ibm.com/db2/dxx/samples/dtd/getstart.dtd"

location="/dxx/samples/dtd/getstart.dtd/XSD"/>

<mapping

dtdid="getstart.dtd"

namespace="http://schemas.myco.com/sales/getstart.dtd"

location="/getstart.dtd/XSD"/>

<mapping

dtdid="order.dtd"

namespace="http://schemas.myco.com/sales/order.dtd"

location="/order.dtd/XSD"/>

</namespaceTable>

Figure

24.

NST

file

<operation

name="updateOrderEmail">

<documentation>Updates

the

email

address

for

an

order.

</documentation>

<update>

<SQL_update>update

order_tab

set

customer_email

=

:email

where

order_key

=

:key</SQL_update>

<parameter

name="key"

type="xsd:int"/>

<parameter

name="email"

type="xsd:string"/>

</update>

</operation>

</DADX>

Figure

25.

Update

operation

Chapter

2.

Developing

Web

services

83

You

can

also

call

a

stored

procedure

by

using

the

format

shown

in

Figure

27

on

page

84.

Example

4:

RetrieveXML

operation

The

DADX

file

in

Figure

28

on

page

85

implements

one

retrieveXML

operation

by

using

the

stored

procedure

dxxGenXMLCLOB.

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<result_set_metadata

name="employeeSalaryReport"

rowName="employee">

<column

name="NAME"

type="VARCHAR"

nullable="true"

/>

<column

name="JOB"

type="CHAR"

nullable="true"

/>

<column

name="3"

as="SALARY"

type="DOUBLE"

nullable="true"

/>

</result_set_metadata>

<operation

name="twoResultSets">

<call>

<SQL_call>CALL

TWO_RESULT_SETS

(:salary,

:sqlCode)

</SQL_call>

<parameter

name="salary"

type="xsd:double"

kind="in"

/>

<parameter

name="sqlCode"

type="xsd:int"

kind="out"

/>

<result_set

name="employees1"

metadata="employeeSalaryReport"

/>

<result_set

name="employees2"

metadata="employeeSalaryReport"

/>

</call>

</operation>

</DADX>

Figure

26.

Definition

of

a

result

set

metadata

referenced

two

times

<operation

name="callProc1">

<documentation>Call

the

Proc1

stored

procedure.

</documentation>

<call>

<SQL_call>

CALL

Proc1

(:x,

:y,

:z)

</SQL_call>

<parameter

name="x"

type="xsd:string"

kind="in"/>

<parameter

name="y"

type="xsd:int"

kind="in/out"/>

<parameter

name="z"

element="dtd1:Order"

kind="out"/>

</call>

</operation>

Figure

27.

DADX

with

alternate

Call

operation

84

Application

Developer’s

Guide

The

operation

in

Figure

28

on

page

85

generates

XML

documents

that

are

based

on

the

mapping

in

the

getstart_xcollection.dad

file.

The

operation

specifies

an

SQL

override.

The

operation

replaces

the

SQL

statement

defined

in

the

DAD

file

and

references

two

parameters

in

the

override

statement:

:color

and

:minprice.

The

DAD

file

for

this

example

is

in

the

appendix

of

DB2

XML

Extender

Administration

and

Programming.

Example

5:

StoreXML

operation

This

example

in

Figure

29

on

page

86

shows

a

DADX

file

that

references

a

DAD

by

using

RDB_node

mapping,

getstart_xcollection_rdb.dad.

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<documentation>

mycompany

part

orders

service.

</documentation>

<operation

name="findByColorAndMinPrice">

<documentation>Returns

all

the

orders

that

have

the

specified

color

and

at

least

the

specified

minimum

price.</documentation>

<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>

<SQL_override>

select

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

quantity,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

table(select

substr(char(timestamp(generate_unique())),16)

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

where

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

and

color

=

:color

and

price

>=

:minprice

order

by

order_key,

part_key,

ship_id

</SQL_override>

<parameter

name="color"

type="xsd:string"/>

<parameter

name="minprice"

type="xsd:decimal"/>

</retrieveXML>

</operation>

</DADX>

Figure

28.

DADX

with

retrieveXML

operation

Chapter

2.

Developing

Web

services

85

The

storeXML

operation

is

implemented

by

the

dxxInsertXML

stored

procedure

if

a

<collection_name>

element

is

used

instead

of

a

<DAD_ref>

element.

It

performs

the

same

operations

as

the

dxxShredXML

procedure,

but

uses

the

name

of

an

XML

collection

instead

of

a

DAD

file.

Related

concepts:

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

Related

reference:

v

“A

simple

DADX

file”

on

page

75

Converting

a

document

type

definition

to

an

XML

schema

XML

Extender

currently

uses

document

type

definition

files

(DTDs)

to

define

document

structure,

while

Web

services

description

language

(WSDL)

uses

XML

schemas

(XSD

files).

Web

services

object

runtime

framework

(WORF)

automatically

creates

an

XML

Schema

(XSD)

file.

You

must

add

an

entry

to

the

namespace

table

(NST

file)

to

define

the

namespace

associated

with

a

DTD.

This

also

enables

conversion

of

the

DTD

to

XSD.

Procedure:

Request

an

XSD

file

by

using

the

following

uniform

resource

locator

(URL)

syntax:

http://host/path/dtd_file.dtd/XSD

For

example:

http://host_name:port/services/sample/order.dtd/XSD

In

this

case,

the

order.dtd

file

must

be

in

WEB-INF\groups\dxx_sample.

WORF

and

the

XML

Extender

locate

DTDs

through

their

document

type

definition

identifier

(DTDID).

The

DTDID

is

either

a

file

name

or

the

key

value

in

the

DTD_REF

table

of

your

database.

XML

Extender

creates

the

DTD_REF

table

when

you

enable

your

database.

The

best

practice

is

to

store

DTDs

in

the

DTD_REF

table

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<documentation>

mycompany

part

orders

service.

</documentation>

<implements

namespace="http://www.poia.org/part_orders.wsdl"

location="http://www.poia.org/part_orders.wsdl"/>

<operation

name="storeOrder">

<documentation>Stores

an

automotive

part

order.

</documentation>

<storeXML>

<DAD_ref>getstart_xcollection_rdb.dad</DAD_ref>

</storeXML>

</operation>

</DADX>

Figure

29.

DADX

with

StoreXML

operation

86

Application

Developer’s

Guide

|
|
|
|
|
|

|
|
|
|

since

file

locations

might

change

when

you

move

your

Web

application

to

another

machine.

The

following

extract

from

the

Windows

2000

setup-xcollection.cmd

file

in

the

SALES_DB

example

shows

how

to

insert

DTDs

into

the

DTD_REF

table:

db2

"connect

to

SALES_DB"

rem

Insert

DTDs

db2

"insert

into

db2xml.dtd_ref

values(’getstart.dtd’,

db2xml.XMLClobFromFile(’%CD%\getstart.dtd’),

0,

’user1’,

’user1’,

’user1’)"

db2

"insert

into

db2xml.dtd_ref

values(’order.dtd’,

db2xml.XMLClobFromFile(’%CD%\order.dtd’),

0,

’user1’,

’user1’,

’user1’)"

Related

concepts:

v

“XML

schema

definitions”

on

page

119

Related

reference:

v

Appendix

C,

“XML

schema

for

the

DADX

file,”

on

page

247

WSDL

from

a

DADX

file

The

DADX

document

contains

the

information

required

to

implement

the

Web

service.

It

also

contains

the

information

required

to

generate

the

WSDL

document

that

describes

the

Web

service.

The

Web

services

description

language

(WSDL)

document

is

an

Extensible

Markup

Language

(XML)

vocabulary

that

is

used

to

describe

the

interface

of

business

services.

You

can

use

it

to

publish

services

to

a

UDDI

registry.

WSDL

allows

development

tools

to

programmatically

create

requester

code

and

provider

code

for

use

in

binding

to

a

Web

service.

It

also

enables

preconditioned

applications

to

dynamically

bind

to

a

Web

service.

You

can

use

WSDL

to

specify

the

data

that

are

required

for

requests

and

responses.

WSDL

uses

XML

Schema

for

precise

data

definition.

A

WSDL

binding

describes

how

the

service

is

bound

to

a

messaging

protocol,

particularly

the

SOAP

messaging

protocol.

A

WSDL

SOAP

binding

can

be

either

an

RPC

style

binding

or

a

document

style

binding.

A

SOAP

binding

can

also

have

an

encoded

use

or

a

literal

use.

To

generate

the

WSDL,

submit

the

following

uniform

resource

locator

(URL).

The

localhost

port

number,

designated

here

by

<yourWebAppServer>

depends

on

your

own

current

machine:

http://yourWebAppServer:port/webapp_name/group_name/dadx_file.dadx/WSDL

Web

services

object

runtime

framework

(WORF)

dynamically

generates

the

WSDL

document.

You

can

publish

this

in

UDDI

or

some

other

Web

service

directory.

If

you

use

the

samples

that

WORF

includes

during

the

installation,

you

can

submit

the

following

URL:

http://yourWebAppServer/services/sales/PartOrders.dadx/WSDL

Related

concepts:

v

“WSDL

for

UDDI

registration”

on

page

88

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

v

“Web

services

description

language”

on

page

115

Chapter

2.

Developing

Web

services

87

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|

|

|

|

|
|

|

Related

tasks:

v

“Testing

the

Web

service”

on

page

109

WSDL

for

UDDI

registration

The

Universal

Description,

Discovery,

and

Integration

(UDDI)

best

practices

document

explains

the

use

of

Web

services

description

language

(WSDL)

with

UDDI

registries.

This

document

recommends

that

you

split

the

WSDL

document

into

two

parts,

the

deployment,

and

reusable

parts.

The

deployment

part

includes

the

<service>

element

which

contains

the

URLs

where

the

service

is

deployed.

The

deployment

part

imports

the

reusable

part

which

contains

the

other

top-level

WSDL

elements.

The

reusable

part

corresponds

to

a

UDDI

<tModel>

element.

The

deployment

part

corresponds

to

a

UDDI

<businessService>.

Within

the

<businessService>

element,

each

WSDL

<port>

element

corresponds

to

a

UDDI

<bindingTemplate>

element.

To

learn

more

about

UDDI

and

Web

service

registration,

see

the

Universal

Description,

Discovery,

and

Integration

of

Business

for

the

Web

site.

To

generate

the

WSDL

parts,

submit

a

URL

with

the

WSDL

path

information:

v

To

generate

the

deployment

part,

submit

a

URL

with

WSDLservice

key

words:

http://yourWebAppServer:port/webapp_name/

group_name/DADX_file.dadx/WSDLservice

v

To

generate

the

reusable

part,

submit

a

URL

with

WSDLbinding

key

words:

http://yourWebbAppServer:port/webapp_name/

group_name/DADX_file.dadx/WSDLbinding

The

following

example

demonstrates

how

to

generate

the

deployment

and

the

reusable

parts

of

the

WSDL

document.

To

generate

the

deployment

part,

submit

a

URL

with

WSDLservice

command,

as

in

the

following

example:

http://yourWebAppServer/sales_db/part_orders.dadx/WSDLservice

To

generate

the

reusable

part,

submit

a

URL

with

WSDLbinding

command,

as

in

the

following

example:

http://yourWebAppServer/sales_db/part_orders.dadx/WSDLbinding

The

above

example

deals

with

the

case

in

which

the

service

implementer

creates

a

Web

service

that

is

unique

to

a

company.

One

of

the

usage

scenarios

that

UDDI

is

designed

to

handle

is

one

where

a

standards

body

or

vendor

defines

a

Web

service

interface

tModel.

Then,

service

implementers

use

the

Web

service.

For

example,

the

airline

industry

might

define

a

Web

service

that

provides

flight

schedules,

that

airlines

can

implement.

UDDI

allows

users

to

search

for

all

registered

services

that

implement

a

given

tModel.

Then,

a

travel

planning

application

can

locate

all

the

airline

flight

schedule

services.

Use

the

DADX

<implements>

element

to

declare

that

the

service

implements

a

Web

Service

described

by

a

reusable

WSDL

document

that

is

defined

elsewhere.

An

example

of

an

<implements>

element

is

shown

in

Figure

30

on

page

89.

88

Application

Developer’s

Guide

|

|

|

|
|
|
|

|
|
|

|
|
|

|
|

|

|

|
|
|

|
|

|
|
|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

http://www.uddi.org/
http://www.uddi.org/

The

following

example

shows

how

the

<implements>

tag

is

used

in

a

DADX

file:

<?xml

version="1.0"

encoding="UTF-8"?>

<schema

targetNamespace="http://schemas.ibm.com/db2/dxx/dadx"

...

elementFormDefault="qualified">

<import

namespace="http://schemas.xmlsoap.org/wsdl/"

schemaLocation="wsdl.xsd"/>

....

<element

name="DADX">

<annotation>

<documentation>

Defines

a

Web

Service.

The

Web

Service

is

described

by

an

optional

WSDL

documentation

element.

....

</documentation>

</annotation>

<complexType>

<sequence>

<element

ref="wsdl:documentation"

minOccurs="0"/>

<element

ref="dadx:implements"

minOccurs="0"/>

<element

ref="dadx:result_set_metadata"

minOccurs="0"

maxOccurs="unbounded"/>

<element

ref="dadx:operation"

maxOccurs="unbounded"/>

</sequence>

</complexType>

...

<element

name="implements">

<annotation>

<documentation>

Defines

the

namespace

and

location

of

a

set

of

WSDL

bindings

defined

elsewhere.

This

information

is

imported

into

the

WSDL

document

generated

for

this

Web

Service.

</documentation>

</annotation>

<complexType>

<attribute

name="namespace"

type="anyURI"

use="required"/>

<attribute

name="location"

type="anyURI"

use="required"/>

</complexType>

</element>

...

</schema>

Figure

30.

Element

<implements>

Chapter

2.

Developing

Web

services

89

|
|

Related

concepts:

v

“WSDL

from

a

DADX

file”

on

page

87

v

“Web

services

description

language”

on

page

115

Dynamic

database

queries

that

use

the

Web

services

provider

With

dynamic

query

services

you

can

dynamically

build

and

submit

queries

at

run

time

that

select,

insert,

update

application

data,

and

call

stored

procedures

rather

than

run

queries

that

are

predefined

at

deployment

time.

A

Web

application

can

use

the

Web

services

interface

to

access

a

database

and

extract

information

about

the

tables

and

columns

that

are

available.

Then,

the

application

can

query

the

tables

and

modify

the

data

in

the

database

through

Web

services.

The

Web

application

can

also

perform

data

definition

language

actions

on

the

database,

such

as

creating

tables.

By

using

the

dynamic

query

services

of

the

Web

services

provider,

Web

applications

can

be

more

flexible.

WORF

can

generate

two

styles

of

Web

services

description

language

files

(WSDL)

from

the

DADX

files

that

contain

a

dynamic

query

service

tag

(<DQS⁄>):

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xhtml="http://www.w3.org/1999/xhtml">

<documentation>

Provides

queries

for

part

order

information

at

myco.com.

This

Web

Service

is

compliant

with

the

Part

Ordering

Industry

Association

standard.

</documentation>

<implements

namespace="http://www.poia.org/PartOrders.wsdl"

location="http://www.poia.org/PartOrders.wsdl"/>

<operation

name="findAll">

<documentation%gt;

Returns

an

order

with

its

complete

details.

</documentation>

...

</operation>

...

Figure

31.

Example

DADX

file

using

an

implements

tag

90

Application

Developer’s

Guide

|

|

|

|

|
|
|

|
|
|
|
|
|

|
|

v

A

WSDL

file

that

uses

the

document-oriented

information

style

v

A

WSDL

file

that

uses

the

procedure-oriented

information

style

(RPC)

The

style

that

is

generated

is

defined

on

a

group

level

and

depends

on

the

existence

of

useDocumentStyle=true

in

the

group.properties

file.

For

more

information

about

the

Web

services

description

language

information

styles,

look

in

the

Web

services

description

language

specifications

on

your

browser.

The

WSDL

file

contains

service,

port,

and

definition

information.

Dynamic

query

tags

in

the

DADX

files

do

not

affect

static

DADX

functions.

Consider

using

the

dynamic

query

service

when

you

do

not

know

the

query

search

criteria

until

you

run

your

application.

The

dynamic

query

component

of

the

Web

services

provider

supports

Web

service

operations

that

are

generally

defined

by

the

following

categories:

Obtain

metadata

You

can

retrieve

the

tables

that

exist

in

a

database

and

the

column

information

for

those

tables.

Execute

DDL

You

can

issue

a

CREATE

TABLE

statement.

Execute

DML

You

can

issue

SELECT,

INSERT,

UPDATE

and

DELETE

statements,

and

the

CALL

statement

to

run

stored

procedures.

The

server

administrator

controls

access

to

a

specific

database

by

defining

a

group

with

specific

user

ID

and

password

settings

in

the

group.properties

file.

The

administrator

can

also

create

a

separate

WORF

instance

to

handle

access

to

a

database.

Related

concepts:

v

“WSDL

from

a

DADX

file”

on

page

87

v

“Web

services

provider

features”

on

page

30

v

“Web

service

provider

operations

used

with

DADX

files”

on

page

31

v

“Web

services

description

language”

on

page

115

v

“Dynamic

query

services-example

queries”

on

page

93

Related

tasks:

v

“Customizing

the

group.properties

file”

on

page

64

Related

reference:

v

“Dynamic

query

service

operations

in

the

Web

services

provider”

on

page

99

Configuring

and

running

dynamic

database

queries

as

part

of

Web

services

provider

With

dynamic

query

services,

you

can

build,

execute

stored

procedures

and

submit

database

queries

at

run

time

that

access

a

previously

deployed

Web

service.

You

no

longer

need

to

define

all

of

your

database

queries

in

your

Document

Access

Definition

Extension

(DADX)

file.

You

can

run

dynamic

queries

at

the

group

level,

or

within

the

scope

of

the

group

directory,

based

on

the

information

in

the

group.properties

file.

Chapter

2.

Developing

Web

services

91

|

|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

http://www.w3.org/TR/wsdl

Prerequisites:

v

Ensure

that

a

group.properties

file

exists

for

the

group

in

which

you

want

to

run

dynamic

Web

queries.

v

The

Web

application

must

establish

a

connection

to

the

target

database

for

each

Web

service

operation

that

is

defined

in

the

Web

services

description

language

(WSDL)

document.

v

You

must

ensure

that

the

XML

schema

description

file,

db2WebRowSet.xsd

is

included

in

the

context

root

of

your

Web

application,

unless

you

define

an

import

definition

in

the

WSDL.

File

db2WebRowSet.xsd

is

included

in

the

dxxworf.zip

file.

Restrictions:

v

When

your

application

uses

the

dynamic

query

services

of

the

Web

services

provider,

the

application

cannot

use

cursors

or

perform

any

operation

that

assumes

a

state

on

the

server.

You

must

obtain

your

results

in

a

single

query.

v

The

XML

tag

(<DQS⁄>)

that

identifies

a

dynamic

query

service

operation

cannot

coexist

with

any

DADX-specific

Web

service

definitions

within

the

same

file.

Procedure:

To

prepare

your

Web

services

environment

to

run

dynamic

queries

on

a

DB2

Universal

Database

with

Web

services

provider:

1.

Create

a

DADX

file

that

includes

the

XML

tag

<DQS⁄>.

This

tag

enables

a

group

to

perform

dynamic

queries.

No

other

tag

is

needed

in

the

DADX

file.

2.

Save

the

file

in

the

directory

of

the

group

for

which

you

will

run

dynamic

queries.

3.

Using

the

WSDL,

develop

a

client

for

the

application.

The

client

must

contain

at

least

the

following

information:

v

A

group

name

v

The

name

of

the

DADX

file,

such

as

mydqs.dadx

v

A

Web

service

operation,

such

as

getTables

4.

Modify

the

client

to

issue

one

of

the

accepted

DQS

operations,

such

as

the

getTables

operation.

5.

Run

the

client

that

issues

the

getTables

operation.

The

result

of

the

query

is

metadata

that

describes

the

rows

and

columns

of

the

table,

and

the

data

that

is

contained

in

the

tables.

The

SQL

statements

run

in

autocommit

mode.

The

client

can

also

call

a

dynamic

query

service

in

other

groups.

The

only

information

that

needs

to

change

is

the

endpoint

URL.

However,

clients

are

only

compatible

for

either

an

RPC

style

WSDL

or

a

document

style

WSDL.

You

cannot

use

a

dynamic

query

services

client

that

is

defined

by

an

RPC

style

WSDL

for

a

group

that

uses

a

document

style

WSDL.

Related

concepts:

v

“Web

services

description

language”

on

page

115

v

“Dynamic

query

services-example

queries”

on

page

93

v

“Dynamic

database

queries

that

use

the

Web

services

provider”

on

page

90

v

“Defining

a

group

of

Web

services”

on

page

58

Related

reference:

v

“A

simple

DADX

file”

on

page

75

92

Application

Developer’s

Guide

|

|
|

|
|
|

|
|
|
|

|

|
|
|

|
|

|

|
|

|

|
|

|
|

|
|

|

|

|

|
|

|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

Dynamic

query

services-example

queries

Example:

the

DADX

file

In

the

following

example,

the

DADX

file

is

named

mydqs.dadx.

The

file

mydqs.dadx

is

in

the

directory

of

the

group

for

which

you

will

execute

dynamic

queries.

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx">

<documentation>

This

is

optional

documentation

about

DQS

<⁄documentation>

<DQS⁄>

<⁄DADX>

Example:

Running

the

dynamic

query

from

a

browser

The

following

example

is

a

simple

dynamic

query

that

you

can

run

from

a

browser.

You

can

also

include

this

statement

in

an

application.

The

required

information

for

a

dynamic

query

in

Web

services

provider

is

in

bold

print.

The

Web

service

operation

in

this

example

is

executeQuery.

The

parameter

associated

with

the

operation

is

queryInput.

The

statement

fetches

all

rows

of

column

lastname

from

table

employee:

http://localhost:9080/services/<group_name>

/somefile.dadx/executeQuery?queryInputParameter

=select%20lastname%20from%20employee

The

example

issues

a

GET

binding

request

rather

than

a

complete

SOAP

envelope.

See

Accessing

the

Web

service

with

GET,

POST,

and

SOAP

bindings

for

more

information

on

the

GET,

POST,

and

SOAP

bindings.

The

following

output

is

from

the

executeQuery

operation

and

it

is

defined

by

the

db2WebRowSet

schema

definition:

<?xml

version="1.0"

encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns1:executeQueryResponse

xmlns:ns1="http://schemas.ibm.com/db2/dqs">

<queryOutputParameter>

<db2WebRowSet

xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<metadata>

<column-count>14</column-count>

<column-definition>

<column-index>1</column-index>

<nullable>0</nullable>

<column-name>EMPNO</column-name>

<column-precision>6</column-precision>

<column-scale>0</column-scale>

<column-type>CHAR</column-type>

<column-type-name>CHAR</column-type-name>

<xml-type>string</xml-type>

</column-definition>

<column-definition>

<column-index>2</column-index>

<nullable>0</nullable>

<column-name>FIRSTNME</column-name>

<column-precision>12</column-precision>

<column-scale>0</column-scale>

Chapter

2.

Developing

Web

services

93

|

|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<column-type>VARCHAR</column-type>

<column-type-name>VARCHAR</column-type-name>

<xml-type>string</xml-type>

</column-definition>

...

<column-definition>

<column-index>14</column-index>

<nullable>1</nullable>

<column-name>COMM</column-name>

<column-precision>9</column-precision>

<column-scale>2</column-scale>

<column-type>DECIMAL</column-type>

<column-type-name>DECIMAL</column-type-name>

<xml-type>decimal</xml-type>

</column-definition>

...

<column-definition>

<column-index>14</column-index>

<nullable>1</nullable>

<column-name>COMM</column-name>

<column-precision>9</column-precision>

<column-scale>2</column-scale>

<column-type>DECIMAL</column-type>

<column-type-name>DECIMAL</column-type-name>

<xml-type>decimal</xml-type>

</column-definition>

</metadata>

</data>

</db2WebRowSet>

</queryOutputParameter>

</ns1:executeQueryResponse>

</soapenv:Body>

</soapenv:Envelope>

Example:

Importing

db2WebRowSet.xsd

When

the

group

contains

a

dynamic

query

services

DADX,

the

db2WebRowSet.xsd

file

must

be

accessible

to

Web

services

consumers.

To

ensure

the

location

of

the

db2WebRowSet.xsd

file,

the

group.imports

file

defines

the

necessary

schema

locations.

The

following

is

an

example

of

a

group.imports

file

to

import

db2WebRowSet.xsd.

This

example

assumes

that

you

do

not

have

file

db2WebRowSet.xsd

in

your

local

groups

directory:

<?xml

version="1.0"

encoding="UTF-8"?>

<imports

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:import

namespace="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

schemaLocation="http://myServer.myCo.com/schemas/misc/ibm/db2WRS.xsd"/>

</imports>

If

no

group.imports

file

exists,

then

WORF

generates

the

default

import

elements

in

the

WSDL

only

for

the

dynamic

query

services.

In

this

case,

WORF

assumes

that

the

db2WebRowSets.xsd

file

is

in

the

following

location:

http://<server>:<port>/<contextRoot>/db2WebRowSet.xsd

Example:

getTables

The

following

is

an

example

of

the

getTables

operation:

<?xml

version="1.0"

encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

94

Application

Developer’s

Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|
|
|

<ns0:getTables

xmlns:ns0="http://schemas.ibm.com/db2/dqs">

<tablesInputParameter>

<tablesInputData>

<schemaPattern>MSCHENK</schemaPattern>

<tableNamePattern>EMPLOYEE</tableNamePattern>

</tablesInputData>

</tablesInputParameter>

</ns0:getTables>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example:

getColumns

The

following

is

example

of

the

getColumns

operation:

<?xml

version="1.0"

encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<ns0:getColumns

xmlns:ns0="http://schemas.ibm.com/db2/dqs">

<columnsInputParameter>

<columnsInputData>

<schemaPattern>MSCHENK</schemaPattern>

<tableNamePattern>EMPLOYEE</tableNamePattern>

<columnNamePattern>EMPNO</columnNamePattern>

</columnsInputData>

</columnsInputParameter>

</ns0:getColumns>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example:

executeQuery

The

following

example

query

fetches

all

rows

from

table

employee

and

specifies

several

parameters:

<?xml

version="1.0"

encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<ns0:executeQuery

xmlns:ns0="http://schemas.ibm.com/db2/dqs">

<queryInputParameter>

select

*

from

employee

</queryInputParameter>

<extendedInputParameter>

<properties>

<loginInfo>

<userid>userid</userid>

<password>some_password</password>

</loginInfo>

<readOnly>true</readOnly>

<isolationLevel>READ_UNCOMMITTED</isolationLevel>

<escapeProcessing>true</escapeProcessing>

<startAtRow>4</startAtRow>

<fetchSize>80</fetchSize>

<maxFieldSize>20</maxFieldSize>

<maxRows>100</maxRows>

<queryTimeout>2000</queryTimeout>

</properties>

Chapter

2.

Developing

Web

services

95

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</extendedInputParameter>

</ns0:executeQuery>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example:

executeUpdate

The

following

example

shows

a

dynamic

query

services

update

statement:

<?xml

version="1.0"

encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<ns0:executeUpdate

xmlns:ns0="http://schemas.ibm.com/db2/dqs">

<queryInputParameter>

update

bo_events

set

OBJECTEVENTID=&’testestest&’

</queryInputParameter>

<extendedInputParameter>

<properties/>

</extendedInputParameter>

</ns0:executeUpdate>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The

following

example

shows

the

response

document

that

is

returned:

<?xml

version="1.0"

encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns1:executeUpdateResponse

xmlns:ns1="http://schemas.ibm.com/db2/dqs">

<updateOutputParameter

xsi:type="xsd:int">

1

</updateOutputParameter>

</ns1:executeUpdateResponse>

</soapenv:Body>

</soapenv:Envelope>

Example:

executeCall

The

example

request

calls

stored

procedure

multipleResultSets:

<?xml

version="1.0"

encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<ns0:executeCall

xmlns:ns0="http://schemas.ibm.com/db2/dqs">

<callInputParameter>

<callInputData>

<spName>

multipleResultSets

</spName>

<parameters>

<parameter>

<inParam>

<kind>IN</kind>

<type>string</type>

<value>000130</value>

96

Application

Developer’s

Guide

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</inParam>

</parameter>

<parameter>

<inParam>

<kind>INOUT</kind>

<type>string</type>

<value>000130</value>

</inParam>

</parameter>

<parameter>

<outParam>

<kind>OUT</kind>

<type>string</type>

</outParam>

</parameter>

</parameters>

</callInputData>

</callInputParameter>

<extendedInputParameter>

<properties/>

</extendedInputParameter>

</ns0:executeCall>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The

following

example

shows

the

sample

output:

<?xml

version="1.0"

encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns1:executeCallResponse

xmlns:ns1="http://schemas.ibm.com/db2/dqs">

<callOutputParameter>

<dqs:callOutputData

xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">

<dqs:outputResultSequences>

<db2WebRowSet

xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<metadata>

<column-count>5</column-count>

<column-definition>

<column-index>1</column-index>

<nullable>0</nullable>

<column-name>DEPTNO</column-name>

<column-precision>3</column-precision>

<column-scale>0</column-scale>

<column-type>CHAR</column-type>

<column-type-name>CHAR</column-type-name>

<xml-type>string</xml-type>

</column-definition>

...

<column-definition>

<column-index>5</column-index>

<nullable>1</nullable>

<column-name>LOCATION</column-name>

<column-precision>16</column-precision>

<column-scale>0</column-scale>

<column-type>CHAR</column-type>

<column-type-name>CHAR</column-type-name>

<xml-type>string</xml-type>

</column-definition>

</metadata>

<data>

Chapter

2.

Developing

Web

services

97

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<row>

<column>A00</column>

<column>

SPIFFY

COMPUTER

SERVICE

DIV.

</column>

<column>000010</column>

<column>A00</column>

<column

xsi:nil="true"/>

</row>

...

<row>

...

</row>

</data>

</db2WebRowSet>

</dqs:outputResultSequences>

<dqs:outputParameterSequences>

<dqs:callOutputParam>

<position>2</position>

<type>string</type>

<value>xxxxxx</value>

</dqs:callOutputParam>

<dqs:callOutputParam>

<position>3</position>

<type>string</type>

<value>This

is

the

value

of

name3</value>

</dqs:callOutputParam>

</dqs:outputParameterSequences>

</dqs:callOutputData>

</callOutputParameter>

</ns1:executeCallResponse>

</soapenv:Body>

</soapenv:Envelope>

Example:

execute

The

following

example

creates

a

table

with

one

column:

<?xml

version="1.0"

encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<ns0:execute

xmlns:ns0="http://schemas.ibm.com/db2/dqs">

<queryInputParameter>

create

table

temptable(in

varchar(500))

</queryInputParameter>

<extendedInputParameter>

<properties/>

</extendedInputParameter>

</ns0:execute>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The

following

is

the

output

from

the

execute

operation:

<?xml

version="1.0"

encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns1:executeResponse

xmlns:ns1="http://schemas.ibm.com/db2/dqs">

<executeOutputParameter>

98

Application

Developer’s

Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

<dqs:executeOutputData

xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">

<resultsPresent>false</resultsPresent>

<dqs:outputResultSequences>

</dqs:outputResultSequences>

</dqs:executeOutputData>

</executeOutputParameter>

</ns1:executeResponse>

</soapenv:Body>

</soapenv:Envelope>

Related

concepts:

v

“Dynamic

database

queries

that

use

the

Web

services

provider”

on

page

90

Related

tasks:

v

“Configuring

and

running

dynamic

database

queries

as

part

of

Web

services

provider”

on

page

91

Related

reference:

v

“Dynamic

query

service

operations

in

the

Web

services

provider”

on

page

99

Dynamic

query

service

operations

in

the

Web

services

provider

The

following

tables

describe

the

dynamic

query

operations

that

are

supported

in

the

DB2

Web

services

provider.

Table

7.

Operations

for

metadata

retrieval

Web

service

operation

Description

getTables

tablesInputParameter

input;

type

=

tablesInputData

(see

Table

11

on

page

102)

tablesOutputParameter

output;

type

=

db2WebRowSet

Retrieves

a

description

of

the

tables

in

the

specified

catalog

and

schema,

such

as

the

name

of

the

catalog,

the

name

of

the

schema,

and

the

name

of

the

table.

If

you

use

schema

as

an

input

parameter,

the

Java

database

connectivity

might

require

case

sensitivity

for

schema.

getColumns

columnsInputParameter

input;

type

=

columnsInputData

(see

Table

12

on

page

103)

columnsOutputParameter

output;

type

=

db2WebRowSet

Retrieves

a

description

of

the

columns

in

the

specified

catalog,

schema,

and

table.

If

you

use

schema

as

an

input

parameter,

the

Java

database

connectivity

might

require

case

sensitivity

for

schema.

Chapter

2.

Developing

Web

services

99

|
|
|
|
|
|
|
|
|
|

|

|

|

|
|

|

|

|

|

|
|

||

||

|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|

Table

8.

Operations

to

run

queries

and

stored

procedures

Operations

Description

executeQuery

queryInputParameter

required

input;

type

=

string

extendedInputParameter

required

input;

type

=

properties

(see

Table

9)

queryOutputParameter

output;

type

=

db2WebRowSet

Issues

a

single

SQL

SELECT

statement

on

the

database

server

and

returns

a

single

result

set.

executeUpdate

queryInputParameter

required

input;

type

=

string

extendedInputParameter

required

input;

type

=

properties

(see

Table

9)

updateOutputParameter

output;

type

=

int

Issues

a

single

INSERT,

UPDATE,

DELETE

statement

on

the

database

server

and

returns

a

completion

code.

executeCall

callInputParameter

input;

type

=

callInputData

extendedInputParameter

input;

type

=

properties

(see

Table

9)

callOutputParameter

output;

type

=

callOutputData

Calls

a

single

stored

procedure

on

the

database

server

and

returns

a

set

of

output

parameters

and

a

sequence

of

result

sets.

execute

queryInputParameter

required

input;

type

=

string

extendedInputParameter

required

input;

type

=

properties

(see

Table

9)

executeOutputParameter

output;

type

=

executeOutputData

Issues

a

single

SQL

statement

on

the

database

server

and

returns

a

completion

code

and

a

sequence

of

result

sets.

You

can

use

the

optional

parameters

that

are

listed

in

Table

9

with

the

operations

that

are

listed

in

Table

8.

Table

9.

Input

data

types

for

the

extended

parameters

Properties

type

Description

loginInfo

v

userid

v

password

The

loginInfo

includes

the

user

ID

that

is

passed

to

the

database

for

access

control.

It

also

includes

the

password

that

is

associated

with

the

user

ID

that

is

passed

to

the

database

for

access

control.

These

properties

have

a

type

of

string.

If

you

specify

a

user

ID,

then

you

must

specify

a

password.

readOnly

Allows

the

Web

application

to

specify

that

it

will

use

the

database

for

read-only

purposes.

This

is

a

binary

type

and

can

be

either

true

or

false.

escapeProcessing

Allows

the

Web

application

to

control

escape

processing

on

the

query

string.

If

escape

scanning

is

enabled

(true),

the

driver

performs

escape

substitution

before

it

sends

the

SQL

to

the

database.

This

is

a

binary

type

and

can

be

either

true

or

false.

The

default

value

is

true.

100

Application

Developer’s

Guide

||

||

|

|
|

|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

||

||

|

|

|

|
|
|
|
|
|

||
|
|

||
|
|
|
|

Table

9.

Input

data

types

for

the

extended

parameters

(continued)

Properties

type

Description

fetchSize

Specifies

the

number

of

rows

to

be

fetched

back

to

the

Web

application

on

any

given

fetch

operation.

This

is

type

integer.

The

default

value

is

0.

maxFieldSize

Sets

the

limit

for

the

maximum

number

of

bytes

in

a

column

to

the

specified

number

of

bytes.

The

value

is

the

maximum

number

of

bytes

that

can

be

returned

for

any

column

value.

The

is

type

integer.

maxRows

Specifies

the

maximum

number

of

rows

to

fetch

back

to

the

Web

application.

This

is

type

integer.

If

the

maxRows

parameter

is

not

specified,

then

a

maximum

of

1000

rows

can

be

returned.

startAtRow

Allows

the

Web

application

to

skip

a

specified

number

of

rows

in

the

result

set.

This

is

type

integer.

queryTimeout

Allows

the

Web

application

to

specify

a

timeout

value

for

the

query.

Sets

the

number

of

seconds

that

the

driver

waits

for

a

statement

object

to

run

to

the

given

number

of

seconds.

If

the

limit

is

exceeded,

an

exception

occurs.

A

value

of

0

seconds

indicates

that

the

driver

can

wait

an

unlimited

number

of

seconds.

isolationLevel

Allows

the

Web

application

to

control

the

isolation

level

of

the

query.

v

READ_UNCOMMITTED

v

READ_COMMITTED

v

REPEATABLE_READ

v

SERIALIZABLE

v

NONE

Table

10.

Input

data

types

for

the

callInputParameter

callInputData

type

Description

spName

type:

string

The

name

of

the

stored

procedure

to

invoke.

This

parameter

is

mandatory.

schema

type:

string

The

schema

of

the

stored

procedure.

This

parameter

is

optional.

If

the

parameter

is

not

supplied,

the

value

is

the

current

schema.

Chapter

2.

Developing

Web

services

101

|

||

||
|
|

||
|
|
|

||
|
|
|

||
|

||
|
|
|
|
|

||
|

|

|

|

|

|
|

||

||

|
|

|
|

||
|
|
|

Table

10.

Input

data

types

for

the

callInputParameter

(continued)

callInputData

type

Description

parameters

type:

sequence

of

parameters,

each

one

consisting

of

either

an

inParam

or

an

outParam

inParam

type

defined

as:

v

kind:

either

’IN’

or

’INOUT’

v

type:

the

type

of

the

parameter

(such

as

int,

or

string)

v

value:

the

value

of

the

parameter

outParam

type

defined

as:

v

kind:

either

’IN’

or

’INOUT’

v

type:

the

type

of

the

parameter

Stored

procedures

can

have

three

kinds

of

parameters:

IN,

OUT,

and

INOUT.

This

parameter

type

is

an

extensible

type.

It

allows

any

number

of

any

combination

of

the

inParam

and

outParam

types.

The

Web

application

must

know

if

the

stored

procedure

that

it

plans

to

invoke

needs

any

parameters.

If

it

needs

parameters,

it

needs

to

know

how

many

parameters,

and

their

type.

If

the

stored

procedure

takes

one

of

the

unsupported

data

types

as

a

stored

procedure

parameter,

then

this

stored

procedure

cannot

be

executed

through

WORF.

WORF

accepts

several

XML

types

for

the

stored

procedure

parameters.

The

parameters

correspond

to

the

built-in

SQL

data

types.

Table

6

on

page

78

describes

the

supported

types.

An

input

parameter

can

be

set

to

NULL

by

using

one

of

the

following

values:

absent

The

<value/>

tag

for

the

input

parameter

is

not

provided.

nil

=

true

The

tag

is

marked

with

the

attribute

nil,

which

is

set

to

true,

such

as

<value

xsi:nil="true"/>

The

order

of

the

input

parameter

must

be

the

same

as

the

order

expected

by

the

stored

procedure.

Table

11.

Input

data

types

for

the

tablesInputData

type

tablesInputData

type

Description

catalogPattern

type

=

″string″

schemaPattern

type

=

″string″

tableNamePattern

type

=

″string″

Each

of

the

pattern

values

is

optional.

If

the

value

is

not

specified,

the

value

defaults

to

the

blank

value.

The

description

and

behavior

of

each

is

specified

in

JDBC.

Use

the

getTables

Web

service

operation

to

return

the

list

of

tables

that

are

satisfy

the

catalogPattern,

schemaPattern,

and

tableNamePattern

that

are

specified.

Example

(note

that

such

things

as

the

namespace

definitions

are

not

shown

here

for

simplicity):

<tablesInputData>

<catalogPattern></catalogPattern>

<schemaPattern>userSchema

</schemaPattern>

<tableNamePattern>EMPLOYEE

</tableNamePattern>

</tablesInputData>

102

Application

Developer’s

Guide

|

||

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

||
|

|
|
|
|

|
|
|
|

||

||

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

Table

12.

Input

data

types

for

columnsInputData

types

columnsInputData

type

Description

catalogPattern

type

=

″string″

schemaPattern

type

=

″string″

tableNamePattern

type

=

″string″

columnNamePattern

type

=

″string″

Each

of

the

pattern

values

is

optional.

If

the

value

is

not

specified,

the

value

defaults

to

the

blank

value.

The

description

and

behavior

of

each

is

specified

in

JDBC.

Use

the

getColumns

Web

service

operation

to

receive

a

list

of

columns

that

satisfy

the

catalog

string

pattern,

schemaPattern,

table

name,

and

columnNamePattern

that

is

specified.

Example

(note

that

such

things

as

the

namespace

definitions

are

not

shown

here

for

simplicity):

<columnsInputData>

<catalogPattern></catalogPattern>

<schemaPattern>userSchema

</schemaPattern>

<tableNamePattern>EMPLOYEE

</tableNamePattern

>

<columnNamePattern>LASTNAME

</columnNamePattern>

</columnsInputData>

Table

13.

Output

data

types

for

the

callOutputData

types

callOutputData

type

outputResultSequences

contains

a

sequence

of

all

result

sets

returned

by

the

stored

procedure

as

type

db2WebRowSet

outputParameterSequences:

contains

a

sequence

of

callOutputParam

(parameters

that

were

returned

from

the

stored

procedure

that

can

be

either

kind=INOUT

or

kind=OUT)

callOutputParam

returned

Parameter:

contains

v

<position>

type:

int

-

the

position

of

the

parameter

in

the

stored

procedure

parameter

list

v

<type>

type:

string

-

the

XML

data

type

(see

callInputData

for

type

information)

v

<value>

type:

any

-

the

value

of

the

parameter

If

an

output

parameter

is

NULL

the

absent

method

is

used.

The

result

contains

<value

xsi:nil="true"/>

Chapter

2.

Developing

Web

services

103

||

||

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

||

|

|
|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

Table

13.

Output

data

types

for

the

callOutputData

types

(continued)

callOutputData

type

Example

(note

that

such

things

as

the

namespace

definitions

are

not

shown

here

for

simplicity):

<callOutputParameter>

<dqs:callOutputData

xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">

<dqs:outputResultSequences>

<db2WebRowSet

xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<metadata>

....

</db2WebRowSet>

</dqs:outputResultSequences>

<dqs:outputParameterSequences>

<dqs:callOutputParam>

<position>1</position>

<type>short</type>

<value>123</value>

</dqs:callOutputParam>

<dqs:callOutputParam>

<position>2</position>

<type>int</type>

<value

xsi:nil="true"

/>

</dqs:callOutputParam>

</dqs:outputParameterSequences>

</dqs:callOutputData>

</callOutputParameter>

Table

14.

Output

data

types

for

the

executeOutputData

types

executeOutputData

type

Description

resultsPresent

type

=

″boolean″

outputResultSequences

0

or

more

occurrences

of

db2WebRowSet

If

the

execute

Web

service

operation

is

invoked

with

a

query

string

that

returns

result

sets,

the

boolean

indicates

that

this,

and

outputResultSequences

will

each

contain

one

of

those

result

sets.

Example

(note

that

such

things

as

the

namespace

definitions

are

not

shown

here

for

simplicity):

<executeOutputParameter>

<dqs:executeOutputData

xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">

<resultsPresent>true</resultsPresent>

<dqs:outputResultSequences>

<db2WebRowSet

xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<metadata>

....

</db2WebRowSet>

</dqs:outputResultSequences>

</dqs:executeOutputData>

</executeOutputParameter>

Related

concepts:

v

“Dynamic

query

services-example

queries”

on

page

93

v

“Dynamic

database

queries

that

use

the

Web

services

provider”

on

page

90

Related

tasks:

104

Application

Developer’s

Guide

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

v

“Configuring

and

running

dynamic

database

queries

as

part

of

Web

services

provider”

on

page

91

Related

reference:

v

“db2WebRowSet”

on

page

105

db2WebRowSet

The

dynamic

query

service

type,

db2WebRowSet,

describes

a

generic

way

for

generating

an

XML

document

from

an

SQL

result

set.

The

schema

document,

db2WebRowSet.xsd

does

not

contain

any

metadata

information

about

a

particular

result

set.

It

contains

generic

metadata

information

about

result

set

metadata.

The

actual

result

set

metadata

and

the

result

set

data

is

in

the

XML

instance

document.

An

instance

document

contains

a

metadata

section

and

a

data

section.

metadata

section

Contains

metadata

information

about

all

of

the

columns

that

are

in

the

result.

The

first

tag

is

a

column

count

tag.

It

contains

the

number

of

columns

in

the

result

set.

Then

there

is

a

column

definition

tag

for

every

column.

The

column

definition

contains

the

following

metadata

information:

Table

15.

Column

definition

metadata

Tag

name

Description

<column-index>

The

position

of

the

column

in

the

result

set,

starting

with

1.

<nullable>

If

the

column

can

be

NULL,

then

the

value

is

1.

If

the

column

cannot

be

NULL,

then

the

value

is

0.

<column-name>

The

name

of

the

column.

<column-precision>

The

description

of

this

tag

depends

on

the

SQL

data

type.

For

example,

if

the

SQL

data

type

is

a

character,

then

the

column-precision

is

length.

If

the

SQL

data

type

is

a

decimal,

then

the

column-

precision

is

precision.

<column-scale>

The

column-scale

is

a

decimal

data

type.

<column-type>

The

column-type

corresponds

to

the

Java

database

connectivity

type,

such

as

BINARY,

VARBINARY,

CHAR,

and

VARCHAR.

<column-type-name>

The

DB2

Universal

Database

data

type

name,

such

as

CHAR

FOR

BIT

DATA,

VARCHAR

FOR

BIT

DATA,

CHAR,

and

VARCHAR.

<xml-type>

The

XML

data

type,

such

as

base64binary,

int,

string,

and

dateTime.

data

section

Contains

the

actual

data.

Each

row

is

mapped

to

a

row

tag.

A

row

tag

contains

as

many

column

tags

as

there

are

columns

in

the

result

set,

and

ordered

by

the

column

index.

The

row

tag

contains

the

actual

data

as

an

XML

data

type.

Chapter

2.

Developing

Web

services

105

|
|

|

|

|

|
|
|
|
|
|

|
|
|

|
|
|

||

||

||
|

||
|

||

||
|
|
|
|

||

||
|
|

||
|
|

||
|
|

|
|
|
|
|

Table

16.

Data

type

mapping

conventions

DB2

UDB

data

type

<column-type-name>

JDBC

data

type

<column-type>

XML

data

type

<xml-type>

BLOB

BLOB

base64Binary

CLOB

CLOB

string

LONGVARCHAR

LONGVARCHAR

string

VARCHAR

VARCHAR

string

CHAR

CHAR

string

CHAR

FOR

BIT

DATA

BINARY

base64Binary

VARCHAR

FOR

BIT

DATA

VARBINARY

base64Binary

LONGVARCHAR

FOR

BIT

DATA

LONGVARBINARY

base64Binary

DATE

DATE

date

TIME

TIME

time

TIMESTAMP

TIMESTAMP

dateTime

-

BOOLEAN

boolean

-

BIT

boolean

TINYINT

TINYINT

int

SMALLINT

SMALLINT

int

INTEGER

INTEGER

int

BIGINT

BIGINT

int

DOUBLE

DOUBLE

double

FLOAT

FLOAT

double

REAL

REAL

float

DECIMAL

DECIMAL

decimal

NUMERIC

NUMERIC

decimal

DATALINK

DATALINK

string

-

ARRAY

anyType

DISTINCT

DISTINCT

string

-

JAVA_OBJECT

string

-

NULL

string

-

OTHER

string

-

STRUCT

string

-

REF

string

other

number

of

the

type

string

The

following

is

the

db2WebRowSet.xsd

file.

The

default

location

of

this

file

is

the

<contextRoot>

directory.

106

Application

Developer’s

Guide

||

|
|
|
|
|

|||

|||

|||

|||

|||

|||

|||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

<?xml

version="1.0"

encoding="UTF-8"?>

<xs:schema

targetNamespace="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:db2wrs="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

elementFormDefault="qualified">

<xs:element

name="db2WebRowSet">

<xs:complexType>

<xs:sequence>

<xs:element

ref="db2wrs:metadata"/>

<xs:element

name="data">

<xs:complexType>

<xs:sequence>

<xs:element

name="row"

minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element

ref="db2wrs:column"

minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure

32.

db2WebRowSet.xsd

(Part

1

of

2)

Chapter

2.

Developing

Web

services

107

|

Related

concepts:

v

“Dynamic

query

services-example

queries”

on

page

93

v

“Dynamic

database

queries

that

use

the

Web

services

provider”

on

page

90

Related

tasks:

v

“Configuring

and

running

dynamic

database

queries

as

part

of

Web

services

provider”

on

page

91

Related

reference:

v

“Dynamic

query

service

operations

in

the

Web

services

provider”

on

page

99

Verifying

and

testing

Web

services

provider

(WORF)

This

section

provides

an

overview

of

WORF

by

using

the

SAMPLE

database

that

comes

with

DB2.

As

a

starting

point,

make

sure

that

your

application

server

is

ready

to

run

(see

“Configuring

the

Web

services

provider

for

WebSphere

Application

Server

on

UNIX,

Windows,

z/OS,

and

OS/390”

on

page

36

and

“Configuring

Web

services

provider

for

Apache

Jakarta

Tomcat

on

UNIX

and

Windows”

on

page

50

for

more

details).

You

are

now

ready

to

create

a

Web

service

<xs:element

name="column"

type="xs:anyType"

nillable="true"/>

<xs:element

name="metadata">

<xs:complexType>

<xs:sequence>

<xs:element

name="column-count"

type="xs:string"

/>

<xs:choice>

<xs:element

name="column-definition"

minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element

name="column-index"

type="xs:string"

/>

<xs:element

name="nullable"

type="xs:string"

/>

<xs:element

name="column-name"

type="xs:string"

/>

<xs:element

name="column-precision"

type="xs:string"

/>

<xs:element

name="column-scale"

type="xs:string"

/>

<xs:element

name="column-type"

type="xs:string"

/>

<xs:element

name="column-type-name"

type="xs:string"

/>

<xs:element

name="xml-type"

type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure

32.

db2WebRowSet.xsd

(Part

2

of

2)

108

Application

Developer’s

Guide

|

|

|

|

|
|

|

|

that

accesses

the

SAMPLE

database.

This

scenario

assumes

that

you

installed

the

WORF

samples

as

a

Web

application

named

services.

The

scenario

also

assumes

that

you

configured

services

on

your

application

server.

Testing

Web

services

applications

–

a

scenario

WORF

supports

the

creation

of

Web

services

by

using

the

document

access

definition

extension

(DADX)

file.

The

DADX

file

contains

necessary

information

to

create

a

Web

service

and

can

reference

the

DAD

file.

This

scenario

will

use

a

simple

DADX

file,

called

HelloSample.dadx:

For

the

OS/390®

and

z/OS™

platforms,

you

might

need

to

modify

the

name

of

the

table

to

correspond

with

the

sample

DEPARTMENT

table

that

is

installed.

This

table

has

a

default

name

of

DSN8710.DEPT.

To

deploy

the

Web

service

defined

in

the

DADX

file,

copy

it

to

the

application

server

in

the

directory

defined

by

the

group

db2sample

in

directory

dxx_sample.

HelloSample.dadx

defines

a

Web

service

with

a

single

operation

named

listDepartment,

which

lists

the

contents

of

the

DEPARTMENT

table.

The

child

tag

<query>

specifies

the

type

of

operation.

Related

concepts:

v

“Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF”

on

page

25

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

v

“Overview

of

the

Web

services

process”

on

page

32

Related

tasks:

v

“Testing

the

Web

service”

on

page

109

Testing

the

Web

service

You

can

test

your

Web

service

by

completing

the

following

tasks:

Procedure:

1.

Ensure

that

the

you

have

installed

the

WORF

samples

in

the

directory

\WEB-INF\classes\groups\dxx_sample.

2.

Ensure

that

you

deployed

the

sample

application

in

a

server

such

as

WebSphere

Application

Server

(WAS).

<?xml

version="1.0"

encoding="UTF-8"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx">

<operation

name="listDepartments">

<query>

<SQL_query>SELECT

*

FROM

DEPARTMENT</SQL_query>

</query>

</operation>

</DADX>

Figure

33.

Simple

DADX

file:

HelloSample.dadx

Chapter

2.

Developing

Web

services

109

|
|
|
|
|

|
|
|

|

|
|

|
|

3.

Open

a

browser

window

and

type

the

following

uniform

resource

locator

(URL)

to

begin

the

test:

http://<your

WebAppServer>/services/db2sample/ivt.dadx/TEST

Remember

that

the

your

WebAppServer

identifier

depends

on

your

Web

server

configuration.

When

you

type

the

address,

you

see

the

following

automatically

generated

documentation

and

test

page:

4.

Test

the

listDepartments

operation:

a.

Click

the

listDepartments

link

in

the

Methods

pane.

b.

Click

the

Invoke

push

button

in

the

Inputs

pane.

You

can

see

the

Extensible

Markup

Language

(XML)

result

of

the

operation

in

the

Result

pane:

Figure

34.

The

WORF

test

page

110

Application

Developer’s

Guide

|
|

|

|
|
|
|

|

|

|

|
|
|

Related

concepts:

v

“Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF”

on

page

25

v

“Testing

Web

services

applications

–

a

scenario”

on

page

109

v

“Installing

Web

applications”

on

page

131

Related

tasks:

v

“Installing

or

migrating

WORF

to

work

with

WebSphere

Application

Server

Version

5

or

later

for

Windows

and

UNIX”

on

page

39

Accessing

the

Web

service

with

GET,

POST,

and

SOAP

bindings

The

Web

object

runtime

framework

(WORF)

test

page

acts

as

a

simple

Hypertext

Markup

Language

(HTML)

client

of

the

Web

Service

and

uses

the

Hypertext

Transfer

Protocol

(HTTP)

POST

binding.

You

can

access

the

Web

service

by

using

the

HTTP

GET,

and

SOAP

bindings.

You

can

invoke

the

listDepartments

operation

with

the

HTTP

GET,

and

POST

bindings.

The

following

example

shows

the

basic

syntax

of

the

GET

or

POST

binding:

http://server:port/contextRoot/group/dadx_file/operationName

If

you

have

installed

the

WORF

samples,

you

can

type

the

following

uniform

resource

locator

(URL)

to

issue

a

GET

request:

http://<yourWebAppServer:9080>/services/db2sample/HelloSample.dadx/listDepartments

The

localhost

port

number,

designated

here

by

<yourWebAppServer>

depends

on

your

own

current

machine.

The

WORF

listDepartments

operation

returns

an

Extensible

Markup

Language

(XML)

response

that

you

can

save

to

a

file.

The

HTTP

response

is

the

same

for

GET

and

POST.

Figure

35.

Result

of

the

query

Chapter

2.

Developing

Web

services

111

|

|
|
|
|
|
|

|

|
|

|

|
|
|
|

The

GET

binding

request

does

not

send

a

request

document.

Instead,

you

attach

all

of

the

necessary

parameters

in

the

query

string

to

the

URL

You

can

attach

a

query

string

to

the

URL

with

a

question

mark

(?).

The

delimiter

between

any

parameter=value

pair

is

the

ampersand

(&).

Any

special

characters

must

be

URL

encoded.

The

following

example

is

a

GET

binding

request

that

uses

a

query

string

with

the

question

mark,

and

a

delimiter.

http://server:port/contextRoot/group/dadx/

operationName?param1=abc¶m2=1234¶m3=thi&20is&20a&20parameter

The

following

example

is

a

dynamic

query

service.

This

is

a

GET

binding

request.

http://localhost:9080/services/db2sample/dqs.dadx/

executeQuery?queryInputParameter=select+*+from+employee&extendedInputParameter=

%3Cproperties%3E%0D%0A%3C%2Fproperties%3E%0D%0A

A

POST

binding

issues

an

HTTP

POST

request.

A

POST

bind

request

sends

a

request

document.

The

document

contains

the

request

parameter,

but

the

parameter

is

not

in

XML

format.

An

HTTP

client

application,

such

as

a

Web

browser,

creates

the

request

document.

A

Web

browser

usually

creates

a

request

document

from

input

forms

that

are

sent

to

the

server.

The

following

syntax

is

a

typical

POST

bind

request:

http://server:port/contextRoot/group/dadx/operationName

<?xml

version="1.0"

?>

<xsd1:listDepartmentsResponse

xmlns:xsd1="http://schemas.ibm.com/sample/department.dadx/XSD"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<return>

<xsd1:listDepartmentsResult

xmlns:xsd1="http://schemas.ibm.com/sample/department.dadx/XSD"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<listDepartmentsRow>

<DEPTNO>A00</DEPTNO>

<DEPTNAME>SPIFFY

COMPUTER

SERVICE

DIV.</DEPTNAME>

</listDepartmentsRow>

<listDepartmentsRow>

<DEPTNO>B01</DEPTNO>

<DEPTNAME>PLANNING</DEPTNAME>

</listDepartmentsRow>

<listDepartmentsRow>

<DEPTNO>C01</DEPTNO>

<DEPTNAME>INFORMATION

CENTER</DEPTNAME>

</listDepartmentsRow>

<listDepartmentsRow>

<DEPTNO>D01</DEPTNO>

<DEPTNAME>DEVELOPMENT

CENTER</DEPTNAME>

</listDepartmentsRow>

...

<listDepartmentsRow>

<DEPTNO>E21</DEPTNO>

<DEPTNAME>SOFTWARE

SUPPORT</DEPTNAME>

</listDepartmentsRow>

</xsd1:listDepartmentsResult>

</return>

</xsd1:listDepartmentsResponse>

Figure

36.

XML

response

document

112

Application

Developer’s

Guide

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

|
|

The

following

example

is

a

dynamic

query

service.

This

is

a

POST

binding

request.

http://localhost:9080/services/db2sample/dqs.dadx/executeQuery

The

query

is

the

same

as

the

GET

binding

request,

except

that

the

information

that

follows

the

question

mark

(?)

is

in

the

request

document,

and

not

part

of

the

URL.

In

the

following

example,

the

content

type

is

www-urlencoded:

queryInputParameter=

select+*+from+employee&extendedInputParameter=

%3Cproperties%3E%0D%0A%3C%2Fproperties%3E%0D%0A

The

GET

and

POST

response

for

the

dynamic

query

service

request

is:

<?xml

version="1.0"?>

<xsd1:executeQueryResponse

xmlns:xsd1="http://schemas.ibm.com/db2/dqs/types/soap"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<queryOutputParameter>

...

</queryOutputParameter>

</xsd1:executeQueryResponse>

HTTP

GET,

and

POST

bindings

are

generally

the

same

as

any

other

HTTP

GET,

and

POST

requests.

The

HTTP

GET

binding

adds

any

input

parameters

to

the

operation

to

the

uniform

resource

locator

(URL).

But,

the

HTTP

POST

binding

sends

the

parameters

in

the

request

body.

Related

concepts:

v

“Web

services

provider

features”

on

page

30

v

“Apache

SOAP

configurations”

on

page

135

v

“SOAP

binding”

on

page

113

Related

reference:

v

“Dynamic

query

service

operations

in

the

Web

services

provider”

on

page

99

v

“Web

services

samples

–

PartOrders.dadx”

on

page

127

SOAP

binding

The

simple

object

access

protocol

(SOAP)

binding

also

uses

Hypertext

Transfer

Protocol

(HTTP)

POST,

but

it

sends

the

operation

name,

input

parameters,

and

other

information

as

an

Extensible

Markup

Language

(XML)

request

body.

The

SOAP

request

binding

issues

an

SOAP

request

over

HTTP.

SOAP

is

used

as

a

message

protocol,

for

request

and

response

messages.

The

SOAP

request

specifies

how

the

request

and

response

message

should

appear.

The

SOAP

binding

requests

are

XML

documents

that

follow

a

certain

schema.

SOAP

operates

on

top

of

an

HTTP

POST

request.

HTTP

is

the

transport

protocol,

and

SOAP

is

the

message

protocol.

A

client

application

must

know

how

to

build

SOAP

request

documents.

The

definition

and

the

format

of

parameters,

and

other

information

is

defined

in

separate

Web

services

description

language

(WSDL)

document.

Use

the

following

uniform

resource

locator

(URL)

to

access

the

SOAP

binding

(remember

that

the

your

WebAppServer

identifier

depends

on

your

Web

server

configuration):

Chapter

2.

Developing

Web

services

113

|

|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|

http://<your

WebAppServer>/services/db2sample/HelloSample.dadx/SOAP

There

is

no

operation

name

in

the

request.

The

information

is

now

in

the

SOAP

request

document.

The

following

example

which

is

for

an

RPC

style,

is

a

dynamic

query

service

using

a

SOAP

binding.

<SOAP-ENV:Envelope

�1�xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

<SOAP-ENV:Body>

�2�<ns0:executeQuery

�3�xmlns:ns0="http://schemas.ibm.com/db2/dqs">

�4�<queryInputParameter>

select

*

from

employee

</queryInputParameter>

<extendedInputParameter>

<properties/>

</extendedInputParameter>

</ns0:executeQuery>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The

SOAP

request

has

key

information:

1.

The

SOAP

envelope.

2.

The

operation

name.

3.

The

actual

request

document.

In

the

WORF

environment,

this

is

an

XML

document

that

is

now

an

actual

Web

service

SOAP

request.

4.

The

parameters.

The

SOAP

response

is:

<?xml

version=’1.0’

encoding=’UTF-8’?><SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns1:executeQueryResponse

xmlns:ns1="http://schemas.ibm.com/db2/dqs"

SOAP-ENV:encodingStyle="http://xml.apache.org/xml-soap/literalxml">

<queryOutputParameter>

...

</queryOutputParameter>

</ns1:executeQueryResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The

information

that

is

contained

within

the

SOAP-ENV:Body

tag

is

the

actual

response

document.

In

the

WORF

environment,

the

response

document

is

an

XML

document.

This

is

an

actual

Web

service

SOAP

response.

Note:

Consider

using

the

SOAP

binding

for

Java™

and

JavaScript™

clients.

WebSphere®

Studio

has

the

functionality

to

generate

Java

Web

service

clients.

Related

concepts:

v

“Accessing

the

Web

service

with

GET,

POST,

and

SOAP

bindings”

on

page

111

v

“The

Web

service

consumer

functions”

on

page

145

v

“Overview

of

the

Web

services

process”

on

page

32

114

Application

Developer’s

Guide

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|

|

Related

tasks:

v

“Testing

the

Web

service”

on

page

109

Related

reference:

v

“Dynamic

query

service

operations

in

the

Web

services

provider”

on

page

99

Web

services

description

language

Web

service

providers

are

described

by

Web

services

description

language

(WSDL)

documents.

The

key

to

the

Web

service

is

the

Web

services

description

language

document.

The

WSDL

is

an

XML

document

that

describes

Web

services

as

a

collection

of

endpoints,

or

ports.

An

endpoint

is

an

addressable

location

at

which

a

Web

service

can

be

accessed

according

to

the

associated

binding

of

a

specified

interface.

One

Web

service

can

have

multiple

endpoints.

The

endpoints

in

a

WSDL

operate

on

messages.

A

WSDL

binding

describes

how

the

service

is

bound

to

a

messaging

protocol,

particularly

the

SOAP

messaging

protocol.

A

WSDL

SOAP

binding

can

be

either

a

document-oriented

or

procedure-oriented

(RPC)

style

binding.

A

SOAP

binding

can

also

have

an

encoded

use

or

a

literal

use.

As

Figure

37

shows,

the

Web

service

provider

implements

a

service

and

publishes

the

interface

to

some

service

broker,

such

as

UDDI.

The

service

requester

can

then

use

the

service

broker

to

find

a

Web

service.

When

the

requester

finds

a

service,

the

requester

binds

to

the

service

provider

so

that

the

requester

can

use

the

Web

service.

The

requester

invokes

the

service

by

exchanging

SOAP

(Simple

object

access

protocol)

messages

between

the

requester

and

provider.

The

SOAP

specification

defines

the

layout

of

an

XML-based

message.

A

SOAP

message

is

contained

in

a

SOAP

envelope.

The

envelope

consists

of

an

optional

SOAP

header

and

a

mandatory

SOAP

body.

The

SOAP

header

can

contain

information

about

the

actual

message,

such

as

encryption

information

or

authentication

information.

The

SOAP

body

contains

the

actual

message.

The

SOAP

specification

also

contains

a

default

encoding

for

programming

language

bindings,

which

is

called

the

SOAP

encoding.

A

WSDL

document

can

contain

one

or

more

Web

services.

A

service

consists

of

one

or

more

ports

with

a

binding.

The

WSDL

document

can

have

one

or

more

port

Service
provider

Service
broker

3. Return the WSDL

Service
consumer

2. Find a provider

4. Invoke the provider
using a SOAP message

1. Publish the WSDL

Bind

Figure

37.

Web

services

as

a

service

oriented

architecture

Chapter

2.

Developing

Web

services

115

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

types.

A

port

type

has

one

or

more

operations

with

abstract

input

and

output

messages.

A

binding

refers

to

the

process

of

associating

protocol

or

data

format

information

with

an

abstract

entity

like

a

message,

operation,

or

a

portType.

A

binding

creates

a

concrete

protocol

and

data

format

specification

for

a

particular

port

type.

A

port

is

an

endpoint

that

is

a

binding

and

a

Web

address.

The

example

in

Figure

38

on

page

117

shows

the

WSDL

definition

of

a

simple

service

providing

stock

quotes.

The

Web

service

supports

a

single

operation

that

is

named

GetLastTradePrice.

The

service

is

deployed

using

the

SOAP

1.1

protocol

over

HTTP.

The

request

reads

a

ticker

symbol

as

input,

which

is

a

string

data

type,

and

returns

the

price,

which

is

a

float

data

type.

The

type

shown

in

this

example

is

an

XML

schema

definition.

You

can

use

XSD

files

to

associate

tables

and

columns

in

a

DB2®

Universal

Database

table

to

your

Web

service.

The

WSDL

style

that

is

specified

in

the

<soap:binding>

element

is

the

document

style.

The

<soap:operation>

element

provides

information

for

the

operation

as

a

whole.

The

style

attribute

in

the

<soap:operation>

element

indicates

whether

the

operation

is

RPC-oriented

(messages

containing

parameters

and

return

values)

or

document-oriented

(messages

containing

documents).

The

value

of

this

attribute

also

affects

the

way

in

which

the

body

of

the

SOAP

message

is

constructed.

If

the

attribute

is

not

specified,

it

defaults

to

the

value

specified

in

the

<soap:binding>

element.

The

IBM®

DB2

Information

Integrator

Web

services

provider

contains

samples

that

are

set

to

use

RPC

style.

For

new

applications,

you

should

use

document

style

for

maximum

interoperability.

In

Version

8.2,

the

Web

services

provider

uses

an

RPC

style

with

literal

usage

and

type

nodes

instead

of

an

RPC

style

with

literal

usage

and

element

nodes.

However,

there

is

no

change

to

the

SOAP

messages

from

earlier

releases

of

Web

services

provider.

The

complete

example

and

the

WSDL

specification

is

at

the

W3C

site

(http://www.w3.org/TR/2001/NOTE-wsdl-20010315).

116

Application

Developer’s

Guide

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

http://www.w3.org/TR/wsdl

<?xml

version='1.0'?>

<definitions

name='StockQuote'

...

<types>

<schema

targetNamespace='http://example.com/stockquote.xsd'

xmlns='http://www.w3.org/2000/10/XMLSchema'>

<element

name='TradePriceRequest'>

<complexType>

<all>

<element

name='tickerSymbol'

type='string'/>

</all>

</complexType>

</element>

<element

name='TradePrice'>

<complexType>

<all>

<element

name='price'

type='float'/>

</all>

</complexType>

</element>

</schema>

</types>

<message

name='GetLastTradePriceInput'>

...

</message>

<portType

name='StockQuotePortType'>

<operation

name='GetLastTradePrice'>

<input

message='tns:GetLastTradePriceInput'/>

<output

message='tns:GetLastTradePriceOutput'/>

</operation>

</portType>

<binding

name='StockQuoteSoapBinding'

type='tns:StockQuotePortType'>

<soap:binding

style='document'

transport='http://schemas.xmlsoap.org/soap/http'/>

<operation

name='GetLastTradePrice'>

<soap:operation

soapAction='http://example.com/GetLastTradePrice'/>

<input>

<soap:body

use='literal'/>

</input>

<output>

<soap:body

use='literal'/>

</output>

</operation>

</binding>

<service

name='StockQuoteService'>

<documentation>My

first

service</documentation>

<port

name='StockQuotePort'

binding='tns:StockQuoteBinding'>

<soap:address

location='http://example.com/stockquote'/>

</port>

</service>

</definitions>

Figure

38.

Example

of

a

WSDL

Chapter

2.

Developing

Web

services

117

Since

WSDL

documents

have

a

certain

structure,

Web

services

developers

might

need

to

use

types

from

external

schemas

either

at

the

definitions

level

of

the

WSDL

document,

or

the

types

level

of

the

WSDL

document.

To

use

external

schemas,

you

can

use

imported

schema

definitions

in

your

WSDL.

WORF

supports

two

types

of

imports

during

the

WSDL

generation:

An

import

at

the

/definitions

scope

of

a

WSDL

http://schemas.xmlsoap.org/wsdl/:import

An

import

at

the

/definitions/type/schema

scope

of

a

WSDL

http://www.w3.org/2001/XMLSchema:import

You

can

add

import

definitions

by

using

a

group.imports

file.

If

a

group.imports

file

exists

in

the

resources

of

the

Web

service

group

directory,

then

WORF

includes

the

group.imports

information

in

the

generated

WSDL.

The

following

example

is

a

group.imports

file:

<?xml

version='1.0'

encoding='UTF-8'?>

<imports

xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'

xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

<wsdl:import

namespace='http://some/namespace/1'

location='schema1.xsd'/>

<wsdl:import

namespace='http://some/namespace/2'

location='schema2.xsd'/>

<xsd:import

namespace='http://some/namespace/3'

schemaLocation='schema3.xsd'/>

<xsd:import

namespace='http://some/namespace/4'

schemaLocation='schema4.xsd'/>

</imports>

This

example

defines

two

imports

in

the

/definitions

scope

that

will

be

added

to

the

WSDL

(schema1.xsd

and

schema2.xsd).

The

example

defines

two

imports

in

the

/definitions/types/schema

scope

that

will

be

added

to

the

WSDL

(schema3.xsd

and

schema4.xsd).

The

WSDL

that

WORF

generates

that

includes

the

import

definitions

from

the

above

file

has

the

following

structure:

<?xml

version='1.0'

encoding='UTF-8'?>

<definitions>

<wsdl:documentation

xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’

xmlns='http://schemas.xmlsoap.org/wsdl/'>

Documentation

Text

Node

</wsdl:documentation>

<import

location='schema2.xsd'

namespace='http://some/namespace/2'/>

<import

location='schema1.xsd'

namespace='http://some/namespace/1'/>

<types>

<schema>

<import

namespace='http://some/namespace/4'

schemaLocation='schema4.xsd'/>

<import

namespace='http://some/namespace/3'

schemaLocation='schema3.xsd'/>

<element

name='executeQueryResponse'>

....

</element>

<element

name='executeQuery'>

....

</element>

</schema>

</types>

...

</definitions>

If

you

installed

the

WORF

examples,

and

have

an

application

called

services,

then

you

can

request

a

Web

services

description

language

(WSDL)

document

for

the

service,

HelloSample.dadx.

Use

the

following

uniform

resource

locator

(URL)

to

request

the

WSDL.

The

localhost

port

number,

designated

here

by

<yourWebAppServer>

depends

on

your

own

current

machine:

118

Application

Developer’s

Guide

|
|
|
|
|

|
|

|
|

|
|
|
|
|

http://<yourWebAppServer>/services/db2sample/HelloSample.dadx/WSDL

WORF

automatically

generates

the

WSDL

document,

from

DADX.

Related

concepts:

v

“WSDL

from

a

DADX

file”

on

page

87

Related

tasks:

v

“Customizing

the

group.properties

file”

on

page

64

v

“Testing

the

Web

service”

on

page

109

UDDI

business

registries

Register

your

Web

service

in

a

Universal

Discovery,

Description,

and

Integration

(UDDI)

business

registry.

The

recommended

practice

is

to

split

the

WSDL

document

into

a

service

instance

document

and

a

binding

document.

To

learn

more

about

UDDI

and

best

practices,

see

UDDI

Best

Practices.

The

service

instance

document

contains

the

address

from

which

you

deploy

the

service

and

it

imports

the

binding

document.

Many

service

instances

might

refer

to

a

common

binding

document.

You

register

the

binding

document

in

UDDI

as

a

reusable

tModel.

The

tModel

is

the

information

about

a

specification

for

a

Web

service.

Request

the

WSDL

service

instance

document

with

the

uniform

resource

locator

(URL).

The

localhost

port

number,

designated

here

by

<yourWebAppServer>

depends

on

your

own

current

machine:

http://<yourWebAppServer>/services/db2sample/HelloSample.dadx/WSDLservice

Request

the

WSDL

binding

document

with

the

URL:

http://<yourWebAppServer>/services/db2sample/HelloSample.dadx/WSDLbinding

Related

concepts:

v

“Overview

of

the

Web

services

process”

on

page

32

Related

tasks:

v

“Testing

the

Web

service”

on

page

109

XML

schema

definitions

An

XML

schema

defines

the

data

types

used

in

the

Web

service

interface.

Request

the

XML

schema

definitions

for

the

service

by

the

uniform

resource

locator

(URL).

The

localhost

port

number,

designated

here

by

<yourWebAppServer>

depends

on

your

own

current

machine:

http://<yourWebAppServer>/services/db2sample/HelloSample.dadx/XSD

WORF

generates

an

XML

schema

file

similar

to

the

example

in

Figure

39

on

page

120.

Chapter

2.

Developing

Web

services

119

|

|

http://www.uddi.org/bestpractices.html

The

DB2®

XML

Extender

can

use

document

type

definitions

(DTDs)

to

define

the

schema

of

XML

documents,

so

the

WORF

run-time

automatically

translates

the

DTD

into

an

XML

Schema.

For

example,

if

the

DTD

order.dtd

defines

an

XML

document,

then

you

can

use

the

following

URL

to

request

the

translation

into

XML

Schema:

http://<yourWebAppServer>/services/db2sample/order.dtd/XSD

Related

concepts:

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

v

“Testing

Web

services

applications

–

a

scenario”

on

page

109

v

“Web

services

that

exist

from

Web

services

provider”

on

page

120

Related

reference:

v

Appendix

C,

“XML

schema

for

the

DADX

file,”

on

page

247

Web

services

that

exist

from

Web

services

provider

Within

a

directory

of

Web

applications,

or

a

group

of

Web

services,

there

is

potentially

a

large

number

of

Web

services

that

you

can

use

on

your

network.

But

before

you

can

use

these

Web

services,

you

must

find

them

and

get

information

about

them.

Web

Services

Inspection

Language

(WSIL)

makes

this

search

process

easier.

Web

services

inspection

language

document

DB2®

Web

services

provides

a

way

to

find

the

Web

services

operations

that

you

need.

By

using

WORF,

you

inspect

all

of

the

Web

services

available

within

an

application,

or

within

a

group.

The

inspection

generator

produces

an

XML

document

that

is

a

list

of

the

Web

services

available

to

you.

The

list

is

a

report

of

the

Web

services

at

the

group

directory

level,

if

you

run

the

generator

from

the

<?xml

version="1.0"

encoding="UTF-8"?>

<schema

targetNamespace="http://localhost:8080/services/sample/HelloSample.dadx/XSD"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://localhost:8080/services/sample/HelloSample.dadx/XSD">

<element

name="listDepartmentsResult">

<complexType>

<sequence>

<element

maxOccurs="unbounded"

minOccurs="0"

name="listDepartmentsRow">

<complexType>

<sequence>

<element

name="DEPTNO"

type="string"/>

<element

name="DEPTNAME"

type="string"/>

<element

name="MGRNO"

nillable="true"

type="string"/>

<element

name="ADMRDEPT"

type="string"/>

<element

name="LOCATION"

nillable="true"

type="string"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</schema>

Figure

39.

The

XML

schema

definition

file

120

Application

Developer’s

Guide

|

|
|
|
|
|

|

|
|
|
|
|

group

directory.

The

list

is

a

report

of

the

Web

services

at

the

application

directory

level

if

you

run

the

generator

from

the

application

directory.

You

run

the

inspection

generator

from

your

browser

by

typing

<your-Web-
server>:9080/<context_root_name>/inspection.wsil

in

your

browser.

The

examples

in

this

topic

are

based

on

the

WORF

samples

and

a

WORF

sample

application

named

services

The

following

example

creates

a

list

of

Web

services

that

are

available

from

the

Web

application

named

services:

http://localhost:9080/services/inspection.wsil

An

inspection.wsil

at

the

application

level

looks

like

this:

Chapter

2.

Developing

Web

services

121

|
|
|
|

|
|

|
|

|
|

|
|

An

inspection.wsil

at

the

group

level

looks

like

this:

Figure

40.

WSIL

at

the

application

level

122

Application

Developer’s

Guide

|
|

To

ensure

that

the

WSIL

that

you

generate

includes

a

Web

service,

the

Web

service

must

conform

to

the

following

criteria:

v

The

DADX

file

that

describes

the

Web

service

must

be

valid.

v

You

must

define

a

group.properties

file

that

belongs

to

the

Web

service.

v

The

web.xml

file

must

contain

appropriate

servlet

mappings

that

identify

the

group.

The

servlet

mapping

in

the

web.xml

file

for

the

WSIL

should

look

like

the

following

example:

<servlet>

<servlet-name>wsil</servlet-name>

<display-name>wsil</display-name>

Figure

41.

WSIL

at

the

group

level

Chapter

2.

Developing

Web

services

123

|
|

|

|

|
|

|
|

|
|
|
|

<servlet-class>

com.ibm.etools.webservice.rt.wsil.servlet.WSILInvoker

</servlet-class>

<init-param>

<param-name>soap-engine</param-name>

<param-value>apache-axis</param-value>

</init-param>

<load-on-startup>-1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>wsil</servlet-name>

<url-pattern>/inspection.wsil</url-pattern>

</servlet-mapping>

When

a

Web

service

is

invoked,

WORF

reads

the

web.xml

file

for

information

about

how

to

run

the

service,

such

as

servlet

information,

and

group

information.

The

web.xml

file

includes

the

servlet

definition

so

that

the

WSIL

specification

associates

the

correct

Web

operations

with

the

WORF

samples.

WORF

dynamically

generates

a

WSIL

document

that

contains

all

of

the

available

Web

services

in

the

groups

directory

of

the

Web

application

server.

If

you

add

a

Web

service

to

the

group.properties

file

after

the

Web

application

server

is

started,

you

do

not

need

to

restart

the

server

before

you

start

the

WSIL

generator.

Web

services

list

page

Another

kind

of

inspection

document

that

you

can

produce

is

the

Web

services

list

page.

The

Web

services

list

page

is

an

HTML

document

that

contains

a

list

of

all

of

the

available

Web

services

in

an

application

directory

or

in

the

groups

directory

of

the

Web

application

server.

The

list

also

contains

links

to

the

WORF

samples

and

the

WSDL

of

the

services.

You

can

access

this

page

by

typing

the

following

URL

in

your

browser:

Application

level

<your-Web-server>:9080/<context_root_name>/LIST

Group

level

<your-Web-server>:9080/<context_root_name>/<group

name>/LIST

The

servlet

mapping

and

URL

pattern

in

the

web.xml

file

for

the

list

page

should

look

like

the

following

example:

<servlet>

<servlet-name>list</servlet-name>

<display-name>list</display-name>

<servlet-class>

com.ibm.etools.webservice.rt.list.servlet.ListInvoker

</servlet-class>

<init-param>

<param-name>soap-engine</param-name>

<param-value>apache-axis</param-value>

</init-param>

<load-on-startup>-1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>list</servlet-name>

<url-pattern>/LIST</url-pattern>

</servlet-mapping>

A

list

page

at

the

group

level

looks

like

this:

124

Application

Developer’s

Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Related

concepts:

v

“XML

schema

definitions”

on

page

119

Related

tasks:

v

“Testing

the

Web

service”

on

page

109

v

“Defining

the

web.xml

and

group.properties

files”

on

page

59

v

“Installing

or

migrating

WORF

to

work

with

WebSphere

Application

Server

Version

5

or

later

for

Windows

and

UNIX”

on

page

39

v

“Deploying

WORF

examples

on

WebSphere

Application

Server

Version

5.1

or

later

for

Windows

and

UNIX”

on

page

41

Figure

42.

Web

services

list

page

Chapter

2.

Developing

Web

services

125

|

|

|

|

|

|
|

|
|

Web

services

documentation

You

can

include

documentation

in

the

DADX

for

the

service

as

a

whole

and

for

each

operation.

Figure

43

illustrates

how

to

add

documentation:

The

documentation

can

contain

any

valid

Extensible

Markup

Language

(XML).

For

proper

display

in

a

browser,

you

should

use

XHTML.

If

you

use

XHTML,

then

define

the

XHTML

namespace

for

the

documentation.

When

you

request

the

test

page,

it

also

includes

the

documentation:

Related

concepts:

v

“Testing

Web

services

applications

–

a

scenario”

on

page

109

Related

reference:

v

“A

simple

DADX

file”

on

page

75

v

“Syntax

of

the

DADX

file”

on

page

67

<?xml

version="1.0"

encoding="UTF-8"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx">

<documentation>

Simple

DADX

example

that

accesses

the

SAMPLE

database.

</documentation>

<operation

name="listDepartments">

<documentation>

Lists

the

departments.

</documentation>

<query>

<SQL_query>SELECT

*

FROM

DEPARTMENT</SQL_query>

</query>

</operation>

</DADX>

Figure

43.

HelloSample.dadx

Figure

44.

WORF

test

page

with

documentation

126

Application

Developer’s

Guide

Web

services

automatic

reloading

During

the

course

of

development,

you

are

likely

to

make

frequent

changes

to

your

DADX

files.

WORF

allows

you

to

make

changes

to

your

DADX

files

while

the

application

server

is

running,

and

automatically

reloads

the

DADX

file

with

the

new

updates.

Automatic

reloading

makes

developing

DADX

Web

services

as

simple

as

the

developing

of

Java™

Server

Pages.

You

can

turn

off

automatic

reloading

when

you

deploy

your

DADX

Web

services

to

a

production

server.

Related

concepts:

v

“Web

services

provider

features”

on

page

30

v

“Overview

of

the

Web

services

process”

on

page

32

Related

tasks:

v

“Customizing

the

group.properties

file”

on

page

64

v

“Testing

the

Web

service”

on

page

109

Web

services

samples

–

PartOrders.dadx

The

example

in

this

topic

uses

a

database

sample

called

dxx_sales_db.

This

is

the

sample

database

used

in

the

documentation

and

samples

shipped

with

DB2

XML

Extender

and

with

WORF.

The

dxx_sales_db

database

stores

information

about

part

orders.

Suppose

that

you

must

provide

a

Web

Service

that

retrieves

orders

that

are

based

on

the

following

conditions:

v

Find

all

the

orders

v

Find

all

the

orders

for

parts

of

a

specified

color

v

Find

all

the

orders

whose

price

is

greater

than

or

equal

to

a

minimum

price

You

create

a

DADX

file

named

PartOrders.dadx

that

contains

the

following

operations:

v

findAll

v

findByColor

v

findByMinPrice

You

create

a

Web

Service

by

deploying

the

PartOrders.dadx

file

to

the

services

Web

application.

This

is

configured

with

the

dxx_sales_db

instance

of

WORF.

The

deployment

location

of

this

file

is

WEB-
INF/classes/groups/dxx_sales_db/PartOrders.dadx.

The

Web

Service

supports

access

by

the

following

protocols:

v

Hypertext

Transfer

Protocol

(HTTP)

GET

v

HTTP

POST

v

HTTP

SOAP

HTTP

GET

and

POST

are

useful

for

simple

access

from

Web

browsers.

In

this

case,

the

request

uses

the

content

type

of

application/x-www-form-urlencoded.

For

example,

suppose

that

you

deploy

the

Web

services

on

the

host

www.mycompany.com.

The

following

URLs

would

invoke

the

Web

services

using

HTTP

GET:

Chapter

2.

Developing

Web

services

127

v

http://www.mycompany.com

/services/sales/PartOrders.dadx

/findAll

v

http://www.mycompany.com

/services/sales/PartOrders.dadx

/findByColor?color=red

v

http://www.mycompany.com

/services/sales/PartOrders.dadx

/findByMinPrice?minprice=20000

This

syntax

encodes

the

method

in

the

uniform

resource

locator

(URL)

as

the

extra

path

information

and

the

parameters

as

the

query

string.

The

responses

to

these

requests

have

a

content

type

of

text/xml.

For

HTTP

POST,

you

send

the

query

string

in

the

body

of

the

request

instead

of

the

URL,

but

its

content

type

is

still

application/x-www-form-urlencoded.

Here

is

an

example

of

an

HTTP

POST

request

when

captured

with

a

Transmission

Control

Protocol

(TCP)

trace

utility.

The

example

shows

both

the

HTTP

header

and

body:

POST

/services/sales/PartOrders.dadx/findByColor

HTTP/1.1

User-Agent:

Java1.3.0

Host:

localhost:9081

Accept:

text/html,

image/gif,

image/jpeg,

*;

q=.2,

/;

q=.2

Connection:

keep-alive

Content-type:

application/x-www-form-urlencoded

Content-length:

12

color=red+++

A

Web

Service

defined

by

a

DADX

file

is

self-describing.

It

dynamically

generates

a

documentation

and

test

page,

WSDL

documents,

and

XML

Schema.

The

following

HTTP

GET

URL

requests

the

documentation

and

test

page:

http://www.mycompany.com/services

/sales/PartOrders.dadx/TEST

The

following

HTTP

GET

URL

requests

the

WSDL

description

of

the

service:

http://www.mycompany.com/services

/sales/PartOrders.dadx/WSDL

For

HTTP

SOAP,

you

invoke

the

services

by

sending

SOAP

envelopes

using

POST

to

the

URL:

http://www.mycompany.com/services

/sales/PartOrders.dadx/SOAP

But

with

a

request

content

type

of

text/xml

instead

of

application/x-www-form-
urlencoded.

The

following

example

is

a

SOAP

request

that

is

traced

with

a

TCP

monitor.

It

is

like

the

one

built

into

WebSphere

Studio,

or

the

one

that

is

part

of

Apache

SOAP.

This

example

includes

the

HTTP

header

information

and

the

HTTP

body:

POST

/services/sales/PartOrders.dadx/SOAP

HTTP/1.0

Host:

localhost

Content-Type:

text/xml;

charset=utf-8

Content-Length:

547

SOAPAction:

"http://tempuri.org/sales/PartOrders.dadx"

<?xml

version=’1.0’

encoding=’UTF-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns1:findByColor

xmlns:ns1="http://tempuri.org/sales/PartOrders.dadx"

SOAP-

ENV:encodingStyle="http://xml.apache.org/xml-soap/literalxml">

<color

xsi:type="xsd:string"

SOAP-

128

Application

Developer’s

Guide

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">red

</color>

</ns1:findByColor>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

.

PartOrder

DADX

file

PartOrders.dadx

implements

all

three

of

its

operations

using

the

<retrieveXML>

operator

which

uses

the

XML

collection

access

method.

In

general,

each

operation

can

use

a

different

operator

and

access

method.

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xhtml="http://www.w3.org/1999/xhtml">

<documentation>

Provides

queries

for

part

order

information

at

myco.com.

See

<xhtml:a

href="../documentation/PartOrders.html"

target="_top">

PartOrders.html</xhtml:a>

for

more

information.

</documentation>

<operation

name="findAll">

<documentation>

Returns

all

the

orders

with

their

complete

details.

</documentation>

<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>

<SQL_override>

select

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

quantity,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

table(select

substr(char(timestamp(generate_unique())),16)

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

where

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

order

by

order_key,

part_key,

ship_id

</SQL_override>

</retrieveXML>

</operation>

Figure

45.

The

PortOrder.DADX

file

(Part

1

of

3)

Chapter

2.

Developing

Web

services

129

Related

concepts:

v

“Accessing

the

Web

service

with

GET,

POST,

and

SOAP

bindings”

on

page

111

v

“Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF”

on

page

25

<operation

name="findByColor">

<documentation>

Returns

all

the

orders

that

include

one

or

more

parts

that

have

the

specified

color,

and

only

shows

the

details

for

those

parts.

</documentation>

<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>

<SQL_override>

select

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

quantity,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

table(select

substr(char(timestamp(generate_unique())),16)

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

where

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

and

color

=

:color

order

by

order_key,

part_key,

ship_id

</SQL_override>

<parameter

name="color"

type="xsd:string"/>

</retrieveXML>

</operation>

Figure

45.

The

PortOrder.DADX

file

(Part

2

of

3)

<operation

name="findByMinPrice">

<:documentation>

Returns

all

the

orders

that

include

one

or

more

parts

that

have

a

price

greater

than

or

equal

to

the

specified

minimum

price,

and

only

shows

the

details

for

those

parts.

</documentation

>

<retrieveXML>

<DAD_ref>

getstart_xcollection.dad

</DAD_ref>

<SQL_override>

select

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

quantity,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

table(select

substr(char(timestamp(generate_unique())),16)

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

where

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

and

p.price

>=

:minprice

order

by

order_key,

part_key,

ship_id

</SQL_override>

<parameter

name="minprice"

type="xsd:decimal"/>

</retrieveXML>

</operation>

</DADX>

Figure

45.

The

PortOrder.DADX

file

(Part

3

of

3)

130

Application

Developer’s

Guide

v

“Testing

Web

services

applications

–

a

scenario”

on

page

109

v

“SOAP

binding”

on

page

113

Related

tasks:

v

“Testing

the

Web

service”

on

page

109

Deploying

and

testing

your

Web

application

You

can

now

work

from

your

design

and

compose

queries

and

write

applications

to

achieve

your

business

goals.

Then

you

deploy

the

programs

on

the

Web.

You

can

deploy

the

same

set

of

files

in

many

ways.

Installing

Web

applications

You

can

use

Web

archives

files

(WAR)

to

package,

distribute,

and

install

Web

applications.

You

generally

package

the

files

that

comprise

your

Web

application

in

a

single

WAR

file

for

deployment.

A

WAR

file

might

contain

the

web.xml

server

configuration

files,

the

group.properties

configuration

files,

and

the

DAD

and

DADX

files.

The

WORF

samples

that

you

deployed

in

Deploying

WORF

examples

on

WebSphere

Application

Server

Version

5.1

or

later

for

Windows

and

UNIX

contain

examples

of

two

WAR

files:

apache-services.war

and

axis-services.war.

Some

development

environments,

like

WebSphere®

Studio,

provide

automatic

deployment

capabilities.

But,

you

can

disable

this

automatic

deployment

if

you

want

to

provide

your

own

deployment

descriptor

file

for

your

Web

service.

Related

tasks:

v

“Preparing

and

creating

the

Web

archive

file”

on

page

136

v

“Deploying

WORF

examples

on

WebSphere

Application

Server

Version

5.1

or

later

for

Windows

and

UNIX”

on

page

41

Java

2

Enterprise

Edition

applications

When

you

deploy

a

Java™

2

Enterprise

Edition

(J2EE)

application,

the

following

components

must

be

built

for

an

e-business

application:

Web

archive

(WAR)

The

Web-related

components

(HTML,

JavaScript™,

JavaServer

Pages)

Java

archive

(JAR)

The

Java

classes

that

make

up

the

business

logic

components

Enterprise

archive

(EAR)

The

Java

archive

files

plus

Web

archive

files

that

make

up

an

enterprise

solution

The

minimum

deployable

unit

in

WebSphere®

Application

Server

5.0

is

a

Web

archive

file.

If

the

application

is

developing

Enterprise

JavaBeans™,

then

a

Java

archive

file

and

an

Enterprise

archive

file

are

required.

Related

concepts:

v

“Advantages

of

designing

queries

in

IBM

DB2

Information

Integrator”

on

page

164

v

“Defining

a

group

of

Web

services”

on

page

58

Chapter

2.

Developing

Web

services

131

|
|

|
|

|
|

|
|
|

|
|
|

Installing

the

application

server

for

DB2

in

DB2

Information

Integrator

Application

servers

enable

enterprises

to

develop,

deploy,

and

integrate

next-generation

e-business

applications.

You

can

use

application

servers

as

tools

to

administer

your

Web

applications.

Starting

in

Version

8.1.2,

DB2®

Universal

Database,

provides

an

embedded

application

server,

referred

to

as

the

application

server

for

DB2.

If

you

use

the

application

server

for

DB2

UDB,

you

do

not

need

to

install

a

separate

application

server

to

run

your

DB2

UDB

Web

applications

on

Windows®,

Linux,

AIX,

and

Solaris.

Prerequisites:

v

DB2

Universal

Database

ESE

Version

8.1.2

or

later

v

At

least

one

DB2

UDB

instance

must

exist

v

Issue

the

following

command

for

your

environment:

<db2instance

path>/sqllib/db2profile

(for

Windows)

.

<db2instance

path>/sqllib/db2profile

(for

UNIX

systems)

Restrictions:

You

can

have

only

one

DB2

application

server

in

a

system

that

has

one

or

multiple

DB2

UDB

instances.

Procedure:

Install

the

application

server

for

DB2

from

the

Java

application

development

and

Web

administration

tools

supplement

for

DB2

CD.

DB2

Universal

Database™

provides

this

CD

with

the

DB2

Universal

Database™

installation

package.

To

install

the

application

server

for

DB2:

db2appserverinstall

-asroot

path

-hostname

name

-asroot

The

absolute

path

for

the

application

server

installation.

-hostname

The

name

of

the

host

system.

Related

tasks:

v

“Installing

the

application

server

for

DB2”

in

the

Installation

and

Configuration

Supplement

v

“Uninstalling

the

application

server

for

DB2”

in

the

Installation

and

Configuration

Supplement

Starting

and

stopping

the

application

server

for

DB2

in

Information

Integrator

You

can

start

and

stop

the

application

server

for

DB2

UDB

from

the

bin\

subdirectory

of

the

application

server

for

DB2

directory.

You

can

also

use

a

stored

procedure

named

DB2EAS.SERVER

to

start

and

stop

the

application

server.

Procedure:

132

Application

Developer’s

Guide

|

|

|
|
|

|
|
|
|
|

|

|

|

|

|
|

|

|
|

|

|
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|

|

|

|
|
|

|

To

start

and

stop

the

application

server

for

DB2

UDB

use

the

following

commands:

startServer

<serverName>

stopServer

<serverName>

The

start

and

stop

commands

require

the

following

parameter:

serverName

The

name

of

the

application

server

that

you

want

to

start.

Refer

to

WebSphere

Application

Server

System

Administration

for

information

on

deploying

and

managing

applications

so

that

you

can

deploy

the

WORF

samples

with

the

application

server

for

DB2.

After

you

deploy

the

WORF

samples

with

the

application

server

for

DB2,

you

can

access

the

WORF

test

page

from

your

browser.

Related

tasks:

v

“Starting

the

application

server

for

DB2

locally”

in

the

Installation

and

Configuration

Supplement

v

“Stopping

the

application

server

for

DB2

locally”

in

the

Installation

and

Configuration

Supplement

v

“Starting

the

application

server

for

DB2

remotely”

in

the

Installation

and

Configuration

Supplement

v

“Stopping

the

application

server

for

DB2

remotely”

in

the

Installation

and

Configuration

Supplement

v

“Deploying

WORF

examples

on

WebSphere

Application

Server

Version

5.1

or

later

for

Windows

and

UNIX”

on

page

41

v

“Installing

the

application

server

for

DB2

in

DB2

Information

Integrator”

on

page

132

Generating

deployment

descriptors

WebSphere

Application

Server

5.1

when

using

Apache

SOAP,

uses

a

custom

ConfigManager

(com.ibm.soap.server.XMLDrivenConfigManager)

that

disables

deployment

and

undeployment

at

run-time.

Instead,

WebSphere

reads

a

file

that

lists

the

deployed

services

when

the

application

starts.

For

OS/390

and

z/OS

platforms,

automatic

deployment

is

always

enabled,

so

you

do

not

have

to

generate

your

own

deployment

descriptors.

Procedure:

To

create

this

file,

you

must

create

a

deployment

descriptor

file

for

each

Web

Service,

or

DADX

file,

which

identifies

configuration

and

deployment

information.

You

insert

the

file

into

the

Extensible

Markup

Language

(XML)

file

named

dds.xml,

which

the

WebSphere

ConfigManager

reads

when

the

Web

application

starts.

The

Apache

SOAP

configuration

managers

deploy

the

Web

services

on

demand

at

run-time,

so

you

do

not

have

to

add

them

to

the

deployment

descriptor

file.

1.

Verify

that

the

worf.jar

and

soap.jar

files

are

in

your

class

path.

2.

Generate

the

deployment

descriptor

from

a

DADX

file

with

the

DADX2DD

command.

A

deployment

descriptor

file

is

not

required

for

Apache

Axis.

Use

the

class

com.ibm.etools.webservice.rt.dadx.Dadx2Dd

with

the

following

parameters:

-r

The

resource

name

of

the

Web

service

relative

to

the

group.

The

deployment

descriptor

requires

this

parameter.

Chapter

2.

Developing

Web

services

133

|

|
|

|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

-p

The

group

path.

The

deployment

descriptor

requires

this

parameter.

-n

The

group

name.

The

deployment

descriptor

requires

this

parameter.

-i

The

name

of

the

DADX

file

or

the

directory

that

contains

one

or

more

DADX

files.

The

directory

can

include

one

or

more

subdirectories

that

contain

one

or

more

DADX

files.

If

you

use

a

directory

name,

use

the

root

directory

of

the

Web

application,

such

as

the

directory

that

contains

files

dds.xml

and

WEB-INF.

The

–i

parameter

is

optional.

If

present,

a

DADX

file

must

exist

and

be

readable.

If

absent

then

the

name

of

the

DADX

file

comes

from

standard

input.

To

indicate

standard

input,

use

a

dash

(–).

-o

The

deployment

descriptor

file

name.

This

argument

is

optional.

If

present

the

file

must

be

writable.

It

is

overwritten

if

it

already

exists.

If

absent

then

the

deployment

descriptor

file

writes

to

standard

output.

To

indicate

standard

output,

use

a

dash

(–).

-s

The

target

SOAP

engine.

Valid

values

include

apache-soap

and

apache-axis.

When

a

Web

service

is

invoked,

WORF

reads

the

web.xml

file

to

determine

which

SOAP

engine

classes

to

load.

If

the

SOAP

engine

cannot

be

loaded,

the

default

SOAP

engine

is

used.

If

the

soap-engine

parameter

is

not

specified

in

the

web.xml

file,

the

default

soap

engine

is

Apache

Axis.

For

Apache

SOAP,

the

output

of

the

Dadx2Dd

command

can

be

inserted

into

the

ddx.xml

file.

For

Apache

Axis,

the

deployment

descriptor

is

always

generated

dynamically

at

runtime.

The

output

is

for

information

only.

You

can

switch

SOAP

engines

at

the

time

you

execute

your

Web

service.

You

must

make

sure

that

the

deployment

descriptor

is

in

the

dds.xml

file

before

you

switch

the

SOAP

engines.

The

dds.xml

file

is

only

for

Apache

SOAP.

A

deployment

descriptor

file

is

not

needed

for

Apache

Axis.

Prior

to

switching

to

Apache

Axis,

make

sure

that

the

deploy.wsdd

file

is

available

to

your

application.

You

can

run

the

deployment

descriptor

generator

(Dadx2Dd)

without

being

connected

to

a

SOAP

engine.
For

example,

if

the

current

directory

is

WEB-INF,

the

following

command

reads

the

ZipCity.dadx

file

from

the

dxx_travel

group.

It

then

writes

the

deployment

descriptor

to

the

dds

subdirectory:

java

com.ibm.etools.webservice.rt.dadx.Dadx2Dd

-r

ZipCity.dadx

-p

\travel

-n

\dxx_travel

-i

classes\groups\dxx_travel\ZipCity.dadx

-o

classes\dds\dxx_travel\ZipCity.isd

3.

Copy

the

content

of

the

newly

created

Apache

SOAP

ISD

file

and

add

it

to

the

dds.xml

file

in

your

Web

application

directory.

134

Application

Developer’s

Guide

|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

4.

Restart

the

Web

application.

Related

concepts:

v

“Apache

SOAP

configurations”

on

page

135

v

“Installing

Web

applications”

on

page

131

v

“Defining

a

group

of

Web

services”

on

page

58

Related

tasks:

v

“Testing

the

Web

service”

on

page

109

Apache

SOAP

configurations

If

you

use

the

Apache

SOAP

engine,

you

can

configure

your

Web

application

to

use

either

the

Apache

configuration

manager,

which

is

the

default,

or

the

IBM®

configuration

manager

(XMLDrivenConfigManager).

The

Apache

configuration

manager

stores

the

deployed

services

in

a

serialized

Java™

file

named

DeployedServices.ds.

XMLDrivenConfigManager

uses

an

XML

format

instead

and

disables

the

automatic

deployment

of

Web

services

when

adding

new

DADX

files,

so

that

you

must

deploy

them

manually

(see

Generating

deployment

descriptors).

To

help

you

deploy

your

sample

applications,

WORF

provides

a

configuration

file

(dds-example.xml)

in

the

services.war

file

that

is

shipped

with

the

WORF

engine.

The

dds-example.xml

is

a

deployment

descriptor

file

that

you

can

use

with

all

of

the

DADX

files

in

the

examples.

The

sample

dds.xml

file

deploys

a

few

services.

If

you

invoke

a

service

that

is

not

deployed,

the

server

will

report

that

the

service

is

unknown.

<?xml

version=’1.0’?>

<dds>

<isd:service

xmlns:isd=’http://xml.apache.org/xml-soap/deployment’

id=’http://tempuri.org/travel/ZipCity.dadx’>

<isd:provider

type=’com.ibm.etools.webservice.rt.framework.ServiceProvider’

scope=’Request’

methods=’findCityByZipCode

insertZipCodeAndCity

updateCityForZipCode

deleteZipCode’>

<isd:java

class=’com.ibm.etools.webservice.rt.dxx.DxxService’/>

<isd:option

key=’group.name’

value=’/dxx_travel’/>

<isd:option

key=’group.path’

value=’/travel’/>

<isd:option

key=’group.class.name’

value=’com.ibm.etools.webservice.rt.dxx.DxxGroup’/>

</isd:provider>

<isd:faultListener>org.apache.soap.server.DOMFaultListener

</id:faultListener>

<isd:mappings

defaultRegistryClass=

’com.ibm.etools.webservice.rt.dxx.DxxMappingRegistry’/>

</isd:service>

...

...

</dds>

Figure

46.

Example

of

part

of

a

dds.xml

with

an

isd

file

Chapter

2.

Developing

Web

services

135

|

|
|
|
|
|
|
|

|
|
|
|
|
|

If

you

want

to

use

the

IBM

configuration

manager,

rename

soap-ibm.xml

to

soap.xml

and

dds-example.xml

to

dds.xml.

Restart

the

application

server

to

use

the

XMLDrivenConfigManager

in

the

installedApps\servicesApp.ear\services.war

subdirectory.

Related

concepts:

v

“Overview

of

the

Web

services

process”

on

page

32

Related

tasks:

v

“Generating

deployment

descriptors”

on

page

133

Preparing

and

creating

the

Web

archive

file

To

create

a

Web

archive

(WAR)

file,

do

the

following:

Procedure:

1.

Create

the

basic

directory

structure

for

the

WAR

file

as

in

the

following

example:

WEB-INF\lib\worf-servlets.jar

WEB-INF\web.xml

files

from

the

worf\

that

you

downloaded

You

can

find

this

WORF

directory

hierarchy

in

the

apache-services.war

file

or

the

axis-services.war

file.

You

use

these

files

when

you

run

the

TEST

page.

The

files

in

the

worf\

subdirectory

are

not

necessary

if

you

do

not

plan

to

use

the

built-in

test

facility

of

WORF.

The

worf-servlets.jar

file

is

in

the

lib\

subdirectory

where

WORF

is

installed.

The

web.xml

is

the

standard

J2EE

web.xml.

An

empty

web.xml

would

look

like

the

example

in

Figure

47.

2.

For

each

group,

a.

Create

your

group

subdirectory

(for

example

WEB-
INF\classes\groups\myGroup)

and

include

the

group.properties

and

your

DADX

file

in

the

subdirectory.

b.

Edit

the

WEB-INF\web.xml

file

to

add

the

servlet

and

the

servlet-mapping

(for

example,

add

a

servlet

name

called

myGroup

and

a

URL-mapping

called

myURLPath).

c.

Optional:

Generate

the

deployment

descriptor

(you

can

skip

this

step

for

OS/390

and

z/OS

platforms).

This

step

is

needed

only

for

the

IBM

configuration

manager.

In

the

following

example,

the

first

instruction

changes

the

current

directory

to

the

WEB-INF

subdirectory

on

a

Windows

platform.

Then,

you

run

the

application.

When

the

application

completes,

you

can

change

back

to

the

root

directory.

cd

WEB-INF

java

com.ibm.etools.webservice.rt.dadx.Dadx2Dd

-r

ivt.dadx

-p

\myURLPath

-n

\myGroup

<?xml

version="1.0"

encoding="UTF-8"?>

<web-app>

</web-app>

Figure

47.

Empty

web.xml

file

136

Application

Developer’s

Guide

|
|
|
|

|

|

|

|

|
|

|
|
|
|

|
|
|
|
|
|
|

-i

classes\groups\myGroup\ivt.dadx

-o

classes\dds\myGroup\ivt.dadx

cd

..

Note:

ivt.dadx

is

a

specific

sample

that

is

shipped;

you

might

not

have

this

file

in

your

new

WAR

file

d.

Optional:

Create

or

modify

file

dds.xml

to

add

the

content

of

the

generated

descriptor

(skip

this

step

for

the

OS/390

and

z/OS

platforms).

This

step

is

needed

only

for

the

IBM

configuration

manager.

An

empty

dds.xml

file

looks

like

the

following:

<?xml

version=’1.0’?>

<dds>

</dds>

3.

Create

the

WAR

file

with

either

of

the

following

methods:

v

From

a

command

line

by

issuing

the

following

command:

jar

-cvf

minWORFwar.war

WEB-INF

worf

v

From

WebSphere

Studio

by

selecting

File

from

the

menu;

then

select

Export,

and

then

WAR

file.

Select

the

project

name

your

Web

application

is

in

and

specify

a

file

name.
4.

Deploy

the

WAR

file

as

described

in

the

sample

installs

for

WebSphere

Application

Server

or

Apache

Jakarta

Tomcat

(for

example,

with

myContext

as

the

Web

application

context).

5.

Verify

that

you

have

created

the

WAR

file

correctly

by

running

the

TEST

page.

For

example,

the

URL

for

your

TEST

might

look

similar

to

the

following:

http://<your

WebAppServer>/myContext/myURLPath/ivt.dadx/TEST

Note:

ivt.dadx

is

a

specific

sample

that

is

shipped;

you

might

not

have

this

file

in

your

new

WAR

file

Related

concepts:

v

“Defining

a

group

of

Web

services”

on

page

58

Related

tasks:

v

“Customizing

the

group.properties

file”

on

page

64

v

“Defining

the

web.xml

and

group.properties

files

in

the

iSeries

platform”

on

page

62

Web

services

provider

tracing

After

you

deploy

your

Web

service,

you

might

need

to

get

information

about

run-time

events

and

diagnostics

from

the

Web

service

provider.

To

debug

and

troubleshoot

your

Web

services

application,

DB2®

Web

services

uses

the

trace

facility

of

the

Web

application

server

on

which

your

application

runs.

The

trace

information

that

you

receive

from

the

Web

application

server

includes

messages

and

event

activity.

The

DB2

Web

services

provider

supports

two

tracing

systems:

log4j

Jakarta-log4j-1.2.8

and

commons-logging-1.0.3

on

Apache

Jakarta

Tomcat

4.0.6

and

later

JRas

The

tracing

and

logging

system

that

is

used

by

WebSphere®

Application

Server,

Version

5

and

later

Chapter

2.

Developing

Web

services

137

|

|
|
|
|
|
|

|

||
|

||
|

With

these

tracing

systems

you

can

incorporate

message

logging

and

trace

facilities

into

your

Java™

applications.

The

output

that

is

generated

from

a

trace

that

you

enable

within

your

application

appears

in

the

root

directory

of

the

Web

application

server

that

you

use.

Table

17

shows

the

location

of

the

output

log

file:

Table

17.

Trace

output

location

Server

Output

log

file

location

WebSphere

Application

Server

${SERVER_LOG_ROOT}/trace.log

Apache

Jakarta

Tomcat

<tomcat>/logs/worf_log4j.log

All

trace

messages

and

events

are

identified

by

the

operation

name

of

the

Web

service,

the

name

of

the

servlet,

or

the

name

of

the

DADX

file.

DB2

Web

services

provider

can

trace

the

following

types

of

events:

Informational

messages

Messages

that

indicate

when

a

Web

service

request

event

or

a

Web

service

response

event

completes

successfully,

such

as

when

a

DADX

file

is

parsed

successfully.

Warning

messages

Messages

that

indicate

when

a

warning

condition

is

detected

during

processing

of

the

Web

service

request

or

the

Web

service

response,

such

as

a

warning

message

from

the

XML

parser

for

a

DADX

file.

Error

messages

Messages

that

indicate

when

an

error

is

detected

during

the

processing

of

the

Web

service

request

or

the

Web

service

response,

such

as

when

the

application

produces

an

exception.

Trace

events

Events

that

indicate

when

the

application

enters

or

exits

a

method,

an

exception,

a

call

stack,

or

value

of

a

variable.

Related

concepts:

v

“Web

services

provider

features”

on

page

30

Related

tasks:

v

“Enabling

tracing

for

the

DB2

Web

services

provider-Apache

Tomcat

Version

4.0

or

later

Web

application

server”

on

page

139

v

“Enabling

tracing

for

the

DB2

Web

services

provider–WebSphere

application

server”

on

page

139

v

“Enabling

tracing

for

the

DB2

Web

services

provider-WebSphere

Studio

Application

Developer”

on

page

142

Related

reference:

v

“Troubleshooting

Web

services”

on

page

57

138

Application

Developer’s

Guide

|
|

|
|
|

||

||

||

||
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|

|

|
|

|
|

|
|

|

|

Enabling

tracing

for

the

DB2

Web

services

provider-Apache

Tomcat

Version

4.0

or

later

Web

application

server

You

can

configure

the

Apache

Tomcat

server

to

trace

your

DB2

Web

services.

Prerequisites:

You

need

authorization

to

modify

the

configuration

of

the

server

that

you

use.

Procedure:

To

modify

the

default

log4j

tracing

for

the

DB2

Web

services

provider:

1.

Create

a

configuration

file

with

the

name

log4j.configuration,

with

entries

such

as

in

the

following

example:

log4j.rootCategory=DEBUG,

console,

rollingFile

log4j.logger.com.ibm.etools.rt.webservice.*=INFO

log4j.appender.console=org.apache.log4j.ConsoleAppender

log4j.appender.console.layout=org.apache.log4j.PatternLayout

log4j.appender.console.layout.ConversionPattern=%5p

[%t]

(%F:%L)

-

%m%n

log4j.appender.rollingFile=org.apache.log4j.RollingFileAppender");

log4j.appender.rollingFile.File=<servletContext>\..\..\logs\worf_log4j.log

log4j.appender.rollingFile.MaxFileSize=100KB

log4j.appender.rollingFile.layout=org.apache.log4j.TTCCLayout

log4j.appender.rollingFile.layout.layout.ConversionPattern=%p

%t

%c

-

%m%n

2.

Modify

the

settings

in

the

configuration

file

to

display

only

certain

types

of

messages:

Table

18.

Message

settings

for

log4j

configuration

file

Message

type

Configuration

setting

log4j

warning

messages

or

higher

log4j.logger.com.ibm.etools.webservice.*

log4j

informational

messages

log4j.logger.com.ibm.etools.webservice.*=INFO

log4j

error

messages

log4j.logger.com.ibm.etools.webservice.*=ERROR

3.

Place

the

configuration

file,

log4j.configuration,

in

the

WEB-INF/classes

directory

of

the

Web

application.

You

can

see

a

log

of

your

trace

events

at

<installed

Web

server

location>\AppServer\logs\<local

server

name>.

Related

concepts:

v

“Web

services

provider

features”

on

page

30

v

“Web

services

provider

tracing”

on

page

137

Related

tasks:

v

“Installing

and

deploying

the

WORF

examples

on

Apache

Jakarta

Tomcat”

on

page

52

Enabling

tracing

for

the

DB2

Web

services

provider–WebSphere

application

server

You

can

configure

the

WebSphere

application

server

to

trace

the

DB2

Web

services

from

the

administrative

console.

Chapter

2.

Developing

Web

services

139

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

||

||

||

||

||
|

|
|

|
|

|

|

|

|

|
|

|

|

|
|

Prerequisites:

You

need

authorization

to

modify

the

configuration

of

the

server

that

you

use.

Procedure:

To

modify

the

default

jRAS

tracing

for

the

DB2

Web

services

provider:

1.

Start

the

WebSphere

application

server

administrative

console.

2.

In

the

Navigation

tree,

click

Troubleshooting

—>

Log

and

Trace.

The

Logging

and

Tracing

window

opens.

3.

In

the

Logging

and

Tracing

window,

click

the

server

name

and

then

select

Diagnostic

Trace.

4.

In

the

Trace

Specification

field,

type

the

trace

string:

com.ibm.etools.webservice.*=all=enabled

5.

If

the

server

is

stopped,

go

to

the

Configuration

page.

If

the

server

is

running,

go

to

the

Runtime

page.

v

Optional:

From

the

Runtime

page,

select

the

Save

trace

check

box

to

write

your

changes

to

the

server

configuration.

If

the

Save

trace

check

box

is

cleared,

the

changes

that

you

make

apply

only

for

the

life

of

the

server

process

that

is

currently

running.

v

Optional:

From

the

Configuration

page,

select

the

Enable

Trace

check

box.

An

example

of

enabling

the

trace

when

the

server

is

not

running

is

in

Figure

48

on

page

141.

140

Application

Developer’s

Guide

|

|

|

|

|

|
|

|
|

|

|

|
|

|
|
|
|

|

|
|
|

6.

Save

your

changes

and

restart

the

server.

You

can

see

a

log

of

your

trace

events

at

<installed

Web

server

location>\AppServer\logs\<local

server

name>.

Related

concepts:

v

“Web

services

provider

features”

on

page

30

v

“Web

services

provider

tracing”

on

page

137

Related

tasks:

v

“Enabling

tracing

for

the

DB2

Web

services

provider-WebSphere

Studio

Application

Developer”

on

page

142

Figure

48.

Enabling

the

Web

services

provider

trace

Chapter

2.

Developing

Web

services

141

|

|
|

|

|

|

|

|
|

Enabling

tracing

for

the

DB2

Web

services

provider-WebSphere

Studio

Application

Developer

You

can

configure

the

WebSphere

Studio

to

trace

the

DB2

Web

services

from

the

administrative

console.

Prerequisites:

You

need

authorization

to

modify

the

configuration

of

the

server

that

you

use.

Procedure:

To

modify

the

default

jRAS

tracing

for

the

DB2

Web

services

provider:

1.

Start

the

WebSphere

Studio

administrative

console.

2.

From

the

main

menu,

click

Window

—>

Show

View

—>

Server

Configuration

to

open

the

Server

Configuration

view

3.

On

the

Servers

menu,

double-click

WebSphere

v5.0

Test

Environment

to

open

the

server

editor.

4.

Go

to

the

Trace

page.

5.

In

the

Trace

Specification

field,

type

the

following

trace

string:

com.ibm.etools.webservice.*=all=enabled

6.

Select

the

Enable

Trace

check

box.

7.

Save

your

changes

and

restart

the

server.

You

can

see

a

log

of

your

trace

events

at

<installed

Web

server

location>\AppServer\logs\<local

server

name>.

Related

concepts:

v

“Web

services

provider

features”

on

page

30

v

“Web

services

provider

tracing”

on

page

137

Related

tasks:

v

“Enabling

tracing

for

the

DB2

Web

services

provider–WebSphere

application

server”

on

page

139

Publishing

your

Web

services

Web

service

providers

publish

their

Web

services

so

that

clients

can

access

them

using

simple

object

access

protocol

(SOAP)

over

Hypertext

Transfer

Protocol

(HTTP).

This

contrasts

with

Enterprise

Java™

Bean

(EJB)

clients,

who

access

beans

by

using

remote

method

invocation

(RMI)

over

Internet

Inter-Orb

Protocol

(IIOP).

Web

services

process

requests

from

Web

clients,

invoking

the

appropriate

business

function

and

typically

returning

a

response.

The

Web

service

description

language

(WSDL)

document

describes

the

Web

service.

You

store

the

WSDL

in

a

repository

(such

as

a

UDDI

registry)

or

on

the

server

of

the

Web

service

provider.

Storing

the

Web

service

description

in

an

appropriate

repository

offers

the

potential

for

interested

customers

to

discover

its

existence,

potentially

generating

new

business

for

the

Web

service

provider.

Related

concepts:

v

“Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF”

on

page

25

Related

tasks:

142

Application

Developer’s

Guide

|

|

|
|

|

|

|

|

|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

v

“Testing

the

Web

service”

on

page

109

Installing

and

using

the

Web

services

consumer

DB2

Universal

Database

can

optimize

access

to

Web

service

providers

as

a

consumer.

By

using

SQL

statements,

you

can

consume

and

integrate

Web

services

data.

By

using

SQL

to

access

Web

services

data,

you

save

effort

because

you

can

manipulate

the

data

within

the

context

of

an

SQL

statement.

Then

you

can

return

the

statement

to

the

client

application.

The

Web

services

consumer

set

of

tools

helps

access

Web

services

data

from

SQL.

The

Web

services

consumer

converts

existing

WSDL

interfaces

into

DB2

table

or

scalar

functions.

This

section

describes

the

Web

services

consumer

standalone

tool

and

the

WebSphere

Studio

plug-in

that

IBM

provides

to

convert

WSDL

to

DB2

SQL

functions.

Installation

of

the

Web

services

consumer

user-defined

functions

Prerequisites:

The

Web

services

consumer

user-defined

functions

(UDFs)

are

available

on

the

following

platforms

(all

platforms

are

32

bit):

v

Windows

2000

v

Linux

v

AIX

v

Solaris

Operating

Environment

(with

DB2

for

Universal

Database

Version

8,

Fix

Pack

2)

You

should

install

the

following

software

before

executing

the

SOAP

UDFs:

v

DB2

Universal

Database

–

Version

8

which

includes

Xerces

parser

and

XML

Extender
v

Optional:

WebSphere

Studio

Application

Developer

(WSAD)

Version

5.1.1

The

plug-in

requires

WebSphere

Studio

to

generate

Web

service

UDFs

from

WSDL.

You

can

invoke

the

Web

service

consumer

directly,

and

you

can

develop

your

own

SQL

functions.

You

must

also

enable

DB2

XML

Extender

with

the

dxxadm

enable_db

sample

command.

See

theDB2

XML

Extender

Administration

and

Programming

for

more

options

on

the

DB2

XML

Extender

commands.

Procedure:

To

enable,

or

install,

and

disable

the

Web

service

consumer:

1.

Execute

the

following

utility

to

register

five

user-defined

functions:

db2enable_soap_udf

-n

dbName

[-u

uID]

[-p

password]

[-force]

The

parameters

have

the

following

definitions:

dbName

A

database

name

uID

Optional:

A

user

ID

password

Optional:

The

password

associated

with

the

user

ID

Chapter

2.

Developing

Web

services

143

|

|

|
|
|

|

|

|

|
|

||

|
|

–force

Attempts

to

drop

any

existing

functions.

The

enable

command

enables

your

database

to

use

the

SOAP

requester

functions.

2.

When

you

disable

the

Web

service

consumer,

you

drop

the

functions.

Execute

the

following

utility:

db2disable_soap_udf

-n

dbName

[-u

uID]

[-p

password]

The

meanings

of

the

parameters

are

the

same

as

for

the

enable

utility

described

above.

3.

You

can

also

create

and

delete

the

user-defined

functions

by

using

the

DB2

CLP

(command

line

processor).

CREATE

SCHEMA

db2xml;

CREATE

FUNCTION

db2xml.soaphttpv

(

endpoint_url

VARCHAR(256),

soap_action

VARCHAR(256),

soap_body

VARCHAR(3072))

RETURNS

VARCHAR(3072)

LANGUAGE

C

PARAMETER

STYLE

DB2SQL

SPECIFIC

soaphttpvivo

EXTERNAL

NAME

’db2soapudf!soaphttpvivo’

SCRATCHPAD

FINAL

CALL

FENCED

NOT

DETERMINISTIC

CALLED

ON

NULL

INPUT

NO

SQL

EXTERNAL

ACTION

DBINFO;

CREATE

FUNCTION

db2xml.soaphttpv

(

endpoint_url

VARCHAR(256),

soapaction

VARCHAR(256),

input_message

CLOB(1M))

RETURNS

VARCHAR(3072)

LANGUAGE

C

PARAMETER

STYLE

DB2SQL

SPECIFIC

soaphttpcivo

EXTERNAL

NAME

’db2soapudf!soaphttpcivo’

SCRATCHPAD

FINAL

CALL

FENCED

NOT

DETERMINISTIC

CALLED

ON

NULL

INPUT

NO

SQL

EXTERNAL

ACTION

DBINFO;

CREATE

FUNCTION

db2xml.soaphttpc

(

endpoint_url

VARCHAR(256),

soapaction

VARCHAR(256),

input_message

CLOB(1M))

RETURNS

clob(1M)

LANGUAGE

C

PARAMETER

STYLE

DB2SQL

SPECIFIC

soaphttpcico

EXTERNAL

NAME

’db2soapudf!soaphttpcico’

SCRATCHPAD

FINAL

CALL

FENCED

NOT

DETERMINISTIC

CALLED

ON

NULL

INPUT

NO

SQL

EXTERNAL

ACTION

DBINFO;

CREATE

FUNCTION

db2xml.soaphttpc

(

endpoint_url

VARCHAR(256),

soapaction

VARCHAR(256),

soap_body

varchar(3072))

RETURNS

clob(1M)

LANGUAGE

C

PARAMETER

STYLE

DB2SQL

SPECIFIC

soaphttpvico

EXTERNAL

NAME

’db2soapudf!soaphttpvico’

SCRATCHPAD

FINAL

CALL

FENCED

NOT

DETERMINISTIC

CALLED

ON

NULL

INPUT

NO

SQL

EXTERNAL

ACTION

DBINFO;

CREATE

FUNCTION

db2xml.soaphttpcl

(

endpoint_url

VARCHAR(256),

soapaction

VARCHAR(256),

soap_body

varchar(3072))

RETURNS

CLOB(1M)

as

locator

LANGUAGE

C

PARAMETER

STYLE

DB2SQL

144

Application

Developer’s

Guide

||

|
|

SPECIFIC

soaphttpviclo

EXTERNAL

NAME

’db2soapudf!soaphttpviclo’

SCRATCHPAD

FINAL

CALL

NOT

FENCED

NOT

DETERMINISTIC

CALLED

ON

NULL

INPUT

NO

SQL

EXTERNAL

ACTION

DBINFO;

4.

The

Web

service

consumer

WebSphere

Studio

plug-in

is

a

component

of

WebSphere

Studio

Application

Developer

(WSAD)

Version

5.1.1.

Related

concepts:

v

“Web

services

consumer

user-defined

functions”

on

page

146

Related

reference:

v

“Using

the

Web

services

consumer

UDFs”

on

page

159

The

Web

service

consumer

functions

IBM®

DB2®

Information

Integrator

and

DB2

Universal

Database™

extend

the

functions

of

DB2

Universal

Database

and

Web

services

with

the

ability

to

invoke

Web

services

from

within

Structured

Query

Language

(SQL)

statements.

You

do

this

by

invoking

a

set

of

user-defined

functions

(UDFs)

that

provide

a

high-speed

client

simple

object

access

protocol

(SOAP)

over

Hypertext

Transfer

Protocol

(HTTP)

interface

to

accessible

Web

services.

You

can

call

these

functions

directly

from

SQL

statements.

You

can

construct

the

SOAP

body

according

to

the

Web

services

description

language

(WSDL)

of

a

Web

service.

You

can

also

use

the

Web

service

User-Defined

Function

(UDF)

tool

in

WebSphere®

Studio

Application

Developer

(WSAD)

to

automatically

generate

specific

UDFs.

These

UDFs

can

invoke

operations

that

are

defined

by

a

user-specified

Web

services

description

language

file.

The

generated

UDFs

are

DB2

UDB

functions

that

do

the

following:

v

Provide

the

parameters

for

the

Web

service

request.

v

Invoke

the

SOAP

client

functions.

v

Map

the

result

of

the

Web

service

invocation

to

the

return

types

specified

by

the

user.

On

some

networks,

access

to

the

internet

must

go

through

a

firewall.

The

traffic

might

be

restricted

to

certain

machines

and

certain

ports

that

are

allowed

to

send

network

traffic.

Some

systems

allow

applications

to

tunnel

through

the

firewall.

The

SOAP

UDFs

support

tunneling

with

SOCKS

clients

and

HTTP

proxies.

To

use

a

SOCKS

server

to

tunnel

through

the

firewall

you

must

install

SOCKS

client

software

on

your

system.

To

use

HTTP

proxies

you

must

set

two

environment

variables

for

configuring

to

DB2

Universal

Database.

Set

DB2SOAP_PROXY

to

include

the

host

name

of

the

machine

with

the

HTTP

proxy.

Set

DB2SOAP_PORT

to

the

port

of

the

HTTP

proxy,

such

as

8080.

In

both

cases

the

SOAP

traffic

goes

through

the

system

that

tunnels

the

firewall.

You

can

test

the

sample

applications

that

are

shipped

with

DB2

Information

Integrator

with

the

following

steps:

1.

Start

the

database

manager

(with

the

db2start

command).

2.

Create

the

“sample”

database

(with

the

db2sampl

command).

3.

Establish

a

connection

with

the

“sample”

database.

Chapter

2.

Developing

Web

services

145

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

4.

Invoke

the

example

files

(in

a

Windows®

environment,

these

example

files

are

in

<DB2

UDB

installed

path>\samples\soap)

with

the

following

command:

db2

-vf

filename

-t.

Related

tasks:

v

“Declaring

registry

and

environment

variables”

in

the

Administration

Guide:

Implementation

v

“Installation

of

the

Web

services

consumer

user-defined

functions”

on

page

143

Related

reference:

v

“Using

the

Web

services

consumer

UDFs”

on

page

159

Web

services

consumer

user-defined

functions

Simple

Object

Access

Protocol

(SOAP)

is

an

Extensible

Markup

Language

(XML)

protocol

consisting

of

the

following

characteristics:

v

An

envelope

that

defines

a

framework

for

describing

the

contents

of

a

message

and

how

to

process

the

message

v

A

set

of

encoding

rules

for

expressing

instances

of

application-defined

data

types

v

A

convention

for

representing

SOAP

requests

and

responses

DB2®

Universal

Database

needs

the

following

information

to

build

a

SOAP

request

and

receive

a

SOAP

response.

v

A

service

endpoint,

for

example,

http://services.xmethods.net/soap/servlet/rpcrouter

v

Some

Extensible

Markup

Language

(XML)

content

of

the

SOAP

body,

which

includes

the

name

of

an

operation

with

requested

namespace

URI,

an

encoding

style,

and

input

arguments.

v

Optional:

A

SOAP

action

URI

reference.

The

reference

can

be

empty,

as

shown

in

the

following

example,

http://tempuri.org/

or

just

''.

The

DB2

UDB

function

db2xml.soaphttp()

does

the

following

actions:

1.

It

composes

a

SOAP

request

2.

It

posts

the

request

to

the

service

endpoint

3.

It

receives

the

SOAP

response

4.

It

returns

the

content

of

the

SOAP

body

This

is

an

overloaded

function

that

is

used

for

VARCHAR()

or

CLOB(),

depending

on

the

SOAP

body.

db2xml.soaphttpv

returns

VARCHAR():

db2xml.soaphttpv

(endpoint_url

VARCHAR(256),

soap_action

VARCHAR(256),

soap_body

VARCHAR(3072))

RETURNS

VARCHAR(3072)

db2xml.soaphttpv

returns

VARCHAR():

db2xml.soaphttpv

(endpoint_url

VARCHAR(256),

soap_action

VARCHAR(256),

soap_body

CLOB(1M))

RETURNS

VARCHAR(3072)

db2xml.soaphttpc

returns

CLOB():

db2xml.soaphttpc

(endpoint_url

VARCHAR(256),

soapaction

VARCHAR(256),

soap_body

VARCHAR(3072))

RETURNS

CLOB(1M)

db2xml.soaphttpc

returns

CLOB():

146

Application

Developer’s

Guide

db2xml.soaphttpc

(endpoint_url

VARCHAR(256),

soapaction

VARCHAR(256),

soap_body

CLOB(1M))

RETURNS

CLOB(1M)

db2xml.soaphttpcl

returns

CLOB()

as

locator:

db2xml.soaphttpcl(endpoint_url

VARCHAR(256),

soapaction

VARCHAR(256),

soap_body

varchar(3072))

RETURNS

CLOB(1M)

as

locator

Example

of

a

DB2

UDB

constructed

SOAP

request

envelope

The

example

in

Figure

49

on

page

147

shows

an

Hypertext

Transfer

Protocol

(HTTP)

post

header

to

post

a

SOAP

request

envelope

to

a

host.

The

bold

areas

show

the

web

service

endpoint

(post

path

and

host)

and

the

content

of

the

SOAP

body.

The

SOAP

body

shows

a

temperature

request

for

zip

code

95120.

Example

of

using

DB2

UDB

to

extract

the

content

of

the

SOAP

response

envelope

The

example

in

Figure

50

on

page

148

shows

the

HTTP

response

header

with

the

SOAP

response

envelope.

The

bold

content

of

the

SOAP

body

shows

the

result

of

the

temperature

request.

The

namespace

definitions

from

the

SOAP

envelope

are

not

shown

here,

but

they

would

also

be

included.

POST

/soap/servlet/rpcrouter

HTTP/1.0

Host:

services.xmethods.net

Connection:

Keep-Alive

User-Agent:

DB2SOAP/1.0

Content-Type:

text/xml;

charset="UTF-8"

SOAPAction:

""

Content-Length:

410

<?xml

version=’1.0’

encoding=’UTF-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:SOAP-ENC=http://schemas.xmlsoap.org/soap/encoding/

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xmlns:xsd=http://www.w3.org/2001/XMLSchema

>

<SOAP-ENV:Body>

<ns:getTemp

xmlns:ns="urn:xmethods-Temperature">

<zipcode>95120</zipcode>

</ns:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure

49.

A

DB2

UDB

constructed

SOAP

request

envelope

Chapter

2.

Developing

Web

services

147

Related

tasks:

v

“Installation

of

the

Web

services

consumer

user-defined

functions”

on

page

143

Related

reference:

v

“Using

the

Web

services

consumer

UDFs”

on

page

159

Tracing

Web

services

consumer

events

The

Web

services

consumer

user-defined

function

can

be

traced

by

using

the

DB2

Universal

Database

trace

utility.

In

addition,

when

you

use

a

Windows

platform,

you

can

trace

Hypertext

Transfer

Protocol

(HTTP)

SOAP

requests

and

responses

into

a

file.

Procedure:

To

trace

the

SOAP

component

in

DB2

Universal

Database,

use

the

following

trace

mask:

db2trc

on

-m

..147.*.*

Related

concepts:

v

“The

Web

service

consumer

functions”

on

page

145

Related

reference:

v

“Using

the

Web

services

consumer

UDFs”

on

page

159

HTTP/1.1

200

OK

Date:

Wed,

31

Jul

2002

22:06:41

GMT

Server:

Enhydra-MultiServer/3.5.2

Status:

200

Content-Type:

text/xml;

charset=utf-8

Servlet-Engine:

Lutris

Enhydra

Application

Server/3.5.2

(JSP

1.1;

Servlet

2.2;

Java™

1.3.1_04;

Linux

2.4.7-10smp

i386;

java.vendor=Sun

Microsystems

Inc.)

Content-Length:

467

Set-Cookie:JSESSIONID=JLEcR34rBc2GTIkn-0F51ZDk;Path=/soap

X-Cache:

MISS

from

www.xmethods.net

Keep-Alive:

timeout=15,

max=10

Connection:

Keep-Alive

<?xml

version=’1.0’

encoding=’UTF-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xmlns:xsd=http://www.w3.org/2001/XMLSchema

>

<SOAP-ENV:Body>

<ns1:getTempResponse

xmlns:ns1="urn:xmethods-Temperature"

SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/

>

<return

xsi:type="xsd:float">85<return>

</ns1:getTempResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure

50.

Using

DB2

UDB

to

extract

the

content

of

the

SOAP

response

envelope

148

Application

Developer’s

Guide

|
|
|
|

Web

services

consumer—using

the

WebSphere

Studio

User-Defined

Function

tool

The

Web

services

consumer

User-Defined

Function

wizard

generates

and

tests

user-defined

functions

in

WebSphere®

Studio

Version

5.

The

wizard

used

with

WebSphere

Studio

reads

the

Web

Services

Definition

Language

(WSDL)

file.

It

then

generates

the

user-defined

functions

(UDFs)

that

provide

easy

access

to

Web

services

from

database

applications.

You

can

use

the

generated

UDFs

in

SQL

statements

to

combine

relational

data

with

dynamic

data

that

are

retrieved

from

a

Web

service.

You

can

invoke

the

Web

service

consumer

functions

directly

in

SQL

(see

The

Web

service

consumer

functions).

However,

the

task

can

require

some

advanced

programming

skills,

and

it

can

be

time-consuming.

After

you

generate

and

deploy

the

UDFs,

you

can

use

the

functions

in

SQL

to

combine

relational

data

with

dynamic

data

that

you

retrieve

from

Web

services.

The

generated

UDFs

are

structured

as

follows:

1.

Construct

the

SOAP

body

2.

Invoke

the

SOAP

consumer

(submit

the

SOAP

request

envelope)

3.

Extract

values

from

the

SOAP

response

Related

concepts:

v

“The

Web

service

consumer

functions”

on

page

145

v

“Web

services

consumer

user-defined

functions”

on

page

146

Related

tasks:

v

“Installation

of

the

Web

services

consumer

user-defined

functions”

on

page

143

v

“Tracing

Web

services

consumer

events”

on

page

148

Related

reference:

v

“Using

the

Web

services

consumer

UDFs”

on

page

159

How

to

generate

the

user-defined

functions

from

WebSphere

Studio

Prerequisites:

1.

Enable

the

DB2

XML

Extender

database

2.

Enable

the

Web

services

consumer

UDFs

for

the

database

3.

Create

a

project

that

you

want

to

use

with

the

Web

service

UDF

4.

Create

a

connection

to

the

database

that

you

just

enabled

5.

Import

the

database

to

your

WebSphere

Studio,

Version

5

project.

See

WebSphere

Studio

Application

Developer

Programming

Guide

for

more

information.

Procedure:

Within

the

WebSphere

Studio,

you

can

launch

the

wizard

that

generates

the

user-defined

functions

(UDFs)

in

three

different

ways.

v

You

can

invoke

it

from

the

File

>

New

>

Other>

menu.

Then

select

Data.

The

folder

expands

and

you

select

Web

Service

User-Defined

Function

from

the

menu.

Click

the

Next

push

button

to

proceed.

v

You

can

start

it

in

the

Web

service

client

wizard

where

it

appears

as

an

option

in

addition

to

generating

a

Java

proxy.

Chapter

2.

Developing

Web

services

149

|
|

|
|

v

It

is

an

option

in

the

Web

service

wizard

when

generating

a

test

client.

Generate

the

UDFs

with

the

following

steps:

1.

Specify

the

WSDL

file

from

the

first

page

of

the

wizard

(see

Figure

51

on

page

150).

You

use

this

WSDL

file

to

generate

the

UDF.

Select

a

WSDL

file

from

the

work

space

or

specify

an

appropriate

uniform

resource

locator

(URL).

For

example,

the

currency

exchange

rate

Web

service

takes

two

countries

as

input

parameters

and

returns

the

currency

exchange

rate

between

them.

The

WSDL

file

is

at

www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl.

Figure

51.

Select

the

WSDL

file

150

Application

Developer’s

Guide

2.

Select

the

database.

In

Figure

52

on

page

151,

you

see

the

database

connection

and

a

schema

for

which

the

UDF

is

generated.

Click

the

Browse

push

button

to

select

a

database

schema

from

the

WebSphere

Studio

work

space.

The

wizard

requires

that

the

database

is

enabled

for

the

Web

service

consumer

UDFs,

and

the

DB2

XML

Extender.

If

there

is

currently

no

connection

to

the

specified

database

available,

an

additional

message

window

asks

for

connection

information.

You

can

choose

to

immediately

deploy

the

generated

UDF

into

the

database

or

generate

a

UDF

in

the

WebSphere

Studio

work

space

only.

You

can

deploy

the

UDF

later.

3.

Select

the

UDFs

that

you

want

to

create.

From

the

list

of

operations

that

are

described

in

Figure

53

on

page

152,

select

the

one

that

you

want

to

create.

The

wizard

generates

one

UDF

for

every

operation

that

is

selected.

Since

the

Web

service

that

is

used

for

this

example

provides

only

one

operation,

the

wizard

selects

it

automatically.

Proceed

to

the

next

page.

Figure

52.

WSDL

page

2

Chapter

2.

Developing

Web

services

151

4.

Select

options

for

the

UDF.

For

each

operation

selected

in

the

previous

step,

you

can

define

options

for

those

UDFs,

such

as

changing

the

function

name,

or

providing

comments

on

the

function.

See

Figure

54

on

page

153

and

Figure

55

on

page

154.

Figure

53.

Wizard

page

3

152

Application

Developer’s

Guide

Figure

54.

Select

options

page

1

Chapter

2.

Developing

Web

services

153

v

You

can

choose

to

build

a

scalar

or

a

table

function.

–

The

wizard

generates

a

scalar

function

when

the

Web

service

returns

a

simple

XML

type.

–

The

wizard

generates

a

table

function

when

it

returns

a

complex

XML

type.

The

table

function

automatically

maps

the

complex

XML

type

into

multiple

columns.

Switching

from

a

table

function

to

a

scalar

function

makes

sense

when

the

wizard

should

not

automatically

map

the

returned

types.

In

this

case,

the

Figure

55.

Select

options

page

2

154

Application

Developer’s

Guide

wizard

should

return

them

as

an

XML

fragment.

Being

able

to

switch

from

a

scalar

to

a

table

function

allows

you

to

use

the

UDF

in

a

FROM

clause.

v

You

can

include

the

input

parameters

as

columns

in

the

output

table

by

selecting

the

Echo

the

input

parameters

into

the

output

table

check

box.

v

You

can

choose

to

generate

a

UDF

with

dynamic

access

to

the

Web

service.

When

you

do

not

specify

the

service

location

(the

location

attribute

of

the

soap:address

element)

in

the

WSDL

document,

you

generate

a

dynamic

function.

You

can

select

the

Create

a

UDF

with

dynamic

accesses

to

the

service

check

box

even

when

the

service

location

is

specified

to

make

use

of

late

binding.

When

you

generate

a

dynamic

function,

specify

the

service

location

at

runtime

as

a

parameter

of

the

UDF.

v

When

using

a

Web

service

that

can

return

responses

of

more

than

3000

characters,

specify

The

Web

service

response

message

can

be

a

big

SOAP

envelope

radio

button.

By

default,

The

Web

service

response

message

is

always

a

small

SOAP

envelope

radio

button

is

specified

because

this

results

in

better

performance

for

most

Web

services.

If

you

specify

the

small

SOAP

response

option

and

the

wizard

returns

a

SOAP

envelope

with

more

than

3000

characters,

the

generated

Web

Service

UDF

returns

a

descriptive

error

message.

v

Select

the

Return

the

whole

SOAP

envelope

without

parsing

it

check

box

to

help

in

debugging

the

Web

services

consumer

UDFs.
5.

From

the

Parameter

page

of

the

options

window,

you

can

review,

and

change

the

parameter

mappings

from

WSDL

types

to

SQL

types

(see

Figure

55

on

page

154).

6.

From

the

Advanced

Options

page,

you

can

specify

the

name

for

the

UDF.

If

you

do

not

specify

a

name,

then

a

unique

name

is

automatically

generated

by

the

database

when

you

deploy

the

UDF.

7.

Review

the

settings

for

generating

the

UDFs.

Examine

the

database

and

schema,

and

the

CREATE

statement

that

will

be

issued

on

the

database

(see

Figure

56

on

page

156).

8.

Click

the

Next

or

Finish

push

button.

This

generates

the

UDF

and

deploys

it

into

the

database,

because

of

the

earlier

selections

to

generate

and

deploy.

Chapter

2.

Developing

Web

services

155

9.

You

can

run

the

Web

service

consumer

UDF

directly

from

the

work

space.

To

run

the

deployed

UDF:

a.

Right-click

on

the

UDF.

b.

Select

Run

(see

Figure

57

on

page

157).

The

Run

Settings

window

opens

(Figure

58

on

page

158).

c.

From

the

Run

Settings

window,

you

can

specify

the

parameter

values.

d.

Click

the

OK

push

button

to

see

the

results

of

your

test

(Figure

59

on

page

158).

Figure

56.

Review

156

Application

Developer’s

Guide

Figure

57.

Test

Chapter

2.

Developing

Web

services

157

Related

concepts:

v

“The

Web

service

consumer

functions”

on

page

145

Figure

58.

Run

Settings

Figure

59.

Results

158

Application

Developer’s

Guide

v

“Web

services

consumer

user-defined

functions”

on

page

146

v

“Web

services

consumer—using

the

WebSphere

Studio

User-Defined

Function

tool”

on

page

149

Related

tasks:

v

“Installation

of

the

Web

services

consumer

user-defined

functions”

on

page

143

Related

reference:

v

“Using

the

Web

services

consumer

UDFs”

on

page

159

v

“dxxEnableDB()

stored

procedure”

in

the

DB2

XML

Extender

Administration

and

Programming

Using

the

Web

services

consumer

UDFs

Use

the

UDFs

to

share

information

between

your

relational

tables

and

your

Web

services.

Assume

that

there

is

a

table

in

a

relational

database

with

the

following

data:

Table

19.

Products

table

Product

Price

Gear

950.00

Nut

25.00

Bolt

35.00

And

assume

that

there

is

information

about

currency

types

in

a

remote

table.

Table

20.

Currency

table

Area

US

EURO

UK

Use

the

following

SQL

statement

on

page

159

to

determine

how

you

can

use

the

currency

exchange

rate

function

to

display

price

information

in

Euros

instead

of

US

dollars.

This

accesses

real-time

exchange

rates.

Note

that

the

statement

uses

a

built-in

decimal

function

to

cast

the

price

information.

SELECT

product,

decimal(getRate('us',

'euro')

*

price,

10,

2)

as

'EUR_Price'

FROM

products

The

result

of

the

statement

on

page

159

is:

Table

21.

Using

real-time

exchange

rates

Product

EUR_Price

Gear

1019.82

Nut

26.84

Bolt

37.57

Use

the

following

SQL

statement

to

show

how

you

can

use

relational

data

as

input

to

the

Web

service.

The

example

on

page

160

shows

how

the

currency

exchange

rate

function

can

display

price

information

in

different

currencies.

Chapter

2.

Developing

Web

services

159

SELECT

p.product,

c.area,

decimal(getRate('us',

c.area)

*

price,

10,

2)

as

Price

FROM

products,

areas

The

result

is:

Table

22.

Displaying

price

information

in

different

currencies

Product

Area

Price

Gear

us

950.00

Nut

us

25.00

Bolt

us

35.00

Gear

euro

1019.82

Nut

euro

26.84

Bolt

euro

37.57

Gear

uk

650.84

Nut

uk

17.12

Bolt

uk

23.97

If

you

use

this

query

often,

you

might

want

to

define

a

view

to

provide

a

simpler

interface.

An

example

of

this

view

would

be:

CREATE

VIEW

prices

AS

SELECT

p.product,

c.area,

decimal(getRate(’us’,

c.area)

*

price,

10,

2)

as

Price

FROM

p.products,

c.areas

By

using

the

view,

you

can

code

the

following

simpler

query:

SELECT

*

FROM

prices

Use

the

following

SQL

statement

to

show

how

you

can

use

a

UDF

that

is

generated

as

a

table

function

in

a

FROM

clause.

This

example

regenerates

the

getRate-UDF

as

a

table

function.

The

input

parameters

are

echoed

into

the

output

table.

SELECT

t.*

FROM

countries

c,

table(

getRate('us',

c.countries)

)

t

The

result

is:

Table

23.

Using

getRate

as

a

table

function

AREA1

AREA2

RESULT

us

us

+1.00000000000000E+000

us

euro

+1.07280000000000E+000

us

uk

+6.84800000000000E-001

Related

concepts:

v

“The

Web

service

consumer

functions”

on

page

145

v

“Web

services

consumer

user-defined

functions”

on

page

146

Related

tasks:

160

Application

Developer’s

Guide

v

“Tracing

Web

services

consumer

events”

on

page

148

Web

services

consumer

examples

The

examples

that

are

referred

to

here

work

with

DB2

Universal

Database

Version

8.

The

file

<DB2_installed

path>/samples/soapsample.sql

describes

how

to

run

the

samples.

The

file

soapsample.sql

contains

the

following

list

of

examples

and

sample

queries:

v

getTemp

-

Retrieves

a

temperature

in

Fahrenheit

v

getRate

-

Returns

the

exchange

rate

between

any

two

currencies

Related

concepts:

v

“The

Web

service

consumer

functions”

on

page

145

v

“Web

services

consumer

user-defined

functions”

on

page

146

v

“Web

services

consumer—using

the

WebSphere

Studio

User-Defined

Function

tool”

on

page

149

Related

tasks:

v

“Installation

of

the

Web

services

consumer

user-defined

functions”

on

page

143

Related

reference:

v

“Using

the

Web

services

consumer

UDFs”

on

page

159

Chapter

2.

Developing

Web

services

161

|

|
|
|
|

|

|

|

|

|

|
|

|

|

|

|

162

Application

Developer’s

Guide

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

This

section

explains

how

to

develop

federated

and

warehouse

applications

and

how

to

use

message

queue

(MQ)

functions.

Developing

applications

that

use

a

federated

server

The

DB2

Universal

Database

server

in

a

federated

system

is

referred

to

as

a

federated

server.

To

enable

transparent

data

access,

you

can

create

nicknames

for

the

remote

data

that

you

want

to

access.

You

can

create

functions

or

use

already

defined

functions

that

compensate

for

differences

between

different

data

sources

and

simulate

capabilities

that

are

not

natively

supported.

Multisite

joins

and

unions

promote

integration

of

data

from

multiple

sources.

Advantages

of

a

federated

system

A

federated

system

is

one

type

of

distributed

database

management

system

that

makes

it

possible

for

you

to

send

distributed

requests

to

multiple

data

sources

within

a

single

SQL

statement.

IBM®

DB2®

Information

Integrator’s

federated

systems

complements

built-in

database

support

that

is

provided

by

Web

application

servers.

Without

federated

systems,

accessing

disparate

data

sources

requires

multiple

steps:

1.

You

must

connect

to

each

data

source

individually.

2.

You

must

extract

the

necessary

data

by

using

different

native

application

programming

interfaces.

3.

You

must

filter,

sort,

and

consolidate

the

data

manually.

With

a

federated

system,

you

simply

query

the

nicknames

using

SELECT,

INSERT,

UPDATE,

and

DELETE

statements.

In

a

federated

system,

you

have

transparent

access

to

data

that

spans

multiple

heterogeneous

sources.

With

federated

systems

you

enhance

the

uses

and

power

of

a

Web

application

server

to

support

remote

data

(physically

stored

or

dynamically

generated).

You

can

use

federated

systems

with

application

server

components

such

as

enterprise

beans

and

Web

services.

By

using

enterprise

beans,

and

federated

system

objects,

programmers

can

perform

some

database

operations

or

transactional

work,

access

multiple

data

sources,

and

create

applications

that

integrate

disparate

data.

Related

concepts:

v

“Federated

systems”

in

the

Federated

Systems

Guide

v

“Enterprise

beans

in

a

federated

system”

on

page

165

v

“DB2

Information

Integrator—nonrelational

federated

technologies”

on

page

9

v

“Performance

and

tuning

planning—

materialized

query

tables

in

a

federated

system”

on

page

22

v

“DB2

Information

Integrator—relational

federated

technologies”

on

page

7

©

Copyright

IBM

Corp.

2003,

2004

163

|
|
|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|

Advantages

of

designing

queries

in

IBM

DB2

Information

Integrator

DB2®

Universal

Database

enables

database

administrators

to

create

views

of

data

that

span

multiple

tables

from

different

data

sources.

In

a

federated

system,

the

views

can

encompass

data

that

is

stored

in

difference

formats

on

multiple

servers.

To

build

such

a

view,

you

create

nicknames

for

the

remote

data

objects.

Then

you

use

SQL

to

create

a

view

that

joins

or

unions

these

nicknames.

The

views

that

join

or

union

multiple

data

sources

are

read-only

views.

You

can

build

container-managed

persistence

entity

beans

that

are

mapped

to

these

views,

which

are

read-only

beans.

In

addition

to

federated

views,

a

federated

system

includes

SQL

data

definition

language

(DDL)

transparency

for

relational

database

managers.

DDL

transparency

means

that

you

can

create

a

DB2

UDB

table

with

an

OPTIONS

clause

and

perform

two

separate

tasks

with

one

statement.

As

the

example

in

Figure

60

shows,

you

create

a

table

at

a

remote

data

source

and

create

a

corresponding

DB2

UDB

nickname

for

this

table.

The

create

statements

with

the

OPTIONS

clauses

create

the

following

database

objects:

v

A

table

named

ORAREST

in

a

remote

Oracle

database.

v

A

nickname

named

ORAREST

in

a

DB2

UDB

federated

database.

v

A

table

named

MSREST

in

a

remote

Microsoft®

SQL

Server

database.

v

A

nickname

named

MSREST

in

a

DB2

UDB

federated

database.

You

could

then

use

the

generated

tables

and

nicknames

in

a

view

to

union

or

integrate

the

information

from

two

disparate

data

sources.

CREATE

VIEW

multirest

(id,

name,

cuisine,

budget)

AS

SELECT

id,

name,

cuisine,

budget

FROM

orarest

UNION

SELECT

id,

name,

cuisine,

budget

FROM

msrest;

When

you

use

DDL

transparency,

the

database

manager

performs

most

of

the

SQL

translation

to

properly

construct

the

remote

table.

You

do

not

need

to

learn

the

specific

SQL

syntax

of

a

data

source

to

create

a

valid

table.

CREATE

TABLE

orarest

(

id

int

primary

key

not

null,

name

varchar(20),

cuisine

varchar(20),

budget

int)

OPTIONS

(remote_server

’ORACLE8’,

remote_schema

’ORACLEUSER1’)

CREATE

TABLE

msrest

(

id

int

primary

key

not

null,

name

varchar(20),

cuisine

varchar(20),

budget

int)

OPTIONS

(remote_server

’MSSQL’,

remote_schema

’MSUSER1’)

Figure

60.

Example

of

DDL

transparency

164

Application

Developer’s

Guide

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|

|
|

|
|
|
|
|
|

You

can

also

incorporate

materialized

query

tables

into

your

application

to

improve

performance.

Materialized

query

tables

allow

you

to

precompute

whole

or

parts

of

each

query

and

then

use

the

computed

results

to

answer

future

queries.

Materialized

query

tables

provide

the

means

to

save

the

results

of

prior

queries

and

then

reuse

the

common

query

results

in

subsequent

queries.

Materialized

query

tables

help

to

avoid

redundant

scanning,

aggregating

and

joining.

v

Materialized

query

tables

permit

query

processing,

even

when

the

remote

data

source

is

not

available

(such

as

when

the

network

is

not

available).

A

materialized

query

table

on

a

remote

table

can

be

perceived

as

a

cache

for

that

table,

which

can

seem

to

enhance

system

availability.

v

Materialized

query

tables

increase

the

scalability

of

the

overall

system.

The

materialized

query

table

can

offload

work

from

the

primary

database.

You

can

have

many

local

databases

each

with

a

copy

of

a

subset

of

frequently

used

primary

data.

The

primary

database

becomes

less

of

a

constraint

on

the

enterprise.

v

By

using

materialized

query

tables,

you

can

avoid

some

connections

to

remote

systems

for

some

queries.

The

overall

system

throughput

can

potentially

increase,

and

your

total

response

time

can

decrease.

v

Materialized

query

tables

use

the

full

functionality

of

DB2

UDB

when

accessing

remote

data

sources.

You

can

get

the

benefits

of

materialized

query

tables

even

though

the

remote

data

source

does

not

support

materialized

query

tables.

Web-enabled

applications

that

are

developed

in

a

database

environment

can

use

several

components

of

the

Java™

2

Enterprise

Edition

(J2EE)

server

environment.

Some

of

the

J2EE

components

include

support

for

enterprise

beans,

servlets,

JavaServer

Pages

code,

and

the

Java

Naming

and

Directory

Interface

extension.

J2EE

also

offers

support

for

connecting

to

the

database

manager

and

accessing

the

database

manager,

which

includes

support

for

Java

Database

Connectivity

code

and

Java

transaction

application

programming

interfaces.

Related

concepts:

v

“What

is

transparent

DDL?”

in

the

Federated

Systems

Guide

v

“Materialized

query

tables

and

federated

systems

–

overview”

in

the

Federated

Systems

Guide

v

“Tuning

query

processing”

in

the

Federated

Systems

Guide

v

“Enterprise

beans

in

a

federated

system”

on

page

165

v

“Performance

and

tuning

planning—

materialized

query

tables

in

a

federated

system”

on

page

22

Related

tasks:

v

“Creating

a

federated

materialized

query

table”

in

the

Federated

Systems

Guide

Enterprise

beans

in

a

federated

system

Enterprise

beans

are

Java™

components

that

run

on

a

Web

server.

You

can

create

container-managed

persistence

entity

beans

to

map

to

nicknames

that

you

created

with

IBM®

DB2®

Information

Integrator

federated

systems.

The

container-managed

persistence

entity

bean

can

access

data

that

is

located

in

relational

databases.

The

read-only

container-managed

persistence

entity

bean

can

access

data

that

is

located

in

nonrelational

databases.

You

can

use

entity

beans

to

integrate

disparate

data

through

Enterprise

JavaBean

architecture.

Enterprise

JavaBean

architecture

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

165

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

Enterprise

bean

components

are

part

of

the

Enterprise

JavaBean

architecture

and

execute

within

an

Enterprise

JavaBean

container.

The

container

runs

inside

of

an

Enterprise

JavaBean

server.

An

enterprise

bean

implements

business

logic.

The

Enterprise

JavaBean

container

provides

services

such

as

transaction

and

resource

management,

persistence,

and

security

to

the

enterprise

bean

components.

The

details

of

database

manipulation

can

be

left

to

the

Enterprise

JavaBean

container.

Entity

beans

and

session

beans

There

are

two

types

of

enterprise

beans

that

are

significant

for

a

federated

system

-

session

beans

and

entity

beans.

Session

beans

A

session

bean

is

usually

associated

with

a

single

client

and

is

usually

not

persistent.

The

purpose

of

the

session

bean

is

not

to

represent

or

update

existing

database

contents.

Instead,

the

purpose

of

the

session

bean

is

to

act

as

a

single

client

that

performs

some

actions

on

the

server.

Entity

beans

An

entity

bean

represents

information

that

is

stored

persistently

in

a

database.

Entity

beans

are

associated

with

database

transactions.

Entity

beans

can

provide

data

access

to

multiple

users.

An

entity

bean

might

represent

an

underlying

database

row,

or

the

result

of

a

SELECT

statement

in

a

single

row.

Federated

systems

support

automated

development

and

deployment

of

a

single

container-managed

persistence

entity

bean

whose

attributes

map

to

data

from

multiple

resources.

When

you

map

a

container-managed

persistence

entity

bean

to

a

federated

database

object,

the

federated

server

transparently

translates

the

database

access

to

data

access

requests

that

are

appropriate

to

the

data

sources.

When

you

deploy

an

enterprise

bean,

the

bean

resides

in

containers

that

provide

services

such

as

support

for

persistence.

The

entity

bean

automatically

generates

the

code

that

implements

persistence

when

you

deploy

the

enterprise

bean.

By

contrast,

when

you

build

session

enterprise

beans

that

access

persistent

data,

you

must

write

your

own

Java

database

connectivity

statements

to

establish

database

connections

and

issue

SQL

statements.

A

container-managed

persistence

entity

bean

defers

all

interaction

with

the

database

to

the

enterprise

JavaBean

container.

Typically,

the

enterprise

bean

reads

the

data

from

the

database

and

places

the

data

into

the

fields

in

the

container-managed

persistence

entity

bean.

You

can

reference

or

update

the

data

in

the

entity

bean.

When

a

transaction

ends,

the

Enterprise

JavaBean

container

accesses

the

data

in

the

entity

bean

and

updates

the

underlying

row

in

the

table.

Related

concepts:

v

“Enterprise

Java

Beans”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

tasks:

v

“Creating

and

deploying

a

container-managed

persistence

bean”

on

page

174

Employee

skills

scenario

–

solution

design

YBar,

Incorporated

stores

employee

information

in

DB2®

Universal

Database

tables,

and

XML

documents.

YBar,

Incorporated

can

manipulate

the

data

in

the

DB2

UDB

tables,

and

in

the

XML

documents.

The

logical

solution

is

to

create

applications

166

Application

Developer’s

Guide

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

|
|
|

that

store

the

employee

resumes

in

the

employee

database

as

Extensible

Markup

Language

(XML)

documents.

The

company

can

then

use

XML

search

capability

to

find

the

resumes

that

match

the

skills

that

are

needed

for

a

specific

project.

YBar,

Incorporated,

solves

their

business

problem

by

using

the

federated

systems

of

IBM®

DB2

Information

Integrator

to

access

the

resume

files

that

are

in

an

XML

format

as

relational

data.

1.

To

improve

the

performance

of

accessing

the

data

in

the

flat

file

data

sources,

YBar,

Incorporated

creates

indexes

on

the

side

tables

that

were

defined

in

the

DAD

file.

DB2

XML

Extender

creates

side

tables

based

on

the

schema

definitions

in

the

DAD

file.

CREATE

INDEX

KEY_Skill

ON

resume_skills_sidetable(skill)

2.

The

YBar,

Inc,

database

administrator

inserts

three

rows

into

the

employees

data

in

the

relational

table.

The

column

named

Resume

is

an

XML

column.

The

XMLVARCHARFROMFILE

is

a

DB2

XML

Extender

function

that

reads

an

XML

document

from

a

server

file

and

returns

the

document

as

an

XMLVARCHAR

type.

The

values

for

column

Resume

are

populated

from

the

resume

file

that

is

at

’Some_Path’\<the

resume

file

contents>.

INSERT

INTO

Employee

(Emp_ID,

Lastname,

Firstname,

Dept_ID,

Current_job_ID,

Resume)

VALUES(12,’Douglas’,’Laurie’,

123,

1,

db2xml.XMLVarcharFromFile

(’Some_Path’\resume_ld.xml’))

INSERT

INTO

Employee

(Emp_ID,

Lastname,

Firstname,

Dept_ID,

Current_job_ID,

Resume)

VALUES(13,’Smith’,’John’,

123,

2,

db2xml.XMLVarcharFromFile

(’Some_Path’\resume_js.xml’))

INSERT

INTO

Employee

(Emp_ID,

Lastname,

Firstname,

Dept_ID,

Current_job_ID,

Resume)

VALUES(14,’Jackson’,’George’,

123,

3,

db2xml.XMLVarcharFromFile

(’Some_Path’\resume_gl.xml’))

3.

Then

YBar,

Incorporated

developer

queries

the

base

table

by

using

the

XML

column

and

the

side

table.

This

SQL

statement

looks

for

all

employees

with

Java™

skills.

It

takes

advantage

of

the

side

table

so

that

an

index

access

can

be

used.

SELECT

e.firstname,

e.lastname,e.resume

FROM

employee

AS

e,

resume_skills_sidetable

AS

r

WHERE

e.emp_id=r.emp_id

AND

r.skill

LIKE

’%Java%’

The

YBar,

Inc.,

developers

can

query

the

XML

content

in

several

ways:

v

The

following

example

uses

a

scalar

function

to

return

the

experience

of

a

single

employee:

SELECT

db2xml.EXTRACTVARCHAR

(resume,’/resume/experience’)

FROM

employee

WHERE

emp_id=13

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

167

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

The

user-defined

function

extractVarchar

uses

the

column

resume

as

the

input

and

the

location

path

/resume/experience

as

the

select

identifier.

The

scalar

function

returns

the

experience

of

one

employee.

With

the

WHERE

clause,

the

extracting

function

evaluates

only

the

resume

with

an

identifier

of

″13″..

v

The

following

example

uses

a

table

function

to

return

several

rows:

SELECT

e.firstname,

e.lastname,

e.resume

FROM

employee

AS

e,

TABLE(db2xml.EXTRACTVARCHARS(e.resume,’/resume/skill’))

AS

t

WHERE

t.returnedvarchar

LIKE

’%Java%’

The

user-defined

function

extractVarchars

uses

the

column

resume

as

the

input

and

the

location

path

/resume/skill

as

the

select

identifier.

The

table

function

returns

the

skills

of

the

employees

that

include

the

string

″Java″

in

the

skills

node

of

the

resume

file.

Here

is

an

example

of

part

of

the

original

resume.xml

file:

<resume

emp_id="12"

email_address="some_person@email_address.com">

<experience

start_date="12/01/1999"

end_date="06/30/2002">

Develop

partner

and

customer

demos.

</experience>

<experience

start_date="12/01/1999"

end_date="06/30/2002">

IBM

DB2

Information

Integrator

development

</experience>

<skill>

Databases

</skill>

<skill>

Java

</skill>

<skill>

C++

</skill>

<skill>

FORTRAN

</skill>

</resume>

Solving

the

external

education

problem

The

human

resources

department

needs

to

send

a

list

of

employees

and

their

current

job

descriptions

to

an

external

education

provider.

The

education

provider

can

then

offer

customized

classes

to

the

employees

of

YBar,

Incorporated.

The

YBar,

Inc.,

developers

join

the

employee

and

the

job

databases

and

publish

the

list

in

a

message

queue

by

using

WebSphere®

MQ.

The

following

steps

demonstrate

the

example

solution:

1.

The

job

table

is

created

as

a

federated

systems

nickname

of

an

external

flat

file.

The

nickname

is

created

as

part

of

the

flat

file

wrapper.

CREATE

NICKNAME

job

(Job_ID

INTEGER,

Job_description

VARCHAR(255),

Title

VARCHAR(50),

responsibilities

VARCHAR(100))

FOR

SERVER

local_flat_files

OPTIONS

(FILE_PATH

’C:\SPC\job_table.txt’,

COLUMN_DELIMITER

’,’,

KEY_COLUMN

’job_id’,

VALIDATE_DATA_FILE

’y’)"

168

Application

Developer’s

Guide

The

FILE_PATH

option

defines

the

location

of

the

external

file,

which

is

named

job_table.txt.

2.

The

developers

run

the

query

that

selects

the

employee

information

and

the

job

information.

SELECT

1

as

x,

emp_id

,

firstname,

lastname,

Job_description

FROM

employee

as

e,

job

as

j

WHERE

e.Current_Job_ID

=

j.Job_ID

and

j.Job_ID

!=

1000

ORDER

BY

x,

emp_id

3.

The

YBar

developers

generate

a

new

XML

document

that

contains

the

joined

information

from

the

DB2

UDB

table,

employee,

and

the

external

flat

file

information,

job.

They

name

the

new

generated

file,

All_employee.xml.

They

use

the

employee.dad

file

to

map

the

xml

information

to

the

DB2

UDB

relational

table

information.

4.

Create

the

DB2

UDB

temporary

table

to

hold

the

XML

documentation

with

the

following

statement:

create

table

tmpTable

(x_doc

DB2XML.XMLCLOB

not

logged)

5.

Decompose

the

XML

information

that

is

in

the

employee.dad

and

populated

tmpTable.

Then

6.

Write

XML

data

and

store

it

in

the

file

employee.xml

by

using

the

following

example:

select

DB2XML.Content

(x_doc,

’c:\YourName\employee.XML’)

from

tmpTable

7.

The

information

is

now

prepared

to

be

sent

as

a

message

to

the

external

education

provider.

You

put

the

joined

information

in

a

WebSphere

MQ

message

queue.

:

8.

The

following

examples

put

the

messages

on

the

queue

as

an

XML

document,

displays

the

contents

of

the

message

queue,

and

leaves

the

messages

undisturbed.

Use

the

MQSENDXML

function

to

send

an

XML

message

to

the

queue.

The

message

is

the

resume

information

for

employee

number

12.

db2

"SELECT

db2xml.MQSENDXML(’DB2.DEFAULT.SERVICE’,

’DB2.DEFAULT.POLICY’,

resume)

FROM

employee

WHERE

emp_id=12"

Create

a

DB2

UDB

table

that

has

one

column

to

hold

the

entire

XML

document.

db2

"CREATE

TABLE

temporaryXML

(XML_doc

DB2XML.XMLVARCHAR)"

Populate

the

table

with

the

XML

information

that

is

a

join

of

the

DB2

UDB

employee

table

and

the

external

job

file:

db2

"INSERT

INTO

temporaryXML

SELECT

CONCAT(’<FullName>’||firstname

||’

’||lastname||’</FullName>

’,’<Job_Desc>’||

job_description||

’</Job_Desk>’)

FROM

employee

AS

e,

job

AS

j

WHERE

e.current_job_id=j.job_id

AND

j.Job_ID

=

1"

Use

the

MQSENDXML

function

to

send

an

XML

message

to

the

queue.

The

message

is

the

employee

and

job

information

in

an

XML

column.

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

169

db2

"SELECT

db2xml.MQSENDXML(’DB2.DEFAULT.SERVICE’,

’DB2.DEFAULT.POLICY’,

XML_doc)

FROM

temporaryXML"

The

complete

set

of

components

that

YBar,

Incorporated

uses

can

be

seen

in

Figure

61.

Related

concepts:

v

“Planning

side

tables”

in

the

DB2

XML

Extender

Administration

and

Programming

v

“Using

indexes

for

XML

column

data”

in

the

DB2

XML

Extender

Administration

and

Programming

v

“Employee

database

scenario

-

solution

design”

on

page

170

v

“Discovering

the

data—the

employee

skills

scenario”

on

page

12

Employee

database

scenario

-

solution

design

YBar,

Incorporated,

a

company

that

specializes

in

human

resources,

is

trying

to

solve

two

problems:

DB2
UDB

Web services request

Web application

WORF

WebSphere
application server (WAS)

WebSphere
message queue

Enterprise
beans

XML
ExtenderAsynchronous

listener

DB2
Information
Integrator
federated
systems

DB2
UDB

Oracle

Informix

Wrapper

Figure

61.

Components

of

a

federated

system

that

use

Web

applications

170

Application

Developer’s

Guide

|
|

v

They

must

identify

the

best

candidates

to

fill

some

internal

job

openings.

They

base

their

search

on

the

personnel

resume

files

that

are

in

XML

format.

v

They

provide

an

employee

list

to

an

external

education

provider.

The

education

provider

customizes

classes

according

to

employee

needs.

YBar,

Inc,

solves

their

business

problem

by

using

the

federated

systems

of

IBM®

DB2®

Information

Integrator

to

store

and

retrieve

the

data.

The

YBar,

Inc.

design

solution

is

in

Figure

62

on

page

171.

This

design

uses

several

functions

of

the

DB2

XML

Extenders,

and

takes

advantage

of

the

use

of

side

tables

that

match

the

schema

in

the

data

type

definition

files.

Side

tables

are

DB2

UDB

tables

that

are

used

to

extract

the

content

of

an

XML

document

that

will

be

searched

frequently.

The

XML

column

is

associated

with

side

tables

that

hold

the

contents

of

the

XML

document.

When

the

XML

document

is

updated

in

the

application

table,

the

values

in

the

side

tables

are

automatically

updated.

YBar,

Inc,

can

treat

the

XML

data

that

is

stored

in

the

DB2

UDB

tables

as

relational

data

that

can

be

used

with

the

other

columns

of

data.

They

use

the

functions

of

DB2

XML

Extender

to

store

the

resumes

that

are

in

XML

format

as

complete

XML

documents.

1.

You

must

enable

the

database

for

federated

systems

so

that

you

can

access

that

data

that

is

stored

in

the

external

flat

files.

DB2

UPDATE

DBM

CFG

USING

FEDERATED

YES

DTD for the
resume

Side tables

DTD_REF

DTD for the
XML Column

XML
document

output

Employee table

Wrapper

Server

Nickname

Resume column

Wrapper code
(library)

Flat file in the
file system

Job

Figure

62.

YBar,

Inc

design

flow

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

171

|
|

|
|

|
|
|
|
|
|
|
|
|
|

2.

You

must

enable

the

database

for

DB2

XML

Extenders,

to

use

the

XML

functions.

DXXADM

ENABLE_DB

emp_db

3.

The

database

management

administrator

adds

a

column

named

″Resume″

to

the

Employee

table.

The

XMLVARCHAR

data

type

is

a

DB2

XML

Extender

type

that

allows

an

XML

document

to

be

included

in

the

DB2

UDB

table.

ALTER

TABLE

employee

ADD

COLUMN

Resume

XMLVARCHAR

The

new

column

contains

the

resumes

in

the

employee

database

as

XML

documents.

The

Resume

column

provides

an

XML

search

capability

to

find

which

resumes

match

the

skills

that

are

needed

for

a

specific

project.

4.

You

must

create

the

federated

data

sources

such

as

wrappers,

servers,

and

nicknames.

You

can

use

the

DB2

UDB

Control

Center

to

create

the

federated

data

objects.

The

following

example

registers

the

table-structured

file

wrapper

in

AIX®:

CREATE

WRAPPER

flat_files

LIBRARY

’libdb2lsfile.a’

You

must

register

a

server

definition

for

each

wrapper

that

you

want

to

use.

CREATE

SERVER

local_flat_files

WRAPPER

flat_files

You

register

a

nickname

to

use

the

nonrelational

data

in

SQL

statements.

The

FILE_PATH

option

defines

the

path

to

the

resume

data

that

is

stored

in

a

flat

file

in

another

data

source.

CREATE

NICKNAME

job

(Job_ID

INTEGER,

Job_description

VARCHAR(255),

Title

VARCHAR(50),

responsibilities

VARCHAR(100))

FOR

SERVER

local_flat_files

OPTIONS

(FILE_PATH

’C:\SPC\job_table.txt’,

COLUMN_DELIMITER

’,’,

KEY_COLUMN

’job_id’,

VALIDATE_DATA_FILE

’y’)"

5.

Verify

that

the

nickname

options

are

valid

by

using

the

following

statement:

SELECT

tabschema,

tabname,

option,

setting

FROM

SYSCAT.TABOPTIONS

The

result

of

the

SELECT

statement

is

in

Table

24

on

page

172.

This

table

shows

the

schema

name

and

the

table

options

that

were

defined

in

the

CREATE

NICKNAME

statement.

Table

24.

Result

of

select

from

the

TABOPTIONS

table

TABSCHEMA

TABNAME

OPTION

SETTING

USERNAME

JOB

FILE_PATH

c:\SPC\job_table.txt

USERNAME

JOB

COLUMN_DELIMITER

,

USERNAME

JOB

KEY_COLUMN

JOB_ID

USERNAME

JOB

VALIDATE_DATA_FILE

Y

USERNAME

JOB

REMOTE_TABLE

JOB

USERNAME

JOB

REMOTE_SCHEMA

USERNAME

USERNAME

JOB

SERVER

LOCAL_FLAT_FILES

6.

You

must

register

the

document

type

definition

(DTD)

to

map

the

XML

schema

to

a

DB2

UDB

table,

and

then

enable

the

XML

column,

resume.

DXXADM

enable_column

Employee_db

Employee

resume

resume.dad

-v

resume_view

-r

Emp_ID

172

Application

Developer’s

Guide

|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

||

||||

||||

||||

||||

||||

||||

||||

||||
|

|
|

|
|

The

enable_column

option

of

the

DB2

XML

Extender

command

DXXADM

connects

to

a

database

and

enables

an

XML

column

so

that

it

can

contain

the

XML

Extender

user-defined

types.

When

enabling

a

column,

the

XML

Extender

completes

several

tasks,

including

the

following

tasks:

v

Creates

side

tables

that

are

specified

in

the

DAD

file

with

a

column

containing

a

unique

identifier

for

each

row

in

the

XML

table.

The

column

in

the

side

table

is

Emp_ID

in

this

example.

v

Creates

a

default

view

for

the

XML

table

and

its

side

tables,

using

the

name

resume_view

in

this

example.

The

following

definitions

are

used

for

the

terms

in

the

enable_column

statement:

v

Employee_db:

the

name

of

the

database.

v

Employee:

the

name

of

the

table.

v

resume:

the

name

of

the

XML

column

v

resume.dad:

the

name

of

the

document

access

definition

file

that

contains

the

schema

definition.

v

resume_view:

the

name

of

the

default

view

that

joins

the

XML

column

and

the

side

tables.

v

Emp_ID:

the

name

of

the

primary

key

in

the

XML

column

table

that

will

be

used

as

the

root_id

for

the

side

tables.
7.

You

can

use

a

DTD

to

validate

XML

data

in

an

XML

column

or

in

an

XML

collection.

You

can

store

a

DTD

in

the

DTD

repository

table,

which

is

a

DB2

UDB

table

named

DTD_REF.

The

DTD_REF

table

has

a

schema

name

of

DB2XML.

Each

DTD

in

the

DTD_REF

table

has

a

unique

ID,

named

the

DTDID.

The

DTDID

can

be

an

identifier

or

it

can

be

the

path

that

specifies

the

location

of

the

DTD

on

the

local

system.

The

DTDID

must

match

the

value

that

is

specified

in

the

DAD

file

for

the

<DTDID>

element.

The

XML

Extender

creates

the

DTD_REF

table

when

you

enable

a

database

for

XML.

You

can

insert

the

DTD

from

the

command

line

by

issuing

this

statement.

INSERT

INTO

db2xml.dtd_ref

VALUES

(’resume.dtd’,db2xml.XMLClobFromFile

(’%PATH_DEMO%\resume.dtd’),0,

’user1’,’user1’,’user1’)

8.

You

can

verify

that

you

registered

the

DTD

correctly

by

issuing

this

statement:

SELECT

dtdid,

content

FROM

db2xml.dtd_ref;

In

this

statement,

content

is

the

content

of

the

DTD.

9.

Query

the

data

by

using

side

tables

and

an

extracting

user-defined

function:

SELECT

e.firstname,

e.lastname,

e.resume

FROM

employee

AS

e,

resume_skills_sidetable

AS

r

TABLE(DB2XML.EXTRACTVARCHARS(e.resume,’/resume/skill’))

AS

t

WHERE

SUBSTR(t.returnedvarchar,1,8)

LIKE

’____Java’

The

XML

documents

are

stored

in

the

column

resume.

The

user-defined

function

extractVarchars()

uses

the

column

resume

as

the

input

and

the

location

path

/resume/skill

as

the

select

identifier.

The

user-defined

function

returns

a

table

of

employee

skills

that

are

listed

in

their

resumes.

Related

concepts:

v

“Planning

side

tables”

in

the

DB2

XML

Extender

Administration

and

Programming

v

“Advantages

of

a

federated

system”

on

page

163

v

“Employee

skills

scenario

–

solution

design”

on

page

166

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

173

|
|
|
|

|
|
|

|
|

|
|

|

|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

Related

tasks:

v

“Accessing

heterogeneous

data

through

federated

views”

in

the

Federated

Systems

Guide

v

“Adding

DB2

family

data

sources

to

a

federated

server”

in

the

IBM

DB2

Information

Integrator

Data

Source

Configuration

Guide

Creating

and

deploying

a

container-managed

persistence

bean

When

you

define

a

container-managed

persistence

entity

bean,

you

use

a

deployment

descriptor

file

to

control

the

data

source

that

contains

the

persistent

data

and

any

access

restrictions.

After

you

develop

the

entity

bean,

you

set

the

deployment

descriptors

that

govern

the

characteristics

of

the

bean,

and

then

package

and

deploy

the

bean.

You

can

create

container-managed

persistence

entity

beans

that

map

to

federated

systems

nicknames.

Nicknames

are

federated

objects

that

represent

remote

data

to

the

database

manager.

The

example

that

is

used

throughout

this

section

creates

individual

entity

beans

that

map

to

nicknames

that

are

associated

with

individual

Oracle

tables,

DB2

Universal

Database

tables,

and

flat

files.

A

single

container-managed

persistence

entity

bean

can

span

multiple

data

sources.

The

entity

bean

provides

a

way

of

integrating

disparate

data

through

standard

enterprise

JavaBean

technology.

Prerequisites:

Install

WebSphere

Studio

Version

5

or

later.

Register

and

create

federated

systems

objects

for

Oracle

tables

and

flat

files.

Procedure:

To

create

and

deploy

a

container-manager

persistence

entity

bean

using

WebSphere

Studio:

1.

From

the

Java

2

Enterprise

Edition

(J2EE)

perspective

in

WebSphere

Studio,

create

an

EJB

project

for

the

entity

bean

you

create.

2.

Create

the

container-managed

persistence

entity

bean.

v

Give

the

container-manager

persistence

entity

bean

the

same

name

as

the

nickname

you

defined

for

the

data

source.

v

Add

attributes

that

correspond

to

each

of

the

column

names

in

the

nickname.

Specify

the

data

type

for

each

column

that

corresponds

to

the

data

type

in

the

column

of

the

nickname.

Designate

one

of

the

attributes

as

the

key

field,

which

should

map

to

the

primary

key

column

of

the

nickname.
3.

Open

the

enterprise

JavaBean

data

modeling

window:

a.

Select

the

entity

bean

you

created

and

right-click

to

open

the

drop-down

menu.

Select

Generate

—>

EJB

to

RDB

mapping

and

select

Top-down

modeling

b.

Click

Next.

Ensure

that

you

have

set

the

database

name

and

the

schema

names

properly.

The

database

name

must

map

to

the

federated

database

known

to

your

DB2

UDB

client.

The

schema

name

must

map

to

the

authorized

federated

database

user.

c.

Clear

Generate

DDL.

d.

Click

Finish.

174

Application

Developer’s

Guide

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

4.

Verify

that

the

mapping

between

the

entity

bean

and

the

database

completed

successfully.

a.

Select

the

entity

bean

module

and

right-click

to

open

the

drop-down

menu.

b.

Select

Open

With

—>

Mapping

Editor.

c.

Correct

any

errors

on

the

Tasks

window.
5.

Bind

the

entity

bean

to

the

data

source

that

you

created

for

the

federated

database.

a.

Select

the

entity

bean

and

right-click

to

open

the

drop-down

menu.

b.

Select

Open

with

—>

Deployment

Descriptor

Editor.

c.

On

the

Overview

page,

scroll

down

to

WebSphere

Bindings.

For

JNDI-CMP

Factory

Bindings,

specify

a

valid

JNDI

name

and

container

authorization

type.

d.

Save

your

modifications

and

close

the

window.
6.

Generate

the

code

to

deploy

the

entity

bean.

a.

Select

the

entity

bean

and

right-click

to

open

the

drop-down

menu.

b.

Select

Generate

Deploy

Code.

Related

concepts:

v

“Java

2

Enterprise

Edition

applications”

on

page

131

v

“Enterprise

beans

in

a

federated

system”

on

page

165

Designing

applications

for

a

federated

solution—Cottonwood

Distributors,

Incorporated

The

database

programmers

at

Cottonwood

Distributors,

Incorporated

(CDI),

create

the

federated

objects

that

they

need

to

access

all

of

the

newly

acquired

data

sources.

The

programmers

need

to

create

federated

objects

on

all

three

of

the

data

sources

that

access

the

remote

systems.

The

programmers

create

the

access

by

using

the

statements

shown

in

Figure

63

on

page

176.

This

example

shows

the

SQL

data

definition

language

(DDL)

statements

for

one

of

the

data

sources,

DB2®

Universal

Database.

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

175

|
|

|

|

|

|
|

|

|

|
|
|

|

The

programmers

at

Cottonwood

need

to

create

views

of

the

main

tables

(part,

partsupp,

supplier)

for

the

three

different

data

sources.

They

create

a

view

by

using

a

UNION

ALL

statement

across

three

data

sources.

The

example

in

Figure

64

on

page

176

shows

one

of

the

views.

The

programs

that

the

Cottonwood

database

programmers

write,

need

to

access

an

XML

file

that

comes

from

an

outsourced

vendor.

This

XML

file

contains

human

resource

information

such

as

employee

data.

To

access

this

file,

the

programmers

at

Cottonwood

create

a

wrapper,

a

server,

and

a

nickname

for

XML

files,

as

shown

in

Figure

65

on

page

177.

...

catalog

tcpip

node

DB2_TPCH

remote

x.xx.xx.xx

server

50000;

...

catalog

database

tpcd

at

node

db2_tpch;

...

create

wrapper

drda;

create

server

db2_tpch

type

db2/udb

version

8.1

wrapper

drda

authorization

"demo"

password

"xxxxx"

options

(dbname

’TPCD’);

create

user

mapping

for

user

SERVER

db2_tpch

OPTIONS

(

REMOTE_AUTHID

’demo’,

REMOTE_PASSWORD

’xxxxx’

);

create

nickname

db2_part

for

db2_tpch.tpcd.part;

create

nickname

db2_supplier

for

db2_tpch.tpcd.supplier;

create

nickname

db2_partsupp

for

db2_tpch.tpcd.partsupp;

create

nickname

db2_nation

for

db2_tpch.tpcd.nation;

create

nickname

db2_region

for

db2_tpch.tpcd.region;

create

nickname

db2_customer

for

db2_tpch.tpcd.customer;

create

nickname

db2_orders

for

db2_tpch.tpcd.orders;

Figure

63.

Some

federated

objects

for

the

DB2

data

source

CREATE

VIEW

part_fed

(

p_partkey,

p_mfgr,

p_type,

p_size,

p_retailprice)

AS

SELECT

p_partkey,

p_mfgr,

p_type,

p_size,

p_retailprice

FROM

db2_part

UNION

ALL

SELECT

p_partkey,

p_mfgr,

p_type,

p_size,

p_retailprice

FROM

inf_part

UNION

ALL

SELECT

p_partkey,

p_mfgr,

p_type,

p_size,

p_retailprice

FROM

ora_part;

Figure

64.

Unioning

the

three

data

sources

176

Application

Developer’s

Guide

Because

the

Web

applications

route

customer

orders

and

supplier

price

updates

to

a

queue,

the

programmers

create

table-read

functions

and

views

(see

Figure

66

on

page

177)

of

the

Message

Queues

.

Finally,

the

programmers

at

Cottonwood

need

to

create

temporary

tables

that

will

be

used

in

processing:

v

For

running

the

XML

composition:

create

table

Ucustomers

(x_doc

DB2XML.XMLCLOB

not

logged);

create

wrapper

XML_files

library

’db2lsxml.dll’;

create

server

LOCAL_XML_FILES

wrapper

XML_FILES;

create

nickname

Employees_From_XML

(

doc

Varchar(100)

OPTIONS(DOCUMENT

’FILE’),

Employee_Number

Varchar(5)

OPTIONS(XPATH

’./@SerialNum’),

First_Name

Varchar(50)

OPTIONS(XPATH

’.//Firstname’),

Middle_Initial

Varchar(50)

OPTIONS(XPATH

’.//Initial’),

Last_Name

Varchar(50)

OPTIONS(XPATH

’.//Lastname’),

Department_Number

Varchar(50)

OPTIONS(XPATH

’.//Department’),

Phone_Number

Varchar(50)

OPTIONS(XPATH

’.//PhoneNumber’),

Job

Varchar(50)

OPTIONS(XPATH

’.//Job’),

Education_Level

Varchar(50)

OPTIONS(XPATH

’.//EDLevel’),

Gender

Varchar(50)

OPTIONS(XPATH

’.//Sex’),

Hire_Date

Varchar(50)

OPTIONS(XPATH

’.//HireDate’),

Birth_Date

Varchar(50)

OPTIONS(XPATH

’.//BirthDate’),

Annual_Salary

Varchar(50)

OPTIONS(XPATH

’.//Salary’),

Annual_Bonus

Varchar(50)

OPTIONS(XPATH

’.//Bonus’),

Commission

Varchar(50)

OPTIONS(XPATH

’.//Comm’),

cid

Varchar(16)

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

LOCAL_XML_FILES

OPTIONS

(XPATH

’//Employee’);

Figure

65.

Creating

the

federated

systems

objects

CREATE

FUNCTION

NEW_SUPPLIERS_READ()

RETURNS

TABLE

(

SUPPLIER_NAME

VARCHAR(80),

SUPPLIER_PHONE

VARCHAR(12),

PART_KEY

DOUBLE,

PART_PRICE

DOUBLE,

MAN_DAYS

DOUBLE,

MAX_QUANTITY

DOUBLE,

CORRELID

VARCHAR(80))

LANGUAGE

SQL

NOT

DETERMINISTIC

EXTERNAL

ACTION

READS

SQL

DATA

RETURN

SELECT

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,1),80),

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,2),12),

DOUBLE(DB2MQ.GETCOL(T.MSG,’,’,3)),

DEC(DB2MQ.GETCOL(T.MSG,’,’,4),8,4),

BIGINT(DB2MQ.GETCOL(T.MSG,’,’,5)),

BIGINT(DB2MQ.GETCOL(T.MSG,’,’,6)),

CORRELID

FROM

TABLE

(DB2MQ.MQREADALL(’DB2.DEFAULT.SERVICE’,

’DB2.DEFAULT.POLICY’))

AS

T;

CREATE

VIEW

READ_NEW_SUPPLIERS_FROM_QUEUE

AS

SELECT

*

FROM

TABLE(NEW_SUPPLIERS_READ())

t

WHERE

CORRELID

=

’CDI_NEW_SUPPLIER’;

Figure

66.

Cottonwood’s

table-read

functions

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

177

v

For

storing

the

Web

request:

create

table

request_bid

(reqkey

integer

not

null,

partkey

integer

not

null,

bid

double

not

null);

create

table

request_status

(reqkey

integer

not

null,

partkey

integer

not

null,

suppkey

integer

not

null,

newquote

double

not

null,

currentquote

double

not

null,

status

varchar(15)

not

null);

Related

tasks:

v

“Developing

the

application

for

a

federated

solution—Cottonwood

Distributors,

Inc.”

on

page

178

Related

reference:

v

Appendix

A,

“Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios,”

on

page

217

Developing

the

application

for

a

federated

solution—Cottonwood

Distributors,

Inc.

Cottonwood

Distributors,

Incorporated

(CDI)

can

generate

an

XML

message

for

any

new

quote

or

bid

by

invoking

a

Web

service

with

a

servlet.

Here

are

some

steps

that

you

can

follow

to

create

a

similar

environment.

Procedure:

To

develop

the

application

to

create

the

Cottonwood

Web

service:

1.

Configure

the

DB2

Universal

Database

server

to

act

as

a

federated

database

and

set

the

properties

for

the

SVCENAME

server

and

the

FEDERATED

option:

db2

update

dbm

cfg

using

SVCENAME

myID

authentication

server

db2

update

dbm

cfg

using

FEDERATED

yes

db2

connect

reset

db2stop

db2start

2.

Connect

to

the

local

DB2

Universal

Database:

db2

connect

to

myLocalDB

user

user1

using

myPW

3.

Create

the

federated

objects

for

each

data

source.

4.

Configure

the

DB2

Universal

Database

client

to

identify

the

remote

nodes

on

which

the

DB2

UDB

server

resides.

5.

Create

nicknames

for

the

remote

data

that

you

want

to

access:

create

nickname

ora_part

for

oraserver.CDI.part;

6.

Configure

the

WebSphere

Application

Server:

v

Make

sure

that

the

Java

build

path

that

is

associated

with

your

Web

services

projects

includes

the

location

of

the

db2java.zip

or

jcc.jar

file.

The

dbDriver

parameter

in

the

group.properties

file

determines

what

database

driver

package

that

you

use.

v

Create

a

data

source

object

in

your

WebSphere

environment

that

maps

to

the

DB2

Universal

Database

that

you

configured

for

federated

support.

Data

178

Application

Developer’s

Guide

|
|
|
|

source

objects

represent

pooled

database

connections,

and

can

be

established

using

JNDI

services

to

search

a

data

source,

and

invoke

methods

that

are

associated

with

the

data

source.

With

all

of

the

connections

made,

you

can

now

select,

insert,

update,

or

delete

data

from

the

federated

data

objects.

Because

you

created

a

nickname

of

ora_part,

the

SQL

statements

that

you

create

reference

only

the

ora_part

nickname.

In

the

Cottonwood

examples,

the

statements

include

joined

data

from

multiple

sources

with

a

single

SQL

statement

that

references

multiple

nicknames.

The

code

shown

in

Figure

67

uses

a

Web

service

to

write

a

message

to

the

queue.

public

void

doGet(HttpServletRequest

req,

HttpServletResponse

res)

throws

javax.servlet.ServletException,

java.io.IOException

{

try

{

PrintWriter

pr

=

res.getWriter();

pr.print(htmlHeader1);

pr.print(message1);

pr.print(message2);

String

method

=

"";

...

Figure

67.

New

quote

or

bid

writes

a

message

to

the

queue

(MessageFormatter.java)

(Part

1

of

5)

public

class

MessageFormatter

extends

javax.servlet.http.HttpServlet

{

final

static

String

htmlHeader1

=

"<HTML><TITLE>MessageFormatter";

final

static

String

message1

=

"<p

align=\"center\"><font

color=\"navy\"

face=\"verdana\"

size=\"+2\">Thank

You<p><font

color=\"black\"

face=\"veranda\"

size=\"+1\">";

final

static

String

message2

=

"";

final

static

String

htmlHeader2

=

"";

static

String

quote

=

"";

static

Connection

con

=

null;

final

static

String

url

=

"jdbc:db2:demo";

...

Figure

67.

New

quote

or

bid

writes

a

message

to

the

queue

(MessageFormatter.java)

(Part

2

of

5)

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

179

The

CustomerRoutine

parses

the

message.

The

routine

takes

actions

based

on

the

message

type

(a

quote

or

a

bid).

The

routine

puts

parsed

information

into

the

WSProxy

WSid

=

new

WSProxy();

boolean

fCustomer

=

true;

if

(req.getParameter("method")!=null)

{

//Get

the

common

parms

to

the

servlet

//from

the

REQ

object

key

=

req.getParameter("name");

part

=

req.getParameter("part");

method

=

req.getParameter("method");

//

If

customer

order

if

(method.equals("orderNewParts"))

{

fCustomer

=

true;

//

Get

the

quantity

the

customer

is

ordering

quantity

=

req.getParameter("quantity");

//

set

the

table

and

column

names

for

SELECT

col_name1

=

"c_name";

col_name2

=

"c_custkey";

tab_name

=

"db2_customer";

...

Figure

67.

New

quote

or

bid

writes

a

message

to

the

queue

(MessageFormatter.java)

(Part

3

of

5)

//

Get

the

real

customer

name

from

federated

data

source

try

{

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

url

=

"jdbc:db2:demo";

con

=

DriverManager.getConnection(url,"demo","xxxxx");

stmt

=

con.createStatement();

rs

=

stmt.executeQuery

("SELECT

"

+

col_name1

+

"

from

"

+

tab_name

+

"

where

"

+

col_name2

+

"

=

"

+

key);

while

(rs.next())

{

cust_name

=

rs.getString(1);

}

...

Figure

67.

New

quote

or

bid

writes

a

message

to

the

queue

(MessageFormatter.java)

(Part

4

of

5)

//

Write

request

status

back

to

user

try{

//

If

this

is

a

supplier

update

request

if

(!fCustomer)

{

String

message1id=

"2,"

+

key

+

","

+

part

+

","

+

quantity

+

","

+

price

;

java.lang.String

message1idTemp

=

message1id;

System.out.println

("message

type

2

being

written:

"

+

message1idTemp);

org.tempuri.worftestweb.

demo.newdadx.dadx.xsd.Stmt1ResultElement

mtemp

=

WSid.stmt1(message1idTemp);

Figure

67.

New

quote

or

bid

writes

a

message

to

the

queue

(MessageFormatter.java)

(Part

5

of

5)

180

Application

Developer’s

Guide

REQUEST_BID

or

REQUEST_STATUS

table.

If

the

message

type

is

a

quote

for

a

part,

it

compares

the

new

quote

to

an

existing

quote.

If

this

is

a

quote

for

a

new

part,

the

status

is

changed

to

new.

The

status

is

added

to

the

local

and

status

tables

as

NEW.

If

the

quote

is

for

an

existing

part

with

a

lower

price,

then

the

program

accepts

the

price.

The

program

writes

to

the

local

table,

and

updates

the

status

as

ACCEPTED.

If

the

quote

is

for

an

existing

part

and

the

price

is

higher,

then

the

program

writes

to

the

status

table

as

REVIEW.

Related

concepts:

v

“Deploying

the

application—Cottonwood

Distributors,

Inc.

solution”

on

page

189

v

“Discovering

the

data—Cottonwood

Distributors,

Inc.”

on

page

185

Deploying

a

federated

application

To

deploy

a

federated

application,

the

database

programmers

at

Cottonwood

Distributors,

Incorporated

invoke

newdadx.dad

for

Web

service

actions.

Here

are

some

examples

to

help

you

deploy

your

application.

Prerequisites:

The

minimum

deployable

unit

in

WebSphere

Application

Server

5.0

is

a

Web

archive

(WAR)

file.

If

the

application

is

developing

Enterprise

JavaBeans

(EJB),

then

a

Java

archive

file

(JAR)

and

an

enterprise

archive

file

(EAR)

are

necessary.

Before

you

can

deploy

an

application,

you

must

build

the

following

components

for

your

enterprise

federated

application:

WAR

file

The

Web-related

components

(Hypertext

Markup

Language

(HTML),

JavaScript,

JSP)

JAR

file

The

Java

classes

that

make

up

the

business

logic

components

EAR

file

The

JAR

files

plus

the

WAR

files

that

make

up

an

enterprise

solution

Procedure:

To

deploy

the

federated

application:

1.

Import

the

EAR

file

into

the

WebSphere

Application

Development

environment.

In

the

case

of

the

Cottonwood

Distributors,

Incorporated,

the

EAR

file

(CDI.ear)

contains

the

following

files:

v

.project

v

META-INF/.modulemaps

v

META-INF/application.xml

v

META-INF/ibm-application-ext.xml

v

META-INF/MANIFEST.MF

v

WorfTestWeb.war
2.

Deploy

the

Web

services

(the

document

access

definition

extension

(DADX)

files)

by

selecting

each

DADX

file

in

the

WebSphere

Studio

window

and

clicking

the

Deploy

as

Web

service

push

button.

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

181

3.

Restart

the

WebSphere

Application

Development

server.

The

application

that

is

deployed

provides

the

customer

bid

requests

and

status

of

bids

that

is

required

of

Cottonwood’s

new

merged

enterprise.

The

customer

bid

requests

are

sent

through

the

Web

services.

The

actual

request

is

a

message

that

is

routed

to

a

WebSphere

message

queue.

Cottonwood

has

an

application

on

that

message

queue

that

listens

for

activity

so

that

the

programs

can

retrieve

database

requests

from

the

queue

as

the

requests

enter

the

queue.

This

listener

application

invokes

a

set

of

actions

to

process

the

requests.

The

listener

used

by

Cottonwood

balances

the

load

that

is

introduced

by

the

number

of

bid

requests

that

enter

the

queue,

and

processes

the

customer

bid

requests

with

the

following

steps:

1.

The

customer

bid

request

writes

a

message

to

the

queue.

2.

The

listener

application

invokes

a

DB2

Universal

Database

function

to

extract

the

order

information

from

the

request.

3.

The

database

programmers

at

Cottonwood

run

a

read-only

query

to

obtain

a

quote

for

the

requested

part.

4.

The

database

programmers

at

Cottonwood

insert

a

record

into

the

local

table

to

record

the

order.

Cottonwood

processes

the

supplier

quote

updates

in

a

series

of

steps

that

are

similar

to

the

customer

bid

requests.

However,

the

supplier

quotes

query

is

not

read-only

because

the

program

needs

to

update

the

quotes.

The

listener

application

allows

Cottonwood

to

inspect

the

request

before

allowing

the

update

to

commit.

Here

are

the

specific

steps

for

the

supplier

quote

requests:

1.

The

supplier

quote

request

writes

a

message

to

the

queue.

2.

Based

on

the

format

of

the

message,

the

listener

application

invokes

a

DB2

Universal

Database

function

to

extract

the

request

to

update

a

quote

for

a

part.

3.

The

database

programmers

at

Cottonwood

review

the

previously

lowest

quote

from

that

supplier

for

that

part.

If

the

new

quote

is

lower,

or

if

the

quote

is

for

a

part

not

previously

supplied

by

that

supplier,

the

application

updates

the

database.

If

the

new

quote

is

higher,

Cottonwood

might

not

make

the

update.

Instead,

the

Cottonwood

application

marks

the

quotes

as

something

that

the

Cottonwood

marketing

team

should

review

later

or

to

negotiate

with

the

supplier.

The

complete

flow

for

the

customer

orders

and

supplier

price

updates

is

in

Figure

69

on

page

183

and

Figure

70

on

page

184.

Figure

68.

Select

the

DADX

files

182

Application

Developer’s

Guide

Web Service (NewDadx.dadx)
values db2mq.mqsend
('CDI', 'CDI', cast
(:msg as varchar(4000), 'CDI_IN_MSG')

SELECT
VARCHAR(DB2MQ.GETCOL(T.MSG,',',1),1),
INT(DB2MQ.GETCOL(T.MSG,',',2)),
INT(DB2MQ.GETCOL(T.MSG,',',3)),
INT(DB2MQ.GETCOL(T.MSG,',',4)),
DOUBLE(DB2MQ.GETCOL(T.MSG,',',5)),
FROM TABLE
DB2MQ.MQRECEIVEALL('CDI','CDI','CDI_IN_MSG',1))AS T

Select c_name
from db2_customer
where c_custkey=:mqMsgKey

INSERT into request_bid values (:mqMsgKey, : mqMsgPart,
(SELECT MIN(ps_supplycost)* 1.45 FROM partsupp_fed
WHERE ps_partkey = :mqMsgPart))

Web
Client

Message Formatter
Servlet

RunListener.java
Servlet

MQ Queue
Request_BID

Federated Server

Informix

Oracle

DB2

Customer Order RequestWebSphere Application Server

1,1301,100,1000,0
1,540,935,487,0

IBM DB2 Information Integrator

Figure

69.

Cottonwood

customer

order

requests

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

183

Related

tasks:

v

“Preparing

and

creating

the

Web

archive

file”

on

page

136

Extending

the

data

warehouse

This

section

explores

a

specific

example

of

how

DB2

Warehouse

Manager

and

the

Data

Warehouse

Center

can

be

used

as

part

of

your

information

integration

solution.

Business

solutions:

extending

the

DB2

Warehouse

Manager

DB2®

Warehouse

Manager

provides

improved

integration

with

DB2

and

IBM®

DB2

Information

Integrator

utility

functions.

You

can

use

SQL

UPDATE

statements

to

update

target

data

with

the

data

from

the

source.

In

addition,

you

can

define

a

process

that

waits

for

multiple

steps

to

complete.

Warehouse

transformers,

which

include

stored

procedures

and

user-defined

functions,

provide

commonly

used

transformations

for

building

data

warehouses.

The

Data

Warehouse

Center

is

a

metadata-driven

system.

Metadata,

or

information

about

your

data,

provides

administrators

and

business

users

with

descriptions

of

the

data

that

is

stored

in

the

data

warehouse.

You

can

create

information

catalogs

Web Service (NewDadx.dadx)
values db2mq.mqsend
('CDI, 'CDI', cast
(:msg as varchar(4000), 'CDI_IN_MSG')

SELECT
VARCHAR(DB2MQ.GETCOL(T.MSG,',',1),1),
INT(DB2MQ.GETCOL(T.MSG,',',2)),
INT(DB2MQ.GETCOL(T.MSG,',',3)),
INT(DB2MQ.GETCOL(T.MSG,',',4)),
DOUBLE(DB2MQ.GETCOL(T.MSG,',',5)),
FROM TABLE
DB2MQ.MQRECEIVEALL('CDI','CDI','CDI_IN_MSG',1))AS T

Select c_name
from supplier_fed
where s_supply=:mqMsgKey

If part# new for supplier insert to local/remote as new
Else part# exist for supplier
If price< = existing price-update local/remote as accept
Else price increase-update local as review

Web
Client

Message Formatter
Servlet

RunListener.java
Servlet

MQ Queue
Request_Status

Federated Server

Informix

Oracle

DB2

Update Supplier PriceWebSphere Application Server

2,30,100,1000,1200
2,40,935,487,57,23

IBM DB2 Information Integrator

Figure

70.

Supplier

prices

can

be

updated

184

Application

Developer’s

Guide

that

describe

business

metadata

in

business

terms.

You

can

organize

the

metadata

into

subject

areas,

and

customize

it

to

your

workgroup

or

the

needs

of

your

enterprise.

By

using

such

technologies

as

the

Clean

Data

transformer,

you

can

perform

basic

scrubbing,

substitution,

and

mapping

operations

on

source

data.

You

can

also

define

your

applications

to

the

Data

Warehouse

Center

so

that

one

or

more

steps

can

use

the

program

for

processing.

After

you

define

a

user-defined

program

to

the

Data

Warehouse

Center,

the

program

definition

is

available

for

use

as

a

step

in

the

Process

Model

window.

Warehouse

sources

identify

the

tables

and

files

that

will

provide

data

to

your

warehouse.

The

Data

Warehouse

Center

uses

the

specifications

in

the

warehouse

sources

to

access

the

data.

The

sources

can

be

almost

any

relational

or

nonrelational

source

(table,

view,

file,

or

predefined

nickname).

Use

the

Information

Catalog

Manager

to

provide

a

graphical

representation

of

data

relationships

and

object

definitions

for

warehouse

steps.

The

Information

Catalog

Manager

provides

a

powerful,

business-oriented

solution

to

help

users

locate,

understand,

and

access

enterprise

data.

The

Information

Catalog

Manager

enables

business

users

to

view

aggregations,

histories,

data

derivations,

data

sources,

and

descriptions

of

data.

Related

concepts:

v

“Data

Warehouse

Center

configuration”

in

the

Data

Warehouse

Center

Administration

Guide

v

“The

Cottonwood

Distributors,

Inc.—a

warehouse

example”

on

page

11

Discovering

the

data—Cottonwood

Distributors,

Inc.

As

Cottonwood

Distributors,

Incorporated

begins

to

make

decisions

on

their

future

with

their

acquired

companies,

they

determine

some

specific

areas

of

concern.

v

The

Cottonwood

programmers

must

handle

a

larger

amount

of

data

than

they

handled

before

the

merger.

The

data

is

in

different

physical

locations

and

in

different

databases

with

different

formats.

v

Cottonwood

needs

to

stay

competitive.

The

company

decides

to

replace

the

telephone-based

sales

representatives

with

a

Web-based

brokerage

system.

The

users

of

the

Cottonwood

Web-based

brokerage

system

will

request

bids

online

for

parts

and

place

orders

online

for

parts.

Cottonwood

also

has

a

set

of

suppliers

that

need

to

submit

new

or

updated

quotes

for

parts.

Cottonwood

Distributors,

Incorporated

must

determine

what

data

they

need

for

their

new

expanded

company.

They

must

also

decide

what

purposes

the

data

should

be

used

for.

Then

they

must

determine

where

the

data

sources

exist.

Considering

the

challenges

facing

Cottonwood

Distributors,

Inc.,

IBM®

DB2®

Information

Integrator

federated

systems

and

data

warehousing

are

important

technologies

for

them.

The

federated

infrastructure

allows

a

client

application

to

view

data

in

a

diverse

set

of

sources

as

though

it

is

in

a

single

database.

Rather

than

forcing

the

application

programmers

to

write

code

that

handles

multiple

application

programming

interfaces

(API),

a

single

SQL

statement

can

combine

data

from

all

three

of

the

data

sources

of

Cottonwood.

Warehousing

provides

a

data

cache

close

to

the

servers

of

Cottonwood.

This

cache

keeps

frequently

referenced

data

close

to

the

user.

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

185

The

Cottonwood

data

management

team

is

making

decisions

about

how

to

access

their

data,

and

on

how

to

exchange

the

information

they

have.

The

time

when

a

decision

is

about

to

be

made,

and

the

decision

maker,

such

as

Cottonwood,

stumbles

across

data

that

is

relevant

to

the

decision,

is

the

time

when

that

company

can

derive

knowledge

from

data.

The

key

to

Cottonwood’s

discovery

is

the

knowledge

that

certain

data

exists.

Cottonwood

also

knows

that

the

data

can

be

collected,

and

that

the

data

is

relevant

to

making

decisions.

Cottonwood

wants

to

know

if

a

set

of

its

suppliers

is

quoting

different

prices

for

parts

to

each

of

the

merged

companies.

The

database

programmers

at

Cottonwood

need

to

know

where

the

data

sources

are

that

contain

the

supplier

data.

They

need

to

know

where

and

how

to

connect

to

the

data

sources.

Without

the

advantages

of

a

federated

system,

this

task

requires

connections

to

three

databases,

with

three

SQL

statements.

Additional

discovery

involves

determining

information

and

relationships

about

the

customer

and

the

supplier

and

the

requests

that

the

customers

make

to

the

Web-based

brokerage

system.

Knowledge

about

the

customers

who

have

not

had

their

orders

filled

is

useful

information

to

determine

optimization

techniques

or

interface

improvements.

Related

concepts:

v

“Business

solutions:

extending

the

DB2

Warehouse

Manager”

on

page

184

v

“Designing

applications

for

a

federated

solution—Cottonwood

Distributors,

Incorporated”

on

page

175

v

“Designing

applications—Cottonwood

Distributors,

Inc.

warehouse

scenario”

on

page

186

v

“The

Cottonwood

Distributors,

Inc.—a

warehouse

example”

on

page

11

v

“Deploying

the

application—Cottonwood

Distributors,

Inc.

solution”

on

page

189

Related

tasks:

v

“Developing

the

application

for

a

federated

solution—Cottonwood

Distributors,

Inc.”

on

page

178

Related

reference:

v

Appendix

A,

“Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios,”

on

page

217

Designing

applications—Cottonwood

Distributors,

Inc.

warehouse

scenario

Cottonwood

Distributors,

Incorporated,

combines

the

technologies

of

federated

systems

and

warehousing

to

solve

the

problems

of

data

scalability,

data

accessibility,

and

data

currency.

Cottonwood

has

a

database

that

contains

a

table

named

PART,

a

table

named

SUPPLIER,

and

a

table

named

PARTSUPP.

Table

25.

Cottonwood

SQL

primary

tables

and

columns

PART

SUPPLIER

PARTSUPP

p_partkey

(unique

value)

s_suppkey

ps_partkey

p_name

s_name

ps_suppkey

p_mfgr

s_address

ps_availqty

186

Application

Developer’s

Guide

Table

25.

Cottonwood

SQL

primary

tables

and

columns

(continued)

PART

SUPPLIER

PARTSUPP

p_brand

s_nationkey

ps_supplycost

p_type

s_phone

ps_comment

p_size

s_acctbal

p_container

s_comment

p_retailprice

p_comment

Cottonwood

also

has

other

tables

that

form

relationships

with

the

primary

tables

to

help

create

solutions

for

their

data

management

problems.

Table

26.

CDI

secondary

tables

and

columns

NATION

REGION

CUSTOMER

ORDERS

n_nationkey

r_regionkey

c_custkey

o_orderkey

n_name

r_name

c_name

o_custkey

n_regionkey

r_comment

c_address

o_orderstatus

n_comment

c_nationkey

o_totalprice

c_phone

o_orderdate

c_acctbal

o_orderpriority

c_mktsegment

o_clerk

c_comment

o_shippriority

o_comment

The

PART

table

contains

information

about

the

identifying

key,

the

manufacturer,

the

type,

the

size,

and

the

retail

price

of

each

part

in

the

database.

The

part

identifier

is

unique

across

the

industry.

Part

number

1234

always

identifies

widgetA.

The

SUPPLIER

table

stores

information

about

the

name

and

address

of

the

supplier,

and

includes

an

identifying

key.

The

PARTSUPP

table

associates

the

parts

with

the

suppliers.

It

contains

both

of

the

identifiers

from

the

parts

and

suppliers

tables,

and

the

price

the

suppliers

charge

for

parts.

The

tables

contains

indexes

on

the

data

to

facilitate

the

Cottonwood

inventory.

The

database

programmers

at

Cottonwood

use

views

that

consist

of

a

union

of

the

three

primary

tables

(see

Table

25

on

page

186).

To

get

the

best

information

about

the

Cottonwood

suppliers

and

the

prices

they

quote

for

parts

to

each

of

the

merged

companies,

the

database

programmers

at

Cottonwood

can

use

a

single

SQL

statement

even

though

the

data

is

stored

in

DB2®

Universal

Database,

Informix®

and

Oracle.

In

addition

to

the

data

that

is

contained

in

the

databases,

they

still

have

to

maintain

a

useful

reporting

system

that

contains

XML

content.

Cottonwood

has

a

configuration

that

includes

a

DB2

Universal

Database™

server

and

a

DB2

Universal

Database

client,

a

message

queue

client,

and

Web

clients.

On

the

DB2

server,

Cottonwood

has

a

data

warehouse,

federated

systems,

stored

procedures,

XML,

and

message

queue

integration.

The

Web

application

server

contains

the

quote

and

bid

applications,

some

Web

services,

and

Java™

Server

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

187

Pages

(JSP).

WebSphere®

MQ

is

also

on

the

server

with

a

listener.

Cottonwood

programmers

need

to

access

data

on

remote

DB2

servers,

Oracle,

and

Informix

servers.

Cottonwood

can

combine

federated

systems

and

a

data

warehouse

to

address

some

of

the

scalability

and

system

load

issues.

The

warehouse

contains

data

from

all

of

the

data

management

systems.

The

fact

that

Cottonwood

stores

the

data

in

different

databases

is

transparent

to

the

application.

The

warehouse

also

provides

a

means

to

buffer

the

finely

tuned

data

management

systems

from

the

traffic

generated

by

end-user

analysts.

For

example,

the

PART

table

is

a

union

over

the

Informix,

Oracle,

and

DB2

Universal

Database

PART

tables.

Furthermore,

the

references

to

the

tables

are

the

same

as

they

are

on

the

underlying

databases.

Applications

that

previously

ran

on

only

the

DB2

Universal

Database

can

migrate

to

the

data

warehouse

with

few

application

changes.

The

design

for

the

warehouse

scenario

(see

Figure

71

on

page

188)

involves

setting

up

the

warehouse

environment,

including

the

warehouse

control

database.

The

Cottonwood

scenario

uses

the

default

data

warehouse

security

group

that

is

created

by

the

Data

Warehouse

Center.

The

database

programmers

at

Cottonwood

extract

the

data

from

the

data

stores

according

to

some

predefined

schedules.

Then

the

programmers

apply

certain

business

rules

to

scrub

the

data.

Then,

the

data

is

loaded

to

the

data

warehouse.

Cottonwood

divides

the

data

warehouse

into

a

supplier

data

store,

an

order

data

store,

and

a

parts

data

store.

The

database

programmers

at

Cottonwood

extract

defined

sets

of

data

from

the

warehouse

into

the

data

marts.

The

data

marts

provide

access

to

data

that

is

specifically

collected

to

support

analysis,

reporting,

and

measuring.

From

these

data

marts,

the

users

can

run

data

mining

functions

that

find

trends,

relationships,

and

patterns

in

the

data.

Related

concepts:

Reports Accounts

Transaction systems

Parts
Orders

Suppliers

Data Marts Data Marts Data Marts

Enterprise Data Warehouse

Figure

71.

Warehouse

configuration

for

Cottonwood

188

Application

Developer’s

Guide

v

“Designing

applications

for

a

federated

solution—Cottonwood

Distributors,

Incorporated”

on

page

175

v

“Deploying

the

application—Cottonwood

Distributors,

Inc.

solution”

on

page

189

Deploying

the

application—Cottonwood

Distributors,

Inc.

solution

After

defining

the

tables,

and

inserting

the

data,

the

database

programmers

at

Cottonwood

Distributors,

Incorporated

can

produce

information

on

the

available

parts

and

current

prices.

The

database

programmers

at

Cottonwood

can

use

the

DB2®

Warehouse

Manager

to

help

them

monitor

and

administer

their

integrated

systems.

DB2

Warehouse

Manager

allows

these

programmers

to

define

and

run

the

transformation

processes

that

access

the

operational

federated

systems

data

sources,

and

then

write

to

the

warehouse

database.

The

database

systems

at

Cottonwood

can

interface

with

the

DB2

Warehouse

Manager

by

using

the

external

trigger

capabilities

of

DB2

Warehouse

Manager.

The

DB2

Data

Warehouse

Center

graphical

interface

helps

the

database

programmers

at

Cottonwood

to

manage

the

movement

of

data

from

the

federated

systems

operational

data

to

the

warehouse.

Cottonwood’s

end-users

can

use

this

warehouse.

By

using

the

Warehouse

Center

windows,

the

database

programmers

at

Cottonwood

can

manage

several

warehouse

processes.

The

Cottonwood

programmers

can

schedule

these

processes

to

run

on

a

specified

schedule.

The

Cottonwood

programmers

can

currently

run

warehouse

processes

to

update

the

following

local

tables:

v

PART

table

v

SUPPLIER

table

v

PARTSUPP

table

For

the

purposes

of

the

Cottonwood

Distributors

solution,

the

Cottonwood

programmers

can

improve

the

access

performance

by

creating

federated

indexes,

or

index

specifications.

See

the

Federated

Systems

Guide

for

more

information

on

creating

index

specifications

in

the

federated

database.

The

Cottonwood

database

programmers

can

use

their

applications

to

access

both

federated

and

local

warehouses.

For

example,

the

database

programmers

at

Cottonwood

want

to

build

a

report

that

allows

them

to

get

the

current

best

price

for

a

customer

order.

The

warehouse

currently

contains

a

table

with

all

of

the

customer

orders.

The

Cottonwood

programmers

want

to

give

their

best

customers

the

best

price.

They

also

want

to

keep

track

of

the

changes

in

prices

made

by

the

suppliers.

The

database

programmers

at

Cottonwood

perform

the

following

actions:

1.

Create

a

report

that

selects

data

from

the

warehouse

customer

order

table.

2.

Select

the

prices

from

the

federated

sources

to

compare

the

prices

to

see

if

the

price

is

any

lower

since

the

last

warehouse

update.

3.

If

the

price

is

lower,

the

Cottonwood

programmers

selectively

inform

their

best

customers

that

the

costs

are

reduced.

Related

concepts:

v

“Designing

applications

for

a

federated

solution—Cottonwood

Distributors,

Incorporated”

on

page

175

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

189

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|

|

|
|

v

“Designing

applications—Cottonwood

Distributors,

Inc.

warehouse

scenario”

on

page

186

v

“Federated

development

scenario—Cottonwood

Distributors,

Inc.”

in

the

DB2

Information

Integrator

Solutions

Guide

v

“Discovering

the

data—Cottonwood

Distributors,

Inc.”

on

page

185

v

“Performance

and

tuning

planning—

materialized

query

tables

in

a

federated

system”

on

page

22

Related

tasks:

v

“Developing

the

application

for

a

federated

solution—Cottonwood

Distributors,

Inc.”

on

page

178

Developing

database

applications

that

use

WebSphere

Message

Queue

functions

IBM

recognizes

that

Web

services

provide

not

just

an

architecture

for

integrating

applications,

but

also

an

architecture

for

integrating

data.

And

DB2

provides

the

capability

of

managing

data

and

providing

intelligent,

optimized

access

to

data.

Installing

DB2

WebSphere

MQ

functions

The

DB2

WebSphere

MQ

functions

are

available

in

DB2

Universal

Database

as

user-defined

functions.

These

functions,

allow

users

to

access

the

WebSphere

MQ

queues

from

DB2

UDB

objects.

Prerequisites:

1.

Make

sure

that

your

DB2

UDB

installation

added

the

following

libraries:

v

UNIX

platform:

libdb2qgmq

and

libdb2mqsw

in

directory

sqllib/lib

v

Windows

platform:

db2qgmq.dll

and

db2mqsw.dll

in

directory

sqllib\bin
2.

Install

the

Application

Messaging

Interface

(AMI),

Version

1.2.4.or

later,

by

using

the

AMI

installation

image

that

is

shipped

with

DB2

Universal

Database

Version

8

or

later.

3.

Add

the

AMT_DATA_PATH

environment

variable

to

the

list

that

is

used

by

DB2

UDB

to

ensure

that

the

message

queuing

user-defined

functions

(MQ

UDFs)

execute

correctly.

You

can

edit

the

file

$INSTHOME/sqllib/profile.env

(UNIX)

or

%DB2PATH%\profile.env

(Windows),

and

add

AMT_DATA_PATH

to

DB2ENVLIST.

You

can

also

use

the

db2set

command:

db2set

DB2ENVLIST="AMT_DATA_PATH"

Restart

the

database

instance

for

the

environment

variable

changes

to

take

effect.

4.

Install

DB2

Universal

Database

XML

Extender,

available

as

an

option

in

DB2

Universal

Database

Version

8.

5.

Create

the

system

default

AMI

objects

by

using

the

amtsamp.tst

file

if

you

plan

to

use

publish

and

subscribe

functions.

The

basic

steps

for

configuring,

and

enabling

the

DB2

WebSphere

MQ

functions

are

as

follows:

1.

Install

WebSphere

MQ

Version

5.3,

Corrective

Service

Diskette

05

(CSD05)

or

a

later

release.

2.

Install

the

following

SupportPacs

from

the

Support

page

located

at

http://www.ibm.com/software/ts/mqseries/:

190

Application

Developer’s

Guide

|
|

|
|

|

|
|

|

|
|

|
|
|

|

|

|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|

http://www.ibm.com/software/ts/mqseries

v

WebSphere

MQ

Application

Messaging

Interface

v

WebSphere

MQ

SupportPacs

that

include

the

publish

or

subscribe

capabilities
3.

If

you

want

to

use

transactional

MQ

UDFs,

make

sure

that

you

configure

the

database

for

federated

operations.

Do

this

with

the

following

command

update

dbm

cfg

using

federated

yes

4.

Enable

the

DB2

UDB

MQ

Functions

(see

Step

1

on

page

191

in

the

Procedure

Restrictions:

v

The

DB2

UDB

MQ

transactional

functions

that

exist

under

schema

db2mq1c

do

not

support

CLOB

type

messages.

v

The

enable

utility

of

the

transactional

MQ

user-defined

functions

allows

only

40

AMI

Policies

to

exist

in

an

AMI

repository

file

for

the

queue

manager

specified

with

the

-q

option.

v

The

transactional

MQ

user-defined

functions

support

only

one

Queue

Manager

within

a

single

transaction.

The

queue

manager

that

you

specify

in

Service

and

Policy

(through

connection

in

amthost.xml)

must

match.

If

you

leave

the

Queue

Manager

blank

in

the

service

point,

WebSphere

MQ

defaults

to

the

manager

designated

by

Policy.

There

is

a

default

set

of

MQ

queues

and

a

default

Queue

Manager

that

is

normally

created

during

the

MQ

installation

and

the

enable_MQFunctions

processes.

v

You

must

create

the

queues

and

WebSphere

MQ

objects

prior

to

using

them

within

SQL

statements.

v

If

you

use

the

publish

and

subscribe

functions,

you

need

to

create

certain

WebSphere

MQ

objects

prior

to

using

them

with

SQL

statements.

You

can

do

this

by

issuing

the

MQSC

commands

through

the

*.tst

files

provided

by

WebSphere

MQ

and

AMI

(amtsamp.tst

and

amtsdfts.tst).

To

do

this,

use

the

following

steps:

1.

Make

sure

that

you

have

the

amtsamp.tst

and

amtsdfts.tst

files

2.

Update

the

*.tst

files

for

your

queue

manager,

if

necessary

3.

Start

the

queue

manager

that

is

used

by

your

AMI

service

4.

Issue

a

command

similar

to

the

following

command:

runmqsc

QMName

<amtsamp.tst

Procedure:

You

use

the

commands,

enable_MQFunctions

and

disable_MQFunctions

for

transactional

and

nontransactional

MQ

user-defined

functions.

The

MQ

user-defined

functions

are

defined

as

a

group

or

set

under

different

schema

names.

The

groups

that

do

not

support

transactions

have

schema

db2mq.

The

groups

that

do

support

transactions

have

schema

db2mq1c.

The

enable_MQFunctions

command

with

the

options

that

support

transactions,

allows

you

to

select

a

set

of

MQ

user-defined

functions

to

install

or

uninstall

for

transactional

support.

To

use

the

enable_MQFunctions

see

the

complete

command

syntax

for

enable_MQFunctions

and

disable_MQFunctions.

1.

Configure

and

enable

a

database

for

the

WebSphere

MQ

functions.

The

enable_MQFunctions

utility

is

a

flexible

command.

It

first

checks

that

you

have

properly

set

up

the

WebSphere

MQ

environment.

It

then

installs

and

creates

a

default

configuration

for

the

WebSphere

MQ

functions.

Then,

it

enables

the

specified

database

with

these

functions,

and

confirms

that

the

configuration

works.

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

191

|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

The

following

examples

assume

that

the

user

is

connected

to

the

database

SAMPLE.

Example

1:

Enable

the

transactional

and

nontransactional

user-defined

functions:

enable_MQFunctions

-n

sample

-u

user1

-p

password1

Example

2:

Create

DB2MQ1C

functions

under

schema

DB2MQ1C:

enable_MQFunctions

-n

sample

-u

user1

-p

password1

-v

1pc

2.

Test

the

MQ

functions

by

using

the

Command

Line

Processor

(on

a

Windows

environment).

Issue

the

following

commands

after

you

connect

to

the

currently

enabled

database:

values

DB2MQ1C.MQSEND(’a

test’)

values

DB2MQ1C.MQRECEIVE()

The

first

statement

sends

the

message

a

test

to

the

DB2MQ_DEFAULT_Q

queue.

The

second

statement

receives

it

back.

This

statement

assumes

that

you

have

used

some

default

configuration.

You

can

use

both

of

these

statements

in

a

DB2

transaction

that

you

can

commit

or

roll

back

as

part

of

the

unit

of

work.

Related

concepts:

v

“Asynchronous

messaging

in

DB2

Information

Integrator”

on

page

204

v

“How

to

use

WebSphere

MQ

functions

within

DB2”

on

page

200

Related

tasks:

v

“Configuring

WebSphere

MQ

for

MQListener”

on

page

209

v

“Configuring

MQListener”

on

page

210

v

“Configuring

MQListener

to

run

in

the

DB2

Universal

Database

environment”

on

page

207

v

“Configuring

and

running

MQListener”

on

page

207

Related

reference:

v

“enable_MQFunctions”

in

the

Command

Reference

v

“disable_MQFunctions”

in

the

Command

Reference

Overview

of

WebSphere

MQ

and

DB2

application

integration

Use

DB2®

Universal

Database

and

WebSphere®

MQ

to

create

SQL

requests,

develop

stored

procedures,

extend

the

database

with

user-defined

functions,

and

turn

database

requests

into

Web

services.

Messaging,

queuing,

and

publishing

and

subscribing

are

common

technologies

within

database

application

environments.

These

techniques

help

link

together

disparate

applications,

disseminate

real-time

information

and

integrate

data

and

communication

within

the

enterprise.

WebSphere

MQ

is

a

message

handling

system

that

enables

applications

to

communicate

in

a

distributed

environment

across

different

operating

systems

and

networks.

WebSphere

MQ

handles

the

communication

from

one

program

to

another

by

using

application

programming

interfaces

(APIs).

The

Application

Messaging

Interface

(AMI)

is

a

commonly

used

API

for

WebSphere

MQ

that

is

available

in

a

number

of

high-level

languages.

In

addition

to

the

AMI,

DB2

UDB

provides

its

own

application

programming

interface

to

the

192

Application

Developer’s

Guide

|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|

WebSphere

MQ

messaging

system

through

a

set

of

external

user-defined

functions,

called

DB2

WebSphere

MQ

functions.

Using

these

functions

in

SQL

statements

allows

you

to

combine

DB2

Universal

Database™

access

with

WebSphere

MQ

message

handling.

Introduction

to

message

handling

and

AMI

The

WebSphere

MQ

message

handling

system

takes

a

piece

of

information

(the

message)

and

sends

it

to

its

destination.

WebSphere

MQ

guarantees

delivery

despite

any

network

disruptions

that

might

occur.

Applications

programmers

use

the

AMI

to

send

messages

and

to

receive

messages.

The

three

components

in

the

AMI

are:

v

The

message,

which

defines

what

one

program

sends

to

another

v

The

service,

which

defines

where

the

message

is

going

to

or

coming

from

v

The

policy,

which

defines

how

to

handle

the

message

To

send

a

message

that

uses

the

AMI,

an

application

must

specify

the

message

data,

the

service,

and

the

policy.

A

system

administrator

defines

the

WebSphere

MQ

configuration

that

is

required

for

a

particular

installation,

including

the

default

service

and

default

policy.

DB2

UDB

provides

the

default

service,

and

default

policy,

DB2.DEFAULT.SERVICE

and

DB2.DEFAULT.POLICY,

which

application

programmers

can

use

to

simplify

their

programs.

For

detailed

information

about

the

AMI,

see

MQSeries

Application

Messaging

Interface.

WebSphere

MQ

messages

WebSphere

MQ

uses

messages

to

pass

information

between

applications.

Messages

consist

of

the

following

parts:

v

The

message

attributes,

which

identify

the

message

and

its

properties.

The

AMI

uses

the

attributes

and

the

policy

to

interpret

and

construct

MQSeries®

headers

and

message

descriptors.

v

The

message

data,

which

is

the

application

data

that

is

carried

in

the

message.

The

AMI

does

not

act

on

this

data.

Attributes

are

properties

of

an

AMI

message.

With

the

AMI,

the

message

can

contain

the

attributes,

or

a

system

administrator

can

define

the

attributes

in

a

default

policy.

The

application

programmer

is

not

concerned

with

the

details

of

message

attributes.

WebSphere

MQ

services

A

service

describes

a

destination

to

which

an

application

sends

messages

or

from

which

an

application

receives

messages.

WebSphere

MQ

calls

a

destination

a

message

queue,

and

a

queue

resides

in

a

queue

manager.

Applications

can

put

messages

on

queues

or

get

messages

from

them

by

using

the

AMI.

A

system

administrator

sets

up

the

parameters

for

managing

a

queue,

which

the

service

defines.

Therefore,

AMI

hides

the

complexity

from

the

application

programmer.

An

application

program

selects

a

service

by

specifying

it

as

a

parameter

for

DB2

MQSeries

function

calls.

WebSphere

MQ

policies

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

193

A

policy

controls

how

the

AMI

functions

handle

messages.

Policies

control

such

items

as:

v

The

attributes

of

the

message,

for

example,

the

priority

v

Options

for

send

and

receive

operations,

for

example,

whether

an

operation

is

part

of

a

unit

of

work

The

AMI

provides

default

policies.

Alternatively,

a

system

administrator

can

define

customized

policies

and

store

them

in

a

repository.

An

application

program

can

specify

a

policy

as

a

parameter

for

DB2

MQSeries

function

calls.

Capabilities

of

DB2

MQSeries

functions

There

are

two

uses

of

the

MQSeries

functions

with

DB2:

v

User-defined

functions

with

no

transactional

semantics

(schema

name

is

DB2MQ)

v

User-defined

functions

that

use

one-phase

commit

semantics

(schema

name

is

DB2MQ1C)

The

DB2

WebSphere

MQ

functions

support

the

following

types

of

operations:

v

Send

and

forget,

where

messages

need

no

reply

v

Read,

where

the

application

can

read

one

or

all

messages

without

removing

them

from

the

queue

v

Receive,

where

the

application

can

receive

and

remove

one

or

all

messages

from

the

queue

v

Request

and

response,

where

a

sending

application

needs

a

response

to

a

request

You

can

use

the

DB2

WebSphere

MQ

functions

to

send

messages

to

a

message

queue

or

to

receive

messages

from

the

message

queue.

In

addition,

you

can

send

a

request

to

a

message

queue

and

receive

a

response.

You

should

locate

the

WebSphere

MQ

server

on

the

same

system

as

the

DB2

database

server.

You

register

the

DB2

WebSphere

MQ

functions

with

the

DB2

database

server

and

provide

access

to

the

WebSphere

MQ

server

by

using

the

AMI.

For

information

about

installing

the

DB2

MQSeries

functions,

see

Installing

DB2

WebSphere

MQ

functions.

The

DB2

WebSphere

MQ

functions

include

both

scalar

functions

and

table

functions.

Remember

that

the

schema

name

indicates

the

type

of

user-defined

function.

Refer

to

Setting

up

DB2

WebSphere

MQ

functions

for

more

information

on

the

MQ

functions.

The

following

definitions

describe

the

DB2

WebSphere

MQ

scalar

functions.

MQREAD

This

returns

a

message

in

a

VARCHAR

variable

from

the

MQSeries

location

specified

by

receive-service,

using

the

policy

defined

in

service-policy.

This

operation

does

not

remove

the

message

from

the

head

of

the

queue

but

instead

returns

it.

If

no

messages

are

available

to

be

returned,

a

null

value

is

returned.

��

MQREAD

(

receive-service

,

service-policy

)

��

MQRECEIVE

This

returns

a

message

in

a

VARCHAR

variable

from

the

MQSeries

194

Application

Developer’s

Guide

location

specified

by

receive-service,

using

the

policy

defined

in

service-policy.

This

operation

removes

the

message

from

the

queue.

If

correlation-id

is

specified,

the

first

message

with

a

matching

correlation

identifier

is

returned;

if

correlation-id

is

not

specified,

the

message

at

the

head

of

queue

is

returned.

If

no

messages

are

available

to

be

returned,

a

null

value

is

returned.

��

MQRECEIVE

�

�

(

)

receive-service

,

service-policy

,

correl-id

��

MQSEND

This

sends

the

data

in

a

VARCHAR

variable

msg-data

to

the

MQSeries

location

specified

by

send-service,

using

the

policy

defined

in

service-policy.

An

optional

user-defined

message

correlation

identifier

can

be

specified

by

correlation-id.

The

return

value

is

1

if

successful

or

0

if

not

successful.

��

MQSEND

(

send-service

,

service-policy

,

msg-data

�

�

(1)

,

correl-id

)

��

Notes:

1 The

correl-id

cannot

be

specified

unless

a

service

and

a

policy

are

also

specified.

You

can

send

or

receive

messages

in

VARCHAR

variables

for

schemas

DB2MQ

and

DB2MQ1C.

The

maximum

length

for

a

DB2MQ

message

in

a

VARCHAR

variable

is

4,000

bytes

long.

DB2MQ1C

supports

a

VARCHAR

of

up

to

32,000

bytes

long.

The

following

definitions

describe

the

DB2

MQSeries

table

functions.

MQREADALL

This

returns

a

table

that

contains

the

messages

and

message

metadata

in

VARCHAR

variables

from

the

MQSeries

location

specified

by

receive-service,

using

the

policy

defined

in

service-policy.

This

operation

does

not

remove

the

messages

from

the

queue.

If

num-rows

is

specified,

a

maximum

of

num-rows

messages

is

returned;

if

num-rows

is

not

specified,

all

available

messages

are

returned.

��

MQREADALL

(

receive-service

,

service-policy

�

�

num-rows

)

��

MQRECEIVEALL

This

returns

a

table

that

contains

the

messages

and

message

metadata

in

VARCHAR

variables

from

the

MQSeries

location

specified

by

receive-service,

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

195

using

the

policy

defined

in

service-policy.

This

operation

removes

the

messages

from

the

queue.

If

correlation-id

is

specified,

only

those

messages

with

a

matching

correlation

identifier

are

returned;

if

correlation-id

is

not

specified,

all

available

messages

are

returned.

If

num-rows

is

specified,

a

maximum

of

num-rows

messages

is

returned;

if

num-rows

is

not

specified,

all

available

messages

are

returned.

��

MQRECEIVEALL

(

�

�

receive-service

,

service-policy

,

correl-id

�

�

num-rows

,

)

��

You

can

send

or

receive

messages

in

VARCHAR

variables.

The

maximum

length

for

a

message

in

a

DB2MQ

VARCHAR

variable

is

4000

bytes.

The

maximum

length

for

a

message

in

a

DB2MQ1C

variable

is

a

VARCHAR

32,000

bytes.

The

first

column

of

the

result

table

of

a

DB2

MQSeries

table

function

contains

the

message.

By

using

DB2

scalar

and

table

functions

along

with

views

with

Information

Integrator,

you

can

incorporate

message

handling

operations

in

SQL

queries

from

any

environment.

If

you

have

a

WebSphere

MQ

client

or

server,

you

can

use

the

messaging

operations

within

SQL

statements.

For

example:

SELECT

DB2MQ1C.MQSend

(’MyAddress’||

firstname

||’

’||

lastname)

FROM

employee

Publishing

and

subscribing

messages

gives

you

more

control

over

which

services

should

receive

messages.

Publish

and

subscribe

systems

provide

a

scalable,

secure

environment

in

which

many

subscribers

can

register

to

receive

messages

from

multiple

publishers.

You

can

use

the

trigger

facility

within

DB2

Universal

Database

to

automatically

publish

messages

as

part

of

a

trigger

invocation.

MQPUBLISH

This

function

publishes

data

to

MQSeries.

This

function

requires

the

installation

of

either

MQSeries

Publish/Subscribe

or

MQSeries

Integrator.

��

MQPUBLISH

(

publisher-service

,

service-policy

,

�

�

msg-data

,

topic

(1)

,

correl-id

)

��

Notes:

1 The

correl-id

cannot

be

specified

unless

a

service

and

a

policy

are

also

specified.

MQSUBSCRIBE

This

function

registers

interest

in

MQSeries

messages

that

are

published

on

196

Application

Developer’s

Guide

a

specified

topic.

The

subscriber-service

specifies

a

logical

destination

for

messages

that

match

the

specified

topic.

Messages

that

match

topic

will

be

placed

on

the

queue

defined

by

subscriber-service

and

can

be

read

or

received

through

a

subsequent

call

to

MQREAD,

MQRECEIVE,

MQREADALL,

or

MQRECEIVEALL.

This

function

requires

the

installation

and

configuration

of

an

MQSeries

based

publish

and

subscribe

system,

such

as

MQSeries

Integrator

or

MQSeries

Publish/Subscribe.

��

MQSUBSCRIBE

(

subscriber-service

,

service-policy

,

�

�

topic

)

��

MQUNSUBSCRIBE

This

function

is

used

to

unregister

an

existing

message

subscription.

The

subscriber-service,

service-policy,

and

topic

are

used

to

identify

which

subscription

is

canceled.

This

function

requires

the

installation

and

configuration

of

an

MQSeries

based

publish

and

subscribe

system,

such

as

MQSeries

Integrator

or

MQSeries

Publish/Subscribe.

��

MQUNSUBSCRIBE

(

subscriber-service

,

service-policy

,

�

�

topic

)

��

An

example

of

simple

data

publication

is

when

one

application

notifies

other

applications

about

events

of

interest.

The

application

does

this

by

sending

a

message

to

a

queue

that

is

monitored

by

another

application.

The

contents

of

the

message

might

be

either

a

user-defined

string,

composed

from

database

columns,

or

a

string-valued

function

call,

or

any

valid

expression

that

yields

a

string

of

the

correct

type.

If

you

need

more

control

over

which

services

should

receive

any

particular

message,

then

you

need

to

use

the

publish

and

subscribe

functions.

Many

subscribers

can

register

to

receive

messages

from

multiple

publishers.

You

can

specify

a

topic

that

you

can

associate

with

your

message.

For

example,

a

DB2

application

can

publish

a

message

to

the

service

point

Weather.

The

message

is

Sleet,

and

the

topic

is

Austin.

values

DB2MQ1C.MQPublish

(’Weather

Bulletins’,’Sleet’,’Austin’)

This

notifies

the

interested

subscribers

that

the

weather

in

Austin

is

sleet.

Subscribers

register

an

interest

in

receiving

this

kind

of

information

with

the

following

statement:

values

DB2MQ1C.MQSUBSCRIBE(’aSubscriber’,

’Austin’)

When

the

subscriber

is

no

longer

interested

in

subscribing

to

a

particular

topic,

that

subscriber

must

explicitly

unsubscribe

using

a

statement

such

as:

values

DB2MQ1C.MQUNSUBSCRIBE(’aSubscriber’,’Austin’)

Commit

environment

for

DB2

WebSphere

MQ

functions

A

transaction

is

commonly

referred

to

in

DB2

Universal

Database

as

a

unit

of

work.

A

unit

of

work

is

a

recoverable

sequence

of

operations

within

an

application

process.

It

is

used

by

the

database

manager

to

ensure

that

a

database

is

in

a

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

197

consistent

state.

Any

reading

from

or

writing

to

the

database

is

done

within

a

unit

of

work.

A

unit

of

work

starts

when

the

first

SQL

statement

is

issued

on

the

database.

The

application

must

end

the

unit

of

work

by

issuing

either

a

COMMIT

or

a

ROLLBACK

statement.

DB2

Universal

Database

provides

two

versions

of

commit

when

you

use

DB2

WebSphere

user-defined

functions:

v

A

non-transactional

UDF

with

a

schema

name

of

DB2MQC

v

A

single-phase

commit

with

a

schema

name

of

DB2MQ1C

The

commit

environment

for

MQ

user-defined

functions

is

also

dependent

on

the

type

of

CONNECT

that

your

application

includes.

The

CONNECT

statement

establishes

a

connection

between

an

application

process

and

its

server.

A

type

1

CONNECT

supports

the

single

database

per

unit

of

work

(Remote

Unit

of

Work)

semantics.

A

type

2

CONNECT

supports

the

multiple

databases

per

unit

of

work

(Application-Directed

Distributed

Unit

of

Work)

semantics.

You

can

also

specify

a

SYNCPOINT

of

ONEPHASE.

A

SYNCPOINT

defines

how

COMMITs

or

ROLLBACKs

are

coordinated

among

multiple

database

connections.

With

a

SYNCPOINT

of

ONEPHASE,

updates

can

only

occur

against

one

database

in

the

unit

of

work,

and

all

other

databases

are

read-only.

Non-transactional

functions—schema

DB2MQ:

If

your

application

uses

non-transactional

user-defined

functions,

any

DB2

COMMIT

or

ROLLBACK

operations

are

independent

of

the

WebSphere

MQ

operations.

If

you

roll

back

a

transaction,

the

MQ

functions

do

not

discard

the

messages

that

you

sent

to

a

queue

within

the

current

unit

of

work.

In

this

environment,

WebSphere

MQ

controls

its

own

queue

operations.

A

DB2

COMMIT

or

ROLLBACK

does

not

affect

when

or

if

your

application

adds

or

deletes

messages

to

or

from

an

WebSphere

MQ

queue.

Single-phase

commit—schema

DB2MQ1C:

If

your

application

uses

one-phase

commit

over

your

data

sources,

and

a

transaction

is

rolled

back,

the

application

might

discard

the

message,

or

produce

an

error.

This

can

result

in

an

inconsistent

state.

The

rules

for

one-phase

commit

with

SYNCPOINT=ONEPHASE

are

as

follows:

v

Updates

are

allowed

only

for

one

data

source

v

Messaging

functions

cannot

be

combined

with

other

updates

Table

27.

DB2

MQ

user-defined

function

semantics

Connection

type

One-phase

commit

(schema

name=DB2MQ1c)

Type

1

(ONEPHASE)

select

db2mq1c.mqsend

(e.LASTNAME

||

’

’

||

d.DEPTNAME)

from

EMPLOYEE

e,

DEPT

d

where

e.DEPARTMENT

=

d.DEPTNAME

An

application

can

select

and

send;

it

can

update

only

one

data

source

Type

2

(TWOPHASE)

Message

functions

not

allowed

When

the

DB2

MQ

function

is

part

of

the

DB2

unit

of

work:

You

can

use

DB2

MQ

UDFs

as

part

of

the

DB2

unit

of

work,

or

transaction

in

many

kinds

of

DB2

operations.

198

Application

Developer’s

Guide

Multiple

connections

This

describes

a

scenario

where

two

users

connect

to

the

same

database.

They

execute

the

DB2

MQ

UDFs.

One

connection

sends

a

message.

The

other

connection

receives.

The

second

connection

does

not

see

the

message

of

the

first

connection

before

the

first

connection

commits.

The

second

connection

sees

the

messages

of

the

first

connection

after

the

commit.

If

the

first

connection

issues

a

roll

back,

the

second

connection

does

not

see

the

message.

Table

28.

Two

users

connecting

to

the

same

database

Connection

1

Connection

2

db2

+c

//

Turn

auto

commit

off

values

db2mq1c.mqsend

(“test

message”)

//The

connection

can

not

//see

the

//message

yet:

values

db2mq1c.mqreceive();

commit;

//Now

the

connection

//can

see

the

message:

values

db2mq1c.mqreceive();

Triggers

DB2

MQ

UDFs

can

be

part

of

a

single

or

a

multiple

statement

BEFORE

or

AFTER

trigger.

create

table

EMPLOYEE

(NAME

VARCHAR(30),

LASTNAME

VARCHAR(30)

NOT

NULL

PRIMARY

KEY);

create

trigger

AFTER_TEST

after

insert

on

EMPLOYEE

referencing

NEW

as

NEWEMP

for

each

row

mode

DB2SQL

VALUES

db2mq.mqsend(newemp.lastname);

insert

into

EMPLOYEE

values

(’MORGAN’,

’TONG’);

create

trigger

BEFORE_TEST

no

cascade

before

update

of

NAME

on

EMPLOYEE

referencing

NEW

as

NEWNAME

OLD

as

OLDNAME

for

each

row

mode

db2sql

values

db2mq.mqsend

(oldname.lastname);

update

EMPLOYEE

set

NAME

=

’RAY’;

.

Restrictions:

You

can

integrate

the

messaging

techniques

with

database

operations

on

most

DB2

SQL

statements.

If

using

a

DB2

MQ

function

results

in

an

error,

DB2

Universal

Database

automatically

rolls

the

transaction

back.

Here

are

some

examples

of

statements

that

cannot

use

DB2

MQ

functions:

v

If

a

user

issues

an

application

savepoint.

v

If

a

user

tries

to

use

the

DB2

MQ

UDFs

from

within

an

atomic

compound

SQL

statement

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

199

Related

reference:

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“CONNECT

(Type

2)

statement”

in

the

SQL

Reference,

Volume

2

v

“SET

CLIENT

Command”

in

the

Command

Reference

v

“MQSEND

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREAD

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQPUBLISH

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQUNSUBSCRIBE

scalar

function”

in

the

SQL

Administrative

Routines

v

“MQREADALL

table

function”

in

the

SQL

Administrative

Routines

v

“MQRECEIVEALL

table

function”

in

the

SQL

Administrative

Routines

How

to

use

WebSphere

MQ

functions

within

DB2

WebSphere®

MQ

and

DB2®

message

operations

combine

database

operations

in

a

single

unit

of

work

as

an

atomic

transaction.

The

most

basic

form

of

messaging

with

the

DB2

MQ

functions

occurs

when

all

database

applications

connect

to

the

same

DB2

UDB

server.

Clients

can

be

local

to

the

database

server

or

distributed

in

a

network

environment.

In

a

simple

scenario,

client

A

invokes

the

MQSEND

function

to

send

a

user-defined

string

to

the

location

that

is

defined

by

the

default

service.

DB2

UDB

executes

the

MQSeries®

functions

that

perform

this

operation

on

the

database

server.

At

some

later

time,

client

B

invokes

the

MQRECEIVE

function.

This

removes

the

message

at

the

head

of

the

queue

that

is

defined

by

the

default

service.

The

function

then

returns

it

to

the

client.

DB2

UDB

executes

the

MQSeries

functions

that

perform

this

operation

on

the

database

server.

Database

clients

can

use

simple

messaging

in

a

number

of

ways:

v

Data

collection

The

application

receives

Information

in

the

form

of

messages

from

one

or

more

sources.

An

information

source

can

be

any

application.

The

application

receives

the

data

from

queues

and

stores

the

data

in

database

tables

for

additional

processing.

v

Workload

distribution

The

application

posts

work

requests

to

a

queue

that

is

shared

by

multiple

instances

of

the

same

application.

When

an

application

instance

is

ready

to

perform

some

work,

it

receives

a

message

that

contains

a

work

request

from

the

head

of

the

queue.

Multiple

instances

of

the

application

can

share

the

workload

that

is

represented

by

a

single

queue

of

pooled

requests.

v

Application

signaling

In

a

situation

where

several

processes

collaborate,

you

can

use

messages

to

coordinate

their

efforts.

These

messages

might

contain

commands

or

requests

to

perform

work.

For

more

information

about

this

technique,

see

Application-to-application

connectivity.

The

following

scenario

extends

basic

messaging

to

incorporate

remote

messaging.

Assume

that

machine

A

sends

a

message

to

machine

B.

1.

The

DB2

UDB

client

executes

an

MQSEND

function

call,

specifying

a

target

service

that

has

been

defined

to

be

a

remote

queue

on

machine

B.

200

Application

Developer’s

Guide

2.

The

MQSeries

functions

perform

the

work

to

send

the

message.

The

MQSeries

server

on

machine

A

accepts

the

message.

The

server

guarantees

that

it

will

deliver

the

message

to

the

destination.

The

service

and

the

current

configuration

of

machine

A

defines

the

destination.

The

server

determines

that

the

destination

is

a

queue

on

machine

B.

The

server

then

attempts

to

deliver

the

message

to

the

MQSeries

server

on

machine

B,

retrying

as

needed.

3.

The

MQSeries

server

on

machine

B

accepts

the

message

from

the

server

on

machine

A

and

places

it

in

the

destination

queue

on

machine

B.

4.

An

MQSeries

client

on

machine

B

requests

the

message

at

the

head

of

the

queue.

When

you

use

MQSEND,

you

choose

what

data

to

send,

where

to

send

it,

and

when

to

send

it.

This

type

of

messaging

is

called

send

and

forget.

The

sender

only

sends

a

message,

relying

on

MQSeries

to

ensure

that

the

message

reaches

its

destination.

The

following

examples

use

the

DB2MQ1C

schema

for

one-phase

commit,

with

the

default

service

DB2.DEFAULT.SERVICE

and

the

default

policy

DB2.DEFAULT.POLICY.

For

more

information

about

one-phase

commit,

see

Overview

of

WebSphere

MQ

and

DB2

application

integration.

All

of

the

examples

assume

that

auto

commit

is

off.

Therefore,

a

COMMIT

is

needed.

Without

the

COMMIT,

you

might

still

be

holding

locks

until

the

end

of

the

transaction.

Example:

The

following

CREATE

TRIGGER

statement

sends

a

message

that

consists

of

the

first

and

last

names

that

are

inserted

into

table

employees:

CREATE

TRIGGER

T1

AFTER

INSERT

ON

employee

REFERENCING

new

AS

newemp

FOR

EACH

ROW

MODE

DB2SQL

VALUES

DB2MQ.MQSEND(newemp.name)

Example:

Assume

that

you

have

an

EMPLOYEE

table,

with

VARCHAR

columns

LASTNAME,

FIRSTNAME,

and

DEPARTMENT.

Also

assume

that

auto

commit

is

turned

off.

To

send

a

message

that

contains

this

information

for

each

employee

in

DEPARTMENT

5LGA,

issue

the

following

SQL

SELECT

statement:

SELECT

DB2MQ1C.MQSEND

(LASTNAME

||

’

’

||

FIRSTNAME

||

’

’

||

DEPARTMENT)

FROM

EMPLOYEE

WHERE

DEPARTMENT

=

’5lGA’;

COMMIT;

Message

content

can

be

any

combination

of

SQL

statements,

expressions,

functions,

and

user-specified

data.

Because

this

MQSEND

function

uses

DB2

MQ

transactional

user-defined

functions

with

one-phase

commit

semantics,

the

COMMIT

statement

ensures

that

the

message

is

added

to

the

MQSeries

queue.

The

DB2

MQSeries

functions

allow

an

application

to

read

or

receive

messages.

The

difference

between

reading

and

receiving

is

that

reading

returns

the

message

at

the

head

of

a

queue

without

removing

it

from

the

queue.

Receiving

causes

the

message

to

be

removed

from

the

queue.

A

message

that

is

retrieved

using

a

receive

operation

can

be

retrieved

only

once.

A

message

that

is

retrieved

using

a

read

operation

allows

the

same

message

to

be

retrieved

many

times.

The

following

examples

use

the

DB2MQ1C

schema

for

one-phase

commit,

with

the

default

service

DB2.DEFAULT.SERVICE

and

the

default

policy

DB2.DEFAULT.POLICY.

For

more

information

about

one-phase

commit,

see

Overview

of

WebSphere

MQ

and

DB2

application

integration.

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

201

Example:

The

following

SQL

SELECT

statement

reads

the

message

at

the

head

of

the

queue

that

is

specified

by

the

default

service

and

policy.

Assume

that

autocommit

is

turned

off.

SELECT

DB2MQ1C.MQREAD()

FROM

SYSIBM.SYSDUMMY1;

COMMIT;

You

invoke

the

MQREAD

function

once

because

SYSIBM.SYSDUMMY1

has

only

one

row.

The

SELECT

statement

returns

a

VARCHAR(32000)

string.

If

no

messages

are

available

to

be

read,

the

result

of

the

statement

is

a

null

value.

Example:

The

following

SQL

SELECT

statement

materializes

the

contents

of

a

queue

as

a

DB2

UDB

table:

SELECT

T.*

FROM

TABLE(DB2MQ1C.MQREADALL())

T;

The

result

table

T

of

the

table

function

consists

of

all

the

messages

in

the

queue

and

the

metadata

about

those

messages.

The

queue

is

defined

by

the

default

service.

The

first

column

of

the

materialized

result

table

is

the

message

itself,

and

the

remaining

columns

contain

the

metadata.

The

SELECT

statement

returns

both

the

messages

and

the

metadata.

To

return

only

the

messages,

issue

the

following

statement:

SELECT

T.MSG

FROM

TABLE(DB2MQ1C.MQREADALL())

T;

The

result

table

T

of

the

table

function

consists

of

all

the

messages

in

the

queue

and

the

metadata

about

those

messages.

The

queue

is

defined

by

the

default

service

This

SELECT

statement

returns

only

the

messages.

Example:

The

following

SQL

SELECT

statement

tries

to

send

the

message

from

the

queue.

Assume

that

auto

commit

is

turned

off.

SELECT

DB2MQ1C.MQSEND(name)

FROM

employees

e;

ROLLBACK;

The

ROLLBACK

statement

means

that

the

message

is

not

actually

sent

because

it

is

in

the

same

unit

of

work

as

the

DB2

UDB

operation.

Example:

The

following

SQL

SELECT

statement

gets

all

of

the

messages

from

the

default

service

queue.

SELECT

t.msg

FROM

table(DB2MQ1C.MQRECEIVEALL())

t;

COMMIT;

The

result

table

T

of

the

table

function

consists

of

all

the

messages

in

the

default

service

queue

and

the

metadata

about

those

messages.

The

SELECT

statement

returns

only

the

messages.

Related

concepts:

v

“Overview

of

WebSphere

MQ

and

DB2

application

integration”

on

page

192

Related

tasks:

v

“Installing

DB2

WebSphere

MQ

functions”

on

page

190

202

Application

Developer’s

Guide

Application-to-application

connectivity

You

typically

use

application-to-application

connectivity

to

solve

the

problem

of

putting

together

a

diverse

set

of

application

subsystems.

To

facilitate

application

integration,

MQSeries®

provides

the

means

to

interconnect

applications.

This

section

describes

one

common

scenario,

called

request-and-reply

communication.

The

request-and-reply

method

enables

one

application

to

request

the

services

of

another

application.

One

way

to

do

this

is

for

the

requester

to

send

a

message

to

the

service

provider

to

request

that

some

work

be

performed.

When

the

provider

completes

the

work,

the

provider

might

decide

to

send

results,

or

just

a

confirmation

of

completion,

back

to

the

requester.

Unless

the

requester

waits

for

a

reply

before

continuing,

MQSeries

must

provide

a

way

to

associate

the

reply

with

its

request.

MQSeries

provides

a

correlation

identifier

to

correlate

messages

in

an

exchange

between

a

requester

and

a

provider.

The

requester

marks

a

message

with

a

known

correlation

identifier.

The

provider

marks

its

reply

with

the

same

correlation

identifier.

To

retrieve

the

associated

reply,

the

requester

provides

that

correlation

identifier

when

receiving

messages

from

the

queue.

The

provider

returns

the

first

message

with

a

matching

correlation

identifier

to

the

requester.

The

following

examples

use

the

DB2MQ1C

schema

for

single-phase

commit.

For

more

information

about

single-phase

commit,

see

“Commit

environment

for

DB2

WebSphere

MQ

functions”

on

page

197.

Example:

The

following

SQL

SELECT

statement

sends

a

message

consisting

of

the

string

″Msg

with

corr

id″

to

the

service,

MYSERVICE.

It

uses

the

policy,

MYPOLICY

with

a

correlation

identifier

CORRID1:

SELECT

DB2MQ1C.MQSEND

(’MYSERVICE’,

’MYPOLICY’,

’Msg

with

corr

id’,

’CORRID1’)

FROM

SYSIBM.SYSDUMMY1;

COMMIT;

You

invoke

the

MQSEND

function

once

because

SYSIBM.SYSDUMMY1

has

only

one

row.

Because

this

MQSEND

uses

the

DB2MQ1C

schema,

which

is

the

one-phase

commit

UDF,

the

message

is

part

of

the

DB2®

transaction.

Example:

The

following

SQL

SELECT

statement

receives

the

first

message

that

matches

the

identifier

CORRID1.

It

receives

the

message

from

the

queue

that

is

specified

by

the

service,

MYSERVICE.

It

uses

the

policy,

MYPOLICY:

SELECT

DB2MQ1C.MQRECEIVE

(’MYSERVICE’,

’MYPOLICY’,

’CORRID1’)

FROM

SYSIBM.SYSDUMMY1;

The

SELECT

statement

returns

a

VARCHAR(32000)

string.

If

no

messages

are

available

with

this

correlation

identifier,

the

result

of

the

statement

is

a

null

value,

and

the

queue

does

not

change.

You

can

use

WebSphere®

MQSeries

user-defined

functions

that

are

available

in

XML

Extender

to

pass

only

XML

messages

between

DB2

and

the

various

WebSphere

MQSeries

implementations.

First,

you

enable

the

database

for

XML

extender.

Then,

you

enable

the

MQSeries

XML

Extender

functions

in

the

following

way:

enable_MQXML

-n

DATABASE

-u

USER

-p

PASSWORD

The

following

table

is

a

brief

description

of

some

of

the

MQSeries

XML

functions.

These

functions

have

a

DB2XML

database

schema.

They

are

not

under

MQ

UDF

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

203

transactional

control.

Table

29.

MQSeries

XML

functions

MQSeries

XML

Functions

Description

DB2XML.MQSendXML

Send

an

XML

message

to

the

queue.

DB2XML.MQReadXML

A

nondestructive

read

of

matching

XML

message(s)

from

the

queue.

DB2XML.MQReadAllXML

A

nondestructive

read

of

all

XML

messages

from

the

queue

DB2XML.MQReadXMLCLOB

A

nondestructive

read

of

matching

XML

CLOB

message(s)

from

the

queue.

DB2XML.MQReadAllXMLCLOB

A

nondestructive

read

of

all

XML

CLOB

messages

from

the

queue

Related

concepts:

v

“MQSeries

Enablement”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“MQReadAllXML

function”

in

the

DB2

XML

Extender

Administration

and

Programming

v

“MQReadXMLCLOB

function”

in

the

DB2

XML

Extender

Administration

and

Programming

v

“MQReadAllXMLCLOB

function”

in

the

DB2

XML

Extender

Administration

and

Programming

v

“MQSENDXML

function”

in

the

DB2

XML

Extender

Administration

and

Programming

Asynchronous

messaging

in

DB2

Information

Integrator

Programs

can

communicate

with

each

other

by

sending

data

in

messages

rather

than

using

constructs

like

synchronous

remote

procedure

calls.

With

asynchronous

messaging,

the

program

that

sends

the

message

proceeds

with

its

processing

after

sending

the

message

without

waiting

for

a

reply.

If

the

program

needs

information

from

the

reply,

the

program

suspends

processing

and

waits

for

a

reply

message.

If

the

messaging

programs

use

an

intermediate

queue

that

holds

messages,

the

requester

program

and

the

receiver

program

do

not

need

to

be

running

at

the

same

time.

The

requester

program

places

a

request

message

on

a

queue

and

then

exits.

The

receiver

program

retrieves

the

request

from

the

queue

and

processes

the

request.

Asynchronous

operations

require

that

the

service

provider

is

capable

of

accepting

requests

from

clients

without

notice.

An

asynchronous

listener

is

a

program

that

monitors

message

transporters,

such

as

WebSphere®

MQ,

and

performs

actions

based

on

the

message

type.

An

asynchronous

listener

can

use

WebSphere

MQ

to

receive

all

messages

that

are

sent

to

an

endpoint.

An

asynchronous

listener

can

also

register

a

subscription

with

a

publish

or

subscribe

infrastructure

to

restrict

the

messages

that

are

received

to

messages

that

satisfy

specified

constraints.

The

following

examples

show

some

common

uses

of

asynchronous

messaging:

Message

accumulator

You

can

accumulate

the

messages

that

are

sent

asynchronously

so

that

the

204

Application

Developer’s

Guide

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

listener

checks

for

messages

and

stores

those

messages

automatically

in

a

database.

This

database,

which

acts

as

a

message

accumulator,

can

save

all

messages

for

a

particular

endpoint,

such

as

an

audit

trail.

The

asynchronous

listener

can

subscribe

to

a

subset

of

messages,

such

as

save

only

high

value

stock

trades.

The

message

accumulator

stores

entire

messages,

and

does

not

provide

for

selection,

transformation,

or

mapping

of

message

contents

to

database

structures.

The

message

accumulator

does

not

reply

to

messages.

Message

event

handler

The

asynchronous

event

handler

listens

for

messages

and

invokes

the

appropriate

handler

(such

as

a

stored

procedure)

for

the

message

endpoint.

You

can

call

any

arbitrary

stored

procedure.

The

asynchronous

listener

lets

you

select,

map,

or

reformat

message

contents

for

insertion

into

one

or

more

database

structures.

The

following

lists

some

of

the

benefits

of

using

asynchronous

messaging

database

interactions:

v

The

client

and

database

do

not

need

to

be

available

at

the

same

time.

If

the

client

is

available

intermittently,

or

if

the

client

fails

between

the

time

the

request

is

issued

and

the

response

is

sent,

it

is

still

possible

for

the

client

to

receive

the

reply.

Or,

if

the

client

is

on

a

mobile

computer

and

becomes

disconnected

from

the

database,

and

if

a

response

is

sent,

the

client

can

still

receive

the

reply.

v

The

content

of

the

messages

in

the

database

contain

information

about

when

to

process

particular

requests.

The

messages

in

the

database

use

priorities

and

the

request

contents

to

determine

how

to

schedule

the

requests.

v

An

asynchronous

message

listener

can

delegate

a

request

to

a

different

node.

It

can

forward

the

request

to

a

second

computer

to

complete

the

processing.

When

the

request

is

complete,

the

second

computer

returns

a

response

directly

to

the

endpoint

that

is

specified

in

the

message.

v

An

asynchronous

listener

can

respond

to

a

message

from

a

supplied

client,

or

from

a

user-defined

application.

The

number

of

environments

that

can

act

as

a

database

client

is

greatly

expanded.

Clients

such

as

factory

automation

equipment,

pervasive

devices,

or

embedded

controllers

can

communicate

with

DB2®

Universal

Database

either

directly

through

WebSphere

MQ

or

through

some

gateway

that

supports

WebSphere

MQ.

Related

concepts:

v

“MQListener

in

DB2

Information

Integrator”

on

page

205

Related

tasks:

v

“Configuring

and

running

MQListener”

on

page

207

Related

reference:

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

v

“Parameters

used

in

MQListener

configuration”

on

page

214

MQListener

in

DB2

Information

Integrator

IBM®

DB2®

Information

Integrator

provides

an

asynchronous

listener,

named

MQListener.

MQListener

is

a

framework

for

tasks

that

read

from

WebSphere®

MQ

queues

and

call

DB2

Universal

Database™

stored

procedures

with

messages

as

they

arrive.

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

205

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

MQListener

combines

messaging

with

database

operations.

You

can

configure

the

MQListener

daemon

to

listen

to

the

WebSphere

MQ

message

queues

that

you

specify

in

a

configuration

database.

MQListener

reads

the

messages

that

arrive

from

the

queue

and

then

calls

DB2

UDB

stored

procedures

with

the

messages

as

input

parameters.

If

the

message

requires

a

reply,

MQListener

creates

a

reply

from

the

output

that

is

generated

by

the

stored

procedure.

The

message

retrieval

order

is

fixed

at

the

highest

priority

first,

and

then

within

the

priority

the

first

message

in

is

the

first

message

served.

MQListener

runs

as

a

single

multi-threaded

process.

Each

thread

or

task

establishes

a

connection

to

its

configured

message

queue

for

input.

Each

task

also

connects

to

a

DB2

UDB

database

on

which

to

run

the

stored

procedure.

The

information

about

the

queue

and

the

stored

procedure

is

stored

in

a

table

in

the

configuration

database.

The

combination

of

the

queue

and

the

stored

procedure

is

a

task.

MQListener

tasks

are

grouped

together

into

named

configurations.

By

default,

the

configuration

name

is

empty.

If

you

do

not

specify

the

name

of

a

configuration

for

a

task,

MQListener

uses

the

configuration

with

an

empty

name.

MQListener

can

integrate

the

message

queue

read

and

write

operations

with

the

stored

procedure

into

a

single

transaction.

When

you

run

transactional

tasks

a

message

cannot

be

lost

even

if

your

computer

fails

after

you

read

the

message

from

the

queue,

but

before

the

stored

procedure

receives

the

message.

By

default,

only

the

call

to

the

stored

procedure

is

transactional.

If

you

want

to

combine

into

the

same

transaction

the

operations

of

removing

the

message

from

the

queue

and

calling

the

stored

procedure,

configure

the

WebSphere

MQ

environment

as

a

coordinator

by

using

the

–mqcoordinated

parameter

with

the

db2mqlsn

command.

You

must

configure

the

pertinent

queue

manager

to

coordinate

with

the

proper

resource

according

to

WebSphere

MQ

guidelines.

If

you

do

not

want

to

specify

transactional

queue

operations,

the

queue

manager

should

not

be

configured

as

a

transaction

manager.

Do

not

run

a

nontransactional

task

with

a

queue

manager

that

is

configured

as

a

transaction

coordinator.

As

part

of

the

MQListener

configuration,

you

specify

the

configuration

user

(-configUser)

and

the

run

user

(-dbUser).

The

configuration

userconfiguration

user

and

the

run

userrun

user

can

be

separate

users

with

different

access

rights.

The

run

user

does

not

inherit

the

privileges

of

the

configuration

user.

In

a

normal

MQListener

scenario,

a

user

runs

the

MQListener

application.

The

only

right

that

the

user

who

runs

MQListener

requires

is

the

ability

to

access

WebSphere

MQ

functions,

which

generally

means

being

a

member

of

the

mqm

group

in

Windows®

and

UNIX®

operating

systems.

The

user

who

executes

MQListener

is

typically

the

configuration

user.

The

stored

procedure

interface

for

MQListener

takes

the

incoming

message

as

input

and

returns

the

reply,

which

might

be

NULL,

as

output:

schema.proc(in

inMsg

inMsgType,

out

outMsg

outMsgType)

The

data

type

for

inMsgType

and

the

data

type

for

outMsgType

can

be

VARCHAR,

VARCHAR

FOR

BIT

DATA,

CLOB,

or

BLOB

of

any

length.

The

input

data

type

and

output

data

type

can

be

different

data

types.

Related

concepts:

v

“Asynchronous

messaging

in

DB2

Information

Integrator”

on

page

204

Related

tasks:

206

Application

Developer’s

Guide

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

v

“Configuring

MQListener”

on

page

210

v

“Configuring

and

running

MQListener”

on

page

207

Related

reference:

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

v

“Parameters

used

in

MQListener

configuration”

on

page

214

Configuring

and

running

MQListener

Use

this

procedure

to

configure

the

environment

for

MQListener

and

to

develop

a

simple

application

that

receives

a

message,

inserts

the

message

in

a

table,

and

creates

a

simple

response

message.

Procedure:

To

configure

and

run

MQListener:

1.

Configure

MQListener

to

run

in

the

DB2

Universal

Database

environment.

2.

Configure

WebSphere

MQ

for

MQListener.

3.

Configure

MQListener.

4.

Create

the

stored

procedure

to

work

with

MQListener.

5.

Run

a

simple

MQListener

application.

Related

concepts:

v

“MQListener

in

DB2

Information

Integrator”

on

page

205

Related

tasks:

v

“Configuring

MQListener

to

run

in

the

DB2

Universal

Database

environment”

on

page

207

v

“Configuring

WebSphere

MQ

for

MQListener”

on

page

209

v

“Configuring

MQListener”

on

page

210

v

“Creating

a

stored

procedure

to

use

with

MQListener”

on

page

211

Related

reference:

v

“MQListener

examples”

on

page

212

v

“Parameters

used

in

MQListener

configuration”

on

page

214

v

“WebSphere

MQ

queues

used

in

MQListener”

on

page

215

Configuring

MQListener

to

run

in

the

DB2

Universal

Database

environment

Configure

your

database

environment

so

that

your

applications

can

use

messaging

with

database

operations.

Prerequisites:

Create

a

database

for

the

MQListener

configuration

and

a

database

for

the

stored

procedures

that

you

call

when

a

message

arrives

(if

valid

databases

are

not

already

available).

You

can

use

the

same

database

for

the

configuration

and

the

stored

procedures.

The

configuration

users

must

have

the

following

privileges

and

authorizations:

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

207

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|

|

v

Read

and

write

access

to

the

DB2

UDB

table

SYSMQL.LISTENERS.

MQListener

run

users

do

not

need

access

to

SYSMQL.LISTENERS

v

Authority

to

run

the

configuration

package

MQLConfi

The

run

users

must

have

the

authority

to

run

the

MQLRun

package.

Procedure:

To

configure

MQListener

to

run

with

DB2

Universal

Database

databases:

1.

Issue

the

following

command

to

connect.

Substitute

the

appropriate

values

for

your

database

environment:

db2

connect

to

ConfigDB

user

DBAdmin

using

DBAdminPwd

2.

Run

the

MQLInstall.sql

script,

which

creates

a

table

that

stores

the

MQListener

configuration.

The

script

is

in

the

following

path:

v

.../sqllib/bin

in

a

UNIX

environment

v

...\sqllib\bin

in

a

Windows

environment
db2

-td;

-f

MQLInstall.sql

3.

Issue

the

following

commands

to

grant

access

to

the

configuration

user.

Substitute

the

appropriate

values

for

your

database

environment:

db2

grant

all

privileges

on

table

SYSMQL.LISTENERS

to

ConfigUser

db2

connect

reset

4.

Bind

the

MQListener

packages

and

grant

access

to

the

packages.

You

must

bind

the

MQLConfig

package

in

the

configuration

database.

Issue

the

following

commands.

Substitute

the

appropriate

values

for

your

database

environment:

db2

connect

to

ConfigDB

user

DBAdmin

using

DBAdminPwd

db2

bind

MQLConfig.bnd

db2

grant

execute

on

package

MQLConfi

to

ConfigUser

db2

connect

reset

The

name

MQLConfi

satisfies

the

eight-character

limitation

on

package

name

lengths.

5.

Bind

the

MQLRun

package

in

each

of

the

run

databases.

Issue

the

following

commands

for

each

run

database

and

each

run

user

in

that

database:

db2

connect

to

RunDB

user

DBAdmin

using

DBAdminPwd

db2

bind

MQLRun.bnd

db2

grant

execute

on

package

MQLRun

to

RunUser

db2

connect

reset

Related

concepts:

v

“MQListener

in

DB2

Information

Integrator”

on

page

205

Related

tasks:

v

“Configuring

WebSphere

MQ

for

MQListener”

on

page

209

v

“Configuring

MQListener”

on

page

210

v

“Creating

a

stored

procedure

to

use

with

MQListener”

on

page

211

Related

reference:

v

“Parameters

used

in

MQListener

configuration”

on

page

214

v

“WebSphere

MQ

queues

used

in

MQListener”

on

page

215

v

“MQListener

examples”

on

page

212

208

Application

Developer’s

Guide

|
|

|

|

|

|

|
|

|

|
|

|

|

|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

Configuring

WebSphere

MQ

for

MQListener

You

can

run

a

simple

MQListener

application

with

a

simple

WebSphere

MQ

configuration.

More

complex

applications

might

need

a

more

complex

configuration.

Configure

at

least

two

kinds

of

WebSphere

MQ

entities:

the

queue

manager

and

some

local

queues.

Configure

these

entities

for

use

in

such

instances

as

transaction

management,

deadletter

queue,

backout

requeue

and

backout

retry

threshold.

Prerequisites:

Issue

the

WebSphere

MQ

control

commands

while

in

the

mqm

group.

The

mqm

group

is

used

by

the

WebSphere

MQ

administrators

and

for

internal

MQ

programs.

All

members

of

this

group

have

access

to

all

resources.

Procedure:

To

configure

WebSphere

MQ

for

a

simple

MQListener

application:

1.

Create

a

queue

manager.

crtmqm

TransQM

2.

Start

the

queue

manager.

strmqm

TransQM

3.

Optional:

Configure

the

queue

manager

to

coordinate

transactions

with

DB2

Universal

Database.

If

you

configure

the

queue

manager

to

coordinate

transactions

with

DB2

Universal

Database,

then

MQListener

applications

can

remove

a

message

and

call

a

stored

procedure

in

a

single

transaction.

Configure

the

queue

manager

for

DB2

UDB

coordination:

v

Provide

the

name

of

a

shared

library,

which

is

called

a

switch

load

file,

that

WebSphere

MQ

can

use

to

find

the

DB2

Universal

Database

X/Open

resource

manager

functions,

and

an

extended

architecture

open

string

(xa_open)

that

is

specific

to

DB2

UDB

v

Create

the

MQStart

routine

in

the

switch

load

file

by

compiling

a

small

C

program

that

returns

the

DB2

UDB

global

variable

db2xa_switch.

See

the

WebSphere

MQ:

System

Administration

Guide

for

specific

information

on

how

to

create

the

switch

load

file.

MQStart

returns

a

structure

of

pointers

to

the

functions

that

implement

the

X/Open

resource

manager

functions

in

DB2

UDB.

The

following

example

shows

the

required

format

for

the

extended

architecture

open

string,

with

appropriate

values

that

are

substituted

for

MQListener

configuration

parameters:

DB=RunDB,

UID=RunUser,

PWD=RunUserPwd,

TPM=MQ,

TOC=P

If

you

use

TPM=MQ

in

the

extended

architecture

open

string

as

in

this

example,

you

do

not

need

to

set

the

DB2

TP_MON_NAME

instance

variable.

WebSphere

MQ

obtains

the

parameters

that

it

needs

based

on

the

operating

system

environment.

On

Windows

operating

systems

the

parameters

are

in

the

Windows

registry.

You

can

specify

the

parameters

by

using

the

WebSphere

MQ

MQServices.

On

UNIX

operating

systems

the

parameters

are

in

the

queue

manager

configuration

file.

Use

a

valid

text

editor

for

your

environment

to

specify

the

parameters

to

use.

4.

Create

your

local

queues

by

using

the

WebSphere

MQ

script

facility.

a.

Create

a

file

that

contains

the

following

commands

(for

this

example

the

file

is

mqconfig.mqs):

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

209

|

|
|
|
|
|
|

|

|
|
|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|

|
|

define

qlocal(’DLQ’)

alter

qmgr

deadq(’DLQ’)

define

qlocal(’Backout’)

define

qlocal(’Admin’)

define

qlocal(’In’)

boqname(’Backout’)

bothresh(3)

define

qlocal(’SYSTEM.SAMPLE.REPLY’)

b.

Redirect

the

mqconfig.mqs

file

into

the

script

interpreter

by

issuing

the

following

command:

runmqsc

TransQM

<

mqconfig.mqs

Related

tasks:

v

“Configuring

MQListener”

on

page

210

Related

reference:

v

“Parameters

used

in

MQListener

configuration”

on

page

214

v

“WebSphere

MQ

queues

used

in

MQListener”

on

page

215

Configuring

MQListener

Use

the

MQListener

command,

db2mqlsn,

to

configure

MQListener.

Issue

the

command

db2mqlsn

from

a

command

line

in

any

directory.

On

a

Windows

system,

issue

the

command

in

a

DB2

UDB

command

line

processor

window

to

insure

proper

message

display.

The

add

parameter

with

the

db2mqlsn

command

updates

a

row

in

the

DB2

table

SYSMQL.LISTENERS.

.

Restrictions:

v

Use

the

same

queue

manager

for

the

request

queue

and

the

reply

queue.

v

On

Windows

systems,

each

thread

can

connect

to

one

queue

manager.

v

On

UNIX

systems,

each

process

can

connect

to

one

queue

manager.

If

you

specify

different

queue

managers

within

the

same

MQListener

configuration

on

a

UNIX

system,

you

receive

a

run-time

error

from

WebSphere

MQ.

v

MQListener

does

not

support

logical

messages

that

are

composed

of

multiple

physical

messages.

MQListener

processes

physical

messages

independently.

Procedure:

To

specify

MQListener

configuration:

v

To

add

an

MQListener

configuration,

issue

the

following

command:

db2mqlsn

add

-configDB

ConfigDB

-config

aConfiguration

-configUser

ConfigUser

-configPwd

ConfigUserPwd

-queueManager

TransQM

-inputQueue

In

-procSchema

RunUser

-procName

aProc

-dbName

RunDB

-dbUser

RunUser

-dbPwd

RunUserPwd

-mqCoordinated

v

To

display

all

of

the

tasks

in

a

configuration,

issue

the

following

command:

210

Application

Developer’s

Guide

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|
|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

db2mqlsn

show

-configDB

ConfigDB

-config

aConfiguration

-configUser

ConfigUser

-configPwd

ConfigUserPwd

v

To

remove

the

messaging

tasks,

issue

the

following

command:

db2mqlsn

remove

-configDB

ConfigDB

-config

aConfiguration

-configUser

ConfigUser

-configPwd

ConfigUserPwd

-queueManager

TransQM

-inputQueue

In

v

To

get

help

with

the

command

and

the

valid

parameters,

issue

the

following

command:

db2mqlsn

help

v

To

get

help

for

a

particular

parameter,

issue

the

command

with

a

specific

parameter,

as

in

the

following

example:

db2mqlsn

help

<command>

Related

reference:

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

v

“Parameters

used

in

MQListener

configuration”

on

page

214

Creating

a

stored

procedure

to

use

with

MQListener

The

run

database

contains

the

stored

procedure

that

is

run

when

a

message

arrives.

The

run

user

is

the

user

in

whose

name

MQListener

connects

to

the

run

database

to

run

the

stored

procedure.

Use

the

following

parameters

with

the

db2mqlsn

add

command

to

define

the

run

database

and

the

run

user:

v

-dbName

v

-dbUser

The

run

user

must

be

able

to

connect

to

the

run

database

and

run

the

stored

procedure.

The

run

user

does

not

need

to

be

the

owner

of

the

stored

procedure.

The

run

user

also

does

not

need

access

to

the

MQListener

configuration.

MQListener

uses

the

stored

procedure,

aProc,

to

store

a

message

in

a

table.

The

stored

procedure

returns

the

string

OK

if

the

message

is

successfully

inserted

into

the

table.

Prerequisites:

The

stored

procedure

requires

a

C

compiler.

Procedure:

The

following

steps

create

DB2

Universal

Database

objects

that

you

can

use

with

MQListener

applications.

1.

Create

a

simple

table

as

the

run

user

(you

can

use

the

DB2

UDB

command

line

processor):

CREATE

TABLE

aTable

(val

VARCHAR(25)

CHECK

(val

NOT

LIKE

’fail%’))

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

211

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|

|

|
|
|
|

|

|

|
|
|

|
|
|

|

|

|

|
|

|
|

|

The

table

contains

a

check

constraint

so

that

messages

that

start

with

the

characters

fail

cannot

be

inserted

into

the

table.

The

check

constraint

is

used

to

demonstrate

the

behavior

of

MQListener

when

the

stored

procedure

fails.

2.

Create

the

following

stored

procedure:

CREATE

PROCEDURE

aProc

(IN

pin

VARCHAR(25),

OUT

pout

VARCHAR(2))

BEGIN

INSERT

INTO

aTable

VALUES(pin);

SET

pout

=

’OK’;

END

Related

tasks:

v

“Configuring

MQListener

to

run

in

the

DB2

Universal

Database

environment”

on

page

207

Related

reference:

v

“Parameters

used

in

MQListener

configuration”

on

page

214

MQListener

examples

The

following

examples

show

a

simple

MQListener

application.

The

application

receives

a

message,

inserts

the

message

in

a

table,

and

generates

a

simple

response

message.

To

simulate

a

processing

failure,

the

application

includes

a

check

constraint

on

the

table

that

contains

the

message.

The

constraint

prevents

any

string

that

begins

with

the

characters

fail

from

being

inserted

into

the

table.

If

you

attempt

to

insert

a

message

that

violates

the

check

constraint,

the

example

application

returns

an

error

message

and

requeues

the

failing

message

to

the

backout

queue.

To

run

MQListener

with

all

of

the

tasks

specified

in

a

configuration,

issue

the

following

command:

db2mqlsn

run

-configDB

ConfigDB

-config

aConfiguration

-configUser

ConfigUser

-configPwd

ConfigUserPwd

-adminQueue

Admin

-adminQMgr

TransQM

The

following

examples

show

how

to

use

MQListener

to

send

a

simple

message

and

then

inspect

the

results

of

the

message

in

the

WebSphere

MQ

queue

manager

and

the

database.

The

examples

include

queries

to

determine

if

the

input

queue

contains

a

message,

or

if

a

record

is

placed

in

the

table

by

the

stored

procedure.

Many

tools

support

these

operations,

including

the

DB2

Universal

Database

command

line

processor,

DB2

UDB

Command

Center,

some

WebSphere

MQ

command

line

utilities,

sample

programs,

the

MQ

Explorer,

and

the

MQ

API

exerciser.

Consider

using

DB2

Universal

Database

and

WebSphere

MQ

tools

for

more

complex

applications.

MQListener

example

1:

Running

a

simple

application:

1.

Start

with

a

clean

database

table:

db2

delete

from

aTable

2.

Send

a

datagram

to

the

input

queue:

a.

Place

the

string

a

sample

message

in

a

file

named

sampleMsg1.txt

b.

Use

the

WebSphere

MQ

sample

program

amqsput

to

put

the

message

on

the

queue:

212

Application

Developer’s

Guide

|
|
|

|

|
|
|
|
|

|

|
|

|

|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

amqsput

In

TransQM

<

sampleMsg1.txt

3.

Query

the

table

to

verify

that

the

sample

message

is

inserted:

db2

select

*

from

aTable

4.

Display

the

number

of

messages

that

remain

on

the

input

queue

to

verify

that

the

message

has

been

removed:

a.

Place

the

following

command

in

the

file

checkIn.mqs:

display

queue(’In’)

curdepth

b.

Redirect

the

command

into

the

script

interpreter:

runmqsc

TransQM

<

checkIn.mqs

MQListener

example

2:

Sending

requests

to

the

input

queue

and

inspecting

the

reply:

The

following

example

statements

send

a

request

to

the

input

queue

and

inspect

the

reply:

1.

Start

with

a

clean

database

table:

db2

delete

from

aTable

2.

Send

a

request

to

the

input

queue:

a.

Place

the

string

another

sample

message

in

a

file

named

sampleMsg2.txt

b.

Use

the

WebSphere

MQ

sample

program

amqsreq

to

send

the

request

to

the

input

queue:

amqsreq

In

TransQM

<

sampleMsg2.txt

The

amqsreq

program

sets

the

reply-to

queue

in

the

request

to

SYSTEM.SAMPLE.REPLY
3.

Query

the

table

to

verify

that

the

sample

message

is

inserted:

db2

select

*

from

aTable

4.

Display

the

number

of

messages

that

remain

on

the

input

queue

to

verify

that

the

message

is

removed.

display

queue(’In’)

curdepth

5.

Look

at

the

SYSTEM.SAMPLE.REPLY

queue

for

the

reply

by

using

the

WebSphere

MQ

sample

program

amqsget.

Verify

that

the

OK

string

is

generated

by

the

stored

procedure:

amqsget

SYSTEM.SAMPLE.REPLY

TransQM

MQListener

example

3:

Testing

an

unsuccessful

insert

operation:

If

you

send

a

message

that

starts

with

the

string

fail,

the

constraint

in

the

table

definition

is

violated,

and

the

stored

procedure

fails.

1.

Start

with

a

clean

database

table:

db2

delete

from

aTable

2.

Send

a

request

to

the

input

queue:

a.

Place

the

string

failing

sample

message

in

a

file

named

sampleMsg3.txt

b.

Use

the

WebSphere

MQ

sample

program

amqsreq

to

send

the

request

to

the

input

queue:

amqsreq

In

TransQM

<

sampleMsg3.txt

The

amqsreq

program

sets

the

reply-to

queue

in

the

request

to

SYSTEM.SAMPLE.REPLY
3.

Query

the

table

to

verify

that

the

sample

message

is

not

inserted:

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

213

|

|

|

|
|

|

|

|

|

|
|

|
|

|

|

|

|

|
|

|

|
|

|

|

|
|

|

|
|
|

|

|

|
|

|

|

|

|

|
|

|

|
|

|

db2

select

*

from

aTable

4.

Display

the

number

of

messages

that

remain

on

the

input

queue

to

verify

that

the

message

is

removed:

display

queue(’In’)

curdepth

5.

Read

from

the

SYSTEM.SAMPLE.REPLY

queue

and

find

an

exception

report

rather

than

an

OK

reply:

amqsget

SYSTEM.SAMPLE.REPLY

TransQM

6.

Read

from

the

Backout

queue

and

find

the

original

message:

amqsget

Backout

TransQM

Related

concepts:

v

“MQListener

in

DB2

Information

Integrator”

on

page

205

Related

tasks:

v

“Configuring

WebSphere

MQ

for

MQListener”

on

page

209

v

“Configuring

MQListener”

on

page

210

v

“Creating

a

stored

procedure

to

use

with

MQListener”

on

page

211

v

“Configuring

MQListener

to

run

in

the

DB2

Universal

Database

environment”

on

page

207

v

“Configuring

and

running

MQListener”

on

page

207

Related

reference:

v

“Parameters

used

in

MQListener

configuration”

on

page

214

v

“WebSphere

MQ

queues

used

in

MQListener”

on

page

215

Parameters

used

in

MQListener

configuration

ConfigDB

The

configuration

database,

which

can

be

any

valid

DB2

Universal

Database,

contains

an

MQListener

configuration

table.

The

configuration

table

contains

information

about

the

queues

to

which

MQListener

should

listen

and

the

stored

procedures

MQListener

should

call.

ConfigUser

The

user

ID

in

whose

name

you

access

the

configuration

database.

The

configuration

user

does

not

need

to

be

a

database

administrator.

You

can

specify

the

configuration

user

and

password

in

the

MQListener

command.

If

you

do

not

specify

a

configuration

user

and

password,

and

your

database

installation

supports

implicit

connections,

by

default

the

configuration

user

is

the

user

under

whose

account

the

MQListener

is

running.

ConfigUserPwd

The

password

that

is

used

with

the

configuration

user

ID.

RunDB

The

run

database

is

the

database

that

contains

the

stored

procedures

that

are

run

when

a

message

arrives.

The

stored

procedures

can

be

in

different

databases

from

the

configuration

database.

RunUser

The

user

in

whose

name

you

access

the

run

database

to

run

the

stored

procedure.

The

run

user

does

not

need

any

privilege

except

the

ability

to

connect

to

the

run

database

and

run

the

stored

procedure.

214

Application

Developer’s

Guide

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

RunUserPwd

The

password

that

is

associated

with

the

run

user.

Related

concepts:

v

“MQListener

in

DB2

Information

Integrator”

on

page

205

Related

reference:

v

“db2mqlsn

-

MQ

Listener

Command”

in

the

Command

Reference

WebSphere

MQ

queues

used

in

MQListener

In

a

simple

MQListener

application,

you

typically

use

the

following

WebSphere

MQ

queues:

Deadletter

queue

The

deadletter

queue

(DLQ)

in

WebSphere

MQ

holds

messages

that

cannot

be

processed.

MQListener

uses

this

queue

to

hold

replies

that

cannot

be

delivered,

for

example,

because

the

queue

to

which

the

replies

should

be

sent

is

full.

A

deadletter

queue

is

useful

in

any

MQ

installation

especially

for

recovering

messages

that

are

not

sent.

Backout

queue

For

MQListener

tasks

in

which

WebSphere

MQ

is

the

transaction

coordinator,

the

Backout

queue

serves

a

similar

purpose

to

the

deadletter

queue.

MQListener

places

the

original

request

in

the

Backout

queue

after

the

request

is

rolled

back

a

specified

number

of

times

(called

the

backout

threshold).

Administration

queue

The

administration

queue

is

used

for

routing

control

messages

such

as

shutdown

and

restart

to

MQListener.

If

you

do

not

supply

an

administration

queue,

then

the

only

way

to

shut

down

MQListener

is

to

issue

a

kill

command.

Application

input

and

output

queues

The

application

uses

input

queues

and

output

queues.

The

application

receives

messages

from

the

input

queue.

The

application

sends

replies

and

exceptions

to

the

output

queue,

which

is

SYSTEM.SAMPLE.REPLY

to

conform

to

the

usage

in

WebSphere

MQ

sample

program,

amqsreq.

Related

tasks:

v

“Configuring

WebSphere

MQ

for

MQListener”

on

page

209

v

“Configuring

and

running

MQListener”

on

page

207

Chapter

3.

Developing

federated,

warehouse,

and

message

queue

applications

215

|
|

|

|

|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|

216

Application

Developer’s

Guide

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

--

--

Catalog

remote

DB2

UDB

server

machine

and

database

--

uncatalog

node

DB2_TPCH;

catalog

tcpip

node

DB2_TPCH

remote

x.xx.xx.xx

server

50000;

uncatalog

database

tpcd;

catalog

database

tpcd

at

node

db2_tpch;

--

--

DB2

UDB

wrapper,

nicknames,

MQTs,

and

indexes

--

drop

wrapper

drda;

create

wrapper

drda;

create

server

db2_tpch

type

db2/udb

version

8.1

wrapper

drda

authorization

"demo"

password

"xxxxx"

options

(dbname

’TPCD’);

create

user

mapping

for

user

SERVER

db2_tpch

OPTIONS

(

REMOTE_AUTHID

’demo’,

REMOTE_PASSWORD

’xxxxx’

);

create

nickname

db2_part

for

db2_tpch.tpcd.part;

create

nickname

db2_supplier

for

db2_tpch.tpcd.supplier;

create

nickname

db2_partsupp

for

db2_tpch.tpcd.partsupp;

create

nickname

db2_nation

for

db2_tpch.tpcd.nation;

create

nickname

db2_region

for

db2_tpch.tpcd.region;

create

nickname

db2_customer

for

db2_tpch.tpcd.customer;

create

nickname

db2_orders

for

db2_tpch.tpcd.orders;

Figure

72.

federated.sql

(Part

1

of

9)

©

Copyright

IBM

Corp.

2003,

2004

217

--

--

Oracle

wrapper,

nicknames,

MQTs

and

indexes

--

drop

wrapper

net8;

create

wrapper

net8;

create

server

oraserver

type

oracle

version

8

wrapper

net8

options

(node

’iidemo2’);

create

user

mapping

for

user

SERVER

oraserver

OPTIONS

(

REMOTE_AUTHID

’demo’,

REMOTE_PASSWORD

’xxxxx’

);

create

nickname

ora_part

for

oraserver.demo.part;

create

nickname

ora_supplier

for

oraserver.demo.supplier;

create

nickname

ora_partsupp

for

oraserver.demo.partsupp;

create

nickname

ora_customer

for

oraserver.demo.customer;

create

nickname

ora_orders

for

oraserver.demo.orders;

create

nickname

ora_lineitem

for

oraserver.demo.lineitem;

Figure

72.

federated.sql

(Part

2

of

9)

--

--

Informix

wrapper,

nicknames,

MQTs,

and

indexes

--

drop

wrapper

informix;

create

wrapper

informix;

create

server

infserver

type

informix

version

9

wrapper

informix

options

(node

’ol_informix’,dbname

’tpcd2’);

create

user

mapping

for

user

SERVER

infserver

OPTIONS

(

REMOTE_AUTHID

’informix’,

REMOTE_PASSWORD

’informix’

);

create

nickname

inf_part

for

infserver."informix"."part";

create

nickname

inf_supplier

for

infserver."informix"."supplier";

create

nickname

inf_partsupp

for

infserver."informix"."partsupp";

create

nickname

inf_customer

for

infserver."informix"."customer";

create

nickname

inf_orders

for

infserver."informix"."orders";

create

nickname

inf_lineitem

for

infserver."informix"."lineitem";

Figure

72.

federated.sql

(Part

3

of

9)

218

Application

Developer’s

Guide

--

--

Union

views

over

federated

nicknames

--

DROP

VIEW

part_fed;

CREATE

VIEW

part_fed

(

p_partkey,

p_mfgr,

p_type,

p_size,

p_retailprice)

AS

SELECT

p_partkey,

p_mfgr,

p_type,

p_size,

p_retailprice

FROM

db2_part

UNION

ALL

SELECT

p_partkey,

p_mfgr,

p_type,

p_size,

p_retailprice

FROM

inf_part

UNION

ALL

SELECT

p_partkey,

p_mfgr,

p_type,

p_size,

p_retailprice

FROM

ora_part;

DROP

VIEW

partsupp_fed;

CREATE

VIEW

partsupp_fed

(

ps_partkey,

ps_suppkey,

ps_supplycost)

AS

SELECT

ps_partkey,

ps_suppkey,

ps_supplycost

FROM

db2_partsupp

UNION

ALL

SELECT

ps_partkey,

ps_suppkey,

ps_supplycost

FROM

inf_partsupp

UNION

ALL

SELECT

ps_partkey,

ps_suppkey,

ps_supplycost

FROM

ora_partsupp;

DROP

VIEW

supplier_fed;

CREATE

VIEW

supplier_fed

(

s_suppkey,

s_name,

s_address

)

AS

SELECT

s_suppkey,

s_name,

s_address

FROM

db2_supplier

UNION

ALL

SELECT

s_suppkey,

s_name,

s_address

FROM

inf_supplier

UNION

ALL

SELECT

s_suppkey,

s_name,

s_address

FROM

ora_supplier;

Figure

72.

federated.sql

(Part

4

of

9)

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

219

--

--

Create

Wrapper,

Server

and

nickname

for

XML

--

drop

wrapper

xml_files;

create

wrapper

XML_files

library

’db2lsxml.dll’;

create

server

LOCAL_XML_FILES

wrapper

XML_FILES;

create

nickname

Employees_From_XML

(

doc

Varchar(100)

OPTIONS(DOCUMENT

’FILE’),

Employee_Number

Varchar(5)

OPTIONS(XPATH

’./@SerialNum’),

First_Name

Varchar(50)

OPTIONS(XPATH

’.//Firstname’),

Middle_Initial

Varchar(50)

OPTIONS(XPATH

’.//Initial’),

Last_Name

Varchar(50)

OPTIONS(XPATH

’.//Lastname’),

Department_Number

Varchar(50)

OPTIONS(XPATH

’.//Department’),

Phone_Number

Varchar(50)

OPTIONS(XPATH

’.//PhoneNumber’),

Job

Varchar(50)

OPTIONS(XPATH

’.//Job’),

Education_Level

Varchar(50)

OPTIONS(XPATH

’.//EDLevel’),

Gender

Varchar(50)

OPTIONS(XPATH

’.//Sex’),

Hire_Date

Varchar(50)

OPTIONS(XPATH

’.//HireDate’),

Birth_Date

Varchar(50)

OPTIONS(XPATH

’.//BirthDate’),

Annual_Salary

Varchar(50)

OPTIONS(XPATH

’.//Salary’),

Annual_Bonus

Varchar(50)

OPTIONS(XPATH

’.//Bonus’),

Commission

Varchar(50)

OPTIONS(XPATH

’.//Comm’),

cid

Varchar(16)

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

LOCAL_XML_FILES

OPTIONS

(XPATH

’//Employee’);

Figure

72.

federated.sql

(Part

5

of

9)

create

nickname

Employees_From_XML_Included

(

Employee_Number

Varchar(5)

OPTIONS(XPATH

’./@SerialNum’),

First_Name

Varchar(50)

OPTIONS(XPATH

’.//Firstname’),

Middle_Initial

Varchar(50)

OPTIONS(XPATH

’.//Initial’),

Last_Name

Varchar(50)

OPTIONS(XPATH

’.//Lastname’),

Department_Number

Varchar(50)

OPTIONS(XPATH

’.//Department’),

Phone_Number

Varchar(50)

OPTIONS(XPATH

’.//PhoneNumber’),

Job

Varchar(50)

OPTIONS(XPATH

’.//Job’),

Education_Level

Varchar(50)

OPTIONS(XPATH

’.//EDLevel’),

Gender

Varchar(50)

OPTIONS(XPATH

’.//Sex’),

Hire_Date

Varchar(50)

OPTIONS(XPATH

’.//HireDate’),

Birth_Date

Varchar(50)

OPTIONS(XPATH

’.//BirthDate’),

Annual_Salary

Varchar(50)

OPTIONS(XPATH

’.//Salary’),

Annual_Bonus

Varchar(50)

OPTIONS(XPATH

’.//Bonus’),

Commission

Varchar(50)

OPTIONS(XPATH

’.//Comm’),

cid

Varchar(16)

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

LOCAL_XML_FILES

OPTIONS

(FILE_PATH

’c:\cdi_data_files\CDI_Employees.xml’,

XPATH

’//Employee’);

Figure

72.

federated.sql

(Part

6

of

9)

220

Application

Developer’s

Guide

--

--

Create

read

functions

and

views

over

MQ

queues

for

CR

--

CREATE

FUNCTION

NEW_SUPPLIERS_READ()

RETURNS

TABLE

(

SUPPLIER_NAME

VARCHAR(80),

SUPPLIER_PHONE

VARCHAR(12),

PART_KEY

DOUBLE,

PART_PRICE

DOUBLE,

MAN_DAYS

DOUBLE,

MAX_QUANTITY

DOUBLE,

CORRELID

VARCHAR(80))

LANGUAGE

SQL

NOT

DETERMINISTIC

EXTERNAL

ACTION

READS

SQL

DATA

RETURN

SELECT

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,1),80),

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,2),12),

DOUBLE(DB2MQ.GETCOL(T.MSG,’,’,3)),

DEC(DB2MQ.GETCOL(T.MSG,’,’,4),8,4),

BIGINT(DB2MQ.GETCOL(T.MSG,’,’,5)),

BIGINT(DB2MQ.GETCOL(T.MSG,’,’,6)),

CORRELID

FROM

TABLE

(DB2MQ.MQREADALL(’DB2.DEFAULT.SERVICE’,

’DB2.DEFAULT.POLICY’))

AS

T;

create

view

READ_NEW_SUPPLIERS_FROM_QUEUE

as

select

*

from

table(new_suppliers_read())

t

where

CORRELID

=

’CDI_NEW_SUPPLIER’;

Figure

72.

federated.sql

(Part

7

of

9)

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

221

--

--

Create

destroy

functions

and

views

over

MQ

queues

for

CR

--

CREATE

FUNCTION

NEW_SUPPLIERS_REC()

RETURNS

TABLE

(

SUPPLIER_NAME

VARCHAR(80),

SUPPLIER_PHONE

VARCHAR(12),

PART_KEY

DOUBLE,

PART_PRICE

DOUBLE,

MAN_DAYS

DOUBLE,

MAX_QUANTITY

DOUBLE,

CORRELID

VARCHAR(80))

LANGUAGE

SQL

NOT

DETERMINISTIC

EXTERNAL

ACTION

READS

SQL

DATA

RETURN

SELECT

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,1),80),

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,2),12),

DOUBLE(DB2MQ.GETCOL(T.MSG,’,’,3)),

DEC(DB2MQ.GETCOL(T.MSG,’,’,4),8,4),

BIGINT(DB2MQ.GETCOL(T.MSG,’,’,5)),

BIGINT(DB2MQ.GETCOL(T.MSG,’,’,6)),

CORRELID

FROM

TABLE

(DB2MQ.MQRECEIVEALL(’DB2.DEFAULT.SERVICE’,

’DB2.DEFAULT.POLICY’,

’CDI_NEW_SUPPLIER’,

1))

AS

T;

create

view

RECEIVE_NEW_SUPPLIERS_FROM_QUEUE

as

select

*

from

table(new_suppliers_rec())

t;

Figure

72.

federated.sql

(Part

8

of

9)

--

--

Create

temporary

tables

used

in

processing

--

--

For

running

custom

java

programs

drop

table

aux_table;

create

table

aux_table

(part_key

integer,

supplier_key

int,

supply_cost

double);

--

For

running

XML

composition

drop

table

UCustomers;

create

table

Ucustomers

(x_doc

DB2XML.XMLCLOB

not

logged);

--

For

storing

the

web

request

drop

table

request_bid;

drop

table

request_status;

create

table

request_bid

(reqkey

integer

not

null,

partkey

integer

not

null,

bid

double

not

null);

create

table

request_status

(reqkey

integer

not

null,

partkey

integer

not

null,

suppkey

integer

not

null,

newquote

double

not

null,currentquote

double

not

null,

status

varchar(15)

not

null);

--

For

shredding

XML

documents

to

DB2

IMPORT

FROM

c:\CDI_Data_Files\Setup\CDI_Employees.ixf

of

IXF

CREATE

INTO

EMPLOYEES_DB2;

CREATE

TABLE

EMPLOYEES_FROM_XML_FILE_SHRED

LIKE

EMPLOYEES_DB2;

Figure

72.

federated.sql

(Part

9

of

9)

222

Application

Developer’s

Guide

//

Import

all

necessary

classes

import

java.lang.*;

import

java.sql.*;

import

java.util.*;

//

USAGE:

db,

user,

password,

timeout

/**

*

Class

Listener:

*

Class

which

will

check

a

message

queue

for

messages

and

*

call

the

"Director"

stored

procedure

*

to

process

the

message.

*/

public

class

CDIListener{

/**

*

Method

checkQueue

*

Method

to

check

the

queue

for

messages.

*

If

present

calls

the

"Director"

stored

procedure

*

otherwise

it

will

wait

for

a

user

specified

number

of

seconds

*/

Figure

73.

CDIListener.java

(Part

1

of

12)

public

void

checkQueue(String

db,

String

user,

String

pass,

int

timeout)

{

/*

Local

variables

*/

String

urlDB2

=

null;

Connection

connDB2

=

null;

PreparedStatement

stmtDB2

=

null;

PreparedStatement

stmtDB2_2

=

null;

ResultSet

rsDB2

=

null;

ResultSet

rsDB2_2

=

null;

ResultSet

rsTotal

=

null;

String

query

=

null;

int

mqMsgType

=

0;

int

mqMsgKey

=

0;

int

mqMsgPart

=

0;

int

mqMsgQuant

=

0;

double

mqMsgPrice

=

0;

String

comment

=

null;

int

intValue

=

0;

int

numRecords

=

0;

System.out.println("\nStarting

listener

execution");

System.out.println("\nConnecting

to

DB2");

Figure

73.

CDIListener.java

(Part

2

of

12)

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

223

//

Print

out

parms

System.out.println("\nUsing

startup

parms

of:

\n

Database:

"

+

db

+

"\n

User:

"

+

user

+

"\n

Password:

**********\n

Sleep

interval:

"

+

timeout

+

"

milliseconds");

try

{

//Load

drivers’

classes

System.out.println("\nLoading

DB2

driver");

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

//URL

for

databases

to

be

connected

System.out.println("\nSetting

URL

to

database");

urlDB2

=

"jdbc:db2:"

+

db;

//Get

database

connections

System.out.println("\nGetting

DB2

connection");

connDB2

=

DriverManager.getConnection(urlDB2,

user,

pass);

}

catch

(Exception

e)

{

e.printStackTrace();

}

Figure

73.

CDIListener.java

(Part

3

of

12)

/*Issue

a

receive

on

the

MQ

queue*/

System.out.print("\nStart

MQ

queue

processing...");

System.out.flush();

double

test

=

0;

/*

Loop

forever

to

read

the

queue

*/

while

(test

==

0)

{

//

System.out.println("\nChecking

queue...");

try

{

stmtDB2

=

connDB2.prepareStatement

("SELECT

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,1),1),

INT(DB2MQ.GETCOL(T.MSG,’,’,2)),

INT(DB2MQ.GETCOL(T.MSG,’,’,3)),

INT(DB2MQ.GETCOL(T.MSG,’,’,4)),

DOUBLE(DB2MQ.GETCOL(T.MSG,’,’,5))

FROM

TABLE

(DB2MQ.MQRECEIVEALL(’DB2.DEFAULT.SERVICE’,

’DB2.DEFAULT.POLICY’,’CDI_IN_MSG’,1))

AS

T");

rsDB2

=

stmtDB2.executeQuery();

}

catch

(SQLException

e)

{

if

(e.getErrorCode()

==

100)

{

test

=

0;

}

else

{

System.out.println(e);

test

=

1;

}

}

catch

(Exception

e)

{

e.printStackTrace();

test

=

1;

}

Figure

73.

CDIListener.java

(Part

4

of

12)

224

Application

Developer’s

Guide

try

{

//

Get

a

message

off

the

queue

if

(rsDB2

!=

null)

while(rsDB2.

next())

{

//

Get

the

type

from

the

MQ

message

and

//

call

appropriate

function

mqMsgType

=

rsDB2.getInt(1);

//

if

END

message,

exit

if

(mqMsgType

==

0)

{

System.out.println("\nFound

END

message

on

queue");

test

=

1;

}

else

{

//

Found

a

customer

buy

request

message

if

(mqMsgType

==

1)

{

//

get

other

values

from

message

mqMsgKey

=

rsDB2.getInt(2);

mqMsgPart

=

rsDB2.getInt(3);

System.out.println("\nFound

message

type="+

mqMsgType

+

";

customer="+

mqMsgKey

+

";

part="

+

mqMsgPart);

//

Update

the

REQUEST_BID

table

System.out.print("Executing

update

to

local

REQUEST_BID

table...");

//

put

customer

order

into

REQUEST_BID

table

//

using

max

part

price

+

45%

markup

stmtDB2_2

=

connDB2.prepareStatement

("INSERT

into

request_bid

values

("

+

mqMsgKey

+

","

+

mqMsgPart

+

","

+

"

(SELECT

MIN(ps_supplycost)*1.45

FROM

partsupp_fed

WHERE

ps_partkey

=

"

+

mqMsgPart

+

"))");

stmtDB2_2.executeUpdate();

System.out.println("\nComplete");

stmtDB2_2.close();

}

Figure

73.

CDIListener.java

(Part

5

of

12)

else

{

//

Else

if

it’s

a

supplier

price

update

if

(mqMsgType

==

2)

{

//

Get

the

other

values

off

the

queue

mqMsgKey

=

rsDB2.getInt(2);

mqMsgPart

=

rsDB2.getInt(3);

mqMsgQuant

=

rsDB2.getInt(4);

mqMsgPrice

=

rsDB2.getDouble(5);

System.out.println("\nFound

message

type="+

mqMsgType

+

";

supplier="+

mqMsgKey

+

";

part="

+

mqMsgPart

+

";

price="

+

mqMsgPrice);

Figure

73.

CDIListener.java

(Part

6

of

12)

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

225

//

Check

if

this

supplier

has

supplier

this

part

before

System.out.print("\nChecking

if

supplier

already

supplies

part...");

stmtDB2

=

connDB2.prepareStatement

("SELECT

COUNT(*)

FROM

partsupp_fed

WHERE

ps_partkey

=

"

+

mqMsgPart

+

"

and

ps_suppkey

=

"

+

mqMsgKey);

rsDB2_2

=

stmtDB2.executeQuery();

rsDB2_2.next();

intValue

=

rsDB2_2.getInt(1);

System.out.print(intValue

+

"...");

Figure

73.

CDIListener.java

(Part

7

of

12)

//

If

supplier

has

supplier

before

if

(intValue

>

0)

{

//

Get

current

price

by

supplier

System.out.print("Yes!\nGetting

current

minimum

price...");

stmtDB2

=

connDB2.prepareStatement

("SELECT

MIN(ps_supplycost)

FROM

partsupp_fed

WHERE

ps_partkey

=

"

+

mqMsgPart

+

"

and

ps_suppkey

=

"

+

mqMsgKey);

rsDB2_2

=

stmtDB2.executeQuery();

rsDB2_2.next();

intValue

=

rsDB2_2.getInt(1);

System.out.println("Current

price

=

"

+

intValue

+

"\n");

Figure

73.

CDIListener.java

(Part

8

of

12)

//If

new

price

less

than

or

equal

to

//existing

price,

update

database

//and

mark

as

accepted

if

(mqMsgPrice

<=

intValue)

{

comment

=

"’ACCEPT’";

}

//

Else

update

the

database

but

mark

as

review

else

{

comment

=

"’REVIEW’";

}

System.out.print("\nExecuting

"

+

comment

+

"

update

to

federated

db2

table

db2_partsupp...");

stmtDB2

=

connDB2.prepareStatement

("UPDATE

db2_partsupp

set

ps_availqty

=

"

+

mqMsgQuant

+

",

ps_supplycost

=

"

+

mqMsgPrice

+

"

where

ps_partkey

=

"

+

mqMsgPart

+

"

and

ps_suppkey

=

"

+

mqMsgKey);

stmtDB2.executeUpdate();

System.out.println("Complete\n");

}

Figure

73.

CDIListener.java

(Part

9

of

12)

226

Application

Developer’s

Guide

//

Else

this

is

a

new

supplier

for

this

part

else

{

System.out.print("No!\nExecuting

’NEW’

insert

to

federated

db2

table

db2_partsupp...");

comment

=

"’NEW’";

//

Add

new

record

to

database

stmtDB2

=

connDB2.prepareStatement

("INSERT

into

db2_partsupp

values

("

+

mqMsgPart

+

","

+

mqMsgKey

+

","+

mqMsgQuant

+

","

+

mqMsgPrice

+

",’New

supplier

added

at:

"

+

new

java.util.Date()+

"

’)");

stmtDB2.executeUpdate();

System.out.println("Complete\n");

}

//

Update

the

local

table

System.out.print("\nUpdating

local

REQUEST_STATUS

table...");

stmtDB2_2

=

connDB2.prepareStatement

("INSERT

into

request_status

values

("

+

mqMsgKey

+

","

+

mqMsgPart

+

","

+mqMsgKey

+

","+

mqMsgPrice

+

","

+

intValue

+

","

+

comment

+

")");

stmtDB2_2.executeUpdate();

System.out.println("Complete\n");

Figure

73.

CDIListener.java

(Part

10

of

12)

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

227

if

(stmtDB2_2

!=

null)

stmtDB2_2.close();

if

(rsDB2_2

!=

null)

rsDB2_2.close();

}

else

{

System.out.println("\nError

-

unknown

message

type");

}

}

}

System.out.flush();

}

//

End

secondary

while

System.out.flush();

}

//

End

try

catch

(Exception

e)

{

e.printStackTrace();

}

//

Sleep

for

the

necessary

time

try

{

if

(rsDB2

!=

null)

rsDB2.close();

if

(stmtDB2

!=

null)

stmtDB2.close();

Thread.sleep(timeout);

System.out.print(".");

System.out.flush();

}

catch

(Exception

e)

{

e.printStackTrace();

}

}

//

end

Main

while

Figure

73.

CDIListener.java

(Part

11

of

12)

228

Application

Developer’s

Guide

System.out.println("Listener

stopped\n");

System.out.println("\nListener

stopped\n");

/*

Close

all

database

connections

*/

try

{

rsDB2.close();

stmtDB2.close();

connDB2.close();

}

catch

(Exception

e)

{

e.printStackTrace();

}

return;

}

/*

Main

program

to

invoke

listener

*/

public

static

void

main(String

argv[])

{

String

DBName

=

argv[0];

String

DBUser

=

argv[1];

String

DBPass

=

argv[2];

String

TimeCk

=

argv[3];

CDIListener

dp

=

new

CDIListener();

int

timeout

=

Integer.parseInt(TimeCk)*1000;

dp.checkQueue(DBName,

DBUser,

DBPass,

timeout);

}

}

Figure

73.

CDIListener.java

(Part

12

of

12)

/*

*

@(#)MessageFormatter.java

*

*

CopyrightVersion

1.0

*

*/

import

javax.servlet.*;

import

javax.servlet.http.*;

import

java.io.*;

import

java.sql.Connection;

import

java.sql.DriverManager;

import

java.sql.ResultSet;

import

java.sql.Statement;

import

javax.servlet.ServletException;

import

proxy.soap.*;

public

class

MessageFormatter

extends

javax.servlet.http.HttpServlet

{

final

static

String

htmlHeader1

=

"<HTML><TITLE>MessageFormatter</TITLE>";

final

static

String

message1

=

"<p

align=\"center\">

<font

color=\"navy\"

face=\"verdana\"

size=\"+2\">

Thank

You</p>

<p><font

color=\"black\"

face=\"veranda\"

size=\"+1\">";

Figure

74.

MessageFormatter.java

(Part

1

of

7)

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

229

final

static

String

message2

=

"";

final

static

String

htmlHeader2

=

"</HTML>";

static

String

quote

=

"";

static

Connection

con

=

null;

final

static

String

url

=

"jdbc:db2:demo";

//

method

to

generate

a

random

REQUEST

number

public

int

randomint()

{

double

first

=

java.lang.Math.random();

String

help

=

java.lang.Double.toString(first);

help

=

help.substring(3,7);

int

number

=

Integer.parseInt(help);

number

=

number

/

5;

return

number;

}

Figure

74.

MessageFormatter.java

(Part

2

of

7)

//

Overwriting

doGet

method

to

handle

Http

GET

request

public

void

doGet(HttpServletRequest

req,

HttpServletResponse

res)

throws

javax.servlet.ServletException,

java.io.IOException

{

try

{

PrintWriter

pr

=

res.getWriter();

pr.print(htmlHeader1);

pr.print(message1);

pr.print(message2);

String

method

=

"";

String

part

=

"";

String

price

=

"";

String

quantity

=

"";

String

key

=

"";

String

cust_name

=

"";

String

col_name1

=

null;

String

col_name2

=

null;

String

tab_name

=

null;

Connection

con

=

null;

String

url

=

null;

Statement

stmt

=

null;

ResultSet

rs

=

null;

WSProxy

WSid

=

new

WSProxy();

boolean

fCustomer

=

true;

Figure

74.

MessageFormatter.java

(Part

3

of

7)

230

Application

Developer’s

Guide

if

(req.getParameter("method")!=null)

{

//

Get

the

common

parms

to

the

servlet

from

the

REQ

object

key

=

req.getParameter("name");

part

=

req.getParameter("part");

method

=

req.getParameter("method");

//

If

customer

order

if

(method.equals("orderNewParts"))

{

fCustomer

=

true;

//

Get

the

quantity

the

customer

is

ordering

quantity

=

req.getParameter("quantity");

//

set

the

table

and

column

names

for

SELECT

col_name1

=

"c_name";

col_name2

=

"c_custkey";

tab_name

=

"db2_customer";

}

else

{

//

Else

if

supplier

update

if

(method.equals("setSupplierQuotes"))

{

fCustomer

=

false;

//

Get

the

price

the

supplier

is

updating

price

=

req.getParameter("price");

//

set

the

table

and

column

names

for

SELECT

col_name1

=

"s_name";

col_name2

=

"s_suppkey";

tab_name

=

"supplier_fed";

}

else

{

pr.println

("method

=

"+req.getParameter("method")+

"

Not

supported!

");

return;

}

}

Figure

74.

MessageFormatter.java

(Part

4

of

7)

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

231

//

Get

the

real

customer

name

from

federated

data

source

try

{

Class.forName

("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

url

=

"jdbc:db2:demo";

con

=

DriverManager.getConnection(url,"demo","xxxxx");

stmt

=

con.createStatement();

rs

=

stmt.executeQuery

("SELECT

"

+

col_name1

+

"

from

"

+

tab_name

+

"

where

"

+

col_name2

+

"

=

"

+

key);

while

(rs.next())

{

cust_name

=

rs.getString(1);

}

rs.close();

stmt.close();

con.close();

}

catch

(Exception

e)

{

pr.println(e);

System.out.println(e);

return;

}

}

else

{

pr.println

("***

Severe

error

occurred-no

method

passed

***>");

return;

}

Figure

74.

MessageFormatter.java

(Part

5

of

7)

232

Application

Developer’s

Guide

//

Write

request

status

back

to

user

try{

//

If

this

is

a

supplier

update

request

if

(!fCustomer)

{

String

message1id=

"2,"

+

key

+

","

+

part

+

","

+

quantity

+

","

+

price

;

java.lang.String

message1idTemp

=

message1id;

System.out.println

("message

type

2

being

written:

"

+

message1idTemp);

org.tempuri.worftestweb

.demo.newdadx.dadx.xsd

.Stmt1ResultElement

mtemp

=

WSid.stmt1(message1idTemp);

if

(mtemp

==

null)

pr.println("***

Web

Service

error

occurred

***>");

else

{

pr.println

("<table

border=\"1\"

bordercolor=\"navy\"

width=\"100%\">

<tr

align+\"left\">

<td>Supplier</td>

<td>"

+

cust_name

+

"</td>

</tr>

<tr

align+\"left\"><td>Part</td><td>"

+

part

+

"</td></tr>

<tr

align+\"left\"><td>Price</td><td>"

+

price

+

"</td></tr>

</table>");

pr.println("
<font

color=\"red\"

face=\"verdana\"

size=\"-1\">

Price

update

submitted

for

processing");

}

}

Figure

74.

MessageFormatter.java

(Part

6

of

7)

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

233

//

else

must

be

a

customer

buy

request

else

{

String

message1id=

"1,"

+

key

+","

+

part

+

",0,

0";

String

message1idTemp

=

message1id;

System.out.println("message

type

1

being

written:

"

+

message1idTemp);

org.tempuri.worftestweb.demo

.newdadx.dadx.xsd

.Stmt1ResultElement

mtemp

=

WSid.stmt1(message1idTemp);

if

(mtemp

==

null)

pr.println("***

Web

Service

error

occurred

***>");

else

{

pr.println

("<table

border=\"1"

bordercolor=\"navy\"

wide=\"100%\"><tr

align+\"left\"><td>Customer</td>

<td>"

+

customer_name

+

"</td></tr>

<tr

align+\"left\"><td>Part</td>

<td>"

+

part

+

"</td></tr>

<tr

align+\"left\"><td>Price</td>

<td>"

+

quantity

+

"</td></tr></table>");

pr.println("
<font

color=\"red\"

face=\"verdana\"

size=\"-1\">

Order

submitted

for

processing");

}

}

}

catch

(Exception

e)

{

System.out.println(e);

pr.println(e);

return;

}

}

catch

(Exception

e)

{

}

}

}

Figure

74.

MessageFormatter.java

(Part

7

of

7)

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"c:\dxx\dtd\dad.dtd">

<DAD>

<dtdid>resume.dtd</dtdid>

<validation>NO</validation>

<Xcolumn>

<table

name="resume_skills_sidetable">

<column

name="skill"

type="varchar(20)"

path="/resume/skill"

multi_occurrence="YES">

</column>

</table>

</Xcolumn>

</DAD>

Figure

75.

resume.dad

234

Application

Developer’s

Guide

Related

concepts:

v

“The

Cottonwood

Distributors,

Inc.—a

warehouse

example”

on

page

11

v

“Discovering

the

data—the

employee

skills

scenario”

on

page

12

<?xml

version="1.0"?>

<!DOCTYPE

Employees

SYSTEM

"employees.dtd">

<Employees>

<Employee

SerialNum="12">

<Firstname>Laurie</Firstname>

<Lastname>Douglas</Lastname>

<Job_Description>

DB2

engine

Development

</Job_Description>

</Employee>

<Employee

SerialNum="13">

<Firstname>John</Firstname>

<Lastname>Smith</Lastname>

<Job_Description>

Information

Integration

Technology

Solutions

</Job_Description>

</Employee>

<Employee

SerialNum="14">

<Firstname>George</Firstname>

<Lastname>Jackson</Lastname>

<Job_Description>

Customer

contact

</Job_Description>

</Employee>

</Employees>

Figure

76.

All_Employees.xml

Appendix

A.

Script

examples

for

Cottonwood

Distributors,

Inc.

and

YBar,

Inc.

scenarios

235

236

Application

Developer’s

Guide

Appendix

B.

DADX

environment

checker

The

DADX

environment

checker

performs

different

syntax

and

semantic

checks

on

the

NST,

DAD

and

DADX

files

used

to

create

and

run

Web

services

with

WORF.

Use

the

DADX

environment

checker

to

help

minimize

the

number

of

errors

that

occur

when

deploying

Web

services

with

WORF.

Installing

the

DADX

environment

checker

The

DADX

environment

checker

is

a

Java

application

that

is

called

from

the

command

line.

When

invoked,

it

produces

an

output

file

that

contains

errors,

warnings,

and

success

indicators.

The

name

of

the

output

text

file

is

user-defined.

If

no

name

is

specified,

the

standard

output

is

used.

The

DADX

environment

checker

is

included

in

the

WORF

installation,

in

the

tools\lib

subdirectory.

The

JAR

files

containing

the

code

for

this

tool

are

CheckersCommon.jar

and

DADXEnvChecker.jar.

Make

sure

that

you

have

a

JRE

or

JDK

Version

1.3.1

or

later,

installed

on

your

system.

Update

your

CLASSPATH

to

include

all

of

the

following

archives:

v

CheckersCommon.jar,

DADXEnvChecker.jar

and

worf.jar,

included

in

the

tools\lib

directory

where

WORF

is

installed

v

xerces.jar

.

For

UNIX

and

Windows,

these

files

are

included

in

the

binary

distribution

for

Xerces-J

2.0.2

downloadable

at

http://xml.apache.org/.

For

OS/390

and

z/OS,

these

files

are

included

in

the

IBM

XML

Toolkit

Version

1

Release

4

with

PTF

UW95866

v

soap.jar,

included

in

the

binary

distribution

for

SOAP

2.3

downloadable

at

http://xml.apache.org,

or

included

in

the

WebSphere

Application

Server

installation.

v

j2ee.jar,

version

1.3

or

later.

You

can

download

this

file

from

java.sun.com

v

qname.jar

.

You

can

download

this

file

from

java.sun.com

v

wsdl4j.jar.

You

can

download

this

file

from

http://oss.software.ibm.com/developerworks/projects/wsdl4j.

v

activation.jar,

included

in

the

binary

distribution

for

JavaBeans

Activation

Framework

1.0.1,

downloadable

at

http://java.sun.com

v

mail.jar,

included

in

the

binary

distribution

for

JavaMail

1.2

downloadable

at

http://java.sun.com

v

servlet.jar,

included

in

the

WebSphere

Application

Server

installation,

or

in

the

distribution

for

Jakarta

Tomcat

Version

3.2.x

through

4.0.3

or

later

downloadable

at

http://www.apache.org/

v

For

UNIX

and

Windows:

db2java.zip,

included

in

the

/java

directory

located

where

you

installed

DB2

Universal

Database.

For

OS/390

and

z/OS:

db2j2classes.zip,

included

in

the

classes/

subdirectory

where

you

installed

DB2

Universal

Database

in

HFS.

You

can

also

use

jcc.jar.

The

dbDriver

parameter

in

the

group.properties

files

determines

the

driver

package

that

you

use.

For

example,

if

you

are

running

in

the

Windows

environment,

you

must

set

your

CLASSPATH

to

find

the

following

files:

CheckersCommon.jar;

DADXEnvChecker.jar;

worf.jar;

©

Copyright

IBM

Corp.

2003,

2004

237

|
|
|
|

|
|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

http://oss.software.ibm.com/developerworks/projects/wsdl4j

xerces.jar;

j2ee.jar

qname.jar

wsdl4j.jar

soap.jar;

db2java.zip;

Related

concepts:

v

“Definition

of

a

DADX

file”

on

page

29

Related

reference:

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

v

“Running

the

DADX

environment

checker”

on

page

238

Running

the

DADX

environment

checker

The

DADX

environment

checker

is

a

Java

program,

that

can

run

on

JDK

version

1.3.1

and

later.

To

run

the

DADX

environment

checker,

execute

the

following

command

(on

a

single

line):

java

com.ibm.etools.webservice.util.Check_install

[-srv]

[-schdir

pathToSchemasDir]

[-sch

schemaLocations]

[-out

outputFile]

fileToCheck

For

example

if

you

extracted

dxxworf.zip

in

directory

c:\dxxworf,

you

would

type

the

following

to

run

the

DADX

checker

on

the

resource

files

contained

by

the

c:\tomcat\webapps\services

directory,

and

then

send

the

output

to

myOutputFile.txt

in

the

current

directory:

java

com.ibm.etools.webservice.util.Check_install

-srv

-schdir

c:\dxxworf\schemas

-out

myOutputFile.txt

c:\tomcat\webapps\services

Parameters

Here

are

the

parameters

that

can

be

used

to

run

the

DADX

environment

checker:

-schdir

pathToSchemasDir

Specifies

the

absolute

path

to

the

directory

where

the

schemas

used

for

validating

NST

and

DADX

files

are

stored

-sch

schemaLocations

Specifies

a

list

of

schemas

to

be

used

by

the

parser

to

validate

the

files.

The

DADX

checker

allows

the

user

to

specify

the

value

of

a

property

of

the

Xerces

parser.

This

property

can

be

used

to

specify

the

location

of

XML

schemas

needed

to

perform

the

validation

of

the

files

being

parsed.

You

specify

the

location

of

a

schema

by

providing

the

name

of

the

target

namespace

of

the

schema

(for

example:

http://myschema)

followed

by

the

actual

location

of

the

schema.

It

could

be

a

path

in

the

file

system

(for

example,

c:\dir\schema1.xsd)

or

a

valid

URL.

But

the

XML

documents

themselves

can

contain

declarations

of

schema

locations.

The

schemaLocation

attribute

is

used

in

an

XML

document

to

provide

this

information.

Here

is

an

example

of

the

beginning

of

an

XML

document:

<purchaseReport

xmlns="http://www.example.com/Report"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.com/Report

http://www.example.com/Report.xsd">

238

Application

Developer’s

Guide

|
|
|
|
|
|

For

a

particular

namespace,

the

parser

will

use

the

schema

location

defined

using

the

property

of

the

parser,

even

if

the

schemaLocation

attribute

defines

another

schema

location

for

the

same

namespace.

The

syntax

for

schemaLocations

is

the

same

as

for

schemaLocation

attributes

in

instance

documents:

for

example,

http://www.example.com

file_name.xsd.

The

user

can

specify

more

than

one

XML

Schema:

for

example,

-sch

http://www.example_1.com

file_name_1.xsd

http://www.example_2.com

file_name_2.xsd

-out

outputFile

Specifies

the

output

text

file

name;

if

omitted,

the

standard

output

is

used.

-srv

Indicates

that

the

checks

must

be

performed

on

all

of

the

NST,

DAD

and

DADX

files

found

under

the

Web

services

module

directory

(for

example

c:\tomcat\webapps\services)

passed

as

the

fileToCheck.

If

this

option

is

not

used,

then

the

checks

are

performed

only

on

the

DADX

file

that

is

passed

as

the

file

to

check

and

on

the

related

data

contained

in

other

resource

files.

For

example,

the

DAD

files

referred

to

in

this

DADX

file

will

be

checked

and

then

the

DTDIDs

referred

to

in

these

DAD

files

will

be

checked

in

the

NST

file.

And

only

the

data

related

to

the

DADX

file

will

be

checked

in

the

NST

file

and

in

the

web.xml

file.

fileToCheck

If

parameter

-srv

is

not

used,

then

the

value

of

fileToCheck

is

the

DADX

file

that

is

checked.

If

parameter

-srv

is

used

then

the

fileToCheck

value

is

the

root

directory

of

the

Web

services

module;

for

example,

the

root

directory

of

an

unzipped

.war

file

as

services

for

the

services.war

module.

-help

Displays

command

line

option

information

-version

Displays

version

information

Sample

files

A

sample

file

can

be

found

in

the

tools\samples

directory

from

dxxworf.zip.

DADXEnvChecker_sample.txt

is

an

output

text

file

showing

the

results

of

the

checks

performed

on

a

Web

services

module.

The

DADX

environment

checker

generates

this

file.

The

checker

uses

the

file

name

DADXEnvChecker_sample.txt

that

was

specified

in

the

-out

parameter.

Related

concepts:

v

“Definition

of

a

DADX

file”

on

page

29

Related

reference:

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

v

“Installing

the

DADX

environment

checker”

on

page

237

Indicating

errors

and

warnings

in

the

output

text

file

When

the

-srv

parameter

is

used,

errors,

warnings,

and

success

indicators

are

grouped

together

in

paragraphs.

Each

paragraph

is

associated

with

a

checked

file.

The

results

of

checking

each

file

are

displayed

in

the

output

file

if

you

indicated

a

file

name,

or

in

the

standard

output

device

if

no

filename

is

indicated.

The

paragraphs

are

grouped

together

according

to

the

path,

or

subdirectories,

in

directory

groups.

Here

is

an

excerpt

of

an

output

text

file

showing

the

error

Appendix

B.

DADX

environment

checker

239

messages

corresponding

to

the

checks

performed

in

files

sales_db.nst

and

getstart_xcollection.dad

belonging

to

group

/groups/dxx_sales_db:

##

Checking

group:

c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db

##

Checking

NST

file:

c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db\sales_db.nst

INFO.

Line

5:

file

"c:\dxx\samples\dtd\getstart.dtd"

is

accessible.

ERROR.

Line

12:

file

"wrongDtd.dtd"

CANNOT

be

found

either

in

the

file

system

or

in

the

database.

INFO.

Line

8:

file

"getstart.dtd"

is

accessible.

##

Checking

DAD

file:

c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db\getstart_xcollection.dad

WARNING.

Line

4:

DTDID

"dtd_.dtd"

CANNOT

be

found

in

the

DTD_REF

table.

INFO.

Line

9:

the

DTDID

"c:\dxx\samples\dtd\getstart.dtd"

has

been

declared

in

the

NST

file.

Errors,

warnings

and

success

messages

can

begin

with

a

line

number

if

the

error

or

warning

or

success

event

is

related

to

a

specific

line.

The

line

numbers

in

the

output

text

indicate

the

line

numbers

where

the

checked

elements

associated

with

the

messages

were

found

in

the

files.

There

is

no

order

related

to

the

output

within

a

paragraph.

Related

reference:

v

“Checking

errors

in

the

DAD

files”

on

page

243

v

“Checking

errors

in

the

DADX

files”

on

page

244

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

v

“Installing

the

DADX

environment

checker”

on

page

237

v

“Running

the

DADX

environment

checker”

on

page

238

v

“Checking

errors

in

the

NST

files”

on

page

242

v

“Checking

errors

in

the

web.xml

file”

on

page

241

Error

checking

by

the

DADX

environment

checker

When

you

invoke

the

DADX

environment

checker

with

the

-srv

parameter,

the

first

check

that

is

made

is

on

the

web.xml

file

within

directory

WEB-INF.

Then,

the

DADX

environment

checker

performs

checks

on

the

following

types

of

files

found

in

each

group

directory

in

the

WEB-INF\classes\groups

directory:

v

NST

files

v

DAD

files

v

DADX

files

When

you

invoke

the

DADX

environment

checker

without

the

-srv

parameter,

the

first

check

that

is

made

is

on

the

DADX

file

that

is

passed

as

the

file

to

check.

Then,

the

DADX

environment

checker

checks

the

DAD

files

that

are

referenced

in

this

DADX

file.

It

also

performs

checks

on

the

NST

file

of

the

group

to

which

the

DADX

file

belongs.

The

DADX

environment

checker

eventually

checks

the

web.xml

file

within

the

WEB-INF

directory

containing

the

DADX

file.

Database

error

message

For

some

checks

on

NST

and

DADX

files,

the

DADX

environment

checker

performs

the

following

actions:

1.

Attempts

to

establish

a

connection

to

the

database

by

using

data

contained

in

the

file

group.properties

240

Application

Developer’s

Guide

|
|
|
|

|

|

|

|
|
|
|
|
|

|

|
|

|
|

2.

Queries

the

database

with

which

the

group

is

associated

3.

Checks

the

files

of

a

group

for

errors

If

the

connection

to

the

database

fails,

the

DADX

environment

checker

issues

an

error

message.

The

following

example

shows

a

typical

error

message:

Checking

group:

c:\test\jakarta-tomcat-3.2.2

##Checking

group:

c:\tomcat\webapps\services

\WEB-INF\classes\groups\dxx_travel

WARNING.

Connection

error

[IBM][CLI

Driver]

SQL1013N

The

database

alias

name

or

database

name

"TRAVELLL"

could

not

be

found.

SQLSTATE=42705

Related

tasks:

v

“Customizing

the

group.properties

file”

on

page

64

v

“Defining

the

web.xml

and

group.properties

files”

on

page

59

Related

reference:

v

“Checking

errors

in

the

DAD

files”

on

page

243

v

“Checking

errors

in

the

DADX

files”

on

page

244

v

“Checking

errors

in

the

NST

files”

on

page

242

v

“Checking

errors

in

the

web.xml

file”

on

page

241

Checking

errors

in

the

web.xml

file

The

DADX

environment

checker

checks

the

WEB-INF\web.xml

file

under

the

root

directory

of

the

Web

Service

module,

which

is

services

in

this

example.

Here

is

an

excerpt

of

the

web.xml

file:

<servlet>

<servlet-name>dxx_sales_db</servlet-name>

<servlet-class>com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker

</servlet-class>

<init-param>

<param-name>faultListener</param-name>

<param-value>org.apache.soap.server.DOMFaultListener

</param-value>

</init-param>

<load-on-startup>-1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>dxx_sales_db</servlet-name>

<url-pattern>/sales/*</url-pattern>

</servlet-mapping>

The

<servlet-class>

tags,

which

are

direct

children

of

the

<servlet>

tags

must

have

a

value

of

either

com.ibm.etools.webservice.rt.isd.servlet.IsdInvoker

or

com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker.

When

their

values

are

different,

the

checker

provides

an

error

message.

The

following

example

shows

the

results

of

the

checks

performed

on

<servlet-class>

tags

in

a

web.xml

document:

INFO.

Line

21:

servlet

class

for

servlet

"dxx_sales_db"

is

a

correct

servlet

class.

ERROR.

Line

31:

servlet

class

"com.ibm.etools.webservice.rt.dxx.servlet.OtherInvoker"

for

servlet

"dxx_sample"

Appendix

B.

DADX

environment

checker

241

|

|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

is

NOT

a

correct

servlet

class.

INFO.

Line

41:

servlet

class

for

servlet

"dxx_travel"

is

a

correct

servlet

class.

Each

<servlet-mapping>

tag

contains

a

<servlet-name>

tag

with

a

value

that

must

be

the

same

as

the

value

of

the

<servlet-name>

tag

of

a

<servlet>

tag.

If

this

is

not

the

case

the

checker

provides

an

error

message

as

shown

in

the

following

example:

ERROR.

There

is

no

<servlet>

tag

declaring

servlet

"isd_demos"

mapped

at

line

50.

Otherwise,

each

<servlet>

tag

must

have

a

corresponding

<servlet-mapping>

tag

with

the

same

servlet

name.

If

a

<servlet>

tag

has

no

corresponding

<servlet-mapping>

tag,

the

checker

provides

the

following

kind

of

message:

ERROR.

There

is

no

<servlet-mapping>

tag

for

servlet

"dxx_travel"

declared

at

line

40.

Each

<servlet-mapping>

tag

also

contains

a

<url-pattern>

tag

with

a

value

that

must

be

unique.

If

two

<url-pattern>

tags

have

the

same

value,

the

checker

provides

an

error

message

as

shown

in

the

following

example:

ERROR.

Line

56:

"/sales/*"

is

already

declared

as

the

URL

pattern

for

servlet

"isd_demos"

(see

line

50).

Related

tasks:

v

“Defining

the

web.xml

and

group.properties

files”

on

page

59

Related

reference:

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

Checking

errors

in

the

NST

files

In

each

group

directory

there

might

be

an

NST

file.

NST

files

declare

the

namespace

table

of

the

group.

They

contain

mappings

between

DTD

identifiers

and

the

namespace

and

location

of

the

XML

schema

that

is

automatically

generated

from

the

DTD.

Here

is

an

excerpt

of

an

NST

file:

<namespaceTable

xmlns="http://schemas.ibm.com/db2/dxx/nst">

<mapping

dtdid="c:\dxx\samples\dtd\getstart.dtd"

namespace="http://schemas.ibm.com/db2/dxx/samples/dtd/getstart.dtd"

location="/dxx/samples/dtd/getstart.dtd/XSD"/>

<mapping

dtdid="getstart.dtd"

namespace="http://schemas.myco.com/sales/getstart.dtd"

location="/getstart.dtd/XSD"/>

The

DADX

environment

checker

first

validates

NST

files

for

correct

schema

in

nst.xsd.

Here

is

an

example

of

a

validation

error

reported

by

the

checker:

ERROR.

Validation

error,

in

"file:///c:/tomcat/webapps/services/WEB-

INF/classes/groups/dxx_sales_db/sales_db.nst",

line

8,

column

35.

cvc-complex-type.2.4.a:

Invalid

content

starting

with

element

’mappin’.

The

content

must

match

242

Application

Developer’s

Guide

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

’("http://schemas.ibm.com/db2/dxx/nst":mapping){0-UNBOUNDED}’.

ERROR.

Validation

error,

in

"file:///c:/tomcat/webapps/services/WEB-

INF/classes/groups/dxx_sales_db/sales_db.nst",

line

17,

column

32.

cvc-complex-type.4:

Attribute

’dtdid’

must

appear

on

element

’mapping’.

ERROR.

Validation

error,

in

"file:///c:/tomcat/webapps/services/WEB-

INF/classes/groups/dxx_sales_db/sales_db.nst",

line

17,

column

32.

Duplicate

unique

value

[ID

Value:

/order.dtd/XSD]

declared

for

identity

constraint

of

element

"namespaceTable".

Eventually,

the

checker

checks

that

the

dtdid

attributes

of

the

<mapping>

elements

are

either:

v

a

correct

path

in

the

file

system,

or

v

a

value

stored

in

column

DTDID

in

the

db2xml.DTD_REF

table

The

following

example

shows

the

results

of

the

checks

on

the

<mapping>

elements

of

an

NST

file:

INFO.

Line

5:

file

"c:\dxx\samples\dtd\getstart.dtd"

is

accessible.

ERROR.

Line

14:

file

"wrongDtd.dtd"

CANNOT

be

found

either

in

the

file

system

or

in

the

database.

Related

reference:

v

“Checking

errors

in

the

DAD

files”

on

page

243

v

“Checking

errors

in

the

DADX

files”

on

page

244

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

v

“Installing

the

DADX

environment

checker”

on

page

237

v

“Running

the

DADX

environment

checker”

on

page

238

v

“Checking

errors

in

the

web.xml

file”

on

page

241

Checking

errors

in

the

DAD

files

The

Document

Access

Definition

(DAD)

file

is

an

XML

file

that

is

supported

in

DB2

XML

Extender.

The

DAD

associates

XML

documents

to

DB2

Universal

Database

tables

through

two

alternative

access

and

storage

methods:

XML

columns

and

XML

collections.

The

following

example

shows

the

beginning

of

a

DAD

file:

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"c:\dxx\dtd\dad.dtd">

<DAD>

<dtdid>c:\dxx\samples\dtd\getstart.dtd</dtdid>

<validation>NO</validation>

<Xcollection>

<prolog>?xml

version="1.0"?</prolog>

<doctype>!DOCTYPE

Order

SYSTEM

"c:\dxx\samples\dtd\getstart.dtd"

</doctype>

<root_node>

<element_node

name="Order">

...

Appendix

B.

DADX

environment

checker

243

The

DADX

environment

checker

first

checks

that

the

DAD

file

is

valid

according

to

its

DTD

dad.dtd.

You

must

ensure

that

the

path

to

dad.dtd

specified

in

the

DOCTYPE

declaration

of

the

DAD

is

correct.

Then

the

checker

gets

the

value

of

the

<dtdid>

tag

if

it

is

present.

If

the

value

of

this

tag

does

not

match

a

value

stored

in

column

DTDID

in

the

db2xml.DTD_REF

table,

then

the

checker

issues

a

warning.

If

the

<validation>

tag

in

the

DAD

contains

a

value

of

YES,

then

the

checker

issues

an

error

message:

##

Checking

DAD

file:

c:\tomcat\webapps\services\WEB-INF

\classes\groups\dxx_sales_db\order.dad

ERROR.

Line

4:

DTDID

"wrongDtd.dtd"

CANNOT

be

found

in

the

DTD_REF

table.

Then

the

checker

determines

whether

the

DAD

file

declares

an

Xcollection

or

an

Xcolumn.

If

it

declares

an

Xcollection,

the

DTD

specified

in

the

<doctype>

element

is

extracted.

The

DADX

environment

checker

checks

that

this

DTD

is

declared

in

the

NST

file.

The

following

example

shows

the

results

of

the

checks

of

an

Xcolumn

and

an

Xcollection

DAD

belonging

to

the

same

group:

##

Checking

DAD

file:

c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db\getstart_xcolumn.dad

INFO.

Line

4:

DTDID

"getstart.dtd"

was

found

in

the

DTD_REF

table.

##

Checking

DAD

file:

c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db\order-public.dad

INFO.

Line

4:

DTDID

"order.dtd"

was

found

in

the

DTD_REF

table.

ERROR.

Line

8:

the

DTDID

"order.dtd"

has

NOT

been

declared

in

the

NST

file.

You

can

also

perform

other

checks

on

the

DAD

files

by

using

the

DAD

checker.

The

DAD

checker

is

a

separate

tool

that

is

also

contained

in

the

tools\lib

directory

in

dxxworf.zip.

For

more

information,

see

the

documentation

on

dadchecker

tool

at

the

WebSphere

Application

Development

Web

site.

Related

reference:

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

v

“Web

services

samples

–

PartOrders.dadx”

on

page

127

Checking

errors

in

the

DADX

files

Document

Access

Definition

Extension

(DADX)

is

a

technology

for

rapidly

creating

Web

services

that

access

databases.

DADX

lets

you

define

Web

service

operations

using

the

standard

SQL

statements

SELECT,

INSERT,

UPDATE,

DELETE,

and

CALL,

and

the

DB2

XML

Extender

stored

procedures.

Here

is

an

excerpt

of

a

DADX

file:

<?xml

version="1.0"?>

<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<operation

name="find">

<documentation

>

Returns

the

parts

from

order

#1

with

price

>

20000.

</documentation>

<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>

244

Application

Developer’s

Guide

<no_override/>

</retrieveXML>

</operation>

<operation

name="findByMinPrice">

<retrieveXML>

<collection_name>

getstart_xcollection.dad

</collection_name>

<no_override/>

<parameter

name="minprice"

type="xsd:decrimal"/>

</retrieveXML>

</operation>

The

DADX

environment

checker

first

validates

the

DADX

file

according

to

its

schema,

dadx.xsd.

Then

the

checker

gets

the

values

of

the

<DAD_REF>

or

<collection_name>

tags

and

it

checks

that

the

values

of

these

tags

are:

v

for

<DAD_REF>

tags,

a

correct

path

to

a

DAD

file

in

the

file

system

v

for

<collection_name>,

the

name

of

an

enabled

collection,

which

is

a

value

stored

in

column

COL_NAME

from

table

db2xml.xml_usage.

The

following

example

shows

the

results

of

the

checks

performed

on

a

DADX

file:

##

Checking

DADX

file:

c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db\PartOrders.dadx

ERROR.

Validation

error,

in

"file:///c:/tomcat/webapps/services/WEB-

INF/classes/groups/dxx_sales_db/PartOrders.dadx",

line

8,

column

67.

cvc-complex-type.2.4.c:

The

matching

wildcard

is

strict,

but

no

declaration

can

be

found

for

element

’as’.

INFO.

Line

16:

for

operation

"find",

DAD

"getstart_xcollection.dad"

was

found.

ERROR.

Line

26:

for

operation

"findAll",

DAD

"non_existing_dad.dad"

was

NOT

found.

INFO.

Line

44:

for

operation

"findByColor",

DAD

"getstart_xcollection.dad"

was

found.

INFO.

Line

65:

for

operation

"findByMinPrice",

DAD

"getstart_xcollection.dad"

was

found.

If

an

<operation>

tag

has

no

<DAD_REF>

or

<collection_name>

tag

as

a

child,

the

checker

issues

a

message

indicating

that

no

check

was

performed

for

this

particular

operation,

as

shown

in

the

following

example:

##

Checking

DADX

file:

c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sample\HelloSample.dadx

INFO.

Line

10:

no

<DAD_ref>

or

<collection_name>

elements

to

check

for

operation

"listDepartments".

The

DADX

environment

checker

also

checks

if

WORF

will

be

able

to

find

a

deserializer

for

the

parameters

declared

in

the

DADX

file.

A

deserializer

reconstructs

XML

messages

received

across

a

network

connection

into

the

specified

variable

or

object.

For

every

<parameter>

tag,

the

value

of

its

type

attribute

must

be

a

type

that

can

be

deserialized.

If

no

deserializer

can

be

found

for

a

particular

type,

the

checker

provides

an

error

message

as

shown

in

the

following

example:

ERROR.

Line

13:

no

deserializer

was

found

to

deserialize

a

"http://www.w3.org/2001/XMLSchema:ssstring",

using

encoding

"http://schemas.xmlsoap.org/soap/encoding/".

Related

concepts:

v

“Definition

of

a

DADX

file”

on

page

29

Appendix

B.

DADX

environment

checker

245

|
|
|
|
|

|

Related

reference:

v

“Error

checking

by

the

DADX

environment

checker”

on

page

240

246

Application

Developer’s

Guide

Appendix

C.

XML

schema

for

the

DADX

file

The

following

Extensible

Markup

Language

(XML)

schema,

dadx.xsd,

describes

the

DADX.

All

of

the

WORF

schema

files

are

in

the

dxxworf.zip

file,

which

is

part

of

the

samples

directory.

<?xml

version="1.0"

encoding="UTF-8"?>

<schema

targetNamespace="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:dadx="http://schemas.ibm.com/db2/dxx/dadx"

xmlns="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

xml:lang="en">

<annotation>

<documentation>

A

Document

Accession

Definition

Extension

(DADX)

document

defines

a

Web

Service

that

is

implemented

by

operations

that

access

a

relational

database

and

that

optionally

use

stored

procedures,

types

and

functions

provided

by

the

DB2

XML

Extender.

</documentation>

</annotation>

<element

name="DADX">

<annotation>

<documentation>

Defines

a

Web

Service.

The

Web

Service

is

described

by

an

optional

WSDL

documentation

element.

The

Web

Service

may

implement

a

set

of

WSDL

bindings

defined

elsewhere.

The

Web

Service

consists

of

one

or

more

uniquely

named

operations.

</documentation>

</annotation>

Figure

77.

DADX

schema

(Part

1

of

17)

©

Copyright

IBM

Corp.

2003,

2004

247

<complexType>

<sequence>

<element

ref="dadx:documentation"

minOccurs="0"

maxOccurs="unbounded"/>

<choice>

<element

ref="dadx:DQS"

minOccurs="0"/>

<sequence>

<element

ref="dadx:implements"

minOccurs="0"/>

<element

ref="dadx:result_set_metadata"

minOccurs="0"

maxOccurs="unbounded"/>

<element

ref="dadx:operation"

maxOccurs="unbounded"/>

</sequence>

</choice>

</sequence>

</complexType>

<key

name="result_set_metadataNames">

<selector

xpath="dadx:result_set_metadata"/>

<field

xpath="@name"/>

</key>

<keyref

name="resultSetMetatdata"

refer="dadx:result_set_metadataNames">

<selector

xpath="dadx:operation/dadx:call/dadx:result_set"/>

<field

xpath="@metadata"/>

</keyref>

<unique

name="operationNames">

<selector

xpath="dadx:operation"/>

<field

xpath="@name"/>

</unique>

</element>

Figure

77.

DADX

schema

(Part

2

of

17)

<element

name="DQS">

<annotation>

<documentation>

Defines

the

DQS

tag.

</documentation>

</annotation>

<complexType/>

</element>

Figure

77.

DADX

schema

(Part

3

of

17)

248

Application

Developer’s

Guide

<element

name="documentation">

<annotation>

<documentation>

Defines

WSDL

documentation

for

the

Web

service

or

an

operation.

</documentation>

</annotation>

<complexType

mixed="true">

<choice

minOccurs="0"

maxOccurs="unbounded">

<any

minOccurs="0"

maxOccurs="unbounded"/>

</choice>

<anyAttribute/>

</complexType>

</element>

Figure

77.

DADX

schema

(Part

4

of

17)

<element

name="implements">

<annotation>

<documentation>

Defines

the

namespace

and

location

of

a

set

of

WSDL

bindings

defined

elsewhere.

This

information

is

imported

into

the

WSDL

document

generated

for

this

Web

Service.

</documentation>

</annotation>

<complexType>

<attribute

name="namespace"

type="anyURI"

use="required"/>

<attribute

name="location"

type="anyURI"

use="required"/>

</complexType>

</element>

Figure

77.

DADX

schema

(Part

5

of

17)

Appendix

C.

XML

schema

for

the

DADX

file

249

<element

name="result_set_metadata">

<annotation>

<documentation>

Defines

the

metadata

for

a

result

set

returned

by

a

stored

procedure.

Each

metadata

element

defines

a

global

element

in

the

WSDL

for

the

Web

Service.

The

metatdata

name

defines

the

name

of

its

global

element.

The

metadata

rowName

defines

the

element

name

of

each

row.

The

metadata

contains

one

or

more

column

definitions.

</documentation>

</annotation>

<complexType>

<sequence>

<element

ref="dadx:column"

maxOccurs="unbounded"/>

</sequence>

<attribute

name="name"

type="NCName"

use="required"/>

<attribute

name="rowName"

type="NCName"

use="required"/>

</complexType>

</element>

Figure

77.

DADX

schema

(Part

6

of

17)

250

Application

Developer’s

Guide

<element

name="column">

<annotation>

<documentation>

Defines

the

metadata

for

a

column

of

a

result

set

returned

by

a

stored

procedure.

The

column

name,

type,

and

nullability

must

match

the

values

returned

by

the

JDBC

result

set

metadata

at

runtime.

A

column

is

considered

to

be

nullable

unless

it

is

explicitly

defined

to

not

accept

nulls.

If

the

"nullable"

attribute

is

absent

then

the

column

is

considered

to

not

be

nullable.

The

element

name

associated

with

the

column

isdefined

by

the

value

of

the

"as"

attribute

if

present,

or

the

column

name

otherwise.

The

element

may

contain

an

XML

document,

in

which

case

it

must

have

an

"element"

attribute

that

defines

the

XML

Schema

name

of

its

root

element.

</documentation>

</annotation>

<complexType>

<attribute

name="name"

type="string"

use="required"/>

<attribute

name="type"

type="dadx:columnType"

use="required"/>

<attribute

name="nullable"

type="boolean"/>

<attribute

name="as"

type="string"/>

<attribute

name="element"

type="QName"/>

</complexType>

</element>

Figure

77.

DADX

schema

(Part

7

of

17)

<simpleType

name="columnType">

<restriction

base="string">

<enumeration

value="BIGINT"/>

<enumeration

value="CHAR"/>

<enumeration

value="CLOB"/>

<enumeration

value="DATE"/>

<enumeration

value="DECIMAL"/>

<enumeration

value="DOUBLE"/>

<enumeration

value="FLOAT"/>

<enumeration

value="INTEGER"/>

<enumeration

value="NUMERIC"/>

<enumeration

value="REAL"/>

<enumeration

value="SMALLINT"/>

<enumeration

value="TIME"/>

<enumeration

value="TIMESTAMP"/>

<enumeration

value="TINYINT"/>

<enumeration

value="VARCHAR"/>

</restriction>

</simpleType>

Figure

77.

DADX

schema

(Part

8

of

17)

Appendix

C.

XML

schema

for

the

DADX

file

251

<element

name="operation">

<annotation>

<documentation>

Defines

an

operation

of

the

Web

Service.

Each

operation

has

a

unique

name

and

is

optionally

described

by

WSDL

documentation.

An

operation

is

defined

using

one

of

the

supported

operators.

</documentation>

</annotation>

<complexType>

<sequence>

<element

ref="dadx:documentation"

minOccurs="0"/>

<choice>

<element

ref="dadx:retrieveXML"/>

<element

ref="dadx:storeXML"/>

<element

ref="dadx:query"/>

<element

ref="dadx:update"/>

<element

ref="dadx:call"/>

</choice>

</sequence>

<attribute

name="name"

type="NCName"

use="required"/>

</complexType>

</element>

Figure

77.

DADX

schema

(Part

9

of

17)

252

Application

Developer’s

Guide

<element

name="retrieveXML">

<annotation>

<documentation>

Retrieves

a

set

of

XML

documents

by

composing

them

from

relational

data.

This

operator

requires

the

DB2

XML

Extender.

The

mapping

from

relational

data

to

XML

is

defined

by

a

Document

Access

Definition

(DAD)

which

can

be

specified

by

refering

to

either

a

resource

file

or

the

name

of

an

XML

Collection

that

has

been

previously

enabled

in

the

database.

The

DAD

must

define

an

XML

Collection

and

can

use

either

SQL

or

RDB

mapping.

The

DAD

behavior

may

be

modified

by

an

override.

If

no

override

is

desired,

the

no_override

element

must

be

used.

Otherwise,

the

SQL_override

element

must

be

used

for

SQL

mapping

and

the

XML_override

element

must

be

used

for

RDB

mapping.

In

either

case,

the

override

string

may

contain

input

parameters

using

the

host

variable

syntax.

The

name

and

type

of

all

parameters

must

be

defined

in

a

list

of

parameter

elements

that

are

uniquely

named

within

this

operation.

</documentation>

</annotation>

<complexType>

<sequence>

<choice>

<element

ref="dadx:DAD_ref"/>

<element

ref="dadx:collection_name"/>

</choice>

<choice>

<element

name="no_override">

<complexType/>

</element>

<element

name="SQL_override"

type="string"/>

<element

name="XML_override"

type="string"/>

</choice>

<element

ref="dadx:parameter"

minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</complexType>

<unique

name="retrieveXmlParameterNames">

<selector

xpath="dadx:parameter"/>

<field

xpath="@name"/>

</unique>

</element>

Figure

77.

DADX

schema

(Part

10

of

17)

Appendix

C.

XML

schema

for

the

DADX

file

253

<element

name="storeXML">

<annotation>

<documentation>

Stores

an

XML

document

by

decomposing

it

into

relational

data.

This

operator

requires

the

DB2

XML

Extender.

The

mapping

from

relational

data

to

XML

is

defined

by

a

Document

Access

Definition

(DAD)

which

can

be

specified

by

refering

to

either

a

resource

file

or

the

name

of

an

XML

Collection

that

has

been

previously

enabled

in

the

database.

The

DAD

must

define

an

XML

Collection

and

must

use

RDB

mapping.

</documentation>

</annotation>

<complexType>

<choice>

<element

ref="dadx:DAD_ref"/>

<element

ref="dadx:collection_name"/>

</choice>

</complexType>

</element>

Figure

77.

DADX

schema

(Part

11

of

17)

254

Application

Developer’s

Guide

<element

name="query">

<annotation>

<documentation>

Retrieves

a

set

of

relational

data

using

an

SQL

SELECT

statement.

The

result

set

must

consist

of

uniquely

named

columns.

If

any

result

set

column

contains

XML

documents,

the

XML

document

type

must

be

defined

using

an

XML_result

element.

The

statement

may

contain

input

parameters

using

the

host

variable

syntax.

The

input

parameters

must

be

defined

by

a

list

of

parameter

elements

that

are

uniquely

named

within

this

operation.

</documentation>

</annotation>

<complexType>

<sequence>

<element

name="SQL_query"

type="string"/>

<element

ref="dadx:XML_result"

minOccurs="0"

maxOccurs="unbounded"/>

<element

ref="dadx:parameter"

minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</complexType>

<unique

name="XML_resultNames">

<selector

xpath="dadx:XML_result"/>

<field

xpath="@name"/>

</unique>

<unique

name="queryParameterNames">

<selector

xpath="dadx:parameter"/>

<field

xpath="@name"/>

</unique>

</element>

Figure

77.

DADX

schema

(Part

12

of

17)

Appendix

C.

XML

schema

for

the

DADX

file

255

<element

name="update">

<annotation>

<documentation>

Updates

a

relational

table

using

an

SQL

INSERT,

UPDATE,

or

DELETE

statement

and

reports

the

number

of

rows

affected.

The

statement

may

contain

input

parameters

using

the

host

variable

syntax.

The

input

parameters

must

be

defined

by

a

list

of

parameter

elements

that

are

uniquely

named

within

this

operation.

</documentation>

</annotation>

<complexType>

<sequence>

<element

name="SQL_update"

type="string"/>

<element

ref="dadx:parameter"

minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</complexType>

<unique

name="updateParameterNames">

<selector

xpath="dadx:parameter"/>

<field

xpath="@name"/>

</unique>

</element>

Figure

77.

DADX

schema

(Part

13

of

17)

256

Application

Developer’s

Guide

<element

name="call">

<annotation>

<documentation>

Calls

a

stored

procedure.

The

call

statement

contains

in,

out,

and

in/out

parameters

using

host

variable

syntax.

The

parameters

are

defined

by

a

list

of

parameter

elements

that

are

uniquely

named

within

the

operation.

</documentation>

</annotation>

<complexType>

<sequence>

<element

name="SQL_call"

type="string"/>

<element

ref="dadx:parameter"

minOccurs="0"

maxOccurs="unbounded"/>

<element

ref="dadx:result_set"

minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

</complexType>

<unique

name="callParameterNames">

<selector

xpath="dadx:parameter"/>

<field

xpath="@name"/>

</unique>

<unique

name="callResultSetNames">

<selector

xpath="dadx:result_set"/>

<field

xpath="@name"/>

</unique>

</element>

Figure

77.

DADX

schema

(Part

14

of

17)

<element

name="result_set">

<annotation>

<documentation>

Defines

a

result

set.

The

name

defines

the

element

name

of

the

result

set

and

becomes

part

of

the

output

message.

The

metatdata

name

refers

to

a

result

set

metadata

element

defined

in

the

same

document.

</documentation>

</annotation>

<complexType>

<attribute

name="name"

type="NCName"

use="required"/>

<attribute

name="metadata"

type="NCName"

use="required"/>

</complexType>

</element>

<element

name="DAD_ref"

type="string"/>

<element

name="collection_name"

type="string"/>

Figure

77.

DADX

schema

(Part

15

of

17)

Appendix

C.

XML

schema

for

the

DADX

file

257

Related

concepts:

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

v

“Definition

of

a

DADX

file”

on

page

29

<element

name="parameter">

<annotation>

<documentation>

Defines

a

named

parameter.

A

parameter

must

have

it

contents

defined

either

by

an

XML

Schema

element

or

type,

but

not

both.

The

parameter

kind

in

one

of

in,

out,

or

in/out,

with

in

being

the

default.

</documentation>

</annotation>

<complexType>

<attribute

name="name"

type="NCName"

use="required"/>

<attribute

name="element"

type="QName"/>

<attribute

name="type"

type="QName"/>

<attribute

name="kind"

type="dadx:parameterKindType"

default="in"/>

</complexType>

</element>

<simpleType

name="parameterKindType">

<restriction

base="string">

<enumeration

value="in"/>

<enumeration

value="out"/>

<enumeration

value="in/out"/>

</restriction>

</simpleType>

Figure

77.

DADX

schema

(Part

16

of

17)

<element

name="XML_result">

<annotation>

<documentation>

Defines

a

named

column

that

contains

XML

documents.

The

document

type

must

be

defined

by

the

XML

Schema

element

of

its

root.

</documentation>

</annotation>

<complexType>

<attribute

name="name"

type="NCName"

use="required"/>

<attribute

name="element"

type="QName"

use="required"/>

</complexType>

</element>

</schema>

Figure

77.

DADX

schema

(Part

17

of

17)

258

Application

Developer’s

Guide

Related

tasks:

v

“Converting

a

document

type

definition

to

an

XML

schema”

on

page

86

Related

reference:

v

“DADX

operation

examples”

on

page

80

Appendix

C.

XML

schema

for

the

DADX

file

259

260

Application

Developer’s

Guide

Appendix

D.

Web

services

encoding

algorithm

This

is

an

algorithm

that

encodes

and

decodes

the

password

within

the

group.properties

file.

1.

Convert

the

clear

text

information

into

a

sequence

of

data

bytes

by

using

UTF-8

character

encoding.

Let

L

be

the

length

of

the

data

byte

sequence.

2.

Convert

the

data

bytes

into

a

further

sequence

of

data

bytes,

data8,

that

is

8

times

longer.

You

compute

byte

k

of

data8

as

follows.

Let

k

=

j

*

L

+

i

where

0

<=

i

<

L

and

0

<=

j

<

8.

First

mask

bit

j

of

data

byte

i.

Second,

exclusive

or

this

with

k.

This

step

distributes

the

bits

of

each

data

byte

throughout

the

length

of

the

data8

sequence.

3.

Apply

the

standard

base64

encoding

algorithm

to

data8.

This

step

renders

the

bytes

as

printable

characters

and

also

increases

the

length

by

a

factor

of

four-thirds

(4/3).

4.

Prefix

the

encoded

string

with

"encoded:"

to

denote

that

it

has

been

encoded.

Related

concepts:

v

“Defining

the

Web

service

with

the

document

access

definition

extension

file”

on

page

66

v

“Definition

of

a

DADX

file”

on

page

29

v

“Testing

Web

services

applications

–

a

scenario”

on

page

109

v

“Overview

of

the

Web

services

process”

on

page

32

Related

reference:

v

Appendix

E,

“Web

services

command

reference,”

on

page

263

©

Copyright

IBM

Corp.

2003,

2004

261

262

Application

Developer’s

Guide

Appendix

E.

Web

services

command

reference

This

section

represents

the

commands

you

can

use

to

do

specific

functions

within

WORF.

Encoder

Encodes

or

decodes

a

password

in

the

group.properties

file.

v

Example

of

encoding

(assumes

that

worf.jar

is

listed

in

the

CLASSPATH):

java

com.ibm.etools.webservice.rt.util.Encoder

-in

group.properties

-out

group.properties

v

Example

of

decoding

(assumes

that

worf.jar

is

listed

in

the

CLASSPATH):

java

com.ibm.etools.webservice.rt.util.Encoder

-action

decode

-in

group.properties

-out

group.properties

Dadx2Dd

Generates

a

deployment

descriptor

from

a

DADX

file.

v

Example:

java

com.ibm.etools.webservice.rt.dadx.Dadx2Dd

Check_install

Validates

a

DADX

file.

v

Example:

java

com.ibm.etools.webservice.util.Check_install

[-srv]

[-schdir

pathToSchemasDir]

[-sch

schemaLocations]

[-out

outputFile]

fileToCheck

dadchecker

Validates

a

DAD

file.

For

more

information

on

the

parameters

to

use

with

this

command,

see

http://www.ibm.com/software/data/db2

/extenders/xmlext/download/beta/dadcheck_rn.html

v

Example:

java

dadchecker.Check_dad_xml

[-dad

|

-xml]

[-all]

[-dup

dupName]

[-enc

encoding][-dtd

dtdPath]

[-xstruct

xmlDocument]

[-out

outputFile]

fileToCheck

Related

concepts:

v

“Introduction

to

using

DB2

as

a

Web

services

provider

–

WORF”

on

page

25

v

“Web

services

provider

features”

on

page

30

Related

tasks:

v

“Generating

deployment

descriptors”

on

page

133

Related

reference:

v

Appendix

D,

“Web

services

encoding

algorithm,”

on

page

261

v

“Web

services

samples

–

PartOrders.dadx”

on

page

127

©

Copyright

IBM

Corp.

2003,

2004

263

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|

|
|
|

http://www.ibm.com/software/data/db2/extenders/xmlext/index.html
http://www.ibm.com/software/data/db2/extenders/xmlext/index.html

264

Application

Developer’s

Guide

DB2

Information

Integrator

documentation

This

topic

provides

information

about

the

documentation

that

is

available

for

DB2

Information

Integrator.

The

tables

in

this

topic

provide

the

official

document

title,

form

number,

and

location

of

each

PDF

book.

To

order

a

printed

book,

you

must

know

either

the

official

book

title

or

the

document

form

number.

Titles,

file

names,

and

the

locations

of

the

DB2

Information

Integrator

release

notes

and

installation

requirements

are

also

provided

in

this

topic.

This

topic

contains

the

following

sections:

v

Accessing

DB2

Information

Integrator

documentation

v

Documentation

for

replication

function

on

z/OS

v

Documentation

for

event

publishing

function

for

DB2

Universal

Database

on

z/OS

v

Documentation

for

event

publishing

function

for

IMS

and

VSAM

on

z/OS

v

Documentation

for

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

v

Documentation

for

federated

function

on

z/OS

v

Documentation

for

federated

function

on

Linux,

UNIX,

and

Windows

v

Documentation

for

enterprise

search

on

Linux,

UNIX,

and

Windows

v

Release

notes

and

installation

requirements

Accessing

DB2

Information

Integrator

documentation

All

DB2

Information

Integrator

books

and

release

notes

are

available

in

PDF

files

from

the

DB2

Information

Integrator

Support

Web

site

at

www.ibm.com/software/data/integration/db2ii/support.html.

To

access

the

latest

DB2

Information

Integrator

product

documentation,

from

the

DB2

Information

Integrator

Support

Web

site,

click

on

the

Product

Information

link,

as

shown

in

Figure

78

on

page

266.

©

Copyright

IBM

Corp.

2003,

2004

265

|
|
|
|
|
|

|

|

|

|
|

|

|
|

|

|

|

|

|
|
|

http://www.ibm.com/software/data/integration/db2ii/support.html

You

can

access

the

latest

DB2

Information

Integrator

documentation,

in

all

supported

languages,

from

the

Product

Information

link:

v

DB2

Information

Integrator

product

documentation

in

PDF

files

v

Fix

pack

product

documentation,

including

release

notes

v

Instructions

for

downloading

and

installing

the

DB2

Information

Center

for

Linux,

UNIX,

and

Windows

v

Links

to

the

DB2

Information

Center

online

Scroll

though

the

list

to

find

the

product

documentation

for

the

version

of

DB2

Information

Integrator

that

you

are

using.

Figure

78.

Accessing

the

Product

Information

link

from

DB2

Information

Integrator

Support

Web

site

266

Application

Developer’s

Guide

|
|

|

|

|
|

|

The

DB2

Information

Integrator

Support

Web

site

also

provides

support

documentation,

IBM

Redbooks,

white

papers,

product

downloads,

links

to

user

groups,

and

news

about

DB2

Information

Integrator.

You

can

also

view

and

print

the

DB2

Information

Integrator

PDF

books

from

the

DB2

PDF

Documentation

CD.

To

view

or

print

the

PDF

documentation:

1.

From

the

root

directory

of

the

DB2

PDF

Documentation

CD,

open

the

index.htm

file.

2.

Click

the

language

that

you

want

to

use.

3.

Click

the

link

for

the

document

that

you

want

to

view.

Documentation

about

replication

function

on

z/OS

Table

30.

DB2

Information

Integrator

documentation

about

replication

function

on

z/OS

Name

Form

number

Location

ASNCLP

Program

Reference

for

Replication

and

Event

Publishing

N/A

DB2

Information

Integrator

Support

Web

site

Introduction

to

Replication

and

Event

Publishing

GC18-7567

DB2

Information

Integrator

Support

Web

site

Migrating

to

SQL

Replication

N/A

DB2

Information

Integrator

Support

Web

site

Replication

and

Event

Publishing

Guide

and

Reference

SC18-7568

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Replication

Installation

and

Customization

Guide

for

z/OS

SC18-9127

DB2

Information

Integrator

Support

Web

site

SQL

Replication

Guide

and

Reference

SC27-1121

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Tuning

for

Replication

and

Event

Publishing

Performance

N/A

DB2

Information

Integrator

Support

Web

site

Tuning

for

SQL

Replication

Performance

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

N/A

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

DB2

Information

Integrator

documentation

267

|
|
|

|

|
|

|

|

||

|
|
||

|
|
||
|

|
|
||
|

|||
|

|
|
||

|
|

|
|
||
|

|||

|
|

|
|
||
|

|||
|

|
|
|

||
|
|
|
|
|
|

|
|

|
|

|
|
|

Documentation

about

event

publishing

function

for

DB2

Universal

Database

on

z/OS

Table

31.

DB2

Information

Integrator

documentation

about

event

publishing

function

for

DB2

Universal

Database

on

z/OS

Name

Form

number

Location

ASNCLP

Program

Reference

for

Replication

and

Event

Publishing

N/A

DB2

Information

Integrator

Support

Web

site

Introduction

to

Replication

and

Event

Publishing

GC18-7567

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Replication

and

Event

Publishing

Guide

and

Reference

SC18-7568

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Tuning

for

Replication

and

Event

Publishing

Performance

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

N/A

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

Documentation

about

event

publishing

function

for

IMS

and

VSAM

on

z/OS

Table

32.

DB2

Information

Integrator

documentation

about

event

publishing

function

for

IMS

and

VSAM

on

z/OS

Name

Form

number

Location

Client

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9160

DB2

Information

Integrator

Support

Web

site

Data

Mapper

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9163

DB2

Information

Integrator

Support

Web

site

Getting

Started

with

Event

Publisher

for

z/OS

GC18-9186

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

GC18-9301

DB2

Information

Integrator

Support

Web

site

Operations

Guide

for

Event

Publisher

for

z/OS

SC18-9157

DB2

Information

Integrator

Support

Web

site

268

Application

Developer’s

Guide

||
|

|
|
||

|
|
||
|

|
|
||

|
|

|
|
||

|
|

|
|
||
|

|
|
|

||
|
|
|
|
|
|

|
|

|
|

|
|
|

||
|

|
|
||

|
|
||
|

|
|
||
|

|||
|

|
|
||
|

|||
|

Table

32.

DB2

Information

Integrator

documentation

about

event

publishing

function

for

IMS

and

VSAM

on

z/OS

(continued)

Name

Form

number

Location

Planning

Guide

for

Event

Publisher

for

z/OS

SC18-9158

DB2

Information

Integrator

Support

Web

site

Reference

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9156

DB2

Information

Integrator

Support

Web

site

System

Messages

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9162

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Event

Publisher

for

IMS

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Event

Publisher

for

VSAM

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Documentation

about

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

Table

33.

DB2

Information

Integrator

documentation

about

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

Name

Form

number

Location

ASNCLP

Program

Reference

for

Replication

and

Event

Publishing

N/A

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Linux,

UNIX,

and

Windows

GC18-7036

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Introduction

to

Replication

and

Event

Publishing

GC18-7567

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Migrating

to

SQL

Replication

N/A

DB2

Information

Integrator

Support

Web

site

Replication

and

Event

Publishing

Guide

and

Reference

SC18-7568

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

SQL

Replication

Guide

and

Reference

SC27-1121

DB2

Information

Integrator

Support

Web

site

Tuning

for

Replication

and

Event

Publishing

Performance

N/A

DB2

Information

Integrator

Support

Web

site

Tuning

for

SQL

Replication

Performance

N/A

DB2

Information

Integrator

Support

Web

site

DB2

Information

Integrator

documentation

269

|
|

|
|
||

|||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|
|

||
|

|||

|
|
||
|

|
|
||

|
|

|
|
||

|
|

|||
|

|
|
||

|
|

|||
|

|
|
||
|

|||
|

Table

33.

DB2

Information

Integrator

documentation

about

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

(continued)

Name

Form

number

Location

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

N/A

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

Documentation

about

federated

function

on

z/OS

Table

34.

DB2

Information

Integrator

documentation

about

federated

function

on

z/OS

Name

Form

number

Location

Client

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9160

DB2

Information

Integrator

Support

Web

site

Data

Mapper

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9163

DB2

Information

Integrator

Support

Web

site

Getting

Started

with

Classic

Federation

for

z/OS

GC18-9155

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

GC18-9301

DB2

Information

Integrator

Support

Web

site

Reference

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9156

DB2

Information

Integrator

Support

Web

site

System

Messages

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9162

DB2

Information

Integrator

Support

Web

site

Transaction

Services

Guide

for

Classic

Federation

for

z/OS

SC18-9161

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Classic

Federation

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Documentation

about

federated

function

on

Linux,

UNIX,

and

Windows

Table

35.

DB2

Information

Integrator

documentation

about

federated

function

on

Linux,

UNIX,

and

Windows

Name

Form

number

Location

Application

Developer’s

Guide

SC18-7359

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

270

Application

Developer’s

Guide

|
|

|||

|
|
|

||
|
|
|
|
|
|

|
|

|
|

|
|
|

||

|||

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|
|

||
|

|
|
||

|||

|
|

Table

35.

DB2

Information

Integrator

documentation

about

federated

function

on

Linux,

UNIX,

and

Windows

(continued)

Name

Form

number

Location

C++

API

Reference

for

Developing

Wrappers

SC18-9172

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Data

Source

Configuration

Guide

N/A

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Federated

Systems

Guide

SC18-7364

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Guide

to

Configuring

the

Content

Connector

for

VeniceBridge

N/A

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Linux,

UNIX,

and

Windows

GC18-7036

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Java

API

Reference

for

Developing

Wrappers

SC18-9173

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Migration

Guide

SC18-7360

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Wrapper

Developer’s

Guide

SC18-9174

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

N/A

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

DB2

Information

Integrator

documentation

271

|
|

|
|
||

|||

|
|

|||

|
|

|||

|
|

|
|
||
|

|
|
||

|
|

|||

|
|

|||

|
|

|||

|
|

|
|
|

||
|
|
|
|
|
|

|
|

|
|

|
|
|

Documentation

about

enterprise

search

function

on

Linux,

UNIX,

and

Windows

Table

36.

DB2

Information

Integrator

documentation

about

enterprise

search

function

on

Linux,

UNIX,

and

Windows

Name

Form

number

Location

Administering

Enterprise

Search

SC18-9283

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Enterprise

Search

GC18-9282

DB2

Information

Integrator

Support

Web

site

Programming

Guide

and

API

Reference

for

Enterprise

Search

SC18-9284

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

Enterprise

Search

N/A

DB2

Information

Integrator

Support

Web

site

Release

notes

and

installation

requirements

Release

notes

provide

information

that

is

specific

to

the

release

and

fix

pack

level

for

your

product

and

include

the

latest

corrections

to

the

documentation

for

each

release.

Installation

requirements

provide

information

that

is

specific

to

the

release

of

your

product.

Table

37.

DB2

Information

Integrator

Release

Notes

and

Installation

Requirements

Name

File

name

Location

Installation

Requirements

for

IBM

DB2

Information

Integrator

Event

Publishing

Edition,

Replication

Edition,

Standard

Edition,

Advanced

Edition,

Advanced

Edition

Unlimited,

Developer

Edition,

and

Replication

for

z/OS

Prereqs

v

The

DB2

Information

Integrator

product

CD

v

DB2

Information

Integrator

Installation

Launchpad

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

ReleaseNotes

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

Release

Notes

for

IBM

DB2

Information

Integrator

Event

Publisher

for

IMS

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

272

Application

Developer’s

Guide

||
|

|||

|||
|
|

|||
|
|

|
|
||
|
|

|||
|
|
|

||

|||

|
|
|
|
|
|
|

||
|

|
|

|
|
|
|

||
|
|
|
|
|

|
|

|
|

|
|

|
|
|

||
|

Table

37.

DB2

Information

Integrator

Release

Notes

and

Installation

Requirements

(continued)

Name

File

name

Location

Release

Notes

for

IBM

DB2

Information

Integrator

Event

Publisher

for

VSAM

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Classic

Federation

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

Enterprise

Search

N/A

DB2

Information

Integrator

Support

Web

site

To

view

the

installation

requirements

and

release

notes

that

are

on

the

product

CD:

v

On

Windows

operating

systems,

enter:

x:\doc\%L

x

is

the

Windows

CD

drive

letter

and

%L

is

the

locale

of

the

documentation

that

you

want

to

use,

for

example,

en_US.

v

On

UNIX

operating

systems,

enter:

/cdrom/doc/%L/

cdrom

refers

to

the

UNIX

mount

point

of

the

CD

and

%L

is

the

locale

of

the

documentation

that

you

want

to

use,

for

example,

en_US.

DB2

Information

Integrator

documentation

273

|
|

|||

|
|
|

||
|

|
|
|

||
|

|||
|
|

274

Application

Developer’s

Guide

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display.”

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

276.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

276.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

©

Copyright

IBM

Corp.

2003,

2004

275

|

|
|
|

|
|

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

in

the

Infrastructure

Topics

(DB2

Common

Files)

Related

tasks:

v

“Keyboard

shortcuts

and

accelerators:

Common

GUI

help”

v

“Changing

the

fonts

for

menus

and

text:

Common

GUI

help”

276

Application

Developer’s

Guide

Bibliography

v

WebSphere:

WebSphere

Solution

Bundles:

Implementation

and

Integration

Guide,

SG24-6550

v

MQSeries:

Application

Messaging

Interface,

SC34-5604-07

v

Information

Integrator:

Planning,

Installation

and

Configuration

Guide

v

Information

Integrator:

Federated

Systems

Guide

v

IBM

DB2

Universal

Database:

Life

Sciences

Data

Connect

Planning,

Installation,

and

Configuration

Guide,

GC27-1235

v

IBM

DB2

Universal

Database:

XML

Extender

Administration

and

Programming,

SC27-1234

v

IBM

DB2

Universal

Database:

Data

Warehouse

Center

Administration

Guide,

SC27-1123

v

IBM

DB2

Universal

Database:

Replication

Guide

and

Reference,

SC27-1121

v

IBM

Enterprise

Information

Portal

for

Multiplatforms:

Planning

and

Installing

Enterprise

Information

Portal,

GC27-0873

v

IBM

Enterprise

Information

Portal

for

Multiplatforms:

Managing

Enterprise

Information

Portal,

SC27-0875

v

IMS:

Administration

Guide:

Database

Manager,

SC26-9419-02

v

IBM

WebSphere:

Application

Server

V4

for

z/OS

and

OS/390:

Installation

and

Customization,

GA22-7834-05

v

IBM

WebSphere:

Application

Server

V4.0.1

for

z/OS

and

OS/390:

System

Management

Scripting

API,

SA22-7839

v

DB2

XML

Extender:

Administration

and

Programming

v

DB2

XML

Extender:

DB2

XML

Extender

Administration

and

Programming,

Version

7.2

Release

Notes

v

Using

WSDL

in

a

UDDI

Registry

1.07

v

WebSphere

Handbook

v

Web

Services

Description

Language

(WSDL)

1.1

v

Dynamic

e-business:

The

next

stage

of

e-business

and

Web

services

v

Web

services

zone

©

Copyright

IBM

Corp.

2003,

2004

277

278

Application

Developer’s

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106-0032,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2003,

2004

279

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

280

Application

Developer’s

Guide

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

IBM

AIX

DB2

DB2

Extenders

DB2

Universal

Database

Domino

Informix

Intelligent

Miner

Lotus

OS/390

UNIX

WebSphere

z/OS

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies:

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel,

Intel

Inside

(logos),

MMX

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

281

282

Application

Developer’s

Guide

Index

A
accessibility

features

275

Apache

Jakarta

Tomcat

50

installing

WORF

51

Apache

SOAP
configurations

135

Apache

Tomcat
trace

output

directory

139

tracing

system

139

Web

services

53

application

design
federated

systems

178

application

layer
information

integration

architecture

5

Application

Messaging

Interface
integration

solution

192

WebSphere

MQ

190

application

servers

131

installing

132

starting

132

stopping

132

asynchronous

messaging
configuring

MQListener

214

MQListener

204,

205,

211,

212

authentication
definition

of

24

Web

services

26

authorization
definition

24

automatic

reloading
Web

services

30,

127

autoReload
Web

services

64

B
binding

SOAP

messages

113

C
call

DADX

operation

66

Call

operation

example
DADX

80

commands
Web

services

263

configuration

manager
WebSphere

133

connection

pooling
Web

services

56

Create

Data

Source

Wizard
Web

services

56

D
DAD

(Document

Access

Definition)
checker

240

sample

127

DADX

(Document

Access

Definition

Extension)
checker

240

syntax

238

commands

263

creating

29,

67

DB2

Universal

Database

for

iSeries

28

defining

the

Web

service

66

definition

25,

29

dynamic

queries

90

dynamic

query

services

91

dynamic

query

services

examples

93

error

checking

237,

239

groups

58

operations

29,

66,

78

sample

75,

109,

126,

127

schema

247

syntax

67

updating

127

DADX

environment

checker
Document

Access

Definition

(DAD)

files

243

Document

Access

Definition

Extension

(DADX)

files

244

error

checking

238,

239

installing

237

namespace

table

files

242

web.xml

241

dadx.xsd

247

data

integration
IBM

DB2

Information

Integrator

1,

2,

5,

12

solutions

3

data

layer
information

integration

architecture

5

data

management

technology
information

integration

1

data

sources
nonrelational

9

querying

multiple

remote

data

sources

175

transformation

capabilities

5

data

warehouse
integration

solution

186

data

warehouse

management
example

185

data

warehouse

objects
federated

operational

data

189

data

warehousing
integration

solution

184

integration

solutions

11

database

techniques
information

integration

5

DB2

environment
integration

solutions

13

DB2

SAMPLE

database
DADX

file

109

Web

services

50

db2enable_soap_udf
Web

services

consumer

143

DB2MQ

192

DB2MQ1PC

192

db2mqlsn
examples

212

db2mqlsn

command
MQListener

210

parameters

214

db2WebRowSet
dynamic

query

output

type

99

dynamic

query

services
examples

105

db2xml.soaphttp()
SOAP

function

146

defining

the

Web

service
DADX

operations

66

deploying
enterprise

JavaBeans

174

federated

application

181

Web

services

examples

54

Web

services

provider

133

Web

services

provider

examples

39

WORF

examples
DB2

Universal

Database

for

z/OS

44

Deploying
WORF

examples

109

deploying

a

new

group
Web

services

provider

32

deployment

descriptor

file
creating

133

SOAP

configuration

135

deployment

descriptors
enterprise

JavaBeans

174

design

of

applications
federated

systems

175

designing

queries
integration

solutions

164

developing

applications
Web

services

32

disability

275

Document

Access

Definition

(DAD)
troubleshooting

243

Document

Access

Definition

Extension

(DADX)
XML

schemas

119

Document

Access

Definition

Extension

(DADX)

files
troubleshooting

244

document

type

definition
integration

solutions

38

documentation

element
Document

Access

Definition

Extension

(DADX)

126

dxxGenXML
Document

Access

Definition

Extension

(DADX)

76

©

Copyright

IBM

Corp.

2003,

2004

283

dynamic

query

services
examples

93,

105

operations

99

Web

services

provider

90,

91

E
element_node

Document

Access

Definition

Extension

(DADX)

67

encoding

algorithm
Web

services

261

encrypting

messages
HTTPS

26

encryption
Web

services

26

end

points
Web

services

security

26

enterprise

archive

(EAR)

file
DB2

Universal

Database

for

z/OS

44

Enterprise

Java

beans

181

Enterprise

JavaBeans
integration

solutions

163,

165,

174

nickname

mapping

174

entity

beans
integration

solutions

165

error-checking
DADX

environment

checker

237,

238

DADX

files

239,

244

Document

Access

Definition

file

243

namespace

table

files

242

Web

services

57

web.xml

241

examples
DADX

files

75

dynamic

query

services

93,

105

MQListener

211,

212

Web

archive

(WAR)

files

136

Web

services

consumer

161

WebSphere

portal

10

WORF

52,

131

DB2

Universal

Database

for

z/OS

44

F
federated

services
examples

217

federated

systems
application

design

175,

178

applications

189

configuring

20

description

7

integration

solutions

9,

12,

163,

166,

170

federated

views
database

techniques

164

finding

Web

services

120

G
GET

binding
DADX

files

111

getColumns
dynamic

query

services
operations

99

getTables
dynamic

query

services
operations

99

group.imports
Web

services

description

language

(WSDL)

115

group.properties

58

automatic

reloading

127

security

26

group.properties

file
DB2

Universal

Database

for

iSeries

62

Web

services

59,

64,

240

groups
Web

services

58

H
HTTP

GET

bindings

111

POST

bindings

111

SOAP

bindings

113

HTTPS

encoding

26

I
Information

Catalog

Manager
integration

solution

184

information

integration

5

architecture

5

definition

1

enterprise

solutions

3

IBM

DB2

Information

Integrator

3

solutions

2

initialContextFactory
Web

services

64

inspecting

Web

services

120

installation

requirements
WORF

34

installing
application

server

for

DB2

132

integration

solutions

20

software

requirements
Web

services

36

WORF

39

Apache

Jakarta

Tomcat

52

integration

layers
IBM

DB2

Information

Integrator

5

integration

solutions
DB2

family

13

definition

1

examples

11

federated

systems

163,

170

IBM

DB2

Information

Integrator

3,

5

installation

20

integration

types

2

invoking
DADX

Web

services

29

J
Jakarta

Tomcat

50

Java

2

Enterprise

Edition
application

support

131

Java

Archive

files

(JAR)

181

Web

services

51

JRas

137

JRas

tracing

system

139,

142

K
keyboard

shortcuts
support

for

275

L
log4j

137

log4j

tracing

system

139

M
mapping

column

definitions

119

materialized

query

tables

(MQTs)
integration

solution

22,

164

message

queues
MQListener

209,

210

WebSphere

MQ

204

messaging
MQListener

215

using

with

database

operations

205,

207,

210

Microsoft

Visual

Studio

.NET
Web

services

interoperability

25

MQ

user-defined

functions

192

MQLInstall

command
MQListener

207

MQListener

204

asynchronous

messaging

205

configuration

terms

214

configuring

205,

207

Configuring

WebSphere

MQ

209

db2mqlsn

210

examples

211

installing

207

message

queues

215

MQLIstener
examples

212

MQSeries
DB2

functions
connecting

applications

203

integration

solution

200

MQTs

(materialized

query

tables)
integration

solution

22,

164

N
namespace

tables

(NST)
error

checking

240,

242

Web

services

64,

86

nicknames
database

techniques

164

Enterprise

JavaBeans

174

integration

solution

22

nonrelational

wrappers
integration

solutions

9

NST

(namespace

tables)
error

checking

240,

242

Web

services

64,

86

284

Application

Developer’s

Guide

O
operations

dynamic

query

services

99

OS/390
Web

services

35

overriding
DADX

file

77

P
parameters

DADX

file

78

portal

applications
IBM

DB2

Information

Integrator

10

portlets
IBM

DB2

Information

Integrator

10

POST

binding
DADX

files

111

simple

object

access

protocol

113

publishing
Web

services

119,

142

Q
query

operation,

DADX
defining

66

example

80

queue

manager
MQListener

209

R
RDB_node

mapping
DADX

file

77

reloadIntervalSeconds
Web

services

64

request-and-reply

communication
WebSphere

MQ

203

resource

files
DADX

58

resource-based

deployment
Web

services

30

retrieveXML
DADX

operation

66

RetrieveXML

operation

example
DADX

80

S
scenarios

integration

solutions

12

security
Web

services

26

Web

services

provider

24

services

layer
information

integration

architecture

5

services.war

file
Web

services

41,

52

session

beans
integration

solutions

165

simple

object

access

protocol
bindings

111,

113,

142

clients

16

configurations

135

simple

object

access

protocol

(continued)
messages

145

messaging

115,

146

requesters

16

requests

146

response

146

user-defined

functions

143,

146

SOAP

binding

113

DADX

files

111

software

requirements
Web

services

36,

50,

53

DB2

Universal

Database

for

iSeries

37

Web

services

provider
DB2

Universal

Database

for

z/OS

35

SQL

mapping
DADX

file

77

SQL

operations
DADX

file

31

stored

procedures
MQListener

211

using

with

MQListener

205

storeXML
DADX

operation

66

StoreXML

operation

example
DADX

80

syntax
Document

Access

Definition

Extension

(DADX)

67

T
task

flow
Web

services

32

testing
Web

services

109

tModel
UDDI

element

87

tracing
JRas

tracing

system
WebSphere

application

server

139

WebSphere

Studio

Application

Developer

142

log4j

tracing

system
WebSphere

Application

Server

139

Web

services

consumer

148

Web

services

provider

137

troubleshooting
DADX

files

244

Document

Access

Definition

(DAD)

files

243

Web

services

57

Web

services

consumer

148

U
UDDI

registration
WSDL

88

UDFs

(user-defined

functions)
DB2

MQ

190,

200

generating

149

Universal

Discovery,

Description,

and

Integration

(UDDI)
integration

solution

119

Universal

Discovery,

Description,

and

Integration

(UDDI)

(continued)
Web

services

provider

142

update
DADX

operation

66

Update

operation

example
DADX

80

user-defined

functions

(UDFs)
Web

services

consumer

143,

145,

146,

149,

159

WebSphere

MQ

19

W
warehouse

processes
application

scenario

186

data

discovery

185

federated

scenario

189

Web

applications
installing

131

Web

archive

files

(WAR)

181

creating

136

example

contents

136

integration

solution

131

Web

enabled

applications
deploying

32

Web

object

runtime

framework

(WORF)
SOAP

configuration

135

Web

servers
tracing

139

Web

services
accessing

119

Apache

Jakarta

Tomcat

50,

53

commands

263

connection

pooling

56

consumer

example

16

creating

32

DADX

file

29

DB2

Universal

Database

for

iSeries

37,

62

defining

66

definition

25

description

115

discovering

142

documentation

element

126

encoding

algorithm

261

error

checking

241,

243,

244

example

109

examples

217

features

30,

127

group.properties

59

invoking

145

provider

example

16

sample

127

security

24

software

requirements

34,

36

Web

archives

(WAR)

files

136

web.xml

59

Web

services

consumer
definition

16

examples

161

troubleshooting

148

user-defined

functions

143,

145,

146,

149,

159

Web

services

description

language

(WSDL)
definition

115

Index

285

Web

services

description

language

(WSDL)

(continued)
generating

87

generating

for

UDDI

88

UDDI

88

Web

services

inspection

language

document

120

Web

services

list

page

120

Web

services

operations
dynamic

query

services

99

Web

services

provider

25

accessing

41

DAD

files

38

DADX

75

DB2

Universal

Database

for

iSeries

28,

54

DB2

Universal

Database

for

z/OS
deploying

44

definition

16

deploying

examples

41

dynamic

query

services

90,

91,

93,

99

error

checking

237

examples

39,

54

groups

58

installing

51

integration

solution

16

operations

31

sample

52

security

26

services.war

41

testing

32,

109

DB2

Universal

Database

for

z/OS

44

tracing

139,

142

troubleshooting

57,

139

XML

Extender

76

XML

schemas

247

web.xml

file

59

DB2

Universal

Database

for

iSeries

62

error

checking

240,

241

WebSphere

Application

Server
integration

solution

131

WebSphere

Application

Server

Advanced

Edition

36

Websphere

MQ
MQListener

209

WebSphere

MQ
Application

Messaging

Interface

192

configuring

20

configuring

MQListener

207

description

192

integration

solution

190,

200

integration

solutions

166,

170

message

queues

204,

205

MQListener

207,

215

queue

manager

212

WebSphere

MQ

user-defined

functions

19,

190

WebSphere

portal
examples

10

WebSphere

Studio
generating

user-defined

functions

149

tracing

142

user-defined

functions

149

WORF
examples

Apache

Jakarta

Tomcat

52

installing

34,

51

samples

109

troubleshooting

57

wrappers
definition

7

nonrelational

9

WSDL
definition

87

WSIL
Web

services

provider

120

X
XML

vocabulary

87

XML

collections
DADX

file

31

Web

services

76

XML

document

hierarchy
Document

Access

Definition

Extension

(DADX)

67

XML

Extender
Web

services

76

XML

schemas
definitions

119

simple

type

78

Web

services

description

language

(WSDL)

115

XMLDrivenConfigManager
SOAP

configuration

135

XSD

files
Web

services

86

Z
z/OS

Web

services

35

286

Application

Developer’s

Guide

Contacting

IBM

To

contact

IBM

customer

service

in

the

United

States

or

Canada,

call

1-800-IBM-SERV

(1-800-426-7378).

To

learn

about

available

service

options,

call

one

of

the

following

numbers:

v

In

the

United

States:

1-888-426-4343

v

In

Canada:

1-800-465-9600

To

locate

an

IBM

office

in

your

country

or

region,

see

the

IBM

Directory

of

Worldwide

Contacts

on

the

Web

at

www.ibm.com/planetwide.

Product

information

Information

about

DB2

Information

Integrator

is

available

by

telephone

or

on

the

Web.

If

you

live

in

the

United

States,

you

can

call

one

of

the

following

numbers:

v

To

order

products

or

to

obtain

general

information:

1-800-IBM-CALL

(1-800-426-2255)

v

To

order

publications:

1-800-879-2755

On

the

Web,

go

to

www.ibm.com/software/data/integration/db2ii/support.html.

This

site

contains

the

latest

information

about:

v

The

technical

library

v

Ordering

books

v

Client

downloads

v

Newsgroups

v

Fix

packs

v

News

v

Links

to

Web

resources

Comments

on

the

documentation

Your

feedback

helps

IBM

to

provide

quality

information.

Please

send

any

comments

that

you

have

about

this

book

or

other

DB2

Information

Integrator

documentation.

You

can

use

any

of

the

following

methods

to

provide

comments:

v

Send

your

comments

using

the

online

readers’

comment

form

at

www.ibm.com/software/data/rcf.

v

Send

your

comments

by

e-mail

to

comments@us.ibm.com.

Include

the

name

of

the

product,

the

version

number

of

the

product,

and

the

name

and

part

number

of

the

book

(if

applicable).

If

you

are

commenting

on

specific

text,

please

include

the

location

of

the

text

(for

example,

a

title,

a

table

number,

or

a

page

number).

©

Copyright

IBM

Corp.

2003,

2004

287

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/integration/db2ii/support.html
http://www.ibm.com/software/data/rcf/

288

Application

Developer’s

Guide

����

Printed

in

USA

SC18-7359-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

D
B

2

In
fo

rm
at

io
n

In
te

gr
at

or

Ap
pl

ic
at

io
n

D
ev

el
op

er
’s

G
ui

de

Ve
rs

io
n

8.
2

	Contents
	Preface
	Who should read this guide?
	Terminology
	DB2 Information Integrator offerings

	Chapter 1. Introduction to information integration development
	Overview of information integration solutions
	Introduction to information integration
	What is information integration?
	Why is information integration important to your enterprise?
	Why information integration makes application development easier
	What problems does DB2 Information Integrator solve?
	The foundation of information integration
	DB2 Information Integrator—the solution to integration
	Planning for the information integration architecture
	DB2 Information Integrator—relational federated technologies
	DB2 Information Integrator—nonrelational federated technologies
	WebSphere Portal examples and DB2 Information Integrator

	Introducing scenarios used throughout this guide
	The Cottonwood Distributors, Inc.—a warehouse example
	Discovering the data—the employee skills scenario

	Information integration components
	The DB2 Universal Database family—a foundation for information integration
	Web services capabilities in information integration
	WebSphere MQ

	Planning and testing your applications
	Installation planning
	Configuring your applications and environments
	Performance and tuning planning— materialized query tables in a federated system
	Security and authorization

	Chapter 2. Developing Web services
	Introduction to Web services provider
	Introduction to using DB2 as a Web services provider – WORF
	Security in DADX Web services
	Using Web services provider with iSeries
	Definition of a DADX file
	Web services provider features
	Web service provider operations used with DADX files
	Overview of the Web services process

	Installing and configuring the Web services provider
	Web services provider software requirements for UNIX and Windows
	Web services provider software requirements for OS/390 and z/OS
	Configuring the Web services provider for WebSphere Application Server on UNIX, Windows, z/OS, and OS/390
	Installing the Web services provider software requirements
	Installing the Web services provider software requirements on iSeries
	DTD definitions for XML Extender
	Installing or migrating WORF to work with WebSphere Application Server Version 5 or later for Windows and UNIX
	Deploying WORF examples on WebSphere Application Server Version 5.1 or later for Windows and UNIX
	Deploying WORF examples on WebSphere Application Server Version 4.0.4 for z/OS or OS/390

	Configuring Web services provider for Apache Jakarta Tomcat on UNIX and Windows
	Installing the Web services provider software requirements for Apache Jakarta Tomcat on UNIX and Windows
	Installing or migrating WORF on Apache Jakarta Tomcat
	Installing and deploying the WORF examples on Apache Jakarta Tomcat

	Installing the Web services provider software requirements for Apache Jakarta Tomcat on iSeries
	Installing and deploying the WORF examples in iSeries
	Administering and troubleshooting the Web services provider
	Using connection pooling to improve performance
	Troubleshooting Web services

	Developing applications that use the Web services provider
	Defining a group of Web services
	Defining the web.xml and group.properties files
	Defining the web.xml and group.properties files in the iSeries platform
	Customizing the group.properties file
	The DADX file
	Defining the Web service with the document access definition extension file
	Syntax of the DADX file
	A simple DADX file
	XML collection operations
	Using overrides in the DADX file
	Declaring and referencing parameters in the DADX file
	DADX operation examples

	Converting a document type definition to an XML schema
	WSDL from a DADX file
	WSDL for UDDI registration
	Dynamic database queries that use the Web services provider
	Configuring and running dynamic database queries as part of Web services provider
	Dynamic query services-example queries
	Dynamic query service operations in the Web services provider
	db2WebRowSet

	Verifying and testing Web services provider (WORF)
	Testing Web services applications – a scenario
	Testing the Web service
	Accessing the Web service with GET, POST, and SOAP bindings
	SOAP binding
	Web services description language
	UDDI business registries
	XML schema definitions
	Web services that exist from Web services provider
	Web services documentation
	Web services automatic reloading
	Web services samples – PartOrders.dadx

	Deploying and testing your Web application
	Installing Web applications
	Java 2 Enterprise Edition applications
	Installing the application server for DB2 in DB2 Information Integrator
	Starting and stopping the application server for DB2 in Information Integrator
	Generating deployment descriptors
	Apache SOAP configurations
	Preparing and creating the Web archive file
	Web services provider tracing
	Enabling tracing for the DB2 Web services provider-Apache Tomcat Version 4.0 or later Web application server
	Enabling tracing for the DB2 Web services provider–WebSphere application server
	Enabling tracing for the DB2 Web services provider-WebSphere Studio Application Developer
	Publishing your Web services

	Installing and using the Web services consumer
	Installation of the Web services consumer user-defined functions
	The Web service consumer functions
	Web services consumer user-defined functions
	Tracing Web services consumer events
	Web services consumer—using the WebSphere Studio User-Defined Function tool
	How to generate the user-defined functions from WebSphere Studio
	Using the Web services consumer UDFs
	Web services consumer examples

	Chapter 3. Developing federated, warehouse, and message queue applications
	Developing applications that use a federated server
	Advantages of a federated system
	Advantages of designing queries in IBM DB2 Information Integrator
	Enterprise beans in a federated system
	Employee skills scenario – solution design
	Employee database scenario - solution design
	Creating and deploying a container-managed persistence bean
	Designing applications for a federated solution—Cottonwood Distributors, Incorporated
	Developing the application for a federated solution—Cottonwood Distributors, Inc.
	Deploying a federated application

	Extending the data warehouse
	Business solutions: extending the DB2 Warehouse Manager
	Discovering the data—Cottonwood Distributors, Inc.
	Designing applications—Cottonwood Distributors, Inc. warehouse scenario
	Deploying the application—Cottonwood Distributors, Inc. solution

	Developing database applications that use WebSphere Message Queue functions
	Installing DB2 WebSphere MQ functions
	Overview of WebSphere MQ and DB2 application integration
	Capabilities of DB2 MQSeries functions
	Commit environment for DB2 WebSphere MQ functions

	How to use WebSphere MQ functions within DB2
	Application-to-application connectivity
	Asynchronous messaging in DB2 Information Integrator
	MQListener in DB2 Information Integrator
	Configuring and running MQListener
	Configuring MQListener to run in the DB2 Universal Database environment
	Configuring WebSphere MQ for MQListener
	Configuring MQListener
	Creating a stored procedure to use with MQListener
	MQListener examples
	Parameters used in MQListener configuration
	WebSphere MQ queues used in MQListener

	Appendix A. Script examples for Cottonwood Distributors, Inc. and YBar, Inc. scenarios
	Appendix B. DADX environment checker
	Installing the DADX environment checker
	Running the DADX environment checker
	Parameters
	Sample files

	Indicating errors and warnings in the output text file
	Error checking by the DADX environment checker
	Checking errors in the web.xml file
	Checking errors in the NST files
	Checking errors in the DAD files
	Checking errors in the DADX files

	Appendix C. XML schema for the DADX file
	Appendix D. Web services encoding algorithm
	Appendix E. Web services command reference
	DB2 Information Integrator documentation
	Accessing DB2 Information Integrator documentation
	Documentation about replication function on z/OS
	Documentation about event publishing function for DB2 Universal Database on z/OS
	Documentation about event publishing function for IMS and VSAM on z/OS
	Documentation about event publishing and replication function on Linux, UNIX, and Windows
	Documentation about federated function on z/OS
	Documentation about federated function on Linux, UNIX, and Windows
	Documentation about enterprise search function on Linux, UNIX, and Windows
	Release notes and installation requirements

	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Bibliography
	Notices
	Trademarks

	Index
	Contacting IBM
	Product information
	Comments on the documentation

