
IBM
®

DB2

Universal

Database
™

Call

Level

Interface

Guide

and

Reference,

Volume

2

Version

8.2

SC09-4850-01

���

IBM
®

DB2

Universal

Database
™

Call

Level

Interface

Guide

and

Reference,

Volume

2

Version

8.2

SC09-4850-01

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Notices.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative.

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

To

order

DB2

publications

from

DB2

Marketing

and

Sales

in

the

United

States

or

Canada,

call

1-800-IBM-4YOU

(426-4968).

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1993

-

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

Chapter

1.

DB2

CLI

functions

.

.

.

.

. 1

CLI

and

ODBC

function

summary

.

.

.

.

.

.

. 1

SQLAllocConnect

function

(CLI)

-

Allocate

connection

handle

.

.

.

.

.

.

.

.

.

.

.

. 5

SQLAllocEnv

function

(CLI)

-

Allocate

environment

handle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

SQLAllocHandle

function

(CLI)

-

Allocate

handle

.

. 6

SQLAllocStmt

function

(CLI)

-

Allocate

a

statement

handle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator

.

.

.

.

.

.

. 9

SQLBindFileToCol

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

column

.

.

.

.

.

.

.

.

.

. 16

SQLBindFileToParam

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

parameter

.

.

.

.

.

.

.

.

. 20

SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

.

.

. 23

SQLBrowseConnect

function

(CLI)

-

Get

required

attributes

to

connect

to

data

source

.

.

.

.

.

. 36

SQLBuildDataLink

function

(CLI)

-

Build

DATALINK

value

.

.

.

.

.

.

.

.

.

.

.

. 41

SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows

.

.

.

.

.

.

.

.

. 43

SQLCancel

function

(CLI)

-

Cancel

statement

.

.

. 49

SQLCloseCursor

function

(CLI)

-

Close

cursor

and

discard

pending

results

.

.

.

.

.

.

.

.

.

. 51

SQLColAttribute

function

(CLI)

-

Return

a

column

attribute

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

SQLColAttributes

function

(CLI)

-

Get

column

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

SQLColumnPrivileges

function

(CLI)

-

Get

privileges

associated

with

the

columns

of

a

table

.

. 63

SQLColumns

function

(CLI)

-

Get

column

information

for

a

table

.

.

.

.

.

.

.

.

.

.

. 66

SQLConnect

function

(CLI)

-

Connect

to

a

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

SQLCopyDesc

function

(CLI)

-

Copy

descriptor

information

between

handles

.

.

.

.

.

.

.

. 76

SQLDataSources

function

(CLI)

-

Get

list

of

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column

.

.

.

.

.

.

.

.

.

. 82

SQLDescribeParam

function

(CLI)

-

Return

description

of

a

parameter

marker

.

.

.

.

.

.

. 85

SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source

.

.

.

.

.

.

.

.

.

. 90

SQLEndTran

function

(CLI)

-

End

transactions

of

a

connection

or

an

Environment

.

.

.

.

.

.

.

. 96

SQLError

function

(CLI)

-

Retrieve

error

information

99

SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

SQLExecute

function

(CLI)

-

Execute

a

statement

105

SQLExtendedBind

function

(CLI)

-

Bind

an

array

of

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

SQLExtendedFetch

function

(CLI)

-

Extended

fetch

(fetch

array

of

rows)

.

.

.

.

.

.

.

.

.

.

. 112

SQLExtendedPrepare

function

(CLI)

-

Prepare

a

statement

and

set

statement

attributes

.

.

.

.

. 112

SQLFetch

function

(CLI)

-

Fetch

next

row

.

.

.

. 117

SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns

.

.

.

.

.

. 125

Cursor

positioning

rules

for

SQLFetchScroll()

(CLI)

131

SQLForeignKeys

function

(CLI)

-

Get

the

list

of

foreign

key

columns

.

.

.

.

.

.

.

.

.

.

. 133

SQLFreeConnect

function

(CLI)

-

Free

connection

handle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

SQLFreeEnv

function

(CLI)

-

Free

environment

handle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

SQLFreeHandle

function

(CLI)

-

Free

handle

resources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

SQLFreeStmt

function

(CLI)

-

Free

(or

reset)

a

statement

handle

.

.

.

.

.

.

.

.

.

.

.

. 142

SQLGetConnectAttr

function

(CLI)

-

Get

current

attribute

setting

.

.

.

.

.

.

.

.

.

.

.

. 145

SQLGetConnectOption

function

(CLI)

-

Return

current

setting

of

a

connect

option

.

.

.

.

.

. 148

SQLGetCursorName

function

(CLI)

-

Get

cursor

name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

SQLGetData

function

(CLI)

-

Get

data

from

a

column

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

SQLGetDataLinkAttr

function

(CLI)

-

Get

DataLink

attribute

value

.

.

.

.

.

.

.

.

.

.

.

.

. 157

SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record

.

.

.

.

.

.

.

. 159

SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record

.

.

.

.

.

.

.

. 163

SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data

.

.

.

.

.

.

.

.

.

.

.

.

. 167

SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record

.

.

.

.

.

.

.

. 172

SQLGetEnvAttr

function

(CLI)

-

Retrieve

current

environment

attribute

value

.

.

.

.

.

.

.

. 175

SQLGetFunctions

function

(CLI)

-

Get

functions

177

SQLGetInfo

function

(CLI)

-

Get

general

information

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

SQLGetLength

function

(CLI)

-

Retrieve

length

of

a

string

value

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

SQLGetPosition

function

(CLI)

-

Return

starting

position

of

string

.

.

.

.

.

.

.

.

.

.

.

. 211

SQLGetSQLCA

function

(CLI)

-

Get

SQLCA

data

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute

.

.

.

.

.

.

. 215

SQLGetStmtOption

function

(CLI)

-

Return

current

setting

of

a

statement

option

.

.

.

.

.

.

.

. 218

SQLGetSubString

function

(CLI)

-

Retrieve

portion

of

a

string

value

.

.

.

.

.

.

.

.

.

.

.

. 219

SQLGetTypeInfo

function

(CLI)

-

Get

data

type

information

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

©

Copyright

IBM

Corp.

1993

-

2004

iii

SQLMoreResults

function

(CLI)

-

Determine

if

there

are

more

result

sets

.

.

.

.

.

.

.

.

. 227

SQLNativeSql

function

(CLI)

-

Get

native

SQL

text

229

SQLNumParams

function

(CLI)

-

Get

number

of

parameters

in

a

SQL

statement

.

.

.

.

.

.

. 231

SQLNextResult

function

(CLI)

-

Associate

next

result

set

with

another

statement

handle

.

.

.

. 233

SQLNumResultCols

function

(CLI)

-

Get

number

of

result

columns

.

.

.

.

.

.

.

.

.

.

.

.

. 235

SQLParamData

function

(CLI)

-

Get

next

parameter

for

which

a

data

value

is

needed

.

.

.

.

.

.

. 237

SQLParamOptions

function

(CLI)

-

Specify

an

input

array

for

a

parameter

.

.

.

.

.

.

.

.

. 240

SQLPrepare

function

(CLI)

-

Prepare

a

statement

240

SQLPrimaryKeys

function

(CLI)

-

Get

primary

key

columns

of

a

table

.

.

.

.

.

.

.

.

.

.

.

. 245

SQLProcedureColumns

function

(CLI)

-

Get

input/output

parameter

information

for

a

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

SQLProcedures

function

(CLI)

-

Get

list

of

procedure

names

.

.

.

.

.

.

.

.

.

.

.

. 255

SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

SQLRowCount

function

(CLI)

-

Get

row

count

.

. 262

SQLSetColAttributes

function

(CLI)

-

Set

column

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

SQLSetConnection

function

(CLI)

-

Set

connection

handle

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

SQLSetConnectOption

function

(CLI)

-

Set

connection

option

.

.

.

.

.

.

.

.

.

.

.

. 270

SQLSetCursorName

function

(CLI)

-

Set

cursor

name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record

.

.

.

.

.

.

.

.

.

.

. 273

SQLSetDescRec

function

(CLI)

-

Set

multiple

descriptor

fields

for

a

column

or

parameter

data

. 278

SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

SQLSetParam

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

.

.

.

.

.

. 283

SQLSetPos

function

(CLI)

-

Set

the

cursor

position

in

a

rowset

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 291

SQLSetStmtOption

function

(CLI)

-

Set

statement

option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

SQLSpecialColumns

function

(CLI)

-

Get

special

(row

identifier)

columns

.

.

.

.

.

.

.

.

.

. 297

SQLStatistics

function

(CLI)

-

Get

index

and

statistics

information

for

a

base

table

.

.

.

.

. 302

SQLTablePrivileges

function

(CLI)

-

Get

privileges

associated

with

a

table

.

.

.

.

.

.

.

.

.

. 308

SQLTables

function

(CLI)

-

Get

table

information

312

SQLTransact

function

(CLI)

-

Transaction

management

.

.

.

.

.

.

.

.

.

.

.

.

. 316

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

.

.

.

.

.

.

.

.

.

.

.

.

. 317

Environment

attributes

(CLI)

list

.

.

.

.

.

.

. 317

Connection

attributes

(CLI)

list

.

.

.

.

.

.

. 321

Statement

attributes

(CLI)

list

.

.

.

.

.

.

.

. 334

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

.

.

.

.

.

.

. 351

Descriptor

FieldIdentifier

argument

values

(CLI)

351

Descriptor

header

and

record

field

initialization

values

(CLI)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

Chapter

4.

DiagIdentifier

argument

values

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Header

and

record

fields

for

the

DiagIdentifier

argument

(CLI)

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Chapter

5.

Data

type

attributes

.

.

.

. 373

Data

type

precision

(CLI)

table

.

.

.

.

.

.

. 373

Data

type

scale

(CLI)

table

.

.

.

.

.

.

.

.

. 374

Data

type

length

(CLI)

table

.

.

.

.

.

.

.

. 375

Data

type

display

(CLI)

table

.

.

.

.

.

.

.

. 376

Appendix

A.

DB2

Universal

Database

technical

information

.

.

.

.

.

.

.

. 379

DB2

documentation

and

help

.

.

.

.

.

.

.

. 379

DB2

documentation

updates

.

.

.

.

.

.

. 379

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 380

DB2

Information

Center

installation

scenarios

.

. 381

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

.

.

.

.

.

.

.

.

. 384

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

.

.

.

.

.

.

.

. 386

Invoking

the

DB2

Information

Center

.

.

.

.

. 388

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

.

.

.

.

.

.

. 389

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 390

DB2

PDF

and

printed

documentation

.

.

.

.

. 391

Core

DB2

information

.

.

.

.

.

.

.

.

. 391

Administration

information

.

.

.

.

.

.

. 391

Application

development

information

.

.

.

. 392

Business

intelligence

information

.

.

.

.

.

. 393

DB2

Connect

information

.

.

.

.

.

.

.

. 393

Getting

started

information

.

.

.

.

.

.

.

. 393

Tutorial

information

.

.

.

.

.

.

.

.

.

. 394

Optional

component

information

.

.

.

.

.

. 394

Release

notes

.

.

.

.

.

.

.

.

.

.

.

. 395

Printing

DB2

books

from

PDF

files

.

.

.

.

.

. 396

Ordering

printed

DB2

books

.

.

.

.

.

.

.

. 396

Invoking

contextual

help

from

a

DB2

tool

.

.

.

. 397

Invoking

message

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

Invoking

command

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

Invoking

SQL

state

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

DB2

tutorials

.

.

.

.

.

.

.

.

.

.

.

.

. 399

iv

CLI

Guide

and

Reference,

Volume

2

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

DB2

troubleshooting

information

.

.

.

.

.

.

. 400

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 401

Keyboard

input

and

navigation

.

.

.

.

.

. 401

Accessible

display

.

.

.

.

.

.

.

.

.

.

. 401

Compatibility

with

assistive

technologies

.

.

. 402

Accessible

documentation

.

.

.

.

.

.

.

. 402

Dotted

decimal

syntax

diagrams

.

.

.

.

.

.

. 402

Common

Criteria

certification

of

DB2

Universal

Database

products

.

.

.

.

.

.

.

.

.

.

.

. 404

Appendix

B.

Notices

for

the

DB2

Call

Level

Interface

Guide

and

Reference

. 405

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 408

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 415

Product

information

.

.

.

.

.

.

.

.

.

.

. 415

Contents

v

||
|
||

vi

CLI

Guide

and

Reference,

Volume

2

Chapter

1.

DB2

CLI

functions

This

chapter

provides

a

description

of

each

DB2

CLI

function.

The

function

summary

presents

the

functions

organized

by

category.

The

function

listing

describes

each

function

in

detail.

CLI

and

ODBC

function

summary

Depr

in

the

ODBC

column

indicates

that

the

function

has

been

deprecated

in

ODBC.

The

SQL/CLI

column

can

have

the

following

values:

v

95

-

Defined

in

the

SQL/CLI

9075-3

specification.

v

SQL3

-

Defined

in

the

SQL/CLI

part

of

the

ISO

SQL3

draft

replacement

for

SQL/CLI

9075-3.

Table

1.

DB2

CLI

Function

list

by

category

Task

Function

Name

ODBC

3.0

SQL/CLI

DB2

CLI

First

Version

Supported

Purpose

Connecting

to

a

data

source

SQLAllocConnect()

Depr

95

V

1.1

Obtains

a

connection

handle.

SQLAllocEnv()

Depr

95

V

1.1

Obtains

an

environment

handle.

One

environment

handle

is

used

for

one

or

more

connections.

SQLAllocHandle()

Core

95

V

5

Obtains

a

handle.

SQLBrowseConnect()

Level

1

95

V

5

Get

required

attributes

to

connect

to

a

data

source.

SQLConnect()

Core

95

V

1.1

Connects

to

specific

driver

by

data

source

name,

user

Id,

and

password.

SQLDriverConnect()

Core

SQL3

V

2.1

a

Connects

to

a

specific

driver

by

connection

string

or

optionally

requests

that

the

Driver

Manager

and

driver

display

connection

dialogs

for

the

user.

Note:

This

function

is

also

affected

by

the

additional

IBM

keywords

supported

in

the

ODBC.INI

file.

SQLDrivers()

Core

No

NONE

DB2

CLI

does

not

support

this

function

as

it

is

implemented

by

a

Driver

Manager.

SQLSetConnectAttr()

Core

95

V

5

Set

connection

attributes.

SQLSetConnectOption()

Depr

95

V

2.1

Set

connection

attributes.

SQLSetConnection()

No

SQL3

V

2.1

Sets

the

current

active

connection.

This

function

only

needs

to

be

used

when

using

embedded

SQL

within

a

DB2

CLI

application

with

multiple

concurrent

connections.

DataLink

functions

SQLBuildDataLink()

No

Yes

V

5.2

Build

DATALINK

Value

©

Copyright

IBM

Corp.

1993

-

2004

1

Table

1.

DB2

CLI

Function

list

by

category

(continued)

Task

Function

Name

ODBC

3.0

SQL/CLI

DB2

CLI

First

Version

Supported

Purpose

SQLGetDataLinkAttr()

No

Yes

V

5.2

Get

DataLink

attribute

value

Obtaining

information

about

a

driver

and

data

source

SQLDataSources()

Lvl

2

95

V

1.1

Returns

the

list

of

available

data

sources.

SQLGetInfo()

Core

95

V

1.1

Returns

information

about

a

specific

driver

and

data

source.

SQLGetFunctions()

Core

95

V

1.1

Returns

supported

driver

functions.

SQLGetTypeInfo()

Core

95

V

1.1

Returns

information

about

supported

data

types.

Setting

and

retrieving

driver

options

SQLSetEnvAttr()

Core

95

V

2.1

Sets

an

environment

option.

SQLGetEnvAttr()

Core

95

V

2.1

Returns

the

value

of

an

environment

option.

SQLGetConnectAttr()

Lvl

1

95

V

5

Returns

the

value

of

a

connection

option.

SQLGetConnectOption()

Depr

95

V

2.1

a

Returns

the

value

of

a

connection

option.

SQLSetStmtAttr()

Core

95

V

5

Sets

a

statement

attribute.

SQLSetStmtOption()

Depr

95

V

2.1

a

Sets

a

statement

option.

SQLGetStmtAttr()

Core

95

V

5

Returns

the

value

of

a

statement

attribute.

SQLGetStmtOption()

Depr

95

V

2.1

a

Returns

the

value

of

a

statement

option.

Preparing

SQL

requests

SQLAllocStmt()

Depr

95

V

1.1

Allocates

a

statement

handle.

SQLPrepare()

Core

95

V

1.1

Prepares

an

SQL

statement

for

later

execution.

SQLExtendedPrepare()

No

No

V

6

Prepares

an

array

of

statement

attributes

for

an

SQL

statement

for

later

execution.

SQLExtendedBind()

No

No

V

6

Bind

an

array

of

columns

instead

of

using

repeated

calls

to

SQLBindCol()

and

SQLBindParameter()

SQLBindParameter()

Lvl

1

95

b

V

2.1

Assigns

storage

for

a

parameter

in

an

SQL

statement

(ODBC

2.0)

SQLSetParam()

Depr

No

V

1.1

Assigns

storage

for

a

parameter

in

an

SQL

statement

(ODBC

1.0).

Note:

In

ODBC

2.0

this

function

has

been

replaced

by

SQLBindParameter().

SQLParamOptions()

Depr

No

V

2.1

Specifies

the

use

of

multiple

values

for

parameters.

SQLGetCursorName()

Core

95

V

1.1

Returns

the

cursor

name

associated

with

a

statement

handle.

SQLSetCursorName()

Core

95

V

1.1

Specifies

a

cursor

name.

Submitting

requests

SQLDescribeParam()

Level

2

SQL3

V

5

Returns

description

of

a

parameter

marker.

SQLExecute()

Core

95

V

1.1

Executes

a

prepared

statement.

2

CLI

Guide

and

Reference,

Volume

2

Table

1.

DB2

CLI

Function

list

by

category

(continued)

Task

Function

Name

ODBC

3.0

SQL/CLI

DB2

CLI

First

Version

Supported

Purpose

SQLExecDirect()

Core

95

V

1.1

Executes

a

statement.

SQLNativeSql()

Lvl

2

95

V

2.1

a

Returns

the

text

of

an

SQL

statement

as

translated

by

the

driver.

SQLNumParams()

Lvl

2

95

V

2.1

a

Returns

the

number

of

parameters

in

a

statement.

SQLParamData()

Lvl

1

95

V

2.1

a

Used

in

conjunction

with

SQLPutData()

to

supply

parameter

data

at

execution

time.

(Useful

for

long

data

values.)

SQLPutData()

Core

95

V

2.1

a

Send

part

or

all

of

a

data

value

for

a

parameter.

(Useful

for

long

data

values.)

Retrieving

results

and

information

about

results

SQLRowCount()

Core

95

V

1.1

Returns

the

number

of

rows

affected

by

an

insert,

update,

or

delete

request.

SQLNumResultCols()

Core

95

V

1.1

Returns

the

number

of

columns

in

the

result

set.

SQLDescribeCol()

Core

95

V

1.1

Describes

a

column

in

the

result

set.

SQLColAttribute()

Core

Yes

V

5

Describes

attributes

of

a

column

in

the

result

set.

SQLColAttributes()

Depr

Yes

V

1.1

Describes

attributes

of

a

column

in

the

result

set.

SQLColumnPrivileges()

Level

2

95

V

2.1

Get

privileges

associated

with

the

columns

of

a

table.

SQLSetColAttributes()

No

No

V

2.1

Sets

attributes

of

a

column

in

the

result

set.

SQLBindCol()

Core

95

V

1.1

Assigns

storage

for

a

result

column

and

specifies

the

data

type.

SQLFetch()

Core

95

V

1.1

Returns

a

result

row.

SQLFetchScroll()

Core

95

V

5

Returns

a

rowset

from

a

result

row.

SQLExtendedFetch()

Depr

95

V

2.1

Returns

multiple

result

rows.

SQLGetData()

Core

95

V

1.1

Returns

part

or

all

of

one

column

of

one

row

of

a

result

set.

(Useful

for

long

data

values.)

SQLMoreResults()

Lvl

1

SQL3

V

2.1

a

Determines

whether

there

are

more

result

sets

available

and,

if

so,

initializes

processing

for

the

next

result

set.

SQLNextResult()

No

Yes

V7.1

SQLNextResult

allows

non-sequential

access

to

multiple

result

sets

returned

from

a

stored

procedure.

SQLError()

Depr

95

V

1.1

Returns

additional

error

or

status

information.

SQLGetDiagField()

Core

95

V

5

Get

a

field

of

diagnostic

data.

SQLGetDiagRec()

Core

95

V

5

Get

multiple

fields

of

diagnostic

data.

SQLSetPos()

Level

1

SQL3

V

5

Set

the

cursor

position

in

a

rowset.

SQLGetSQLCA()

No

No

V

2.1

Returns

the

SQLCA

associated

with

a

statement

handle.

Chapter

1.

DB2

CLI

functions

3

Table

1.

DB2

CLI

Function

list

by

category

(continued)

Task

Function

Name

ODBC

3.0

SQL/CLI

DB2

CLI

First

Version

Supported

Purpose

SQLBulkOperations()

Level

1

No

V

6

Perform

bulk

insertions,

updates,

deletions,

and

fetches

by

bookmark.

Descriptors

SQLCopyDesc()

Core

95

V

5

Copy

descriptor

information

between

handles.

SQLGetDescField()

Core

95

V

5

Get

single

field

settings

of

a

descriptor

record.

SQLGetDescRec()

Core

95

V

5

Get

multiple

field

settings

of

a

descriptor

record.

SQLSetDescField()

Core

95

V

5

Set

a

single

field

of

a

descriptor

record.

SQLSetDescRec()

Core

95

V

5

Set

multiple

field

settings

of

a

descriptor

record.

Large

object

support

SQLBindFileToCol()

No

No

V

2.1

Associates

LOB

file

reference

with

a

LOB

column.

SQLBindFileToParam()

No

No

V

2.1

Associates

LOB

file

reference

with

a

parameter

marker.

SQLGetLength()

No

SQL3

V

2.1

Gets

length

of

a

string

referenced

by

a

LOB

locator.

SQLGetPosition()

No

SQL3

V

2.1

Gets

the

position

of

a

string

within

a

source

string

referenced

by

a

LOB

locator.

SQLGetSubString()

No

SQL3

V

2.1

Creates

a

new

LOB

locator

that

references

a

substring

within

a

source

string

(the

source

string

is

also

represented

by

a

LOB

locator).

Obtaining

information

about

the

data

source’s

system

tables

(catalog

functions)

SQLColumns()

Lvl

1

SQL3

V

2.1

a

Returns

the

list

of

column

names

in

specified

tables.

SQLForeignKeys()

Lvl

2

SQL3

V

2.1

Returns

a

list

of

column

names

that

comprise

foreign

keys,

if

they

exist

for

a

specified

table.

SQLPrimaryKeys()

Lvl

1

SQL3

V

2.1

Returns

the

list

of

column

name(s)

that

comprise

the

primary

key

for

a

table.

SQLProcedureColumns()

Lvl

2

No

V

2.1

Returns

the

list

of

input

and

output

parameters

for

the

specified

procedures.

SQLProcedures()

Lvl

2

No

V

2.1

Returns

the

list

of

procedure

names

stored

in

a

specific

data

source.

SQLSpecialColumns()

Core

SQL3

V

2.1

a

Returns

information

about

the

optimal

set

of

columns

that

uniquely

identifies

a

row

in

a

specified

table.

SQLStatistics()

Core

SQL3

V

2.1

a

Returns

statistics

about

a

single

table

and

the

list

of

indexes

associated

with

the

table.

SQLTablePrivileges()

Lvl

2

SQL3

V

2.1

Returns

a

list

of

tables

and

the

privileges

associated

with

each

table.

4

CLI

Guide

and

Reference,

Volume

2

Table

1.

DB2

CLI

Function

list

by

category

(continued)

Task

Function

Name

ODBC

3.0

SQL/CLI

DB2

CLI

First

Version

Supported

Purpose

SQLTables()

Core

SQL3

V

2.1

a

Returns

the

list

of

table

names

stored

in

a

specific

data

source.

Terminating

a

statement

SQLFreeHandle()

Core

95

V

1.1

Free

handle

resources.

SQLFreeStmt()

Core

95

V

1.1

End

statement

processing

and

closes

the

associated

cursor,

discards

pending

results,

and,

optionally,

frees

all

resources

associated

with

the

statement

handle.

SQLCancel()

Core

95

V

1.1

Cancels

an

SQL

statement.

SQLTransact()

Depr

No

V

1.1

Commits

or

rolls

back

a

transaction.

SQLCloseCursor()

Core

95

V

5

Commits

or

rolls

back

a

transaction.

Terminating

a

connection

SQLDisconnect()

Core

95

V

1.1

Closes

the

connection.

SQLEndTran()

Core

95

V

5

Ends

transaction

of

a

connection.

SQLFreeConnect()

Depr

95

V

1.1

Releases

the

connection

handle.

SQLFreeEnv()

Depr

95

V

1.1

Releases

the

environment

handle.

Note:

a

Runtime

support

for

this

function

was

also

available

in

the

DB2

Client

Application

Enabler

for

DOS

Version

1.2

product.

b

SQLBindParam()

has

been

replaced

by

SQLBindParameter().

The

ODBC

function(s):

v

SQLSetScrollOptions()

is

supported

for

runtime

only,

because

it

has

been

superceded

by

the

SQL_CURSOR_TYPE,

SQL_CONCURRENCY,

SQL_KEYSET_SIZE,

and

SQL_ROWSET_SIZE

statement

options.

v

SQLDrivers()

is

implemented

by

the

ODBC

driver

manager.

Related

concepts:

v

“Introduction

to

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Initialization

and

termination

in

CLI

overview”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Transaction

processing

in

CLI

overview”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLAllocConnect

function

(CLI)

-

Allocate

connection

handle

Deprecated:

Note:

In

ODBC

3.0,

SQLAllocConnect()

has

been

deprecated

and

replaced

with

SQLAllocHandle().

Although

this

version

of

DB2

CLI

continues

to

support

SQLAllocConnect(),

it

is

recommended

that

you

use

SQLAllocHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Chapter

1.

DB2

CLI

functions

5

Migrating

to

the

new

function

The

statement:

SQLAllocConnect(henv,

&hdbc);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

SQLAllocEnv

function

(CLI)

-

Allocate

environment

handle

Deprecated:

Note:

In

ODBC

3.0,

SQLAllocEnv()

has

been

deprecated

and

replaced

with

SQLAllocHandle().

Although

this

version

of

DB2

CLI

continues

to

support

SQLAllocEnv(),

we

recommend

that

you

use

SQLAllocHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLAllocEnv(&henv);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

SQLAllocHandle

function

(CLI)

-

Allocate

handle

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLAllocHandle()

is

a

generic

function

that

allocates

environment,

connection,

statement,

or

descriptor

handles.

Note:

This

function

replaces

the

deprecated

ODBC

2.0

functions

SQLAllocConnect(),

SQLAllocEnv(),

and

SQLAllocStmt().

SQLAllocConnect

6

CLI

Guide

and

Reference,

Volume

2

Syntax:

SQLRETURN

SQLAllocHandle

(

SQLSMALLINT

HandleType,

/*

fHandleType

*/

SQLHANDLE

InputHandle,

/*

hInput

*/

SQLHANDLE

*OutputHandlePtr);

/*

*phOutput

*/

Function

Arguments:

Table

2.

SQLAllocHandle

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

The

type

of

handle

to

be

allocated

by

SQLAllocHandle().

Must

be

one

of

the

following

values:

v

SQL_HANDLE_ENV

v

SQL_HANDLE_DBC

v

SQL_HANDLE_STMT

v

SQL_HANDLE_DESC

SQLHANDLE

InputHandle

input

Existing

handle

to

use

as

a

context

for

the

new

handle

being

allocated.

If

HandleType

is

SQL_HANDLE_ENV,

this

is

SQL_NULL_HANDLE.

If

HandleType

is

SQL_HANDLE_DBC,

this

must

be

an

environment

handle,

and

if

it

is

SQL_HANDLE_STMT

or

SQL_HANDLE_DESC,

it

must

be

a

connection

handle.

SQLHANDLE

*

OutputHandlePtr

output

Pointer

to

a

buffer

in

which

to

return

the

handle

to

the

newly

allocated

data

structure.

Usage:

SQLAllocHandle()

is

used

to

allocate

environment,

connection,

statement,

and

descriptor

handles.

An

application

can

allocate

multiple

environment,

connection,

statement,

or

descriptor

handles

at

any

time

a

valid

InputHandle

exists.

If

the

application

calls

SQLAllocHandle()

with

*OutputHandlePtr

set

to

an

existing

environment,

connection,

statement,

or

descriptor

handle,

DB2

CLI

overwrites

the

handle,

and

new

resources

appropriate

to

the

handle

type

are

allocated.

There

are

no

changes

made

to

the

CLI

resources

associated

with

the

original

handle.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

If

SQLAllocHandle()

returns

SQL_INVALID_HANDLE,

it

will

set

OutputHandlePtr

to

SQL_NULL_HENV,

SQL_NULL_HDBC,

SQL_NULL_HSTMT,

or

SQL_NULL_HDESC,

depending

on

the

value

of

HandleType,

unless

the

output

argument

is

a

null

pointer.

The

application

can

then

obtain

additional

information

from

the

diagnostic

data

structure

associated

with

the

handle

in

the

InputHandle

argument.

Diagnostics:

Table

3.

SQLAllocHandle

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

SQLAllocHandle

Chapter

1.

DB2

CLI

functions

7

Table

3.

SQLAllocHandle

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

08003

Connection

is

closed.

The

HandleType

argument

was

SQL_HANDLE_STMT

or

SQL_HANDLE_DESC,

but

the

connection

handle

specified

by

the

InputHandle

argument

did

not

have

an

open

connection.

The

connection

process

must

be

completed

successfully

(and

the

connection

must

be

open)

for

DB2

CLI

to

allocate

a

statement

or

descriptor

handle.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY013

Unexpected

memory

handling

error.

The

HandleType

argument

was

SQL_HANDLE_DBC,

SQL_HANDLE_STMT,

or

SQL_HANDLE_DESC;

and

the

function

call

could

not

be

processed

because

the

underlying

memory

objects

could

not

be

accessed,

possibly

because

of

low

memory

conditions.

HY014

No

more

handles.

The

limit

for

the

number

of

handles

that

can

be

allocated

for

the

type

of

handle

indicated

by

the

HandleType

argument

has

been

reached,

or

in

some

cases,

insufficient

system

resources

exist

to

properly

initialize

the

new

handle.

HY092

Option

type

out

of

range.

The

HandleType

argument

was

not

one

of:

v

SQL_HANDLE_ENV

v

SQL_HANDLE_DBC

v

SQL_HANDLE_STMT

v

SQL_HANDLE_DESC

Restrictions:

None.

Example:

SQLHANDLE

henv;

/*

environment

handle

*/

SQLHANDLE

hdbc;

/*

connection

handle

*/

SQLHANDLE

hstmt;

/*

statement

handle

*/

SQLHANDLE

hdesc;

/*

descriptor

handle

*/

/*

...

*/

/*

allocate

an

environment

handle

*/

cliRC

=

SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

/*

...

*/

/*

allocate

a

database

connection

handle

*/

cliRC

=

SQLAllocHandle(SQL_HANDLE_DBC,

henv,

&hdbc);

/*

...

*/

/*

connect

to

database

using

hdbc

*/

/*

...

*/

/*

allocate

one

or

more

statement

handles

*/

cliRC

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

/*

...

*/

/*

allocate

a

descriptor

handle

*/

cliRC

=

SQLAllocHandle(SQL_HANDLE_DESC,

hstmt,

&hdesc);

SQLAllocHandle

8

CLI

Guide

and

Reference,

Volume

2

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Initializing

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Allocating

statement

handles

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

on

page

139

v

“SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute”

on

page

281

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“clihandl.c

--

How

to

allocate

and

free

handles”

SQLAllocStmt

function

(CLI)

-

Allocate

a

statement

handle

Deprecated:

Note:

In

ODBC

3.0,

SQLAllocStmt()

has

been

deprecated

and

replaced

with

SQLAllocHandle().

Although

this

version

of

DB2

CLI

continues

to

support

SQLAllocStmt(),

we

recommend

that

you

use

SQLAllocHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLAllocStmt(hdbc,

&hstmt);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLAllocHandle

Chapter

1.

DB2

CLI

functions

9

SQLBindCol()

is

used

to

associate

(bind)

columns

in

a

result

set

to

either:

v

Application

variables

or

arrays

of

application

variables

(storage

buffers),

for

all

C

data

types.

Data

is

transferred

from

the

DBMS

to

the

application

when

SQLFetch()

or

SQLFetchScroll()

is

called.

Data

conversion

may

occur

as

the

data

is

transferred.

v

A

LOB

locator,

for

LOB

columns.

A

LOB

locator,

not

the

data

itself,

is

transferred

from

the

DBMS

to

the

application

when

SQLFetch()

is

called.

Alternatively,

LOB

columns

can

be

bound

directly

to

a

file

using

SQLBindFileToCol().

SQLBindCol()

is

called

once

for

each

column

in

the

result

set

that

the

application

needs

to

retrieve.

In

general,

SQLPrepare(),

SQLExecDirect()

or

one

of

the

schema

functions

is

called

before

this

function,

and

SQLFetch(),

SQLFetchScroll(),

SQLBulkOperations(),

or

SQLSetPos()

is

called

after.

Column

attributes

may

also

be

needed

before

calling

SQLBindCol(),

and

can

be

obtained

using

SQLDescribeCol()

or

SQLColAttribute().

Syntax:

SQLRETURN

SQLBindCol

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ColumnNumber,

/*

icol

*/

SQLSMALLINT

TargetType,

/*

fCType

*/

SQLPOINTER

TargetValuePtr,

/*

rgbValue

*/

SQLINTEGER

BufferLength,

/*

dbValueMax

*/

SQLINTEGER

*StrLen_or_IndPtr);

/*

*pcbValue

*/

Function

arguments:

Table

4.

SQLBindCol

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLUSMALLINT

ColumnNumber

input

Number

identifying

the

column.

Columns

are

numbered

sequentially,

from

left

to

right.

v

Column

numbers

start

at

1

if

bookmarks

are

not

used

(SQL_ATTR_USE_BOOKMARKS

statement

attribute

set

to

SQL_UB_OFF).

v

Column

numbers

start

at

0

if

bookmarks

are

used

(the

statement

attribute

is

set

to

SQL_UB_ON).

Column

0

is

the

bookmark

column.

SQLBindCol

10

CLI

Guide

and

Reference,

Volume

2

Table

4.

SQLBindCol

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

TargetType

input

The

C

data

type

for

column

number

ColumnNumber

in

the

result

set.

When

the

application

retrieves

data

from

the

data

source,

it

will

convert

the

data

to

this

C

type.

When

using

SQLBulkOperations()

or

SQLSetPos(),

the

driver

will

convert

data

from

this

C

data

type

when

sending

information

to

the

data

source.

The

following

types

are

supported:

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CHAR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCHAR

v

SQL_C_DBCLOB_LOCATOR

v

SQL_C_DECIMAL_IBM

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

v

SQL_C_NUMERIC

a

v

SQL_C_SBIGINT

v

SQL_C_SHORT

v

SQL_C_TYPE_DATE

v

SQL_C_TYPE_TIME

v

SQL_C_TYPE_TIMESTAMP

v

SQL_C_TINYINT

v

SQL_C_UBIGINT

v

SQL_C_UTINYINT

v

SQL_C_WCHAR

Specifying

SQL_C_DEFAULT

causes

data

to

be

transferred

to

its

default

C

data

type.

SQLPOINTER

TargetValuePtr

input/output

(deferred)

Pointer

to

buffer

or

an

array

of

buffers

with

either

column-wise

or

row-wise

binding,

where

DB2

CLI

is

to

store

the

column

data

or

the

LOB

locator

when

the

fetch

occurs.

This

buffer

is

used

to

return

data

when

any

of

the

following

functions

are

called:

SQLFetch(),

SQLFetchScroll(),

SQLSetPos()

using

the

Operation

argument

SQL_REFRESH,

or

SQLBulkOperations()

using

the

Operation

argument

SQL_FETCH_BY_BOOKMARK.

Otherwise,

SQLBulkOperations()

and

SQLSetPos()

use

the

buffer

to

retrieve

data.

If

TargetValuePtr

is

null,

the

column

is

unbound.

All

columns

can

be

unbound

with

a

call

to

SQLFreeStmt()

with

the

SQL_UNBIND

option.

SQLBindCol

Chapter

1.

DB2

CLI

functions

11

Table

4.

SQLBindCol

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

BufferLength

input

Size

in

bytes

of

TargetValuePtr

buffer

available

to

store

the

column

data

or

the

LOB

locator.

If

TargetType

denotes

a

binary

or

character

string

(either

single

or

double

byte)

or

is

SQL_C_DEFAULT

for

a

column

returning

variable

length

data,

then

BufferLength

must

be

>

0,

or

an

error

will

be

returned.

Note

that

for

character

data,

the

driver

counts

the

NULL

termination

character

and

so

space

must

be

allocated

for

it.

For

all

other

data

types,

this

argument

is

ignored.

SQLINTEGER

*

StrLen_or_IndPtr

input/output

(deferred)

Pointer

to

value

(or

array

of

values)

which

indicates

the

number

of

bytes

DB2

CLI

has

available

to

return

in

the

TargetValuePtr

buffer.

If

TargetType

is

a

LOB

locator,

the

size

of

the

locator

is

returned,

not

the

size

of

the

LOB

data.

This

buffer

is

used

to

return

data

when

any

of

the

following

functions

are

called:

SQLFetch(),

SQLFetchScroll(),

SQLSetPos()

using

the

Operation

argument

SQL_REFRESH,

or

SQLBulkOperations()

using

the

Operation

argument

SQL_FETCH_BY_BOOKMARK.

Otherwise,

SQLBulkOperations()

and

SQLSetPos()

use

the

buffer

to

retrieve

data.

SQLFetch()

returns

SQL_NULL_DATA

in

this

argument

if

the

data

value

of

the

column

is

null.

This

pointer

value

must

be

unique

for

each

bound

column,

or

NULL.

A

value

of

SQL_COLUMN_IGNORE,

SQL_NTS,

SQL_NULL_DATA,

or

the

length

of

the

data

can

be

set

for

use

with

SQLBulkOperations().

SQL_NO_LENGTH

may

also

be

returned,

refer

to

the

Usage

section

below

for

more

information.

v

For

this

function,

both

TargetValuePtr

and

StrLen_or_IndPtr

are

deferred

outputs,

meaning

that

the

storage

locations

these

pointers

point

to

do

not

get

updated

until

a

result

set

row

is

fetched.

As

a

result,

the

locations

referenced

by

these

pointers

must

remain

valid

until

SQLFetch()

or

SQLFetchScroll()

is

called.

For

example,

if

SQLBindCol()

is

called

within

a

local

function,

SQLFetch()

must

be

called

from

within

the

same

scope

of

the

function

or

the

TargetValuePtr

buffer

must

be

allocated

as

static

or

global.

v

DB2

CLI

will

be

able

to

optimize

data

retrieval

for

all

variable

length

data

types

if

TargetValuePtr

is

placed

consecutively

in

memory

after

StrLen_or_IndPtr.

Usage:

Call

SQLBindCol()

once

for

each

column

in

the

result

set

for

which

either

the

data

or,

for

LOB

columns,

the

LOB

locator

is

to

be

retrieved.

When

SQLFetch()

or

SQLFetchScroll()

is

called

to

retrieve

data

from

the

result

set,

the

data

in

each

of

the

bound

columns

is

placed

in

the

locations

assigned

by

the

TargetValuePtr

and

StrLen_or_IndPtr

pointers.

When

the

statement

attribute

SQL_ATTR_ROW_ARRAY_SIZE

is

greater

than

1,

then

TargetType

should

refer

to

SQLBindCol

12

CLI

Guide

and

Reference,

Volume

2

an

array

of

buffers.

If

TargetType

is

a

LOB

locator,

a

locator

value

is

returned,

not

the

actual

LOB

data.

The

LOB

locator

references

the

entire

data

value

in

the

LOB

column.

Columns

are

identified

by

a

number,

assigned

sequentially

from

left

to

right.

v

Column

numbers

start

at

1

if

bookmarks

are

not

used

(SQL_ATTR_USE_BOOKMARKS

statement

attribute

set

to

SQL_UB_OFF).

v

Column

numbers

start

at

0

if

bookmarks

are

used

(the

statement

attribute

set

to

SQL_UB_ON).

After

columns

have

been

bound,

in

subsequent

fetches

the

application

can

change

the

binding

of

these

columns

or

bind

previously

unbound

columns

by

calling

SQLBindCol().

The

new

binding

does

not

apply

to

data

already

fetched,

it

will

be

used

on

the

next

fetch.

To

unbind

a

single

column

(including

columns

bound

with

SQLBindFileToCol()),

call

SQLBindCol()

with

the

TargetValuePtr

pointer

set

to

NULL.

To

unbind

all

the

columns,

the

application

should

call

SQLFreeStmt()

with

the

Option

input

set

to

SQL_UNBIND.

The

application

must

ensure

enough

storage

is

allocated

for

the

data

to

be

retrieved.

If

the

buffer

is

to

contain

variable

length

data,

the

application

must

allocate

as

much

storage

as

the

maximum

length

of

the

bound

column

plus

the

NULL

terminator.

Otherwise,

the

data

may

be

truncated.

If

the

buffer

is

to

contain

fixed

length

data,

DB2

CLI

assumes

the

size

of

the

buffer

is

the

length

of

the

C

data

type.

If

data

conversion

is

specified,

the

required

size

may

be

affected.

If

string

truncation

does

occur,

SQL_SUCCESS_WITH_INFO

is

returned

and

StrLen_or_IndPtr

will

be

set

to

the

actual

size

of

TargetValuePtr

available

for

return

to

the

application.

Truncation

is

also

affected

by

the

SQL_ATTR_MAX_LENGTH

statement

attribute

(used

to

limit

the

amount

of

data

returned

to

the

application).

The

application

can

specify

not

to

report

truncation

by

calling

SQLSetStmtAttr()

with

SQL_ATTR_MAX_LENGTH

and

a

value

for

the

maximum

length

to

return

for

all

variable

length

columns,

and

by

allocating

a

TargetValuePtr

buffer

of

the

same

size

(plus

the

null-terminator).

If

the

column

data

is

larger

than

the

set

maximum

length,

SQL_SUCCESS

will

be

returned

when

the

value

is

fetched

and

the

maximum

length,

not

the

actual

length,

will

be

returned

in

StrLen_or_IndPtr.

If

the

column

to

be

bound

is

a

SQL_GRAPHIC,

SQL_VARGRAPHIC

or

SQL_LONGVARGRAPHIC

type,

then

TargetType

can

be

set

to

SQL_C_DBCHAR

or

SQL_C_CHAR.

If

TargetType

is

SQL_C_DBCHAR,

the

data

fetched

into

the

TargetValuePtr

buffer

will

be

null-terminated

with

a

double

byte

null-terminator.

If

TargetType

is

SQL_C_CHAR,

then

there

will

be

no

null-termination

of

the

data.

In

both

cases,

the

length

of

the

TargetValuePtr

buffer

(BufferLength)

is

in

units

of

bytes

and

should

therefore

be

a

multiple

of

2.

It

is

also

possible

to

force

DB2

CLI

to

null

terminate

graphic

strings

using

the

PATCH1

keyword.

Note:

SQL_NO_TOTAL

will

be

returned

in

StrLen_or_IndPtr

if:

v

The

SQL

type

is

a

variable

length

type,

and

v

StrLen_or_IndPtr

and

TargetValuePtr

are

contiguous,

and

v

The

column

type

is

NOT

NULLABLE,

and

v

String

truncation

occurred.

Descriptors

and

SQLBindCol

The

following

sections

describe

how

SQLBindCol()

interacts

with

descriptors.

SQLBindCol

Chapter

1.

DB2

CLI

functions

13

Note:

Calling

SQLBindCol()

for

one

statement

can

affect

other

statements.

This

occurs

when

the

ARD

associated

with

the

statement

is

explicitly

allocated

and

is

also

associated

with

other

statements.

Because

SQLBindCol()

modifies

the

descriptor,

the

modifications

apply

to

all

statements

with

which

this

descriptor

is

associated.

If

this

is

not

the

required

behavior,

the

application

should

dissociate

this

descriptor

from

the

other

statements

before

calling

SQLBindCol().

Argument

mappings

Conceptually,

SQLBindCol()

performs

the

following

steps

in

sequence:

v

Calls

SQLGetStmtAttr()

to

obtain

the

ARD

handle.

v

Calls

SQLGetDescField()

to

get

this

descriptor’s

SQL_DESC_COUNT

field,

and

if

the

value

in

the

ColumnNumber

argument

exceeds

the

value

of

SQL_DESC_COUNT,

calls

SQLSetDescField()

to

increase

the

value

of

SQL_DESC_COUNT

to

ColumnNumber.

v

Calls

SQLSetDescField()

multiple

times

to

assign

values

to

the

following

fields

of

the

ARD:

–

Sets

SQL_DESC_TYPE

and

SQL_DESC_CONCISE_TYPE

to

the

value

of

TargetType.

–

Sets

one

or

more

of

SQL_DESC_LENGTH,

SQL_DESC_PRECISION,

SQL_DESC_SCALE

as

appropriate

for

TargetType.

–

Sets

the

SQL_DESC_OCTET_LENGTH

field

to

the

value

of

BufferLength.

–

Sets

the

SQL_DESC_DATA_PTR

field

to

the

value

of

TargetValue.

–

Sets

the

SQL_DESC_INDICATOR_PTR

field

to

the

value

of

StrLen_or_IndPtr

(see

the

following

paragraph).

–

Sets

the

SQL_DESC_OCTET_LENGTH_PTR

field

to

the

value

of

StrLen_or_IndPtr

(see

the

following

paragraph).

The

variable

that

the

StrLen_or_IndPtr

argument

refers

to

is

used

for

both

indicator

and

length

information.

If

a

fetch

encounters

a

null

value

for

the

column,

it

stores

SQL_NULL_DATA

in

this

variable;

otherwise,

it

stores

the

data

length

in

this

variable.

Passing

a

null

pointer

as

StrLen_or_IndPtr

keeps

the

fetch

operation

from

returning

the

data

length,

but

makes

the

fetch

fail

if

it

encounters

a

null

value

and

has

no

way

to

return

SQL_NULL_DATA.

If

the

call

to

SQLBindCol()

fails,

the

content

of

the

descriptor

fields

it

would

have

set

in

the

ARD

are

undefined,

and

the

value

of

the

SQL_DESC_COUNT

field

of

the

ARD

is

unchanged.

Implicit

resetting

of

COUNT

field

SQLBindCol()

sets

SQL_DESC_COUNT

to

the

value

of

the

ColumnNumber

argument

only

when

this

would

increase

the

value

of

SQL_DESC_COUNT.

If

the

value

in

the

TargetValuePtr

argument

is

a

null

pointer

and

the

value

in

the

ColumnNumber

argument

is

equal

to

SQL_DESC_COUNT

(that

is,

when

unbinding

the

highest

bound

column),

then

SQL_DESC_COUNT

is

set

to

the

number

of

the

highest

remaining

bound

column.

Cautions

regarding

SQL_C_DEFAULT

To

retrieve

column

data

successfully,

the

application

must

determine

correctly

the

length

and

starting

point

of

the

data

in

the

application

buffer.

When

the

application

specifies

an

explicit

TargetType,

application

misconceptions

are

readily

detected.

However,

when

the

application

specifies

a

TargetType

of

SQL_C_DEFAULT,

SQLBindCol()

can

be

applied

to

a

column

of

a

different

data

SQLBindCol

14

CLI

Guide

and

Reference,

Volume

2

type

from

the

one

intended

by

the

application,

either

from

changes

to

the

metadata

or

by

applying

the

code

to

a

different

column.

In

this

case,

the

application

may

fail

to

determine

the

start

or

length

of

the

fetched

column

data.

This

can

lead

to

unreported

data

errors

or

memory

violations.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

5.

SQLBindCol

SQLSTATEs

SQLSTATE

Description

Explanation

07009

Invalid

descriptor

index

The

value

specified

for

the

argument

ColumnNumber

exceeded

the

maximum

number

of

columns

in

the

result

set,

or

the

value

specified

was

less

than

0.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY003

Program

type

out

of

range.

TargetType

was

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

is

less

than

1

and

the

argument

TargetType

is

either

SQL_C_CHAR,

SQL_C_BINARY

or

SQL_C_DEFAULT.

HYC00

Driver

not

capable.

DB2

CLI

recognizes,

but

does

not

support

the

data

type

specified

in

the

argument

TargetType

A

LOB

locator

C

data

type

was

specified,

but

the

connected

server

does

not

support

LOB

data

types.

Note:

Additional

diagnostic

messages

relating

to

the

bound

columns

may

be

reported

at

fetch

time.

Restrictions:

The

LOB

data

support

is

only

available

when

connected

to

a

server

that

supports

large

object

data

types.

If

the

application

attempts

to

specify

a

LOB

locator

C

data

type

for

a

server

that

does

not

support

it,

SQLSTATE

HYC00

will

be

returned.

Example:

/*

bind

column

1

to

variable

*/

cliRC

=

SQLBindCol(hstmt,

1,

SQL_C_SHORT,

&deptnumb.val,

0,

&deptnumb.ind);

SQLBindCol

Chapter

1.

DB2

CLI

functions

15

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“LOB

locators

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Retrieving

query

results

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Retrieving

array

data

in

CLI

applications

using

column-wise

binding”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Retrieving

array

data

in

CLI

applications

using

row-wise

binding”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“C

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLBindFileToCol

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

column”

on

page

16

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

on

page

117

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

v

“SQLSetPos

function

(CLI)

-

Set

the

cursor

position

in

a

rowset”

on

page

284

v

“SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows”

on

page

43

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“CLI/ODBC

configuration

keywords

listing

by

category”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

v

“tut_mod.c

--

How

to

modify

table

data”

v

“tut_read.c

--

How

to

read

data

from

tables”

SQLBindFileToCol

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

column

Purpose:

Specification:

DB2

CLI

2.1

SQLBindFileToCol()

is

used

to

associate

or

bind

a

LOB

column

in

a

result

set

to

a

file

reference

or

an

array

of

file

references.

This

enables

data

in

that

column

to

be

transferred

directly

into

a

file

when

each

row

is

fetched

for

the

statement

handle.

The

LOB

file

reference

arguments

(file

name,

file

name

length,

file

reference

options)

refer

to

a

file

within

the

application’s

environment

(on

the

client).

Before

fetching

each

row,

the

application

must

make

sure

that

these

variables

contain

the

name

of

a

file,

the

length

of

the

file

name,

and

a

file

option

(new

/

overwrite

/

append).

These

values

can

be

changed

between

each

row

fetch

operation.

SQLBindCol

16

CLI

Guide

and

Reference,

Volume

2

Syntax:

SQLRETURN

SQLBindFileToCol

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ColumnNumber,

/*

icol

*/

SQLCHAR

*FileName,

SQLSMALLINT

*FileNameLength,

SQLUINTEGER

*FileOptions,

SQLSMALLINT

MaxFileNameLength,

SQLINTEGER

*StringLength,

SQLINTEGER

*IndicatorValue);

Function

arguments:

Table

6.

SQLBindFileToCol

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

icol

input

Number

identifying

the

column.

Columns

are

numbered

sequentially,

from

left

to

right,

starting

at

1.

SQLCHAR

*

FileName

input

(deferred)

Pointer

to

the

location

that

will

contain

the

file

name

or

an

array

of

file

names

at

the

time

of

the

next

fetch

using

the

StatementHandle.

This

is

either

the

complete

path

name

of

the

file(s)

or

a

relative

file

name(s).

If

relative

file

name(s)

are

provided,

they

are

appended

to

the

current

path

of

the

running

application.

This

pointer

cannot

be

NULL.

SQLSMALLINT

*

FileNameLength

input

(deferred)

Pointer

to

the

location

that

will

contain

the

length

of

the

file

name

(or

an

array

of

lengths)

at

the

time

of

the

next

fetch

using

the

StatementHandle.

If

this

pointer

is

NULL,

then

the

FileName

will

be

considered

a

null-terminated

string,

similar

to

passing

a

length

of

SQL_NTS.

The

maximum

value

of

the

file

name

length

is

255.

SQLUINTEGER

*

FileOptions

input

(deferred)

Pointer

to

the

location

that

will

contain

the

file

option

or

(array

of

file

options)

to

be

used

when

writing

the

file

at

the

time

of

the

next

fetch

using

the

StatementHandle.

The

following

FileOptions

are

supported:

SQL_FILE_CREATE

Create

a

new

file.

If

a

file

by

this

name

already

exists,

SQL_ERROR

will

be

returned.

SQL_FILE_OVERWRITE

If

the

file

already

exists,

overwrite

it.

Otherwise,

create

a

new

file.

SQL_FILE_APPEND

If

the

file

already

exists,

append

the

data

to

it.

Otherwise,

create

a

new

file.

Only

one

option

can

be

chosen

per

file,

there

is

no

default.

SQLSMALLINT

MaxFileNameLength

input

This

specifies

the

length

of

the

FileName

buffer

or,

if

the

application

uses

SQLFetchScroll()

to

retrieve

multiple

rows

for

the

LOB

column,

this

specifies

the

length

of

each

element

in

the

FileName

array.

SQLBindFileToCol

Chapter

1.

DB2

CLI

functions

17

Table

6.

SQLBindFileToCol

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

StringLength

output

(deferred)

Pointer

to

the

location

that

contains

the

length

(or

array

of

lengths)

in

bytes

of

the

LOB

data

that

is

returned.

If

this

pointer

is

NULL,

nothing

is

returned.

SQLINTEGER

*

IndicatorValue

output

(deferred)

Pointer

to

the

location

that

contains

an

indicator

value

(or

array

of

values).

Usage:

The

application

calls

SQLBindFileToCol()

once

for

each

column

that

should

be

transferred

directly

to

a

file

when

a

row

is

fetched.

LOB

data

is

written

directly

to

the

file

without

any

data

conversion,

and

without

appending

null-terminators.

FileName,

FileNameLength,

and

FileOptions

must

be

set

before

each

fetch.

When

SQLFetch()

or

SQLFetchScroll()

is

called,

the

data

for

any

column

which

has

been

bound

to

a

LOB

file

reference

is

written

to

the

file

or

files

pointed

to

by

that

file

reference.

Errors

associated

with

the

deferred

input

argument

values

of

SQLBindFileToCol()

are

reported

at

fetch

time.

The

LOB

file

reference,

and

the

deferred

StringLength

and

IndicatorValue

output

arguments

are

updated

between

fetch

operations.

If

SQLFetchScroll()

is

used

to

retrieve

multiple

rows

for

the

LOB

column,

FileName,

FileNameLength,

and

FileOptions

point

to

arrays

of

LOB

file

reference

variables.

In

this

case,

MaxFileNameLength

specifies

the

length

of

each

element

in

the

FileName

array

and

is

used

by

DB2

CLI

to

determine

the

location

of

each

element

in

the

FileName

array.

The

contents

of

the

array

of

file

references

must

be

valid

at

the

time

of

the

SQLFetchScroll()

call.

The

StringLength

and

IndicatorValue

pointers

each

point

to

an

array

whose

elements

are

updated

upon

the

SQLFetchScroll()

call.

Using

SQLFetchScroll(),

multiple

LOB

values

can

be

written

to

multiple

files,

or

to

the

same

file

depending

on

the

file

names

specified.

If

writing

to

the

same

file,

the

SQL_FILE_APPEND

file

option

should

be

specified

for

each

file

name

entry.

Only

column-wise

binding

of

arrays

of

file

references

is

supported

with

SQLFetchScroll().

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

7.

SQLBindFileToCol

SQLSTATEs

SQLSTATE

Description

Explanation

07009

Invalid

column

number.

The

value

specified

for

the

argument

icol

was

less

than

1.

The

value

specified

for

the

argument

icol

exceeded

the

maximum

number

of

columns

supported

by

the

data

source.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

SQLBindFileToCol

18

CLI

Guide

and

Reference,

Volume

2

Table

7.

SQLBindFileToCol

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY009

Invalid

argument

value.

FileName,

StringLength

or

FileOptions

is

a

null

pointer.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

MaxFileNameLength

was

less

than

0.

HYC00

Driver

not

capable.

The

application

is

currently

connected

to

a

data

source

that

does

not

support

large

objects.

Restrictions:

This

function

is

not

available

when

connected

to

DB2

servers

that

do

not

support

large

object

data

types.

Call

SQLGetFunctions()

with

the

function

type

set

to

SQL_API_SQLBINDFILETOCOL

and

check

the

SupportedPtr

output

argument

to

determine

if

the

function

is

supported

for

the

current

connection.

Example:

/*

bind

a

file

to

the

BLOB

column

*/

rc

=

SQLBindFileToCol(hstmt,

1,

fileName,

&fileNameLength,

&fileOption,

14,

NULL,

&fileInd);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Large

object

usage

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Retrieving

query

results

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

on

page

117

SQLBindFileToCol

Chapter

1.

DB2

CLI

functions

19

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

SQLBindFileToParam

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

parameter

Purpose:

Specification:

DB2

CLI

2.1

SQLBindFileToParam()

is

used

to

associate

or

bind

a

parameter

marker

in

an

SQL

statement

to

a

file

reference

or

an

array

of

file

references.

This

enables

data

from

the

file

to

be

transferred

directly

into

a

LOB

column

when

the

statement

is

subsequently

executed.

The

LOB

file

reference

arguments

(file

name,

file

name

length,

file

reference

options)

refer

to

a

file

within

the

application’s

environment

(on

the

client).

Before

calling

SQLExecute()

or

SQLExecDirect(),

the

application

must

make

sure

that

this

information

is

available

in

the

deferred

input

buffers.

These

values

can

be

changed

between

SQLExecute()

calls.

Syntax:

SQLRETURN

SQLBindFileToParam

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

TargetType,

/*

ipar

*/

SQLSMALLINT

DataType,

/*

fSqlType

*/

SQLCHAR

*FileName,

SQLSMALLINT

*FileNameLength,

SQLUINTEGER

*FileOptions,

SQLSMALLINT

MaxFileNameLength,

SQLINTEGER

*IndicatorValue);

Function

arguments:

Table

8.

SQLBindFileToParam

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

TargetType

input

Parameter

marker

number.

Parameters

are

numbered

sequentially,

from

left

to

right,

starting

at

1.

SQLSMALLINT

DataType

input

SQL

Data

Type

of

the

column.

The

data

type

must

be

one

of:

v

SQL_BLOB

v

SQL_CLOB

v

SQL_DBCLOB

SQLBindFileToCol

20

CLI

Guide

and

Reference,

Volume

2

Table

8.

SQLBindFileToParam

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

FileName

input

(deferred)

Pointer

to

the

location

that

will

contain

the

file

name

or

an

array

of

file

names

when

the

statement

(StatementHandle)

is

executed.

This

is

either

the

complete

path

name

of

the

file

or

a

relative

file

name.

If

a

relative

file

name

is

provided,

it

is

appended

to

the

current

path

of

the

client

process.

This

argument

cannot

be

NULL.

SQLSMALLINT

*

FileNameLength

input

(deferred)

Pointer

to

the

location

that

will

contain

the

length

of

the

file

name

(or

an

array

of

lengths)

at

the

time

of

the

next

SQLExecute()

or

SQLExecDirect()

using

the

StatementHandle.

If

this

pointer

is

NULL,

then

the

FileName

will

be

considered

a

null-terminated

string,

similar

to

passing

a

length

of

SQL_NTS.

The

maximum

value

of

the

file

name

length

is

255.

SQLUINTEGER

*

FileOptions

input

(deferred)

Pointer

to

the

location

that

will

contain

the

file

option

(or

an

array

of

file

options)

to

be

used

when

reading

the

file.

The

location

will

be

accessed

when

the

statement

(StatementHandle)

is

executed.

Only

one

option

is

supported

(and

it

must

be

specified):

SQL_FILE_READ

A

regular

file

that

can

be

opened,

read

and

closed.

(The

length

is

computed

when

the

file

is

opened)

This

pointer

cannot

be

NULL.

SQLSMALLINT

MaxFileNameLength

input

This

specifies

the

length

of

the

FileName

buffer.

If

the

application

calls

SQLParamOptions()

to

specify

multiple

values

for

each

parameter,

this

is

the

length

of

each

element

in

the

FileName

array.

SQLINTEGER

*

IndicatorValue

input

(deferred)

Pointer

to

the

location

that

contains

an

indicator

value

(or

array

of

values),

which

is

set

to

SQL_NULL_DATA

if

the

data

value

of

the

parameter

is

to

be

null.

It

must

be

set

to

0

(or

the

pointer

can

be

set

to

null)

when

the

data

value

is

not

null.

Usage:

The

application

calls

SQLBindFileToParam()

once

for

each

parameter

marker

whose

value

should

be

obtained

directly

from

a

file

when

a

statement

is

executed.

Before

the

statement

is

executed,

FileName,

FileNameLength,

and

FileOptions

values

must

be

set.

When

the

statement

is

executed,

the

data

for

any

parameter

which

has

been

bound

using

SQLBindFileToParam()

is

read

from

the

referenced

file

and

passed

to

the

server.

If

the

application

uses

SQLParamOptions()

to

specify

multiple

values

for

each

parameter,

then

FileName,

FileNameLength,

and

FileOptions

point

to

an

array

of

LOB

file

reference

variables.

In

this

case,

MaxFileNameLength

specifies

the

length

of

each

element

in

the

FileName

array

and

is

used

by

DB2

CLI

to

determine

the

location

of

each

element

in

the

FileName

array.

SQLBindFileToParam

Chapter

1.

DB2

CLI

functions

21

A

LOB

parameter

marker

can

be

associated

with

(bound

to)

an

input

file

using

SQLBindFileToParam(),

or

with

a

stored

buffer

using

SQLBindParameter().

The

most

recent

bind

parameter

function

call

determines

the

type

of

binding

that

is

in

effect.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

9.

SQLBindFileToParam

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY004

SQL

data

type

out

of

range.

The

value

specified

for

DataType

was

not

a

valid

SQL

type

for

this

function

call.

HY009

Invalid

argument

value.

FileName,

FileOptions

FileNameLength,

is

a

null

pointer.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

input

argument

MaxFileNameLength

was

less

than

0.

HY093

Invalid

parameter

number.

The

value

specified

for

TargetType

was

either

less

than

1

or

greater

than

the

maximum

number

of

parameters

supported.

HYC00

Driver

not

capable.

The

server

does

not

support

Large

Object

data

types.

Restrictions:

This

function

is

not

available

when

connected

to

DB2

servers

that

do

not

support

large

object

data

types.

Call

SQLGetFunctions()

with

the

function

type

set

to

SQL_API_SQLBINDFILETOPARAM

and

check

the

SupportedPtr

output

argument

to

determine

if

the

function

is

supported

for

the

current

connection.

Example:

/*

bind

the

file

parameter

*/

rc

=

SQLBindFileToParam(hstmt,

3,

SQL_BLOB,

fileName,

SQLBindFileToParam

22

CLI

Guide

and

Reference,

Volume

2

&fileNameLength,

&fileOption,

14,

&fileInd);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Binding

parameter

markers

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

on

page

100

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

on

page

105

v

“SQLParamOptions

function

(CLI)

-

Specify

an

input

array

for

a

parameter”

on

page

240

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

Purpose:

Specification:

DB2

CLI

2.1

ODBC

2.0

SQLBindParameter()

is

used

to

associate

or

bind

parameter

markers

in

an

SQL

statement

to

either:

v

Application

variables

or

arrays

of

application

variables

(storage

buffers)

for

all

C

data

types.

In

this

case

data

is

transferred

from

the

application

to

the

DBMS

when

SQLExecute()

or

SQLExecDirect()

is

called.

Data

conversion

may

occur

as

the

data

is

transferred.

v

A

LOB

locator,

for

SQL

LOB

data

types.

In

this

case

a

LOB

locator

value,

not

the

LOB

data

itself,

is

transferred

from

the

application

to

the

server

when

the

SQL

statement

is

executed.

Alternatively,

LOB

parameters

can

be

bound

directly

to

a

file

using

SQLBindFileToParam()

This

function

must

also

be

used

to

bind

a

parameter

of

a

stored

procedure

CALL

statement

to

the

application

where

the

parameter

may

be

input,

output

or

both.

Syntax:

SQLRETURN

SQLBindParameter(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ParameterNumber,

/*

ipar

*/

SQLSMALLINT

InputOutputType,

/*

fParamType

*/

SQLBindFileToParam

Chapter

1.

DB2

CLI

functions

23

SQLSMALLINT

ValueType,

/*

fCType

*/

SQLSMALLINT

ParameterType,

/*

fSqlType

*/

SQLUINTEGER

ColumnSize,

/*

cbColDef

*/

SQLSMALLINT

DecimalDigits,

/*

ibScale

*/

SQLPOINTER

ParameterValuePtr,

/*

rgbValue

*/

SQLINTEGER

BufferLength,

/*

cbValueMax

*/

SQLINTEGER

*StrLen_or_IndPtr);

/*

pcbValue

*/

Function

arguments:

Table

10.

SQLBindParameter

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

Handle

SQLUSMALLINT

ParameterNumber

input

Parameter

marker

number,

ordered

sequentially

left

to

right,

starting

at

1.

SQLSMALLINT

InputOutputType

input

The

type

of

parameter.

The

value

of

the

SQL_DESC_PARAMETER_TYPE

field

of

the

IPD

is

also

set

to

this

argument.

The

supported

types

are:

v

SQL_PARAM_INPUT:

The

parameter

marker

is

associated

with

an

SQL

statement

that

is

not

a

stored

procedure

CALL;

or,

it

marks

an

input

parameter

of

the

CALLed

stored

procedure.

When

the

statement

is

executed,

the

data

for

the

parameter

is

sent

to

the

server

and

as

such,

the

ParameterValuePtr

buffer

must

contain

valid

input

data

value(s),

unless

the

StrLen_or_IndPtr

buffer

contains

SQL_NULL_DATA

or

SQL_DATA_AT_EXEC

(if

the

value

should

be

sent

via

SQLParamData()

and

SQLPutData()).

v

SQL_PARAM_INPUT_OUTPUT:

The

parameter

marker

is

associated

with

an

input/output

parameter

of

the

CALLed

stored

procedure.

When

the

statement

is

executed,

the

data

for

the

parameter

is

sent

to

the

server

and

as

such,

the

ParameterValuePtr

buffer

must

contain

valid

input

data

value(s),

unless

the

StrLen_or_IndPtr

buffer

contains

SQL_NULL_DATA

or

SQL_DATA_AT_EXEC

(if

the

value

should

be

sent

via

SQLParamData()

and

SQLPutData()).

v

SQL_PARAM_OUTPUT:

The

parameter

marker

is

associated

with

an

output

parameter

of

the

CALLed

stored

procedure

or

the

return

value

of

the

stored

procedure.

After

the

statement

is

executed,

data

for

the

output

parameter

is

returned

to

the

application

buffer

specified

by

ParameterValuePtr

and

StrLen_or_IndPtr,

unless

both

are

NULL

pointers,

in

which

case

the

output

data

is

discarded.

If

an

output

parameter

does

not

have

a

return

value

then

StrLen_or_IndPtr

is

set

to

SQL_NULL_DATA.

SQLBindParameter

24

CLI

Guide

and

Reference,

Volume

2

Table

10.

SQLBindParameter

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

ValueType

input

C

data

type

of

the

parameter.

The

following

types

are

supported:

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CHAR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCHAR

v

SQL_C_DBCLOB_LOCATOR

v

SQL_C_DECIMAL_IBM

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

v

SQL_C_NUMERIC

a

v

SQL_C_SBIGINT

v

SQL_C_SHORT

v

SQL_C_TYPE_DATE

v

SQL_C_TYPE_TIME

v

SQL_C_TYPE_TIMESTAMP

v

SQL_C_TINYINT

v

SQL_C_UBIGINT

v

SQL_C_UTINYINT

v

SQL_C_WCHAR

Specifying

SQL_C_DEFAULT

causes

data

to

be

transferred

from

its

default

C

data

type

to

the

type

indicated

in

ParameterType.

a

Windows

32-bit

only

SQLBindParameter

Chapter

1.

DB2

CLI

functions

25

Table

10.

SQLBindParameter

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

ParameterType

input

SQL

data

type

of

the

parameter.

The

supported

types

are:

v

SQL_BIGINT

v

SQL_BINARY

v

SQL_BIT

v

SQL_BLOB

v

SQL_BLOB_LOCATOR

v

SQL_CHAR

v

SQL_CLOB

v

SQL_CLOB_LOCATOR

v

SQL_DBCLOB

v

SQL_DBCLOB_LOCATOR

v

SQL_DECIMAL

v

SQL_DOUBLE

v

SQL_FLOAT

v

SQL_GRAPHIC

v

SQL_INTEGER

v

SQL_LONG

v

SQL_LONGVARBINARY

v

SQL_LONGVARCHAR

v

SQL_LONGVARGRAPHIC

v

SQL_NUMERIC

v

SQL_REAL

v

SQL_SHORT

v

SQL_SMALLINT

v

SQL_TINYINT

v

SQL_TYPE_DATE

v

SQL_TYPE_TIME

v

SQL_TYPE_TIMESTAMP

v

SQL_VARBINARY

v

SQL_VARCHAR

v

SQL_VARGRAPHIC

v

SQL_WCHAR

Note:

SQL_BLOB_LOCATOR,

SQL_CLOB_LOCATOR,

SQL_DBCLOB_LOCATOR

are

application

related

concepts

and

do

not

map

to

a

data

type

for

column

definition

during

a

CREATE

TABLE

statement.

SQLUINTEGER

ColumnSize

input

Precision

of

the

corresponding

parameter

marker.

If

ParameterType

denotes:

v

A

binary

or

single

byte

character

string

(e.g.

SQL_CHAR,

SQL_BLOB),

this

is

the

maximum

length

in

bytes

for

this

parameter

marker.

v

A

double

byte

character

string

(e.g.

SQL_GRAPHIC),

this

is

the

maximum

length

in

double-byte

characters

for

this

parameter.

v

SQL_DECIMAL,

SQL_NUMERIC,

this

is

the

maximum

decimal

precision.

v

Otherwise,

this

argument

is

ignored.

SQLBindParameter

26

CLI

Guide

and

Reference,

Volume

2

Table

10.

SQLBindParameter

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

DecimalDigits

input

If

ParameterType

is

SQL_DECIMAL

or

SQL_NUMERIC,

DecimalDigits

represents

the

scale

of

the

corresponding

parameter

and

sets

the

SQL_DESC_SCALE

field

of

the

IPD.

If

ParameterType

is

SQL_TYPE_TIMESTAMP

or

SQL_TYPE_TIME,

Decimal

Digits

represents

the

precision

of

the

corresponding

parameter

and

sets

the

SQL_DESC_PRECISION

field

of

the

IPD.

The

precision

of

a

time

timestamp

value

is

the

number

of

digits

to

the

right

of

the

decimal

point

in

the

string

representation

of

a

time

or

timestamp

(for

example,

the

scale

of

yyyy-mm-dd

hh:mm:ss.fff

is

3).

Other

than

for

the

ParameterType

values

mentioned

here,

DecimalDigits

is

ignored.

SQLPOINTER

ParameterValuePtr

input

(deferred)

and/or

output

(deferred)

v

On

input

(InputOutputType

set

to

SQL_PARAM_INPUT,

or

SQL_PARAM_INPUT_OUTPUT):

At

execution

time,

if

StrLen_or_IndPtr

does

not

contain

SQL_NULL_DATA

or

SQL_DATA_AT_EXEC,

then

ParameterValuePtr

points

to

a

buffer

that

contains

the

actual

data

for

the

parameter.

If

StrLen_or_IndPtr

contains

SQL_DATA_AT_EXEC,

then

ParameterValuePtr

is

an

application-defined

32-bit

value

that

is

associated

with

this

parameter.

This

32-bit

value

is

returned

to

the

application

via

a

subsequent

SQLParamData()

call.

If

SQLParamOptions()

is

called

to

specify

multiple

values

for

the

parameter,

then

ParameterValuePtr

is

a

pointer

to

a

input

buffer

array

of

BufferLength

bytes.

v

On

output

(InputOutputType

set

to

SQL_PARAM_OUTPUT,

or

SQL_PARAM_INPUT_OUTPUT):

ParameterValuePtr

points

to

the

buffer

where

the

output

parameter

value

of

the

stored

procedure

will

be

stored.

If

InputOutputType

is

set

to

SQL_PARAM_OUTPUT,

and

both

ParameterValuePtr

and

StrLen_or_IndPtr

are

NULL

pointers,

then

the

output

parameter

value

or

the

return

value

from

the

stored

procedure

call

is

discarded.

SQLBindParameter

Chapter

1.

DB2

CLI

functions

27

Table

10.

SQLBindParameter

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

BufferLength

input

For

character

and

binary

data,

BufferLength

specifies

the

length

of

the

ParameterValuePtr

buffer

(if

is

treated

as

a

single

element)

or

the

length

of

each

element

in

the

ParameterValuePtr

array

(if

the

application

calls

SQLParamOptions()

to

specify

multiple

values

for

each

parameter).

For

non-character

and

non-binary

data,

this

argument

is

ignored

--

the

length

of

the

ParameterValuePtr

buffer

(if

it

is

a

single

element)

or

the

length

of

each

element

in

the

ParameterValuePtr

array

(if

SQLParamOptions()

is

used

to

specify

an

array

of

values

for

each

parameter)

is

assumed

to

be

the

length

associated

with

the

C

data

type.

For

output

parameters,

BufferLength

is

used

to

determine

whether

to

truncate

character

or

binary

output

data

in

the

following

manner:

v

For

character

data,

if

the

number

of

bytes

available

to

return

is

greater

than

or

equal

to

BufferLength,

the

data

in

ParameterValuePtr

is

truncated

to

BufferLength-1

bytes

and

is

null-terminated

(unless

null-termination

has

been

turned

off).

v

For

binary

data,

if

the

number

of

bytes

available

to

return

is

greater

than

BufferLength,

the

data

in

ParameterValuePtr

is

truncated

to

BufferLength

bytes.

SQLBindParameter

28

CLI

Guide

and

Reference,

Volume

2

Table

10.

SQLBindParameter

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

StrLen_or_IndPtr

input

(deferred)

and/or

output

(deferred)

If

this

is

an

input

or

input/output

parameter:

This

is

the

pointer

to

the

location

which

contains

(when

the

statement

is

executed)

the

length

of

the

parameter

marker

value

stored

at

ParameterValuePtr.

To

specify

a

null

value

for

a

parameter

marker,

this

storage

location

must

contain

SQL_NULL_DATA.

If

ValueType

is

SQL_C_CHAR,

this

storage

location

must

contain

either

the

exact

length

of

the

data

stored

at

ParameterValuePtr,

or

SQL_NTS

if

the

contents

at

ParameterValuePtr

is

null-terminated.

If

ValueType

indicates

character

data

(explicitly,

or

implicitly

using

SQL_C_DEFAULT),

and

this

pointer

is

set

to

NULL,

it

is

assumed

that

the

application

will

always

provide

a

null-terminated

string

in

ParameterValuePtr.

This

also

implies

that

this

parameter

marker

will

never

have

a

null

value.

If

ParameterType

denotes

a

graphic

data

type

and

the

ValueType

is

SQL_C_CHAR,

the

pointer

to

StrLen_or_IndPtr

can

never

be

NULL

and

the

contents

of

StrLen_or_IndPtr

can

never

hold

SQL_NTS.

In

general

for

graphic

data

types,

this

length

should

be

the

number

of

octets

that

the

double

byte

data

occupies;

therefore,

the

length

should

always

be

a

multiple

of

2.

In

fact,

if

the

length

is

odd,

then

an

error

will

occur

when

the

statement

is

executed.

When

SQLExecute()

or

SQLExecDirect()

is

called,

and

StrLen_or_IndPtr

points

to

a

value

of

SQL_DATA_AT_EXEC,

the

data

for

the

parameter

will

be

sent

with

SQLPutData().

This

parameter

is

referred

to

as

a

data-at-execution

parameter.

SQLBindParameter

Chapter

1.

DB2

CLI

functions

29

Table

10.

SQLBindParameter

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

StrLen_or_IndPtr

(cont)

input

(deferred)

and/or

output

(deferred)

If

SQLSetStmtAttr()

is

used

with

the

SQL_ATTR_PARAMSET_SIZE

attribute

to

specify

multiple

values

for

each

parameter,

StrLen_or_IndPtr

points

to

an

array

of

SQLINTEGER

values

where

each

of

the

elements

can

be

the

number

of

bytes

in

the

corresponding

ParameterValuePtr

element

(excluding

the

null-terminator),

or

SQL_NULL_DATA.

If

this

is

an

output

parameter

(InputOutputType

is

set

to

SQL_PARAM_OUTPUT):

This

must

be

an

output

parameter

or

return

value

of

a

stored

procedure

CALL

and

points

to

one

of

the

following,

after

the

execution

of

the

stored

procedure:

v

number

of

bytes

available

to

return

in

ParameterValuePtr,

excluding

the

null-termination

character.

v

SQL_NULL_DATA

v

SQL_NO_TOTAL

if

the

number

of

bytes

available

to

return

cannot

be

determined.

Usage:

SQLBindParameter()

extends

the

capability

of

the

deprecated

SQLSetParam()

function,

by

providing

a

method

of:

v

Specifying

whether

a

parameter

is

input,

input

/

output,

or

output,

necessary

for

proper

handling

of

parameters

for

stored

procedures.

v

Specifying

an

array

of

input

parameter

values

when

SQLSetStmtAttr()

with

the

SQL_ATTR_PARAMSET_SIZE

attribute

is

used

in

conjunction

with

SQLBindParameter().

This

function

can

be

called

before

SQLPrepare()

if

the

data

types

and

lengths

of

the

target

columns

in

the

WHERE

or

UPDATE

clause,

or

the

parameters

for

the

stored

procedure

are

known.

Otherwise,

you

can

obtain

the

attributes

of

the

target

columns

or

stored

procedure

parameters

after

the

statement

is

prepared

using

SQLDescribeParam(),

and

then

bind

the

parameter

markers.

Parameter

markers

are

referenced

by

number

(ParameterNumber)

and

are

numbered

sequentially

from

left

to

right,

starting

at

1.

The

C

buffer

data

type

given

by

ValueType

must

be

compatible

with

the

SQL

data

type

indicated

by

ParameterType,

or

an

error

will

occur.

All

parameters

bound

by

this

function

remain

in

effect

until

one

of

the

following

occurs:

v

SQLFreeStmt()

is

called

with

the

SQL_RESET_PARAMS

option,

or

v

SQLFreeHandle()

is

called

with

HandleType

set

to

SQL_HANDLE_STMT,

or

SQLFreeStmt()

is

called

with

the

SQL_DROP

option,

or

v

SQLBindParameter()

is

called

again

for

the

same

ParameterNumber,

or

v

SQLSetDescField()

is

called,

with

the

associated

APD

descriptor

handle,

to

set

SQL_DESC_COUNT

in

the

header

field

of

the

APD

to

zero

(0).

SQLBindParameter

30

CLI

Guide

and

Reference,

Volume

2

A

parameter

can

only

be

bound

to

either

a

file

or

a

storage

location,

not

both.

The

most

recent

parameter

binding

function

call

determines

the

bind

that

is

in

effect.

Parameter

type:

The

InputOutputType

argument

specifies

the

type

of

the

parameter.

All

parameters

in

the

SQL

statements

that

do

not

call

procedures

are

input

parameters.

Parameters

in

stored

procedure

calls

can

be

input,

input/output,

or

output

parameters.

Even

though

the

DB2

stored

procedure

argument

convention

typically

implies

that

all

procedure

arguments

are

input/output,

the

application

programmer

may

still

choose

to

specify

more

exactly

the

input

or

output

nature

on

the

SQLBindParameter()

to

follow

a

more

rigorous

coding

style.

v

If

an

application

cannot

determine

the

type

of

a

parameter

in

a

procedure

call,

set

InputOutputType

to

SQL_PARAM_INPUT;

if

the

data

source

returns

a

value

for

the

parameter,

DB2

CLI

discards

it.

v

If

an

application

has

marked

a

parameter

as

SQL_PARAM_INPUT_OUTPUT

or

SQL_PARAM_OUTPUT

and

the

data

source

does

not

return

a

value,

DB2

CLI

sets

the

StrLen_or_IndPtr

buffer

to

SQL_NULL_DATA.

v

If

an

application

marks

a

parameter

as

SQL_PARAM_OUTPUT,

data

for

the

parameter

is

returned

to

the

application

after

the

CALL

statement

has

been

processed.

If

the

ParameterValuePtr

and

StrLen_or_IndPtr

arguments

are

both

null

pointers,

DB2

CLI

discards

the

output

value.

If

the

data

source

does

not

return

a

value

for

an

output

parameter,

DB2

CLI

sets

the

StrLen_or_IndPtr

buffer

to

SQL_NULL_DATA.

v

For

this

function,

ParameterValuePtr

and

StrLen_or_IndPtr

are

deferred

arguments.

In

the

case

where

InputOutputType

is

set

to

SQL_PARAM_INPUT

or

SQL_PARAM_INPUT_OUTPUT,

the

storage

locations

must

be

valid

and

contain

input

data

values

when

the

statement

is

executed.

This

means

either

keeping

the

SQLExecDirect()

or

SQLExecute()

call

in

the

same

procedure

scope

as

the

SQLBindParameter()

calls,

or,

these

storage

locations

must

be

dynamically

allocated

or

statically

/

globally

declared.

Similarly,

if

InputOutputType

is

set

to

SQL_PARAM_OUTPUT

or

SQL_PARAM_INPUT_OUTPUT,

the

ParameterValuePtr

and

StrLen_or_IndPtr

buffer

locations

must

remain

valid

until

the

CALL

statement

has

been

executed.

ParameterValuePtr

and

StrLen_or_IndPtr

arguments:

ParameterValuePtr

and

StrLen_or_IndPtr

are

deferred

arguments,

so

the

storage

locations

they

point

to

must

be

valid

and

contain

input

data

values

when

the

statement

is

executed.

This

means

either

keeping

the

SQLExecDirect()

or

SQLExecute()

call

in

the

same

application

function

scope

as

the

SQLBindParameter()

calls,

or

dynamically

allocating

or

statically

or

globally

declaring

these

storage

locations.

Since

the

data

in

the

variables

referenced

by

ParameterValuePtr

and

StrLen_or_IndPtr

is

not

verified

until

the

statement

is

executed,

data

content

or

format

errors

are

not

detected

or

reported

until

SQLExecute()

or

SQLExecDirect()

is

called.

An

application

can

pass

the

value

for

a

parameter

either

in

the

ParameterValuePtr

buffer

or

with

one

or

more

calls

to

SQLPutData().

In

the

latter

case,

these

parameters

are

data-at-execution

parameters.

The

application

informs

DB2

CLI

of

a

data-at-execution

parameter

by

placing

the

SQL_DATA_AT_EXEC

value

in

the

buffer

pointed

to

by

StrLen_or_IndPtr.

It

sets

the

ParameterValuePtr

input

argument

SQLBindParameter

Chapter

1.

DB2

CLI

functions

31

to

a

32-bit

value

which

will

be

returned

on

a

subsequent

SQLParamData()

call

and

can

be

used

to

identify

the

parameter

position.

When

SQLBindParameter()

is

used

to

bind

an

application

variable

to

an

output

parameter

for

a

stored

procedure,

DB2

CLI

can

provide

some

performance

enhancement

if

the

ParameterValuePtr

buffer

is

placed

consecutively

in

memory

after

the

StrLen_or_IndPtr

buffer.

For

example:

struct

{

SQLINTEGER

StrLen_or_IndPtr;

SQLCHAR

ParameterValuePtr[MAX_BUFFER];

}

column;

BufferLength

argument:

For

character

and

binary

C

data,

the

BufferLength

argument

specifies

the

length

of

the

ParameterValuePtr

buffer

if

it

is

a

single

element;

or,

if

the

application

calls

SQLSetStmtAttr()

with

the

SQL_ATTR_PARAMSET_SIZE

attribute

to

specify

multiple

values

for

each

parameter,

BufferLength

is

the

length

of

each

element

in

the

ParameterValuePtr

array,

including

the

null-terminator.

If

the

application

specifies

multiple

values,

BufferLength

is

used

to

determine

the

location

of

values

in

the

ParameterValuePtr

array.

For

all

other

types

of

C

data,

the

BufferLength

argument

is

ignored.

ColumnSize

argument:

When

actual

size

of

the

target

column

or

output

parameter

is

not

known,

the

application

may

specify

0

for

the

length

of

the

column.

(ColumnSize

set

to

0).

If

the

column’s

data

type

is

of

fixed-length,

the

DB2

CLI

driver

will

base

the

length

from

the

data

type

itself.

However,

setting

ColumnSize

to

0

means

different

things

when

the

data

type

is

of

type

character,

binary

string

or

large

object:

Input

parameter

A

0

ColumnSize

means

that

DB2

CLI

will

use

the

actual

data

length

of

the

input

value

-

determined

at

the

time

the

statement

is

executed

-

as

the

size

of

the

column

or

the

stored

procedure

parameter.

DB2

CLI

will

perform

any

necessary

conversions

using

this

size.

Output

parameter

(stored

procedures

only)

A

0

ColumnSize

means

that

DB2

CLI

will

use

BufferLength

as

the

parameter’s

size.

Note

that

this

means

that

the

stored

procedure

must

not

return

more

than

BufferLength

bytes

of

data

or

a

truncation

error

will

occur.

For

Input-output

parameter

(store

procedures

only)

A

0

ColumnSize

means

that

DB2

CLI

will

set

both

the

input

and

output

to

BufferLength

as

the

target

parameter.

This

means

that

the

input

data

will

be

converted

to

this

new

size

if

necessary

before

being

sent

to

the

stored

procedure

and

at

most

BufferLength

bytes

of

data

are

expected

to

be

returned.

Setting

ColumnSize

to

0

is

not

recommended

unless

it

is

required;

it

causes

DB2

CLI

to

perform

costly

checking

for

the

length

of

the

data

at

run

time.

Descriptors:

How

a

parameter

is

bound

is

determined

by

fields

of

the

APD

and

IPD.

The

arguments

in

SQLBindParameter()

are

used

to

set

those

descriptor

fields.

The

fields

SQLBindParameter

32

CLI

Guide

and

Reference,

Volume

2

can

also

be

set

by

the

SQLSetDescField()

functions,

although

SQLBindParameter()

is

more

efficient

to

use

because

the

application

does

not

have

to

obtain

a

descriptor

handle

to

call

SQLBindParameter().

Note:

Calling

SQLBindParameter()

for

one

statement

can

affect

other

statements.

This

occurs

when

the

APD

associated

with

the

statement

is

explicitly

allocated

and

is

also

associated

with

other

statements.

Because

SQLBindParameter()

modifies

the

fields

of

the

APD,

the

modifications

apply

to

all

statements

with

which

this

descriptor

is

associated.

If

this

is

not

the

required

behavior,

the

application

should

dissociate

the

descriptor

from

the

other

statements

before

calling

SQLBindParameter().

Conceptually,

SQLBindParameter()

performs

the

following

steps

in

sequence:

v

Calls

SQLGetStmtAttr()

to

obtain

the

APD

handle.

v

Calls

SQLGetDescField()

to

get

the

SQL_DESC_COUNT

header

field

from

the

APD,

and

if

the

value

of

the

ParameterNumber

argument

exceeds

the

value

of

SQL_DESC_COUNT,

calls

SQLSetDescField()

to

increase

the

value

of

SQL_DESC_COUNT

to

ParameterNumber.

v

Calls

SQLSetDescField()

multiple

times

to

assign

values

to

the

following

fields

of

the

APD:

–

Sets

SQL_DESC_TYPE

and

SQL_DESC_CONCISE_TYPE

to

the

value

of

ValueType,

except

that

if

ValueType

is

one

of

the

concise

identifiers

of

a

datetime,

it

sets

SQL_DESC_TYPE

to

SQL_DATETIME,

sets

SQL_DESC_CONCISE_TYPE

to

the

concise

identifier,

and

sets

SQL_DESC_DATETIME_INTERVAL_CODE

to

the

corresponding

datetime

subcode.

–

Sets

the

SQL_DESC_DATA_PTR

field

to

the

value

of

ParameterValue.

–

Sets

the

SQL_DESC_OCTET_LENGTH_PTR

field

to

the

value

of

StrLen_or_Ind.

–

Sets

the

SQL_DESC_INDICATOR_PTR

field

also

to

the

value

of

StrLen_or_Ind.

The

StrLen_or_Ind

parameter

specifies

both

the

indicator

information

and

the

length

for

the

parameter

value.

v

Calls

SQLGetStmtAttr()

to

obtain

the

IPD

handle.

v

Calls

SQLGetDescField()

to

get

the

IPD’s

SQL_DESC_COUNT

field,

and

if

the

value

of

the

ParameterNumber

argument

exceeds

the

value

of

SQL_DESC_COUNT,

calls

SQLSetDescField()

to

increase

the

value

of

SQL_DESC_COUNT

to

ParameterNumber.

v

Calls

SQLSetDescField()

multiple

times

to

assign

values

to

the

following

fields

of

the

IPD:

–

Sets

SQL_DESC_TYPE

and

SQL_DESC_CONCISE_TYPE

to

the

value

of

ParameterType,

except

that

if

ParameterType

is

one

of

the

concise

identifiers

of

a

datetime,

it

sets

SQL_DESC_TYPE

to

SQL_DATETIME,

sets

SQL_DESC_CONCISE_TYPE

to

the

concise

identifier,

and

sets

SQL_DESC_DATETIME_INTERVAL_CODE

to

the

corresponding

datetime

subcode.

–

Sets

one

or

more

of

SQL_DESC_LENGTH,

SQL_DESC_PRECISION,

and

SQL_DESC_SCALE

as

appropriate

for

ParameterType.

If

the

call

to

SQLBindParameter()

fails,

the

content

of

the

descriptor

fields

that

it

would

have

set

in

the

APD

are

undefined,

and

the

SQL_DESC_COUNT

field

of

the

APD

is

unchanged.

In

addition,

the

SQL_DESC_LENGTH,

SQL_DESC_PRECISION,

SQL_DESC_SCALE,

and

SQL_DESC_TYPE

fields

of

the

appropriate

record

in

the

IPD

are

undefined

and

the

SQL_DESC_COUNT

field

of

the

IPD

is

unchanged.

SQLBindParameter

Chapter

1.

DB2

CLI

functions

33

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

11.

SQLBindParameter

SQLSTATEs

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

The

conversion

from

the

data

value

identified

by

the

ValueType

argument

to

the

data

type

identified

by

the

ParameterType

argument

is

not

a

meaningful

conversion.

(For

example,

conversion

from

SQL_C_DATE

to

SQL_DOUBLE.)

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY003

Program

type

out

of

range.

The

value

specified

by

the

argument

ParameterNumber

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY004

SQL

data

type

out

of

range.

The

value

specified

for

the

argument

ParameterType

is

not

a

valid

SQL

data

type.

HY009

Invalid

argument

value.

The

argument

ParameterValuePtr

was

a

null

pointer

and

the

argument

StrLen_or_IndPtr

was

a

null

pointer,

and

InputOutputType

is

not

SQL_PARAM_OUTPUT.

HY010

Function

sequence

error.

Function

was

called

after

SQLExecute()

or

SQLExecDirect()

had

returned

SQL_NEED_DATA,

but

data

has

not

been

sent

for

all

data-at-execution

parameters.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY021

Inconsistent

descriptor

information

The

descriptor

information

checked

during

a

consistency

check

was

not

consistent.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

was

less

than

0.

HY093

Invalid

parameter

number.

The

value

specified

for

the

argument

ValueType

was

less

than

1

or

greater

than

the

maximum

number

of

parameters

supported

by

the

server.

HY094

Invalid

scale

value.

The

value

specified

for

ParameterType

was

either

SQL_DECIMAL

or

SQL_NUMERIC

and

the

value

specified

for

DecimalDigits

was

less

than

0

or

greater

than

the

value

for

the

argument

ParamDef

(precision).

The

value

specified

for

ParameterType

was

SQL_C_TIMESTAMP

and

the

value

for

ParameterType

was

either

SQL_CHAR

or

SQL_VARCHAR

and

the

value

for

DecimalDigits

was

less

than

0

or

greater

than

6.

HY104

Invalid

precision

value.

The

value

specified

for

ParameterType

was

either

SQL_DECIMAL

or

SQL_NUMERIC

and

the

value

specified

for

ParamDef

was

less

than

1.

SQLBindParameter

34

CLI

Guide

and

Reference,

Volume

2

Table

11.

SQLBindParameter

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY105

Invalid

parameter

type.

InputOutputType

is

not

one

of

SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT,

or

SQL_PARAM_INPUT_OUTPUT.

HYC00

Driver

not

capable.

DB2

CLI

or

data

source

does

not

support

the

conversion

specified

by

the

combination

of

the

value

specified

for

the

argument

ValueType

and

the

value

specified

for

the

argument

ParameterType.

The

value

specified

for

the

argument

ParameterType

is

not

supported

by

either

DB2

CLI

or

the

data

source.

Restrictions:

SQLBindParameter()

replaces

the

deprecated

SQLSetParam()

API

in

DB2

CLI

V5

and

above,

and

ODBC

2.0

and

above.

An

additional

value

for

StrLen_or_IndPtr,

SQL_DEFAULT_PARAM,

was

introduced

in

ODBC

2.0,

to

indicate

that

the

procedure

is

to

use

the

default

value

of

a

parameter,

rather

than

a

value

sent

from

the

application.

Since

DB2

stored

procedure

arguments

do

not

support

default

values,

specification

of

this

value

for

StrLen_or_IndPtr

argument

will

result

in

an

error

when

the

CALL

statement

is

executed

since

the

SQL_DEFAULT_PARAM

value

will

be

considered

an

invalid

length.

ODBC

2.0

also

introduced

the

SQL_LEN_DATA_AT_EXEC(length)

macro

to

be

used

with

the

StrLen_or_IndPtr

argument.

The

macro

is

used

to

specify

the

sum

total

length

of

the

entire

data

that

would

be

sent

for

character

or

binary

C

data

via

the

subsequent

SQLPutData()

calls.

Since

the

DB2

ODBC

driver

does

not

need

this

information,

the

macro

is

not

needed.

An

ODBC

application

calls

SQLGetInfo()

with

the

SQL_NEED_LONG_DATA_LEN

option

to

check

if

the

driver

needs

this

information.

The

DB2

ODBC

driver

will

return

’N’

to

indicate

that

this

information

is

not

needed

by

SQLPutData().

Example:

SQLSMALLINT

parameter1

=

0;

/*

...

*/

cliRC

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_SHORT,

SQL_SMALLINT,

0,

0,

¶meter1,

0,

NULL);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Parameter

marker

binding

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

SQLBindParameter

Chapter

1.

DB2

CLI

functions

35

v

“Calling

stored

procedures

from

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindFileToParam

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

parameter”

on

page

20

v

“SQLParamData

function

(CLI)

-

Get

next

parameter

for

which

a

data

value

is

needed”

on

page

237

v

“SQLParamOptions

function

(CLI)

-

Specify

an

input

array

for

a

parameter”

on

page

240

v

“SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter”

on

page

259

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“tbread.c

--

How

to

read

data

from

tables”

SQLBrowseConnect

function

(CLI)

-

Get

required

attributes

to

connect

to

data

source

Purpose:

Specification:

DB2

CLI

5.0

ODBC

1

SQLBrowseConnect()

supports

an

iterative

method

of

discovering

and

enumerating

the

attributes

and

attribute

values

required

to

connect

to

a

data

source.

Each

call

to

SQLBrowseConnect()

returns

successive

levels

of

attributes

and

attribute

values.

When

all

levels

have

been

enumerated,

a

connection

to

the

data

source

is

completed

and

a

complete

connection

string

is

returned

by

SQLBrowseConnect().

A

return

code

of

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO

indicates

that

all

connection

information

has

been

specified

and

the

application

is

now

connected

to

the

data

source.

Unicode

Equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLBrowseConnectW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLBrowseConnect

(

SQLHDBC

ConnectionHandle,

/*

hdbc

*/

SQLCHAR

*InConnectionString,

/*

*szConnStrIn

*/

SQLSMALLINT

InConnectionStringLength,

/*

dbConnStrIn

*/

SQLCHAR

*OutConnectionString,

/*

*szConnStrOut

*/

SQLSMALLINT

OutConnectionStringCapacity,

/*

dbConnStrOutMax

*/

SQLSMALLINT

*OutConnectionStringLengthPtr);

/*

*pcbConnStrOut

*/

Function

Arguments:

Table

12.

SQLBrowseConnect

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle.

SQLBindParameter

36

CLI

Guide

and

Reference,

Volume

2

Table

12.

SQLBrowseConnect

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

InConnectionString

input

Browse

request

connection

string

(see

“InConnectionString

argument”

on

page

38).

SQLSMALLINT

InConnectionStringLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

*InConnectionString.

SQLCHAR

*

OutConnectionString

output

Pointer

to

a

buffer

in

which

to

return

the

browse

result

connection

string

(see

“OutConnectionString

argument”

on

page

38).

SQLSMALLINT

OutConnectionString

Capacity

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

*OutConnectionString

buffer.

SQLSMALLINT

*

OutConnectionString

LengthPtr

output

The

total

number

of

elements

(excluding

the

null

termination

character)

available

to

return

in

*OutConnectionString.

If

the

number

of

elements

available

to

return

is

greater

than

or

equal

to

OutConnectionStringCapacity,

the

connection

string

in

*OutConnectionString

is

truncated

to

OutConnectionStringCapacity

minus

the

length

of

a

null

termination

character.

Usage:

SQLBrowseConnect()

requires

an

allocated

connection.

If

SQLBrowseConnect()

returns

SQL_ERROR,

outstanding

connection

information

is

discarded,

and

the

connection

is

returned

to

an

unconnected

state.

When

SQLBrowseConnect()

is

called

for

the

first

time

on

a

connection,

the

browse

request

connection

string

must

contain

the

DSN

keyword.

On

each

call

to

SQLBrowseConnect(),

the

application

specifies

the

connection

attribute

values

in

the

browse

request

connection

string.

DB2

CLI

returns

successive

levels

of

attributes

and

attribute

values

in

the

browse

result

connection

string;

it

returns

SQL_NEED_DATA

as

long

as

there

are

connection

attributes

that

have

not

yet

been

enumerated

in

the

browse

request

connection

string.

The

application

uses

the

contents

of

the

browse

result

connection

string

to

build

the

browse

request

connection

string

for

the

next

call

to

SQLBrowseConnect().

All

mandatory

attributes

(those

not

preceded

by

an

asterisk

in

the

OutConnectionString

argument)

must

be

included

in

the

next

call

to

SQLBrowseConnect().

Note

that

the

application

cannot

simply

copy

the

entire

content

of

previous

browse

result

connection

strings

when

building

the

current

browse

request

connection

string;

that

is,

it

cannot

specify

different

values

for

attributes

set

in

previous

levels.

When

all

levels

of

connection

and

their

associated

attributes

have

been

enumerated,

DB2

CLI

returns

SQL_SUCCESS,

the

connection

to

the

data

source

is

complete,

and

a

complete

connection

string

is

returned

to

the

application.

The

connection

string

is

suitable

to

use

as

an

argument

for

SQLDriverConnect()

in

conjunction

with

the

SQL_DRIVER_NOPROMPT

option

to

establish

another

connection.

The

complete

connection

string

cannot

be

used

in

another

call

to

SQLBrowseConnect(),

however;

if

SQLBrowseConnect()

were

called

again,

the

entire

sequence

of

calls

would

have

to

be

repeated.

SQLBrowseConnect

Chapter

1.

DB2

CLI

functions

37

|
|
|

|
|
|

|
|
|
|
|
|
|
|

SQLBrowseConnect()

also

returns

SQL_NEED_DATA

if

there

are

recoverable,

nonfatal

errors

during

the

browse

process,

for

example,

an

invalid

password

supplied

by

the

application

or

an

invalid

attribute

keyword

supplied

by

the

application.

When

SQL_NEED_DATA

is

returned

and

the

browse

result

connection

string

is

unchanged,

an

error

has

occurred

and

the

application

can

call

SQLGetDiagRec()

to

return

the

SQLSTATE

for

browse-time

errors.

This

permits

the

application

to

correct

the

attribute

and

continue

the

browse.

An

application

may

terminate

the

browse

process

at

any

time

by

calling

SQLDisconnect().

DB2

CLI

will

terminate

any

outstanding

connection

information

and

return

the

connection

to

an

unconnected

state.

InConnectionString

argument:

A

browse

request

connection

string

has

the

following

syntax:

connection-string

::=

attribute[]

|

attribute:

connection-string

attribute

::=

attribute-keyword=attribute-value

|

DRIVER=[{]attribute-value[}]

attribute-keyword

::=

DSN

|

UID

|

PWD

|

NEWPWD

|

driver-defined-attribute-keyword

attribute-value

::=

character-string

driver-defined-attribute-keyword

::=

identifier

where

v

character-string

has

zero

or

more

SQLCHAR

or

SQLWCHAR

elements

v

identifier

has

one

or

more

SQLCHAR

or

SQLWCHAR

elements

v

attribute-keyword

is

case

insensitive

v

attribute-value

may

be

case

sensitive

v

the

value

of

the

DSN

keyword

does

not

consist

solely

of

blanks

v

NEWPWD

is

used

as

part

of

a

change

password

request.

The

application

can

either

specify

the

new

string

to

use,

for

example,

NEWPWD=anewpass;

or

specify

NEWPWD=;

and

rely

on

a

dialog

box

generated

by

the

DB2

CLI

driver

to

prompt

for

the

new

password

Because

of

connection

string

and

initialization

file

grammar,

keywords

and

attribute

values

that

contain

the

characters

[]{}(),;?*=!@

should

be

avoided.

Because

of

the

grammar

in

the

system

information,

keywords

and

data

source

names

cannot

contain

the

backslash

(\)

character.

For

DB2

CLI

Version

2,

braces

are

required

around

the

DRIVER

keyword.

If

any

keywords

are

repeated

in

the

browse

request

connection

string,

DB2

CLI

uses

the

value

associated

with

the

first

occurrence

of

the

keyword.

If

the

DSN

and

DRIVER

keywords

are

included

in

the

same

browse

request

connection

string,

DB2

CLI

uses

whichever

keyword

appears

first.

OutConnectionString

argument:

The

browse

result

connection

string

is

a

list

of

connection

attributes.

A

connection

attribute

consists

of

an

attribute

keyword

and

a

corresponding

attribute

value.

The

browse

result

connection

string

has

the

following

syntax:

SQLBrowseConnect

38

CLI

Guide

and

Reference,

Volume

2

|
|

connection-string

::=

attribute[;]

|

attribute;

connection-string

attribute

::=

[*]attribute-keyword=attribute-value

attribute-keyword

::=

ODBC-attribute-keyword

|

driver-defined-attribute-keyword

ODBC-attribute-keyword

=

{UID

|

PWD}[:localized-identifier]

driver-defined-attribute-keyword

::=

identifier[:localized-identifier]

attribute-value

::=

{attribute-value-list}

|

?

(The

braces

are

literal;

they

are

returned

by

DB2

CLI.)

attribute-value-list

::=

character-string

[:localized-character

string]

|

character-string

[:localized-character

string],

attribute-value-list

where

v

character-string

and

localized-character

string

have

zero

or

more

SQLCHAR

or

SQLWCHAR

elements

v

identifier

and

localized-identifier

have

one

or

more

elements;

attribute-keyword

is

case

insensitive

v

attribute-value

may

be

case

sensitive

Because

of

connection

string

and

initialization

file

grammar,

keywords,

localized

identifiers,

and

attribute

values

that

contain

the

characters

[]{}(),;?*=!@

should

be

avoided.

Because

of

the

grammar

in

the

system

information,

keywords

and

data

source

names

cannot

contain

the

backslash

(\)

character.

The

browse

result

connection

string

syntax

is

used

according

to

the

following

semantic

rules:

v

If

an

asterisk

(*)

precedes

an

attribute-keyword,

the

attribute

is

optional,

and

may

be

omitted

in

the

next

call

to

SQLBrowseConnect().

v

The

attribute

keywords

UID

and

PWD

have

the

same

meaning

as

defined

in

SQLDriverConnect().

v

When

connecting

to

a

DB2

Universal

Database,

only

DSN,

UID

and

PWD

are

required.

Other

keywords

can

be

specified

but

do

not

affect

the

connection.

v

ODBC-attribute-keywords

and

driver-defined-attribute-keywords

include

a

localized

or

user-friendly

version

of

the

keyword.

This

might

be

used

by

applications

as

a

label

in

a

dialog

box.

However,

UID,

PWD,

or

the

identifier

alone

must

be

used

when

passing

a

browse

request

string

to

DB2

CLI.

v

The

{attribute-value-list}

is

an

enumeration

of

actual

values

valid

for

the

corresponding

attribute-keyword.

Note

that

the

braces

({})

do

not

indicate

a

list

of

choices;

they

are

returned

by

DB2

CLI.

For

example,

it

might

be

a

list

of

server

names

or

a

list

of

database

names.

v

If

the

attribute-value

is

a

single

question

mark

(?),

a

single

value

corresponds

to

the

attribute-keyword.

For

example,

UID=JohnS;

PWD=Sesame.

v

Each

call

to

SQLBrowseConnect()

returns

only

the

information

required

to

satisfy

the

next

level

of

the

connection

process.

DB2

CLI

associates

state

information

with

the

connection

handle

so

that

the

context

can

always

be

determined

on

each

call.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NEED_DATA

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLBrowseConnect

Chapter

1.

DB2

CLI

functions

39

|
|

Diagnostics:

Table

13.

SQLBrowseConnect

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

buffer

*OutConnectionString

was

not

large

enough

to

return

entire

browse

result

connection

string,

so

the

string

was

truncated.

The

buffer

*OutConnectionStringLengthPtr

contains

the

length

of

the

untruncated

browse

result

connection

string.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01S00

Invalid

connection

string

attribute.

An

invalid

attribute

keyword

was

specified

in

the

browse

request

connection

string

(InConnectionString).

(Function

returns

SQL_NEED_DATA.)

An

attribute

keyword

was

specified

in

the

browse

request

connection

string

(InConnectionString)

that

does

not

apply

to

the

current

connection

level.

(Function

returns

SQL_NEED_DATA.)

01S02

Option

value

changed.

DB2

CLI

did

not

support

the

specified

value

of

the

ValuePtr

argument

in

SQLSetConnectAttr()

and

substituted

a

similar

value.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08001

Unable

to

connect

to

data

source.

DB2

CLI

was

unable

to

establish

a

connection

with

the

data

source.

08002

Connection

in

use.

The

specified

connection

had

already

been

used

to

establish

a

connection

with

a

data

source

and

the

connection

was

open.

08004

The

application

server

rejected

establishment

of

the

connection.

The

data

source

rejected

the

establishment

of

the

connection

for

implementation

defined

reasons.

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

trying

to

connect

failed

before

the

function

completed

processing.

28000

Invalid

authorization

specification.

Either

the

user

identifier

or

the

authorization

string

or

both

as

specified

in

the

browse

request

connection

string

(InConnectionString)

violated

restrictions

defined

by

the

data

source.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

argument

InConnectionStringLength

was

less

than

0

and

was

not

equal

to

SQL_NTS.

The

value

specified

for

argument

OutConnectionStringCapacity

was

less

than

0.

Restrictions:

None.

SQLBrowseConnect

40

CLI

Guide

and

Reference,

Volume

2

Example:

SQLCHAR

connInStr[255];

/*

browse

request

connection

string

*/

SQLCHAR

outStr[1025];

/*

browse

result

connection

string*/

/*

...

*/

cliRC

=

SQL_NEED_DATA;

while

(cliRC

==

SQL_NEED_DATA)

{

/*

get

required

attributes

to

connect

to

data

source

*/

cliRC

=

SQLBrowseConnect(hdbc,

connInStr,

SQL_NTS,

outStr,

sizeof(outStr),

&indicator);

DBC_HANDLE_CHECK(hdbc,

cliRC);

printf("

So

far,

have

connected

%d

times

to

database

%s\n",

count++,

db1Alias);

printf("

Resulting

connection

string:

%s\n",

outStr);

/*

if

inadequate

connection

information

was

provided,

exit

the

program

*/

if

(cliRC

==

SQL_NEED_DATA)

{

printf("

You

can

provide

other

connection

information

"

"here

by

setting

connInStr\n");

break;

}

/*

if

the

connection

was

successful,

output

confirmation

*/

if

(cliRC

==

SQL_SUCCESS)

{

printf("

Connected

to

the

database

%s.\n",

db1Alias);

}

}

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

v

“SQLConnect

function

(CLI)

-

Connect

to

a

data

source”

on

page

73

v

“SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source”

on

page

88

v

“SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source”

on

page

90

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbcongui.c

--

How

to

connect

to

a

database

with

a

graphical

user

interface

(GUI)”

SQLBuildDataLink

function

(CLI)

-

Build

DATALINK

value

Purpose:

Specification:

DB2

CLI

5.2

ISO

CLI

SQLBrowseConnect

Chapter

1.

DB2

CLI

functions

41

SQLBuildDataLink()

returns

a

DATALINK

value

built

from

input

arguments.

Syntax:

SQLRETURN

SQLBuildDataLink

(

SQLHSTMT

StatementHandle,

/*

hStmt

*/

SQLCHAR

*LinkType,

/*

*pszLinkType

*/

SQLINTEGER

LinkTypeLength,

/*

cbLinkType

*/

SQLCHAR

*DataLocation,

/*

*pszDataLocation

*/

SQLINTEGER

DataLocationLength,

/*

cbDataLocation

*/

SQLCHAR

*Comment,

/*

*pszComment

*/

SQLINTEGER

CommentLength,

/*

cbComment

*/

SQLCHAR

*DataLinkValue,

/*

*pDataLink

*/

SQLINTEGER

BufferLength,

/*

cbDataLinkMax

*/

SQLINTEGER

*StringLengthPtr);

/*

*pcbDataLink

*/

Function

arguments:

Table

14.

SQLBuildDataLink

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Used

only

for

diagnostic

reporting.

SQLCHAR

*

LinkType

input

Always

set

to

SQL_DATALINK_URL.

SQLINTEGER

LinkTypeLength

input

The

length

of

the

LinkType

value.

SQLCHAR

*

DataLocation

input

The

complete

URL

value

to

be

assigned.

SQLINTEGER

DataLocationLength

input

The

length

of

the

DataLocation

value.

SQLCHAR

*

Comment

input

The

comment,

if

any,

to

be

assigned.

SQLINTEGER

CommentLength

input

The

length

of

the

Comment

value.

SQLCHAR

*

DataLinkValue

output

The

DATALINK

value

that

is

created

by

the

function.

SQLINTEGER

BufferLength

input

Length

of

the

DataLinkValue

buffer.

SQLINTEGER

*

StringLengthPtr

output

A

pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

null-termination

character)

available

to

return

in

*DataLinkValue.

If

DataLinkValue

is

a

null

pointer,

no

length

is

returned.

If

the

number

of

bytes

available

to

return

is

greater

than

BufferLength

minus

the

length

of

the

null-termination

character,

then

SQLSTATE

01004

is

returned.

In

this

case,

subsequent

use

of

the

DATALINK

value

may

fail.

Usage:

The

function

is

used

to

build

a

DATALINK

value.

The

maximum

length

of

the

string,

including

the

null

termination

character,

will

be

BufferLength

bytes.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

SQLBuildDataLink

42

CLI

Guide

and

Reference,

Volume

2

Table

15.

SQLBuildDataLink()

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

01004

Data

truncated.

The

data

returned

in

*DataLinkValue

was

truncated

to

be

BufferLength

minus

the

length

of

the

null

termination

character.

The

length

of

the

untruncated

string

value

is

returned

in

*StringLengthPtr.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

specified

one

of

the

arguments

(LinkTypeLength,

DataLocationLength,

or

CommentLength)

was

less

than

0

but

not

equal

to

SQL_NTS

or

BufferLength

is

less

than

0.

Restrictions:

None.

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetDataLinkAttr

function

(CLI)

-

Get

DataLink

attribute

value”

on

page

157

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows

Purpose:

Specification:

DB2

CLI

6.0

ODBC

3.0

SQLBulkOperations()

is

used

to

perform

the

following

operations

on

a

keyset-driven

cursor:

v

Add

new

rows

v

Update

a

set

of

rows

where

each

row

is

identified

by

a

bookmark

v

Delete

a

set

of

rows

where

each

row

is

identified

by

a

bookmark

v

Fetch

a

set

of

rows

where

each

row

is

identified

by

a

bookmark

Syntax:

SQLRETURN

SQLBulkOperations

(

SQLHSTMT

StatementHandle,

SQLSMALLINT

Operation);

SQLBuildDataLink

Chapter

1.

DB2

CLI

functions

43

Function

arguments:

Table

16.

SQLBulkOperations

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLSMALLINT

Operation

Input

Operation

to

perform:

v

SQL_ADD

v

SQL_UPDATE_BY_BOOKMARK

v

SQL_DELETE_BY_BOOKMARK

v

SQL_FETCH_BY_BOOKMARK

Usage:

An

application

uses

SQLBulkOperations()

to

perform

the

following

operations

on

the

base

table

or

view

that

corresponds

to

the

current

query

in

a

keyset-driven

cursor:

v

Add

new

rows

v

Update

a

set

of

rows

where

each

row

is

identified

by

a

bookmark

v

Delete

a

set

of

rows

where

each

row

is

identified

by

a

bookmark

v

Fetch

a

set

of

rows

where

each

row

is

identified

by

a

bookmark

A

generic

application

should

first

ensure

that

the

required

bulk

operation

is

supported.

To

do

so,

it

can

call

SQLGetInfo()

with

an

InfoType

of

SQL_DYNAMIC_CURSOR_ATTRIBUTES1

and

SQL_DYNAMIC_CURSOR_ATTRIBUTES2

(to

see

if

SQL_CA1_BULK_UPDATE_BY_BOOKMARK

is

returned,

for

instance).

After

a

call

to

SQLBulkOperations(),

the

block

cursor

position

is

undefined.

The

application

has

to

call

SQLFetchScroll()

to

set

the

cursor

position.

An

application

should

only

call

SQLFetchScroll()

with

a

FetchOrientation

argument

of

SQL_FETCH_FIRST,

SQL_FETCH_LAST,

SQL_FETCH_ABSOLUTE,

or

SQL_FETCH_BOOKMARK.

The

cursor

position

is

undefined

if

the

application

calls

SQLFetch(),

or

SQLFetchScroll()

with

a

FetchOrientation

argument

of

SQL_FETCH_PRIOR,

SQL_FETCH_NEXT,

or

SQL_FETCH_RELATIVE.

A

column

can

be

ignored

in

bulk

operations

(calls

to

SQLBulkOperations()).

To

do

so,

call

SQLBindCol()

and

set

the

column

length/indicator

buffer

(StrLen_or_IndPtr)

to

SQL_COLUMN_IGNORE.

This

does

not

apply

to

SQL_DELETE_BY_BOOKMARK

bulk

operation.

It

is

not

necessary

for

the

application

to

set

the

SQL_ATTR_ROW_OPERATION_PTR

statement

attribute

when

calling

SQLBulkOperations()

because

rows

cannot

be

ignored

when

performing

bulk

operations

with

this

function.

The

buffer

pointed

to

by

the

SQL_ATTR_ROWS_FETCHED_PTR

statement

attribute

contains

the

number

of

rows

affected

by

a

call

to

SQLBulkOperations().

When

the

Operation

argument

is

SQL_ADD

or

SQL_UPDATE_BY_BOOKMARK,

and

the

select-list

of

the

query

specification

associated

with

the

cursor

contains

more

than

one

reference

to

the

same

column,

an

error

is

generated.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NEED_DATA

v

SQL_STILL_EXECUTING

SQLBulkOperations

44

CLI

Guide

and

Reference,

Volume

2

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

17.

SQLBulkOperations

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

Operation

argument

was

SQL_FETCH_BY_BOOKMARK,

and

string

or

binary

data

returned

for

a

column

or

columns

with

a

data

type

of

SQL_C_CHAR

or

SQL_C_BINARY

resulted

in

the

truncation

of

non-blank

character

or

non-NULL

binary

data.

01S07

Invalid

conversion.

The

Operation

argument

was

SQL_FETCH_BY_BOOKMARK,

the

data

type

of

the

application

buffer

was

not

SQL_C_CHAR

or

SQL_C_BINARY,

and

the

data

returned

to

application

buffers

for

one

or

more

columns

was

truncated.

(For

numeric

C

data

types,

the

fractional

part

of

the

number

was

truncated.

For

time

and

timestamp

data

types,

the

fractional

portion

of

the

time

was

truncated.)

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07006

Restricted

data

type

attribute

violation.

The

Operation

argument

was

SQL_FETCH_BY_BOOKMARK,

and

the

data

value

of

a

column

in

the

result

set

could

not

be

converted

to

the

data

type

specified

by

the

TargetType

argument

in

the

call

to

SQLBindCol().

The

Operation

argument

was

SQL_UPDATE_BY_BOOKMARK

or

SQL_ADD,

and

the

data

value

in

the

application

buffers

could

not

be

converted

to

the

data

type

of

a

column

in

the

result

set.

07009

Invalid

descriptor

index.

The

argument

Operation

was

SQL_ADD

and

a

column

was

bound

with

a

column

number

greater

than

the

number

of

columns

in

the

result

set,

or

the

column

number

was

less

than

0.

21S02

Degree

of

derived

table

does

not

match

column

list.

The

argument

Operation

was

SQL_UPDATE_BY_BOOKMARK;

and

no

columns

were

updatable

because

all

columns

were

either

unbound,

read-only,

or

the

value

in

the

bound

length/indicator

buffer

was

SQL_COLUMN_IGNORE.

22001

String

data

right

truncation.

The

assignment

of

a

character

or

binary

value

to

a

column

in

the

result

set

resulted

in

the

truncation

of

non-blank

(for

characters)

or

non-null

(for

binary)

characters

or

bytes.

22003

Numeric

value

out

of

range.

The

Operation

argument

was

SQL_ADD

or

SQL_UPDATE_BY_BOOKMARK,

and

the

assignment

of

a

numeric

value

to

a

column

in

the

result

set

caused

the

whole

(as

opposed

to

fractional)

part

of

the

number

to

be

truncated.

The

argument

Operation

was

SQL_FETCH_BY_BOOKMARK,

and

returning

the

numeric

value

for

one

or

more

bound

columns

would

have

caused

a

loss

of

significant

digits.

22007

Invalid

datetime

format.

The

Operation

argument

was

SQL_ADD

or

SQL_UPDATE_BY_BOOKMARK,

and

the

assignment

of

a

date

or

timestamp

value

to

a

column

in

the

result

set

caused

the

year,

month,

or

day

field

to

be

out

of

range.

The

argument

Operation

was

SQL_FETCH_BY_BOOKMARK,

and

returning

the

date

or

timestamp

value

for

one

or

more

bound

columns

would

have

caused

the

year,

month,

or

day

field

to

be

out

of

range.

SQLBulkOperations

Chapter

1.

DB2

CLI

functions

45

Table

17.

SQLBulkOperations

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

22008

Date/time

field

overflow.

The

Operation

argument

was

SQL_ADD

or

SQL_UPDATE_BY_BOOKMARK,

and

the

performance

of

datetime

arithmetic

on

data

being

sent

to

a

column

in

the

result

set

resulted

in

a

datetime

field

(the

year,

month,

day,

hour,

minute,

or

second

field)

of

the

result

being

outside

the

permissible

range

of

values

for

the

field,

or

being

invalid

based

on

the

natural

rules

for

datetimes

based

on

the

Gregorian

calendar.

The

Operation

argument

was

SQL_FETCH_BY_BOOKMARK,

and

the

performance

of

datetime

arithmetic

on

data

being

retrieved

from

the

result

set

resulted

in

a

datetime

field

(the

year,

month,

day,

hour,

minute,

or

second

field)

of

the

result

being

outside

the

permissible

range

of

values

for

the

field,

or

being

invalid

based

on

the

natural

rules

for

datetimes

based

on

the

Gregorian

calendar.

22018

Invalid

character

value

for

cast

specification.

The

Operation

argument

was

SQL_FETCH_BY_BOOKMARK;

the

C

type

was

an

exact

or

approximate

numeric

or

datetime

data

type;

the

SQL

type

of

the

column

was

a

character

data

type;

and

the

value

in

the

column

was

not

a

valid

literal

of

the

bound

C

type.

The

argument

Operation

was

SQL_ADD

or

SQL_UPDATE_BY_BOOKMARK;

the

SQL

type

was

an

exact

or

approximate

numeric

or

datetime

data

type;

the

C

type

was

SQL_C_CHAR;

and

the

value

in

the

column

was

not

a

valid

literal

of

the

bound

SQL

type.

23000

Integrity

constraint

violation.

The

Operation

argument

was

SQL_ADD,

SQL_DELETE_BY_BOOKMARK,

or

SQL_UPDATE_BY_BOOKMARK,

and

an

integrity

constraint

was

violated.

The

Operation

argument

was

SQL_ADD,

and

a

column

that

was

not

bound

is

defined

as

NOT

NULL

and

has

no

default.

The

Operation

argument

was

SQL_ADD,

the

length

specified

in

the

bound

StrLen_or_IndPtr

buffer

was

SQL_COLUMN_IGNORE,

and

the

column

did

not

have

a

default

value.

24000

Invalid

cursor

state.

The

StatementHandle

was

in

an

executed

state

but

no

result

set

was

associated

with

the

StatementHandle.

SQLFetch()

or

SQLFetchScroll()

was

not

called

by

the

application

after

SQLExecute()

or

SQLExecDirect().

40001

Serialization

failure.

The

transaction

was

rolled

back

due

to

a

resource

deadlock

with

another

transaction.

40003

Statement

completion

unknown.

The

associated

connection

failed

during

the

execution

of

this

function

and

the

state

of

the

transaction

cannot

be

determined.

42000

Syntax

error

or

access

violation.

DB2

CLI

was

unable

to

lock

the

row

as

needed

to

perform

the

operation

requested

in

the

Operation

argument.

44000

WITH

CHECK

OPTION

violation.

The

Operation

argument

was

SQL_ADD

or

SQL_UPDATE_BY_BOOKMARK,

and

the

insert

or

update

was

performed

on

a

viewed

table

or

a

table

derived

from

the

viewed

table

which

was

created

by

specifying

WITH

CHECK

OPTION,

such

that

one

or

more

rows

affected

by

the

insert

or

update

will

no

longer

be

present

in

the

viewed

table.

SQLBulkOperations

46

CLI

Guide

and

Reference,

Volume

2

Table

17.

SQLBulkOperations

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE

and

for

which

no

implementation-specific

SQLSTATE

was

defined.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

error.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

For

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY011

Operation

invalid

at

this

time.

The

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

was

set

between

calls

to

SQLFetch()

or

SQLFetchScroll()

and

SQLBulkOperations.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

this

function.

SQLBulkOperations

Chapter

1.

DB2

CLI

functions

47

Table

17.

SQLBulkOperations

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY090

Invalid

string

or

buffer

length.

The

Operation

argument

was

SQL_ADD

or

SQL_UPDATE_BY_BOOKMARK,

a

data

value

was

a

null

pointer,

and

the

column

length

value

was

not

0,

SQL_DATA_AT_EXEC,

SQL_COLUMN_IGNORE,

SQL_NULL_DATA,

or

less

than

or

equal

to

SQL_LEN_DATA_AT_EXEC_OFFSET.

The

Operation

argument

was

SQL_ADD

or

SQL_UPDATE_BY_BOOKMARK,

a

data

value

was

not

a

null

pointer;

the

C

data

type

was

SQL_C_BINARY

or

SQL_C_CHAR;

and

the

column

length

value

was

less

than

0,

but

not

equal

to

SQL_DATA_AT_EXEC,

SQL_COLUMN_IGNORE,

SQL_NTS,

or

SQL_NULL_DATA,

or

less

than

or

equal

to

SQL_LEN_DATA_AT_EXEC_OFFSET.

The

value

in

a

length/indicator

buffer

was

SQL_DATA_AT_EXEC;

the

SQL

type

was

either

SQL_LONGVARCHAR,

SQL_LONGVARBINARY,

or

a

long

data

type;

and

the

SQL_NEED_LONG_DATA_LEN

information

type

in

SQLGetInfo()

was

“Y”.

The

Operation

argument

was

SQL_ADD,

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

set

to

SQL_UB_VARIABLE,

and

column

0

was

bound

to

a

buffer

whose

length

was

not

equal

to

the

maximum

length

for

the

bookmark

for

this

result

set.

(This

length

is

available

in

the

SQL_DESC_OCTET_LENGTH

field

of

the

IRD,

and

can

be

obtained

by

calling

SQLDescribeCol(),

SQLColAttribute(),

or

SQLGetDescField().)

HY092

Invalid

attribute

identifier.

The

value

specified

for

the

Operation

argument

was

invalid.

The

Operation

argument

was

SQL_ADD,

SQL_UPDATE_BY_BOOKMARK,

or

SQL_DELETE_BY_BOOKMARK,

and

the

SQL_ATTR_CONCURRENCY

statement

attribute

was

set

to

SQL_CONCUR_READ_ONLY.

The

Operation

argument

was

SQL_DELETE_BY_BOOKMARK,

SQL_FETCH_BY_BOOKMARK,

or

SQL_UPDATE_BY_BOOKMARK,

and

the

bookmark

column

was

not

bound

or

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

set

to

SQL_UB_OFF.

HYC00

Optional

feature

not

implemented.

DB2

CLI

or

data

source

does

not

support

the

operation

requested

in

the

Operation

argument.

HYT00

Timeout

expired.

The

query

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

is

set

through

SQLSetStmtAttr()

with

an

Attribute

argument

of

SQL_ATTR_QUERY_TIMEOUT.

HYT01

Connection

timeout

expired.

The

connection

timeout

period

expired

before

the

data

source

responded

to

the

request.

The

connection

timeout

period

is

set

through

SQLSetConnectAttr(),

SQL_ATTR_CONNECTION_TIMEOUT.

Restrictions:

None.

Related

concepts:

SQLBulkOperations

48

CLI

Guide

and

Reference,

Volume

2

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Long

data

for

bulk

inserts

and

updates

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Inserting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Retrieving

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Deleting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Updating

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

on

page

117

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

v

“SQLGetInfo

function

(CLI)

-

Get

general

information”

on

page

178

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLCancel

function

(CLI)

-

Cancel

statement

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLCancel()

can

be

used

to

prematurely

terminate

the

data-at-execution

sequence

for

sending

and

retrieving

long

data

in

pieces.

SQLCancel()

may

also

be

used

to

cancel

a

function

called

in

a

different

thread.

Syntax:

SQLRETURN

SQLCancel

(SQLHSTMT

StatementHandle);

/*

hstmt

*/

Function

arguments:

Table

18.

SQLCancel

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

Usage:

After

SQLExecDirect()

or

SQLExecute()

returns

SQL_NEED_DATA

to

solicit

for

values

for

data-at-execution

parameters,

SQLCancel()

can

be

used

to

cancel

the

data-at-execution

sequence

for

sending

and

retrieving

long

data

in

pieces.

SQLCancel()

can

be

called

any

time

before

the

final

SQLParamData()

in

the

SQLBulkOperations

Chapter

1.

DB2

CLI

functions

49

sequence.

After

the

cancellation

of

this

sequence,

the

application

can

call

SQLExecute()

or

SQLExecDirect()

to

re-initiate

the

data-at-execution

sequence.

If

no

processing

is

being

done

on

the

statement,

SQLCancel()

has

no

effect.

Applications

should

not

call

SQLCancel()

to

close

a

cursor,

but

rather

SQLFreeStmt()

should

be

used.

Note:

To

call

SQLCancel()

against

a

server

which

does

not

have

native

interrupt

support

(such

as

DB2

Universal

Database

for

z/OS™

and

OS/390®,

Version

7

and

earlier,

and

DB2

for

iSeries™),

the

INTERRUPT_ENABLED

option

must

be

set

when

cataloging

the

DCS

database

entry

for

the

server.

Canceling

Functions

in

Multithread

Applications:

In

a

multithread

application,

the

application

can

cancel

a

function

that

is

running

synchronously

on

a

statement.

To

cancel

the

function,

the

application

calls

SQLCancel()

with

the

same

statement

handle

as

that

used

by

the

target

function,

but

on

a

different

thread.

How

the

function

is

canceled

depends

upon

the

operating

system.

The

return

code

of

the

SQLCancel()

call

indicates

only

whether

DB2

CLI

processed

the

request

successfully.

Only

SQL_SUCCESS

or

SQL_ERROR

can

be

returned;

no

SQLSTATEs

are

returned.

If

the

original

function

is

canceled,

it

returns

SQL_ERROR

and

SQLSTATE

HY008

(Operation

was

cancelled.).

If

an

SQL

statement

is

being

executed

when

SQLCancel()

is

called

on

another

thread

to

cancel

the

statement

execution,

it

is

possible

that

the

execution

succeeds

and

returns

SQL_SUCCESS,

while

the

cancel

is

also

successful.

In

this

case,

DB2

CLI

assumes

that

the

cursor

opened

by

the

statement

execution

is

closed

by

the

cancel,

so

the

application

will

not

be

able

to

use

the

cursor.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_INVALID_HANDLE

v

SQL_ERROR

Note:

SQL_SUCCESS

means

that

the

cancel

request

was

processed,

not

that

the

function

call

was

canceled.

Diagnostics:

Table

19.

SQLCancel

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY018

Server

declined

cancel

request.

The

server

declined

the

cancel

request.

HY506

Error

closing

a

file.

An

error

occurred

when

closing

the

temporary

file

generated

by

DB2

CLI

when

inserting

LOB

data

in

pieces

using

SQLParamData()/SQLPutData().

SQLCancel

50

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

Restrictions:

None.

Example:

/*

cancel

the

SQL_DATA_AT_EXEC

state

for

hstmt

*/

cliRC

=

SQLCancel(hstmt);

Related

concepts:

v

“DCS

directory

values”

in

the

DB2

Connect

User’s

Guide

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Processing

of

Interrupt

Requests”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Large

object

usage

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Multithreaded

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Long

data

for

bulk

inserts

and

updates

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Specifying

parameter

values

at

execute

time

for

long

data

manipulation

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

on

page

100

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

on

page

105

v

“SQLParamData

function

(CLI)

-

Get

next

parameter

for

which

a

data

value

is

needed”

on

page

237

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

SQLCloseCursor

function

(CLI)

-

Close

cursor

and

discard

pending

results

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLCloseCursor()

closes

a

cursor

that

has

been

opened

on

a

statement

and

discards

pending

results.

Syntax:

SQLRETURN

SQLCloseCursor

(SQLHSTMT

StatementHandle);

/*

hStmt

*/

Function

arguments:

SQLCancel

Chapter

1.

DB2

CLI

functions

51

Table

20.

SQLCloseCursor

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

Usage:

After

an

application

calls

SQLCloseCursor(),

the

application

can

reopen

the

cursor

later

by

executing

a

SELECT

statement

again

with

the

same

or

different

parameter

values.

SQLCloseCursor()

can

be

called

before

a

transaction

is

completed.

SQLCloseCursor()

returns

SQLSTATE

24000

(Invalid

cursor

state)

if

no

cursor

is

open.

Calling

SQLCloseCursor()

is

equivalent

to

calling

SQLFreeStmt()

with

the

SQL_CLOSE

option,

with

the

exception

that

SQLFreeStmt()

with

SQL_CLOSE

has

no

effect

on

the

application

if

no

cursor

is

open

on

the

statement,

while

SQLCloseCursor()

returns

SQLSTATE

24000

(Invalid

cursor

state).

The

statement

attribute

SQL_ATTR_CLOSE_BEHAVIOR

can

be

used

to

indicate

whether

or

not

DB2

CLI

should

attempt

to

release

read

locks

acquired

during

a

cursor’s

operation

when

the

cursor

is

closed.

If

SQL_ATTR_CLOSE_BEHAVIOR

is

set

to

SQL_CC_RELEASE

then

the

database

manager

will

attempt

to

release

all

read

locks

(if

any)

that

have

been

held

for

the

cursor.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

21.

SQLCloseCursor

SQLSTATEs

SQLSTATE

Description

Explanation

01000

General

warning

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

24000

Invalid

cursor

state.

No

cursor

was

open

on

the

StatementHandle.

(This

is

returned

only

by

DB2

CLI

Version

5

or

later.)

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

An

asynchronously

executing

function

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

SQLExecute()

or

SQLExecDirect()

was

called

for

the

StatementHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

SQLCloseCursor

52

CLI

Guide

and

Reference,

Volume

2

|

Restrictions:

None.

Example:

/*

close

the

cursor

*/

cliRC

=

SQLCloseCursor(hstmt);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

on

page

49

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

on

page

139

v

“SQLMoreResults

function

(CLI)

-

Determine

if

there

are

more

result

sets”

on

page

227

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

v

“CLOSE

statement”

in

the

SQL

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

on

page

334

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

v

“udfcli.c

--

How

to

work

with

different

types

of

user-defined

functions

(UDFs)”

SQLColAttribute

function

(CLI)

-

Return

a

column

attribute

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLColAttribute()

returns

descriptor

information

for

a

column

in

a

result

set.

Descriptor

information

is

returned

as

a

character

string,

a

32-bit

descriptor-dependent

value,

or

an

integer

value.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLColAttributeW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLColAttribute

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLSMALLINT

ColumnNumber,

/*

icol

*/

SQLSMALLINT

FieldIdentifier,

/*

fDescType

*/

SQLPOINTER

CharacterAttributePtr,

/*

rgbDesc

*/

SQLSMALLINT

BufferLength,

/*

cbDescMax

*/

SQLSMALLINT

*StringLengthPtr,

/*

pcbDesc

*/

SQLPOINTER

NumericAttributePtr);

/*

pfDesc

*/

SQLCloseCursor

Chapter

1.

DB2

CLI

functions

53

Function

arguments:

Table

22.

SQLColAttribute

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

ColumnNumber

input

The

number

of

the

record

in

the

IRD

from

which

the

field

value

is

to

be

retrieved.

This

argument

corresponds

to

the

column

number

of

result

data,

ordered

sequentially

from

left

to

right,

starting

at

1.

Columns

may

be

described

in

any

order.

Column

0

can

be

specified

in

this

argument,

but

all

values

except

SQL_DESC_TYPE

and

SQL_DESC_OCTET_LENGTH

will

return

undefined

values.

SQLSMALLINT

FieldIdentifier

input

The

field

in

row

ColumnNumber

of

the

IRD

that

is

to

be

returned

(see

Table

23

on

page

55).

SQLPOINTER

CharacterAttributePtr

output

Pointer

to

a

buffer

in

which

to

return

the

value

in

the

FieldIdentifier

field

of

the

ColumnNumber

row

of

the

IRD,

if

the

field

is

a

character

string.

Otherwise,

the

field

is

unused.

SQLINTEGER

BufferLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

*CharacterAttributePtr

buffer,

if

the

field

is

a

character

string.

Otherwise,

the

field

is

ignored.

SQLSMALLINT

*

StringLengthPtr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

byte

count

of

the

null

termination

character

for

character

data)

available

to

return

in

*CharacterAttributePtr.

For

character

data,

if

the

number

of

bytes

available

to

return

is

greater

than

or

equal

to

BufferLength,

the

descriptor

information

in

*CharacterAttributePtr

is

truncated

to

BufferLength

minus

the

length

of

a

null

termination

character

and

is

null-terminated

by

DB2

CLI.

For

all

other

types

of

data,

the

value

of

BufferLength

is

ignored

and

DB2

CLI

assumes

the

size

of

*CharacterAttributePtr

is

32

bits.

SQLPOINTER

NumericAttributePtr

output

Pointer

to

an

integer

buffer

in

which

to

return

the

value

in

the

FieldIdentifier

field

of

the

ColumnNumber

row

of

the

IRD,

if

the

field

is

a

numeric

descriptor

type,

such

as

SQL_DESC_COLUMN_LENGTH.

Otherwise,

the

field

is

unused.

Usage:

SQLColAttribute()

returns

information

either

in

*NumericAttributePtr

or

in

*CharacterAttributePtr.

Integer

information

is

returned

in

*NumericAttributePtr

as

a

32-bit,

signed

value;

all

other

formats

of

information

are

returned

in

*CharacterAttributePtr.

When

information

is

returned

in

*NumericAttributePtr,

DB2

CLI

ignores

CharacterAttributePtr,

BufferLength,

and

StringLengthPtr

When

information

is

returned

in

*CharacterAttributePtr,

DB2

CLI

ignores

NumericAttributePtr.

SQLColAttribute

54

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|

SQLColAttribute()

returns

values

from

the

descriptor

fields

of

the

IRD.

The

function

is

called

with

a

statement

handle

rather

than

a

descriptor

handle.

The

values

returned

by

SQLColAttribute()

for

the

FieldIdentifier

values

listed

below

can

also

be

retrieved

by

calling

SQLGetDescField()

with

the

appropriate

IRD

handle.

The

currently

defined

descriptor

types,

the

version

of

DB2

CLI

in

which

they

were

introduced

(perhaps

with

a

different

name),

and

the

arguments

in

which

information

is

returned

for

them

are

shown

below;

it

is

expected

that

more

descriptor

types

will

be

defined

to

take

advantage

of

different

data

sources.

DB2

CLI

must

return

a

value

for

each

of

the

descriptor

types.

If

a

descriptor

type

does

not

apply

to

a

data

source,

then,

unless

otherwise

stated,

DB2

CLI

returns

0

in

*StringLengthPtr

or

an

empty

string

in

*CharacterAttributePtr.

The

following

table

lists

the

descriptor

types

returned

by

SQLColAttribute().

Table

23.

SQLColAttribute

arguments

FieldIdentifier

Information

returned

in

Description

SQL_DESC_AUTO_UNIQUE_VALUE

(DB2

CLI

v2)

Numeric

AttributePtr

Indicates

if

the

column

data

type

is

an

auto

increment

data

type.

SQL_FALSE

is

returned

in

NumericAttributePtr

for

all

DB2

SQL

data

types.

Currently

DB2

CLI

is

not

able

to

determine

if

a

column

is

an

identity

column,

therefore

SQL_FALSE

is

always

returned.

This

limitation

does

not

fully

conform

to

the

ODBC

specifications.

Future

versions

of

DB2

CLI

for

Unix

and

Windows

servers

will

provide

auto-unique

support.

SQL_DESC_BASE_COLUMN_NAME

(DB2

CLI

v5)

Character

AttributePtr

The

base

column

name

for

the

set

column.

If

a

base

column

name

does

not

exist

(as

in

the

case

of

columns

that

are

expressions),

then

this

variable

contains

an

empty

string.

This

information

is

returned

from

the

SQL_DESC_BASE_COLUMN_NAME

record

field

of

the

IRD,

which

is

a

read-only

field.

SQL_DESC_BASE_TABLE_NAME

(DB2

CLI

v5)

Character

AttributePtr

The

name

of

the

base

table

that

contains

the

column.

If

the

base

table

name

cannot

be

defined

or

is

not

applicable,

then

this

variable

contains

an

empty

string.

SQL_DESC_CASE_SENSITIVE

(DB2

CLI

v2)

Numeric

AttributePtr

Indicates

if

the

column

data

type

is

a

case

sensitive

data

type.

Either

SQL_TRUE

or

SQL_FALSE

will

be

returned

in

NumericAttributePtr

depending

on

the

data

type.

Case

sensitivity

does

not

apply

to

graphic

data

types,

SQL_FALSE

is

returned.

SQL_FALSE

is

returned

for

non-character

data

types.

SQL_DESC_CATALOG_NAME

(DB2

CLI

v2)

Character

AttributePtr

An

empty

string

is

returned

since

DB2

CLI

only

supports

two

part

naming

for

a

table.

SQLColAttribute

Chapter

1.

DB2

CLI

functions

55

Table

23.

SQLColAttribute

arguments

(continued)

FieldIdentifier

Information

returned

in

Description

SQL_DESC_CONCISE_TYPE

(DB2

CLI

v5)

Numeric

AttributePtr

The

concise

data

type.

For

the

datetime

data

types,

this

field

returns

the

concise

data

type,

e.g.,

SQL_TYPE_TIME.

This

information

is

returned

from

the

SQL_DESC_CONCISE_TYPE

record

field

of

the

IRD.

SQL_DESC_COUNT

(DB2

CLI

v2)

Numeric

AttributePtr

The

number

of

columns

in

the

result

set

is

returned

in

NumericAttributePtr.

SQL_DESC_DISPLAY_SIZE

(DB2

CLI

v2)

Numeric

AttributePtr

The

maximum

number

of

bytes

needed

to

display

the

data

in

character

form

is

returned

in

NumericAttributePtr.

Refer

to

the

data

type

display

size

table

for

the

display

size

of

each

of

the

column

types.

SQL_DESC_DISTINCT_TYPE

(DB2

CLI

v2)

Character

AttributePtr

The

user

defined

distinct

type

name

of

the

column

is

returned

in

CharacterAttributePtr.

If

the

column

is

a

built-in

SQL

type

and

not

a

user

defined

distinct

type,

an

empty

string

is

returned.

Note:

This

is

an

IBM

defined

extension

to

the

list

of

descriptor

attributes

defined

by

ODBC.

SQL_DESC_FIXED_PREC_SCALE

(DB2

CLI

v2)

Numeric

AttributePtr

SQL_TRUE

if

the

column

has

a

fixed

precision

and

non-zero

scale

that

are

data-source-specific.

SQL_FALSE

if

the

column

does

not

have

a

fixed

precision

and

non-zero

scale

that

are

data-source-specific.

SQL_FALSE

is

returned

in

NumericAttributePtr

for

all

DB2

SQL

data

types.

SQL_DESC_LABEL

(DB2

CLI

v2)

Character

AttributePtr

The

column

label

is

returned

in

CharacterAttributePtr.

If

the

column

does

not

have

a

label,

the

column

name

or

the

column

expression

is

returned.

If

the

column

is

unlabeled

and

unnamed,

an

empty

string

is

returned.

SQL_DESC_LENGTH

(DB2

CLI

v2)

Numeric

AttributePtr

A

numeric

value

that

is

either

the

maximum

or

actual

element

(SQLCHAR

or

SQLWCHAR)

length

of

a

character

string

or

binary

data

type.

It

is

the

maximum

element

length

for

a

fixed-length

data

type,

or

the

actual

element

length

for

a

variable-length

data

type.

Its

value

always

excludes

the

null

termination

byte

that

ends

the

character

string.

This

information

is

returned

from

the

SQL_DESC_LENGTH

record

field

of

the

IRD.

SQL_DESC_LITERAL_PREFIX

(DB2

CLI

v5)

Character

AttributePtr

This

VARCHAR(128)

record

field

contains

the

character

or

characters

that

DB2

CLI

recognizes

as

a

prefix

for

a

literal

of

this

data

type.

This

field

contains

an

empty

string

for

a

data

type

for

which

a

literal

prefix

is

not

applicable.

SQLColAttribute

56

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|
|
|
|

Table

23.

SQLColAttribute

arguments

(continued)

FieldIdentifier

Information

returned

in

Description

SQL_DESC_LITERAL_SUFFIX

(DB2

CLI

v5)

Character

AttributePtr

This

VARCHAR(128)

record

field

contains

the

character

or

characters

that

DB2

CLI

recognizes

as

a

suffix

for

a

literal

of

this

data

type.

This

field

contains

an

empty

string

for

a

data

type

for

which

a

literal

suffix

is

not

applicable.

SQL_DESC_LOCAL_TYPE_NAME

(DB2

CLI

v5)

Character

AttributePtr

This

VARCHAR(128)

record

field

contains

any

localized

(native

language)

name

for

the

data

type

that

may

be

different

from

the

regular

name

of

the

data

type.

If

there

is

no

localized

name,

then

an

empty

string

is

returned.

This

field

is

for

display

purposes

only.

The

character

set

of

the

string

is

locale-dependent

and

is

typically

the

default

character

set

of

the

server.

SQL_DESC_NAME

(DB2

CLI

v2)

Character

AttributePtr

The

name

of

the

column

ColumnNumber

is

returned

in

CharacterAttributePtr.

If

the

column

is

an

expression,

then

the

column

number

is

returned.

In

either

case,

SQL_DESC_UNNAMED

is

set

to

SQL_NAMED.

If

there

is

no

column

name

or

a

column

alias,

an

empty

string

is

returned

and

SQL_DESC_UNNAMED

is

set

to

SQL_UNNAMED.

This

information

is

returned

from

the

SQL_DESC_NAME

record

field

of

the

IRD.

SQL_DESC_NULLABLE

(DB2

CLI

v2)

Numeric

AttributePtr

If

the

column

identified

by

ColumnNumber

can

contain

nulls,

then

SQL_NULLABLE

is

returned

in

NumericAttributePtr.

If

the

column

is

constrained

not

to

accept

nulls,

then

SQL_NO_NULLS

is

returned

in

NumericAttributePtr.

This

information

is

returned

from

the

SQL_DESC_NULLABLE

record

field

of

the

IRD.

SQL_DESC_NUM_PREX_RADIX

(DB2

CLI

v5)

Numeric

AttributePtr

v

If

the

datatype

in

the

SQL_DESC_TYPE

field

is

an

approximate

data

type,

this

SQLINTEGER

field

contains

a

value

of

2

because

the

SQL_DESC_PRECISION

field

contains

the

number

of

bits.

v

If

the

datatype

in

the

SQL_DESC_TYPE

field

is

an

exact

numeric

data

type,

this

field

contains

a

value

of

10

because

the

SQL_DESC_PRECISION

field

contains

the

number

of

decimal

digits.

v

This

field

is

set

to

0

for

all

non-numeric

data

types.

SQLColAttribute

Chapter

1.

DB2

CLI

functions

57

Table

23.

SQLColAttribute

arguments

(continued)

FieldIdentifier

Information

returned

in

Description

SQL_DESC_OCTET_LENGTH

(DB2

CLI

v2)

Numeric

AttributePtr

The

number

of

bytes

of

data

associated

with

the

column

is

returned

in

NumericAttributePtr.

This

is

the

length

in

bytes

of

data

transferred

on

the

fetch

or

SQLGetData()

for

this

column

if

SQL_C_DEFAULT

is

specified

as

the

C

data

type.

Refer

to

data

type

length

table

for

the

length

of

each

of

the

SQL

data

types.

If

the

column

identified

in

ColumnNumber

is

a

fixed

length

character

or

binary

string,

(for

example,

SQL_CHAR

or

SQL_BINARY)

the

actual

length

is

returned.

If

the

column

identified

in

ColumnNumber

is

a

variable

length

character

or

binary

string,

(for

example,

SQL_VARCHAR

or

SQL_BLOB)

the

maximum

length

is

returned.

SQL_DESC_PRECISION

(DB2

CLI

v2)

Numeric

AttributePtr

The

precision

in

units

of

digits

is

returned

in

NumericAttributePtr

if

the

column

is

SQL_DECIMAL,

SQL_NUMERIC,

SQL_DOUBLE,

SQL_FLOAT,

SQL_INTEGER,

SQL_REAL

or

SQL_SMALLINT.

If

the

column

is

a

character

SQL

data

type,

then

the

precision

returned

in

NumericAttributePtr,

indicates

the

maximum

number

of

SQLCHAR

or

SQLWCHAR

elements

the

column

can

hold.

If

the

column

is

a

graphic

SQL

data

type,

then

the

precision

returned

in

NumericAttributePtr,

indicates

the

maximum

number

of

double-byte

elements

the

column

can

hold.

Refer

to

data

type

precision

table

for

the

precision

of

each

of

the

SQL

data

types.

This

information

is

returned

from

the

SQL_DESC_PRECISION

record

field

of

the

IRD.

SQL_DESC_SCALE

(DB2

CLI

v2)

Numeric

AttributePtr

The

scale

attribute

of

the

column

is

returned.

Refer

to

the

data

type

scale

table

for

the

scale

of

each

of

the

SQL

data

types.

This

information

is

returned

from

the

SCALE

record

field

of

the

IRD.

SQL_DESC_SCHEMA_NAME

(DB2

CLI

v2)

Character

AttributePtr

The

schema

of

the

table

that

contains

the

column

is

returned

in

CharacterAttributePtr.

An

empty

string

is

returned

as

DB2

CLI

is

unable

to

determine

this

attribute.

SQLColAttribute

58

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|
|
|

Table

23.

SQLColAttribute

arguments

(continued)

FieldIdentifier

Information

returned

in

Description

SQL_DESC_SEARCHABLE

(DB2

CLI

v2)

Numeric

AttributePtr

Indicates

if

the

column

data

type

is

searchable:

v

SQL_PRED_NONE

(SQL_UNSEARCHABLE

in

DB2

CLI

v2)

if

the

column

cannot

be

used

in

a

WHERE

clause.

v

SQL_PRED_CHAR

(SQL_LIKE_ONLY

in

DB2

CLI

v2)

if

the

column

can

be

used

in

a

WHERE

clause

only

with

the

LIKE

predicate.

v

SQL_PRED_BASIC

(SQL_ALL_EXCEPT_LIKE

in

DB2

CLI

v2)

if

the

column

can

be

used

in

a

WHERE

clause

with

all

comparison

operators

except

LIKE.

v

SQL_SEARCHABLE

if

the

column

can

be

used

in

a

WHERE

clause

with

any

comparison

operator.

SQL_DESC_TABLE_NAME

(DB2

CLI

v2)

Character

AttributePtr

An

empty

string

is

returned

as

DB2

CLI

cannot

determine

this

attribute.

SQL_DESC_TYPE

(DB2

CLI

v2)

Numeric

AttributePtr

The

SQL

data

type

of

the

column

identified

in

ColumnNumber

is

returned

in

NumericAttributePtr.

The

possible

values

returned

are

listed

in

table

of

symbolic

and

default

data

types

for

CLI.

When

ColumnNumber

is

equal

to

0,

SQL_BINARY

is

returned

for

variable-length

bookmarks,

and

SQL_INTEGER

is

returned

for

fixed-length

bookmarks.

For

the

datetime

data

types,

this

field

returns

the

verbose

data

type,

i.e.,

SQL_DATETIME.

This

information

is

returned

from

the

SQL_DESC_TYPE

record

field

of

the

IRD.

SQL_DESC_TYPE_NAME

(DB2

CLI

v2)

Character

AttributePtr

The

type

of

the

column

(as

entered

in

an

SQL

statement)

is

returned

in

CharacterAttributePtr.

For

information

on

each

data

type

refer

to

the

list

of

symbolic

and

default

data

types

for

CLI.

SQL_DESC_UNNAMED

(DB2

CLI

v5)

Numeric

AttributePtr

SQL_NAMED

or

SQL_UNNAMED.

If

the

SQL_DESC_NAME

field

of

the

IRD

contains

a

column

alias,

or

a

column

name,

SQL_NAMED

is

returned.

If

there

is

no

column

name

or

a

column

alias,

SQL_UNNAMED

is

returned.

This

information

is

returned

from

the

SQL_DESC_UNNAMED

record

field

of

the

IRD.

SQL_DESC_UNSIGNED

(DB2

CLI

v2)

Numeric

AttributePtr

Indicates

if

the

column

data

type

is

an

unsigned

type

or

not.

SQL_TRUE

is

returned

in

NumericAttributePtr

for

all

non-numeric

data

types,

SQL_FALSE

is

returned

for

all

numeric

data

types.

SQLColAttribute

Chapter

1.

DB2

CLI

functions

59

Table

23.

SQLColAttribute

arguments

(continued)

FieldIdentifier

Information

returned

in

Description

SQL_DESC_UPDATABLE

(DB2

CLI

v2)

Numeric

AttributePtr

Indicates

if

the

column

data

type

is

an

updateable

data

type:

v

SQL_ATTR_READWRITE_UNKNOWN

is

returned

in

NumericAttributePtr

for

all

DB2

SQL

data

types.

It

is

returned

because

DB2

CLI

is

not

currently

able

to

determine

if

a

column

is

updateable.

Future

versions

of

DB2

CLI

for

Unix

and

Windows

servers

will

be

able

to

determine

if

a

column

is

updateable.

v

SQL_ATTR_READONLY

is

returned

if

the

column

is

obtained

from

a

catalog

function

call.

Although

DB2

CLI

does

not

return

them,

ODBC

also

defines

the

following

value:

v

SQL_ATTR_WRITE

This

function

is

an

extensible

alternative

to

SQLDescribeCol().

SQLDescribeCol()

returns

a

fixed

set

of

descriptor

information

based

on

ANSI-89

SQL.

SQLColAttribute()

allows

access

to

the

more

extensive

set

of

descriptor

information

available

in

ANSI

SQL-92

and

DBMS

vendor

extensions.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

24.

SQLColAttribute

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

buffer

*CharacterAttributePtr

was

not

large

enough

to

return

the

entire

string

value,

so

the

string

was

truncated.

The

length

of

the

untruncated

string

value

is

returned

in

*StringLengthPtr.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07005

The

statement

did

not

return

a

result

set.

The

statement

associated

with

the

StatementHandle

did

not

return

a

result

set.

There

were

no

columns

to

describe.

07009

Invalid

descriptor

index.

The

value

specified

for

ColumnNumber

was

equal

to

0,

and

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

SQL_UB_OFF.

The

value

specified

for

the

argument

ColumnNumber

was

greater

than

the

number

of

columns

in

the

result

set.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

SQLColAttribute

60

CLI

Guide

and

Reference,

Volume

2

Table

24.

SQLColAttribute

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

The

function

was

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

SQLExecute()

or

SQLExecDirect()

was

called

for

the

StatementHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

was

less

than

0.

HY091

Invalid

descriptor

field

identifier.

The

value

specified

for

the

argument

FieldIdentifier

was

not

one

of

the

defined

values,

and

was

not

an

implementation-defined

value.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

FieldIdentifier

was

not

supported

by

DB2

CLI.

SQLColAttribute()

can

return

any

SQLSTATE

that

can

be

returned

by

SQLPrepare()

or

SQLExecute()

when

called

after

SQLPrepare()

and

before

SQLExecute()

depending

on

when

the

data

source

evaluates

the

SQL

statement

associated

with

the

StatementHandle.

For

performance

reasons,

an

application

should

not

call

SQLColAttribute()

before

executing

a

statement.

Restrictions:

None.

Example:

/*

get

display

size

for

column

*/

cliRC

=

SQLColAttribute(hstmt,

(SQLSMALLINT)(i

+

1),

SQL_DESC_DISPLAY_SIZE,

NULL,

0,

NULL,

&colDataDisplaySize)

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLColAttribute

Chapter

1.

DB2

CLI

functions

61

|

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

on

page

49

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

on

page

82

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

on

page

117

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

v

“Data

type

precision

(CLI)

table”

on

page

373

v

“Data

type

scale

(CLI)

table”

on

page

374

v

“Data

type

length

(CLI)

table”

on

page

375

v

“Data

type

display

(CLI)

table”

on

page

376

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

v

“utilcli.c

--

Utility

functions

used

by

DB2

CLI

samples”

SQLColAttributes

function

(CLI)

-

Get

column

attributes

Deprecated:

Note:

In

ODBC

3.0,

SQLColAttributes()

has

been

deprecated

and

replaced

with

SQLColAttribute().

Although

this

version

of

DB2

CLI

continues

to

support

SQLColAttributes(),

we

recommend

that

you

use

SQLColAttribute()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLColAttributesW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Migrating

to

the

new

function

The

statement:

SQLColAttributes

(hstmt,

colNum,

SQL_DESC_COUNT,

NULL,

len,

NULL,

&numCols);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLColAttribute

(hstmt,

colNum,

SQL_DESC_COUNT,

NULL,

len,

NULL,

&numCols);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLColAttribute

62

CLI

Guide

and

Reference,

Volume

2

Related

reference:

v

“SQLColAttribute

function

(CLI)

-

Return

a

column

attribute”

on

page

53

SQLColumnPrivileges

function

(CLI)

-

Get

privileges

associated

with

the

columns

of

a

table

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLColumnPrivileges()

returns

a

list

of

columns

and

associated

privileges

for

the

specified

table.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

from

a

query.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLColumnPrivilegesW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLColumnPrivileges(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CatalogName,

/*

szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

*SchemaName,

/*

szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

*TableName

/*

szTableName

*/

SQLSMALLINT

NameLength3,

/*

cbTableName

*/

SQLCHAR

*ColumnName,

/*

szColumnName

*/

SQLSMALLINT

NameLength4);

/*

cbColumnName

*/

Function

arguments:

Table

25.

SQLColumnPrivileges

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLCHAR

*

CatalogName

input

Catalog

qualifier

of

a

3-part

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Unix

and

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CatalogName,

or

SQL_NTS

if

CatalogName

is

null-terminated.

SQLCHAR

*

SchemaName

input

Schema

qualifier

of

table

name.

SQLSMALLINT

NameLength2

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

SchemaName,

or

SQL_NTS

if

SchemaName

is

null-terminated.

SQLColAttributes

Chapter

1.

DB2

CLI

functions

63

|
|
|
|

|
|
|
|

Table

25.

SQLColumnPrivileges

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

TableName

input

Table

name.

SQLSMALLINT

NameLength3

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

TableName,

or

SQL_NTS

if

TableName

is

null-terminated.

SQLCHAR

*

ColumnName

input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

column

name.

SQLSMALLINT

NameLength4

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

ColumnName,

or

SQL_NTS

if

ColumnName

is

null-terminated.

Usage:

The

results

are

returned

as

a

standard

result

set

containing

the

columns

listed

in

“Columns

Returned

by

SQLColumnPrivileges.”

The

result

set

is

ordered

by

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

COLUMN_NAME,

and

PRIVILEGE.

If

multiple

privileges

are

associated

with

any

given

column,

each

privilege

is

returned

as

a

separate

row.

A

typical

application

may

wish

to

call

this

function

after

a

call

to

SQLColumns()

to

determine

column

privilege

information.

The

application

should

use

the

character

strings

returned

in

the

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

COLUMN_NAME

columns

of

the

SQLColumns()

result

set

as

input

arguments

to

this

function.

Since

calls

to

SQLColumnPrivileges()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

the

calls.

Note

that

the

ColumnName

input

argument

accepts

a

search

pattern,

however,

all

other

input

arguments

do

not.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

Columns

returned

by

SQLColumnPrivileges

Column

1

TABLE_CAT

(VARCHAR(128)

Data

type)

Name

of

the

catalog.

The

value

is

NULL

if

this

table

does

not

have

catalogs.

Column

2

TABLE_SCHEM

(VARCHAR(128))

Name

of

the

schema

containing

TABLE_NAME.

Column

3

TABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

table

or

view.

Column

4

COLUMN_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

column

of

the

specified

table

or

view.

Column

5

GRANTOR

(VARCHAR(128))

Authorization

ID

of

the

user

who

granted

the

privilege.

Column

6

GRANTEE

(VARCHAR(128))

Authorization

ID

of

the

user

to

whom

the

privilege

is

granted.

SQLColumnPrivileges

64

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|
|
|

Column

7

PRIVILEGE

(VARCHAR(128))

The

column

privilege.

This

can

be:

v

INSERT

v

REFERENCES

v

SELECT

v

UPDATE

Note:

Some

IBM

RDBMSs

do

not

offer

column

level

privileges

at

the

column

level.

DB2

Universal

Database,

DB2

for

MVS/ESA,

and

DB2

Server

for

VSE

&

VM

support

the

UPDATE

column

privilege;

there

is

one

row

in

this

result

set

for

each

updateable

column.

For

all

other

privileges

for

DB2

Universal

Database,

DB2

for

MVS/ESA,

and

DB2

Server

for

VSE

&

VM,

and

for

all

privileges

for

other

IBM

RDBMSs,

if

a

privilege

has

been

granted

at

the

table

level,

a

row

is

present

in

this

result

set.

Column

8

IS_GRANTABLE

(VARCHAR(3)

Data

type)

Indicates

whether

the

grantee

is

permitted

to

grant

the

privilege

to

other

users.

Either

“YES”

or

“NO”.

Note:

The

column

names

used

by

DB2

CLI

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLColumnPrivileges()

result

set

in

ODBC.

If

there

is

more

than

one

privilege

associated

with

a

column,

then

each

privilege

is

returned

as

a

separate

row

in

the

result

set.

Return

Codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

26.

SQLColumnPrivileges

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40001

Serialization

failure

The

transaction

was

rolled

back

due

to

a

resource

deadlock

with

another

transaction.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY009

Invalid

argument

value.

TableName

is

NULL.

SQLColumnPrivileges

Chapter

1.

DB2

CLI

functions

65

Table

26.

SQLColumnPrivileges

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

SQLExecute(),

SQLExecDirect(),

or

SQLSetPos()

was

called

for

the

StatementHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

cliRC

=

SQLColumnPrivileges(hstmt,

NULL,

0,

tbSchema,

SQL_NTS,

tbName,

SQL_NTS,

colNamePattern,

SQL_NTS);

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLColumns

function

(CLI)

-

Get

column

information

for

a

table”

on

page

66

v

“SQLTables

function

(CLI)

-

Get

table

information”

on

page

312

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

SQLColumns

function

(CLI)

-

Get

column

information

for

a

table

Purpose:

SQLColumnPrivileges

66

CLI

Guide

and

Reference,

Volume

2

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLColumns()

returns

a

list

of

columns

in

the

specified

tables.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

fetch

a

result

set

generated

by

a

query.

Unicode

Equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLColumnsW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLColumns

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CatalogName,

/*

szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

*SchemaName,

/*

szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

*TableName,

/*

szTableName

*/

SQLSMALLINT

NameLength3,

/*

cbTableName

*/

SQLCHAR

*ColumnName,

/*

szColumnName

*/

SQLSMALLINT

NameLength4);

/*

cbColumnName

*/

Function

arguments:

Table

27.

SQLColumns

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLCHAR

*

CatalogName

input

Catalog

qualifier

of

a

3-part

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Unix

or

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CatalogName,

or

SQL_NTS

if

CatalogName

is

null-terminated.

SQLCHAR

*

SchemaName

input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

schema

name.

SQLSMALLINT

NameLength2

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

SchemaName,

or

SQL_NTS

if

SchemaName

is

null-terminated.

SQLCHAR

*

TableName

input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

table

name.

SQLSMALLINT

NameLength3

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

TableName,

or

SQL_NTS

if

TableName

is

null-terminated.

SQLCHAR

*

ColumnName

input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

column

name.

SQLColumns

Chapter

1.

DB2

CLI

functions

67

|
|
|
|

|
|
|
|

|
|
|
|

Table

27.

SQLColumns

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

NameLength4

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

ColumnName,

or

SQL_NTS

if

ColumnName

is

null-terminated.

Usage:

If

the

CatalogName

input

argument

is

specified

(not

NULL)

when

performing

the

query

against

a

Unix

or

Windows

system,

an

empty

result

set

will

be

returned

because

these

platforms

do

not

use

3-part

names.

This

function

is

called

to

retrieve

information

about

the

columns

of

either

a

table

or

a

set

of

tables.

An

application

may

wish

to

call

this

function

after

a

call

to

SQLTables()

to

determine

the

columns

of

a

table.

The

application

should

use

the

character

strings

returned

in

the

TABLE_SCHEMA

and

TABLE_NAME

columns

of

the

SQLTables()

result

set

as

input

to

this

function.

SQLColumns()

returns

a

standard

result

set,

ordered

by

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

ORDINAL_POSITION.

“Columns

returned

by

SQLColumns”

on

page

69

lists

the

columns

in

the

result

set.

The

SchemaName,

TableName,

and

ColumnName

input

arguments

accept

search

patterns.

This

function

does

not

return

information

on

the

columns

of

a

result

set;

SQLDescribeCol()

or

SQLColAttribute()

should

be

used

instead.

If

the

SQL_ATTR_LONGDATA_COMPAT

attribute

is

set

to

SQL_LD_COMPAT_YES

via

either

a

call

to

SQLSetConnectAttr()

or

by

setting

the

LONGDATACOMPAT

keyword

in

the

DB2

CLI

initialization

file,

then

the

LOB

data

types

are

reported

as

SQL_LONGVARCHAR,

SQL_LONGVARBINARY

or

SQL_LONGVARGRAPHIC.

Since

calls

to

SQLColumns()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

room

for

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_OWNER_SCHEMA_LEN,

SQL_MAX_TABLE_NAME_LEN,

and

SQL_MAX_COLUMN_NAME_LEN

to

determine

respectively

the

actual

lengths

of

the

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

COLUMN_NAME

columns

supported

by

the

connected

DBMS.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

Optimize

SQL

columns

keyword

and

attribute:

SQLColumns

68

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

It

is

possible

to

set

up

the

DB2

CLI/ODBC

Driver

to

optimize

calls

to

SQLColumns()

using

either:

v

OPTIMIZESQLCOLUMNS

DB2

CLI/ODBC

configuration

keyword

v

SQL_ATTR_OPTIMIZESQLCOLUMNS

connection

attribute

of

SQLSetConnectAttr()

If

either

of

these

values

are

set,

then

the

information

contained

in

the

following

columns

will

not

be

returned:

v

Column

12

REMARKS

v

Column

13

COLUMN_DEF

Columns

returned

by

SQLColumns

Column

1

TABLE_CAT

(VARCHAR(128))

Name

of

the

catalog.

The

value

is

NULL

if

this

table

does

not

have

catalogs.

Column

2

TABLE_SCHEM

(VARCHAR(128))

Name

of

the

schema

containing

TABLE_NAME.

Column

3

TABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

table,

view,

alias,

or

synonym.

Column

4

COLUMN_NAME

(VARCHAR(128)

not

NULL)

Column

identifier.

Name

of

the

column

of

the

specified

table,

view,

alias,

or

synonym.

Column

5

DATA_TYPE

(SMALLINT

not

NULL)

SQL

data

type

of

column

identified

by

COLUMN_NAME.

This

is

one

of

the

values

in

the

Symbolic

SQL

Data

Type

column

in

the

table

of

symbolic

and

default

data

types

for

CLI.

Column

6

TYPE_NAME

(VARCHAR(128)

not

NULL)

Character

string

representing

the

name

of

the

data

type

corresponding

to

DATA_TYPE.

Column

7

COLUMN_SIZE

(INTEGER)

If

the

DATA_TYPE

column

value

denotes

a

character

or

binary

string,

then

this

column

contains

the

maximum

length

in

SQLCHAR

or

SQLWCHAR

elements

for

the

column.

For

date,

time,

timestamp

data

types,

this

is

the

total

number

of

SQLCHAR

or

SQLWCHAR

elements

required

to

display

the

value

when

converted

to

character.

For

numeric

data

types,

this

is

either

the

total

number

of

digits,

or

the

total

number

of

bits

allowed

in

the

column,

depending

on

the

value

in

the

NUM_PREC_RADIX

column

in

the

result

set.

See

also

the

table

of

data

type

precision.

Column

8

BUFFER_LENGTH

(INTEGER)

The

maximum

number

of

bytes

for

the

associated

C

buffer

to

store

data

from

this

column

if

SQL_C_DEFAULT

were

specified

on

the

SQLBindCol(),

SQLGetData()

and

SQLBindParameter()

calls.

This

length

does

not

include

any

null-terminator.

For

exact

numeric

data

types,

the

length

accounts

for

the

decimal

and

the

sign.

See

also

the

table

of

data

type

lengths.

SQLColumns

Chapter

1.

DB2

CLI

functions

69

|
|
|

|
|
|

|
|
|

|

Column

9

DECIMAL_DIGITS

(SMALLINT)

The

scale

of

the

column.

NULL

is

returned

for

data

types

where

scale

is

not

applicable.

See

also

the

table

of

data

type

scale.

Column

10

NUM_PREC_RADIX

(SMALLINT)

Either

10

or

2

or

NULL.

If

DATA_TYPE

is

an

approximate

numeric

data

type,

this

column

contains

the

value

2

and

the

COLUMN_SIZE

column

contains

the

number

of

bits

allowed

in

the

column.

If

DATA_TYPE

is

an

exact

numeric

data

type,

this

column

contains

the

value

10

and

the

COLUMN_SIZE

contains

the

number

of

decimal

digits

allowed

for

the

column.

For

numeric

data

types,

the

DBMS

can

return

a

NUM_PREC_RADIX

of

10

or

2.

NULL

is

returned

for

data

types

where

the

radix

is

not

applicable.

Column

11

NULLABLE

(SMALLINT

not

NULL)

SQL_NO_NULLS

if

the

column

does

not

accept

NULL

values.

SQL_NULLABLE

if

the

column

accepts

NULL

values.

Column

12

REMARKS

(VARCHAR(254))

May

contain

descriptive

information

about

the

column.

It

is

possible

that

no

information

is

returned

in

this

column;

see

“Optimize

SQL

columns

keyword

and

attribute”

on

page

69

for

more

details.

Column

13

COLUMN_DEF

(VARCHAR(254))

The

column’s

default

value.

If

the

default

value

is

a

numeric

literal,

then

this

column

contains

the

character

representation

of

the

numeric

literal

with

no

enclosing

single

quotes.

If

the

default

value

is

a

character

string,

then

this

column

is

that

string

enclosed

in

single

quotes.

If

the

default

value

a

pseudo-literal,

such

as

for

DATE,

TIME,

and

TIMESTAMP

columns,

then

this

column

contains

the

keyword

of

the

pseudo-literal

(e.g.

CURRENT

DATE)

with

no

enclosing

quotes.

If

NULL

was

specified

as

the

default

value,

then

this

column

returns

the

word

NULL,

not

enclosed

in

quotes.

If

the

default

value

cannot

be

represented

without

truncation,

then

this

column

contains

TRUNCATED

with

no

enclosing

single

quotes.

If

no

default

value

was

specified,

then

this

column

is

NULL.

It

is

possible

that

no

information

is

returned

in

this

column;

see

“Optimize

SQL

columns

keyword

and

attribute”

on

page

69

for

more

details.

Column

14

SQL_DATA_TYPE

(SMALLINT

not

NULL)

SQL

data

type,

as

it

appears

in

the

SQL_DESC_TYPE

record

field

in

the

IRD.

This

column

is

the

same

as

the

DATA_TYPE

column

in

“Columns

returned

by

SQLColumns”

on

page

69

for

the

Date,

Time,

and

Timestamp

data

types.

Column

15

SQL_DATETIME_SUB

(SMALLINT)

The

subtype

code

for

datetime

data

types:

v

SQL_CODE_DATE

v

SQL_CODE_TIME

v

SQL_CODE_TIMESTAMP

For

all

other

data

types

this

column

returns

NULL.

SQLColumns

70

CLI

Guide

and

Reference,

Volume

2

Column

16

CHAR_OCTET_LENGTH

(INTEGER)

Contains

the

maximum

length

in

octets

for

a

character

data

type

column.

For

Single

Byte

character

sets,

this

is

the

same

as

COLUMN_SIZE.

For

all

other

data

types

it

is

NULL.

Column

17

ORDINAL_POSITION

(INTEGER

not

NULL)

The

ordinal

position

of

the

column

in

the

table.

The

first

column

in

the

table

is

number

1.

Column

18

IS_NULLABLE

(VARCHAR(254))

Contains

the

string

’NO’

if

the

column

is

known

to

be

not

nullable;

and

’YES’

otherwise.

Note:

This

result

set

is

identical

to

the

X/Open

CLI

Columns()

result

set

specification,

which

is

an

extended

version

of

the

SQLColumns()

result

set

specified

in

ODBC

V2.

The

ODBC

SQLColumns()

result

set

includes

every

column

in

the

same

position.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

28.

SQLColumns

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

SQLColumns

Chapter

1.

DB2

CLI

functions

71

Table

28.

SQLColumns

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

SQL_NTS.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

/*

get

column

information

for

a

table

*/

cliRC

=

SQLColumns(hstmt,

NULL,

0,

tbSchemaPattern,

SQL_NTS,

tbNamePattern,

SQL_NTS,

colNamePattern,

SQL_NTS);

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Retrieving

query

results

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Data

conversions

supported

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLColumnPrivileges

function

(CLI)

-

Get

privileges

associated

with

the

columns

of

a

table”

on

page

63

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

v

“SQLTables

function

(CLI)

-

Get

table

information”

on

page

312

v

“Data

type

precision

(CLI)

table”

on

page

373

v

“Data

type

scale

(CLI)

table”

on

page

374

v

“Data

type

length

(CLI)

table”

on

page

375

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“CLI/ODBC

configuration

keywords

listing

by

category”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

SQLColumns

72

CLI

Guide

and

Reference,

Volume

2

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

SQLConnect

function

(CLI)

-

Connect

to

a

data

source

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLConnect()

establishes

a

connection

to

the

target

database.

The

application

must

supply

a

target

SQL

database,

and

optionally

an

authorization-name

and

an

authentication-string.

A

connection

must

be

established

before

allocating

a

statement

handle

using

SQLAllocHandle().

Unicode

Equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLConnectW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLConnect

(

SQLHDBC

ConnectionHandle,

/*

hdbc

*/

SQLCHAR

*ServerName,

/*

szDSN

*/

SQLSMALLINT

ServerNameLength,

/*

cbDSN

*/

SQLCHAR

*UserName,

/*

szUID

*/

SQLSMALLINT

UserNameLength,

/*

cbUID

*/

SQLCHAR

*Authentication,

/*

szAuthStr

*/

SQLSMALLINT

AuthenticationLength);

/*

cbAuthStr

*/

Function

arguments:

Table

29.

SQLConnect

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle

SQLCHAR

*

ServerName

input

Data

Source:

The

name

or

alias-name

of

the

database.

SQLSMALLINT

ServerNameLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

ServerName

argument.

SQLCHAR

*

UserName

input

Authorization-name

(user

identifier)

SQLSMALLINT

UserNameLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

UserName

argument.

SQLCHAR

*

Authentication

input

Authentication-string

(password)

SQLSMALLINT

AuthenticationLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

Authentication

argument.

Usage:

SQLColumns

Chapter

1.

DB2

CLI

functions

73

|
|
|

|
|
|

|
|
|

The

target

database

(also

known

as

data

source)

for

IBM

RDBMSs

is

the

database-alias.

The

application

can

obtain

a

list

of

databases

available

to

connect

to

by

calling

SQLDataSources().

The

input

length

arguments

to

SQLConnect()

(ServerNameLength,

UserNameLength,

AuthenticationLength)

can

be

set

to

the

actual

length

of

their

associated

data

in

elements

(SQLCHAR

or

SQLWCHAR),

not

including

any

null-terminating

character,

or

to

SQL_NTS

to

indicate

that

the

associated

data

is

null-terminated.

The

ServerName

and

UserName

argument

values

must

not

contain

any

blanks.

Stored

procedures

written

using

DB2

CLI

must

make

a

null

SQLConnect()

call.

A

null

SQLConnect()

is

where

the

ServerName,

UserName,

and

Authentication

argument

pointers

are

all

set

to

NULL

and

their

respective

length

arguments

all

set

to

0.

A

null

SQLConnect()

still

requires

SQLAllocHandle()

to

be

called

first,

but

does

not

require

that

SQLEndTran()

be

called

before

SQLDisconnect().

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

30.

SQLConnect

SQLSTATEs

SQLSTATE

Description

Explanation

08001

Unable

to

connect

to

data

source.

DB2

CLI

was

unable

to

establish

a

connection

with

the

data

source

(server).

The

connection

request

was

rejected

because

an

existing

connection

established

via

embedded

SQL

already

exists.

08002

Connection

in

use.

The

specified

ConnectionHandle

has

already

been

used

to

establish

a

connection

with

a

data

source

and

the

connection

is

still

open.

08004

The

application

server

rejected

establishment

of

the

connection.

The

data

source

(server)

rejected

the

establishment

of

the

connection.

28000

Invalid

authorization

specification.

The

value

specified

for

the

argument

UserName

or

the

value

specified

for

the

argument

Authentication

violated

restrictions

defined

by

the

data

source.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

SQLConnect

74

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

Table

30.

SQLConnect

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

argument

ServerNameLength

was

less

than

0,

but

not

equal

to

SQL_NTS

and

the

argument

ServerName

was

not

a

null

pointer.

The

value

specified

for

argument

UserNameLength

was

less

than

0,

but

not

equal

to

SQL_NTS

and

the

argument

UserName

was

not

a

null

pointer.

The

value

specified

for

argument

AuthenticationLength

was

less

than

0,

but

not

equal

to

SQL_NTS

and

the

argument

Authentication

was

not

a

null

pointer.

HY501

Invalid

data

source

name.

An

invalid

data

source

name

was

specified

in

argument

ServerName.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

The

implicit

connection

(or

default

database)

option

for

IBM

RDBMSs

is

not

supported.

SQLConnect()

must

be

called

before

any

SQL

statements

can

be

executed.

Example:

/*

connect

to

the

database

*/

cliRC

=

SQLConnect(hdbc,

(SQLCHAR

*)db1Alias,

SQL_NTS,

(SQLCHAR

*)user,

SQL_NTS,

(SQLCHAR

*)pswd,

SQL_NTS);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Initializing

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

v

“SQLDataSources

function

(CLI)

-

Get

list

of

data

sources”

on

page

79

v

“SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source”

on

page

88

v

“SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source”

on

page

90

v

“SQLGetConnectAttr

function

(CLI)

-

Get

current

attribute

setting”

on

page

145

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

SQLConnect

Chapter

1.

DB2

CLI

functions

75

v

“dbconn.c

--

How

to

connect

to

and

disconnect

from

a

database”

v

“dbmcon.c

--

How

to

use

multiple

databases”

v

“dbmconx.c

--

How

to

use

multiple

databases

with

embedded

SQL.”

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

SQLCopyDesc

function

(CLI)

-

Copy

descriptor

information

between

handles

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLCopyDesc()

copies

descriptor

information

from

one

descriptor

handle

to

another.

Syntax:

SQLRETURN

SQLCopyDesc

(

SQLHDESC

SourceDescHandle,

/*

hDescSource

*/

SQLHDESC

TargetDescHandle);

/*

hDescTarget

*/

Function

arguments:

Table

31.

SQLCopyDesc

arguments

Data

type

Argument

Use

Description

SQLHDESC

SourceDescHandle

input

Source

descriptor

handle.

SQLHDESC

TargetDescHandle

input

Target

descriptor

handle.

TargetDescHandle

can

be

a

handle

to

an

application

descriptor

or

an

IPD.

SQLCopyDesc()

will

return

SQLSTATE

HY016

(Cannot

modify

an

implementation

descriptor)

if

TargetDescHandle

is

a

handle

to

an

IRD.

Usage:

A

call

to

SQLCopyDesc()

copies

the

fields

of

the

source

descriptor

handle

to

the

target

descriptor

handle.

Fields

can

only

be

copied

to

an

application

descriptor

or

an

IPD,

but

not

to

an

IRD.

Fields

can

be

copied

from

either

an

application

or

an

implementation

descriptor.

All

fields

of

the

descriptor,

except

SQL_DESC_ALLOC_TYPE

(which

specifies

whether

the

descriptor

handle

was

automatically

or

explicitly

allocated),

are

copied,

whether

or

not

the

field

is

defined

for

the

destination

descriptor.

Copied

fields

overwrite

the

existing

fields

in

the

TargetDescHandle.

All

descriptor

fields

are

copied,

even

if

SourceDescHandle

and

TargetDescHandle

are

on

two

different

connections

or

environments.

The

call

to

SQLCopyDesc()

is

immediately

aborted

if

an

error

occurs.

When

the

SQL_DESC_DATA_PTR

field

is

copied,

a

consistency

check

is

performed.

If

the

consistency

check

fails,

SQLSTATE

HY021

(Inconsistent

descriptor

information.)

is

returned

and

the

call

to

SQLCopyDesc()

is

immediately

aborted.

SQLConnect

76

CLI

Guide

and

Reference,

Volume

2

Note:

Descriptor

handles

can

be

copied

across

connections

or

environments.

An

application

may,

however,

be

able

to

associate

an

explicitly

allocated

descriptor

handle

with

a

StatementHandle,

rather

than

calling

SQLCopyDesc()

to

copy

fields

from

one

descriptor

to

another.

An

explicitly

allocated

descriptor

can

be

associated

with

another

StatementHandle

on

the

same

ConnectionHandle

by

setting

the

SQL_ATTR_APP_ROW_DESC

or

SQL_ATTR_APP_PARAM_DESC

statement

attribute

to

the

handle

of

the

explicitly

allocated

descriptor.

When

this

is

done,

SQLCopyDesc()

does

not

have

to

be

called

to

copy

descriptor

field

values

from

one

descriptor

to

another.

A

descriptor

handle

cannot

be

associated

with

a

StatementHandle

on

another

ConnectionHandle,

however;

to

use

the

same

descriptor

field

values

on

StatementHandle

on

different

ConnectionHandle,

SQLCopyDesc()

has

to

be

called.

Copying

rows

between

tables

An

ARD

on

one

statement

handle

can

serve

as

the

APD

on

another

statement

handle.

This

allows

an

application

to

copy

rows

between

tables

without

copying

data

at

the

application

level.

To

do

this,

an

application

calls

SQLCopyDesc()

to

copy

the

fields

of

an

ARD

that

describes

a

fetched

row

of

a

table,

to

the

APD

for

a

parameter

in

an

INSERT

statement

on

another

statement

handle.

The

SQL_ACTIVE_STATEMENTS

InfoType

returned

by

the

driver

for

a

call

to

SQLGetInfo()

must

be

greater

than

1

for

this

operation

to

succeed.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

When

SQLCopyDesc()

returns

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO,

an

associated

SQLSTATE

value

may

be

obtained

by

calling

SQLGetDiagRec()

with

a

HandleType

of

SQL_HANDLE_DESC

and

a

Handle

of

TargetDescHandle.

If

an

invalid

SourceDescHandle

was

passed

in

the

call,

SQL_INVALID_HANDLE

will

be

returned,

but

no

SQLSTATE

will

be

returned.

When

an

error

is

returned,

the

call

to

SQLCopyDesc()

is

immediately

aborted,

and

the

contents

of

the

fields

in

the

TargetDescHandle

descriptor

are

undefined.

Table

32.

SQLCopyDesc

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

trying

to

connect

failed

before

the

function

completed

processing.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

SQLCopyDesc

Chapter

1.

DB2

CLI

functions

77

Table

32.

SQLCopyDesc

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY007

Associated

statement

is

not

prepared.

SourceDescHandle

was

associated

with

an

IRD,

and

the

associated

statement

handle

was

not

in

the

prepared

or

executed

state.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

HY016

Cannot

modify

an

implementation

row

descriptor.

TargetDescHandle

was

associated

with

an

IRD.

HY021

Inconsistent

descriptor

information.

The

descriptor

information

checked

during

a

consistency

check

was

not

consistent.

HY092

Option

type

out

of

range.

The

call

to

SQLCopyDesc()

prompted

a

call

to

SQLSetDescField(),

but

*ValuePtr

was

not

valid

for

the

FieldIdentifier

argument

on

TargetDescHandle.

Restrictions:

None.

Example:

SQLHANDLE

hIRD,

hARD;

/*

descriptor

handles

*/

/*

...

*/

/*

copy

descriptor

information

between

handles

*/

rc

=

SQLCopyDesc(hIRD,

hARD);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Consistency

checks

for

descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

on

page

172

v

“SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record”

on

page

273

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLCopyDesc

78

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

SQLDataSources

function

(CLI)

-

Get

list

of

data

sources

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLDataSources()

returns

a

list

of

target

databases

available,

one

at

a

time.

A

database

must

be

cataloged

to

be

available.

SQLDataSources()

is

usually

called

before

a

connection

is

made,

to

determine

the

databases

that

are

available

to

connect

to.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLDataSourcesW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLDataSources

(

SQLHENV

EnvironmentHandle,

/*

henv

*/

SQLUSMALLINT

Direction,

/*

fDirection

*/

SQLCHAR

*ServerName,

/*

*szDSN

*/

SQLSMALLINT

BufferLength1,

/*

cbDSNMax

*/

SQLSMALLINT

*NameLength1Ptr,

/*

*pcbDSN

*/

SQLCHAR

*Description,

/*

*szDescription

*/

SQLSMALLINT

BufferLength2,

/*

cbDescriptionMax

*/

SQLSMALLINT

*NameLength2Ptr);

/*

*pcbDescription

*/

Function

arguments:

Table

33.

SQLDataSources

arguments

Data

type

Argument

Use

Description

SQLHENV

EnvironmentHandle

input

Environment

handle.

SQLUSMALLINT

Direction

input

Used

by

application

to

request

the

first

data

source

name

in

the

list

or

the

next

one

in

the

list.

Direction

can

take

on

only

the

following

values:

v

SQL_FETCH_FIRST

v

SQL_FETCH_NEXT

SQLCHAR

*

ServerName

output

Pointer

to

buffer

in

which

to

return

the

data

source

name.

SQLSMALLINT

BufferLength1

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

ServerName

buffer.

This

number

should

be

less

than

or

equal

to

SQL_MAX_DSN_LENGTH

+

1.

SQLCopyDesc

Chapter

1.

DB2

CLI

functions

79

|
|
|
|
|

Table

33.

SQLDataSources

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

*

NameLength1Ptr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function),

excluding

the

null-termination

character,

available

to

return

in

*ServerName.

If

the

number

of

SQLCHAR

or

SQLWCHAR

elements

available

to

return

is

greater

than

or

equal

to

BufferLength1,

the

data

source

name

in

*ServerName

is

truncated

to

BufferLength1

minus

the

length

of

a

null-termination

character.

SQLCHAR

*

Description

output

Pointer

to

buffer

where

the

description

of

the

data

source

is

returned.

DB2

CLI

will

return

the

Comment

field

associated

with

the

database

catalogued

to

the

DBMS.

SQLSMALLINT

BufferLength2

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

Description

buffer.

SQLSMALLINT

*

NameLength2Ptr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function),

excluding

the

null-termination

character,

available

to

return

in

*Description.

If

the

number

of

SQLCHAR

or

SQLWCHAR

elements

available

to

return

is

greater

than

or

equal

to

BufferLength2,

the

driver

description

in

*Description

is

truncated

to

BufferLength2

minus

the

length

of

a

null-termination

character.

Usage:

The

application

can

call

this

function

any

time

with

Direction

set

to

either

SQL_FETCH_FIRST

or

SQL_FETCH_NEXT.

If

SQL_FETCH_FIRST

is

specified,

the

first

database

in

the

list

will

always

be

returned.

If

SQL_FETCH_NEXT

is

specified:

v

Directly

following

a

SQL_FETCH_FIRST

call,

the

second

database

in

the

list

is

returned

v

Before

any

other

SQLDataSources()

call,

the

first

database

in

the

list

is

returned

v

When

there

are

no

more

databases

in

the

list,

SQL_NO_DATA_FOUND

is

returned.

If

the

function

is

called

again,

the

first

database

is

returned.

v

Any

other

time,

the

next

database

in

the

list

is

returned.

In

an

ODBC

environment,

the

ODBC

Driver

Manager

will

perform

this

function.

Since

the

IBM

RDBMSs

always

returns

the

description

of

the

data

source

blank

padded

to

30

bytes,

DB2

CLI

will

do

the

same.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLDataSources

80

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

v

SQL_NO_DATA_FOUND

Diagnostics:

Table

34.

SQLDataSources

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

data

source

name

returned

in

the

argument

ServerName

was

longer

than

the

value

specified

in

the

argument

BufferLength1.

The

argument

NameLength1Ptr

contains

the

length

of

the

full

data

source

name.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

The

data

source

name

returned

in

the

argument

Description

was

longer

than

the

value

specified

in

the

argument

BufferLength2.

The

argument

NameLength2Ptr

contains

the

length

of

the

full

data

source

description.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE

and

for

which

no

implementation-specific

SQLSTATE

was

defined.

The

error

message

returned

by

SQLGetDiagRec()

in

the

MessageText

argument

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

argument

BufferLength1

was

less

than

0.

The

value

specified

for

argument

BufferLength2

was

less

than

0.

HY103

Direction

option

out

of

range.

The

value

specified

for

the

argument

Direction

was

not

equal

to

SQL_FETCH_FIRST

or

SQL_FETCH_NEXT.

Authorization:

None.

Example:

/*

get

list

of

data

sources

*/

cliRC

=

SQLDataSources(henv,

SQL_FETCH_FIRST,

dbAliasBuf,

SQL_MAX_DSN_LENGTH

+

1,

&aliasLen,

dbCommentBuf,

255,

&commentLen);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Setting

up

the

CLI

environment”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLDataSources

Chapter

1.

DB2

CLI

functions

81

Related

reference:

v

“SQLConnect

function

(CLI)

-

Connect

to

a

data

source”

on

page

73

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“ininfo.c

--

How

to

get

information

at

the

instance

level”

SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLDescribeCol()

returns

a

set

of

commonly

used

descriptor

information

(column

name,

type,

precision,

scale,

nullability)

for

the

indicated

column

in

the

result

set

generated

by

a

query.

This

information

is

also

available

in

the

fields

of

the

IRD.

If

the

application

needs

only

one

attribute

of

the

descriptor

information,

or

needs

an

attribute

not

returned

by

SQLDescribeCol(),

the

SQLColAttribute()

function

can

be

used

in

place

of

SQLDescribeCol().

Either

SQLPrepare()

or

SQLExecDirect()

must

be

called

before

calling

this

function.

This

function

(or

SQLColAttribute())

is

usually

called

before

a

bind

column

function

(SQLBindCol(),

SQLBindFileToCol())

to

determine

the

attributes

of

a

column

before

binding

it

to

an

application

variable.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLDescribeColW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLDescribeCol

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ColumnNumber,

/*

icol

*/

SQLCHAR

*ColumnName,

/*

szColName

*/

SQLSMALLINT

BufferLength,

/*

cbColNameMax

*/

SQLSMALLINT

*NameLengthPtr,

/*

pcbColName

*/

SQLSMALLINT

*DataTypePtr,

/*

pfSqlType

*/

SQLUINTEGER

*ColumnSizePtr,

/*

pcbColDef

*/

SQLSMALLINT

*DecimalDigitsPtr,

/*

pibScale

*/

SQLSMALLINT

*NullablePtr);

/*

pfNullable

*/

Function

arguments:

Table

35.

SQLDescribeCol

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLDataSources

82

CLI

Guide

and

Reference,

Volume

2

Table

35.

SQLDescribeCol

arguments

(continued)

Data

type

Argument

Use

Description

SQLUSMALLINT

ColumnNumber

input

Column

number

to

be

described.

Columns

are

numbered

sequentially

from

left

to

right,

starting

at

1.

This

can

also

be

set

to

0

to

describe

the

bookmark

column.

SQLCHAR

*

ColumnName

output

Pointer

to

column

name

buffer.

This

value

is

read

from

the

SQL_DESC_NAME

field

of

the

IRD.

This

is

set

to

NULL

if

the

column

name

cannot

be

determined.

SQLSMALLINT

BufferLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

*

ColumnName

buffer.

SQLSMALLINT

*

NameLengthPtr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function),

excluding

the

null-termination

character,

available

to

return

in

*

ColumnName.

Truncation

of

column

name

(*

ColumnName)

to

BufferLength

-

1

SQLCHAR

or

SQLWCHAR

elements

occurs

if

NameLengthPtr

is

greater

than

or

equal

to

BufferLength.

SQLSMALLINT

*

DataTypePtr

output

Base

SQL

data

type

of

column.

To

determine

if

there

is

a

User

Defined

Type

associated

with

the

column,

call

SQLColAttribute()

with

fDescType

set

to

SQL_COLUMN_DISTINCT_TYPE.

Refer

to

the

Symbolic

SQL

Data

Type

column

of

the

symbolic

and

default

data

types

table

for

the

data

types

that

are

supported.

SQLUINTEGER

*

ColumnSizePtr

output

Precision

of

column

as

defined

in

the

database.

If

fSqlType

denotes

a

graphic

or

DBCLOB

SQL

data

type,

then

this

variable

indicates

the

maximum

number

of

double-byte

characters

the

column

can

hold.

SQLSMALLINT

*

DecimalDigitsPtr

output

Scale

of

column

as

defined

in

the

database

(only

applies

to

SQL_DECIMAL,

SQL_NUMERIC,

SQL_TIMESTAMP).

Refer

to

the

data

type

scale

table

for

the

scale

of

each

of

the

SQL

data

types.

SQLSMALLINT

*

NullablePtr

output

Indicates

whether

NULLS

are

allowed

for

this

column

v

SQL_NO_NULLS

v

SQL_NULLABLE

Usage:

Columns

are

identified

by

a

number,

are

numbered

sequentially

from

left

to

right,

and

may

be

described

in

any

order.

v

Column

numbers

start

at

1

if

bookmarks

are

not

used

(SQL_ATTR_USE_BOOKMARKS

statement

attribute

set

to

SQL_UB_OFF).

v

The

ColumnNumber

argument

can

be

set

to

0

to

describe

the

bookmark

column

if

bookmarks

are

used

(the

statement

attribute

is

set

to

SQL_UB_ON).

If

a

null

pointer

is

specified

for

any

of

the

pointer

arguments,

DB2

CLI

assumes

that

the

information

is

not

needed

by

the

application

and

nothing

is

returned.

SQLDescribeCol

Chapter

1.

DB2

CLI

functions

83

|
|
|

|
|
|
|
|
|
|
|

If

the

column

is

a

User

Defined

Type,

SQLDescribeCol()

only

returns

the

built-in

type

in

DataTypePtr.

Call

SQLColAttribute()

with

fDescType

set

to

SQL_COLUMN_DISTINCT_TYPE

to

obtain

the

User

Defined

Type.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

If

SQLDescribeCol()

returns

either

SQL_ERROR,

or

SQL_SUCCESS_WITH_INFO,

one

of

the

following

SQLSTATEs

may

be

obtained

by

calling

the

SQLGetDiagRec()

or

SQLGetDiagField()

function.

Table

36.

SQLDescribeCol

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

column

name

returned

in

the

argument

*

ColumnName

was

longer

than

the

value

specified

in

the

argument

BufferLength.

The

argument

*

NameLengthPtr

contains

the

length

of

the

full

column

name.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07005

The

statement

did

not

return

a

result

set.

The

statement

associated

with

the

StatementHandle

did

not

return

a

result

set.

There

were

no

columns

to

describe.

(Call

SQLNumResultCols()

first

to

determine

if

there

are

any

rows

in

the

result

set.)

07009

Invalid

descriptor

index

The

value

specified

for

ColumnNumber

was

equal

to

0,

and

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

SQL_UB_OFF.

The

value

specified

for

the

argument

ColumnNumber

was

greater

than

the

number

of

columns

in

the

result

set.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

The

function

was

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

SQLDescribeCol

84

CLI

Guide

and

Reference,

Volume

2

Table

36.

SQLDescribeCol

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY090

Invalid

string

or

buffer

length.

The

length

specified

in

argument

BufferLength

less

than

1.

HYC00

Driver

not

capable.

The

SQL

data

type

of

column

ColumnNumber

is

not

recognized

by

DB2

CLI.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

The

following

ODBC

defined

data

types

are

not

supported:

v

SQL_BIT

v

SQL_TINYINT

Example:

/*

return

a

set

of

attributes

for

a

column

*/

cliRC

=

SQLDescribeCol(hstmt,

(SQLSMALLINT)(i

+

1),

colName,

sizeof(colName),

&colNameLen,

&colType,

&colSize,

&colScale,

NULL);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLColAttribute

function

(CLI)

-

Return

a

column

attribute”

on

page

53

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

on

page

100

v

“SQLNumResultCols

function

(CLI)

-

Get

number

of

result

columns”

on

page

235

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

on

page

240

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

SQLDescribeParam

function

(CLI)

-

Return

description

of

a

parameter

marker

Purpose:

Specification:

DB2

CLI

5.0

ODBC

1.0

ISO

CLI

SQLDescribeCol

Chapter

1.

DB2

CLI

functions

85

SQLDescribeParam()

returns

the

description

of

a

parameter

marker

associated

with

a

prepared

SQL

statement.

This

information

is

also

available

in

the

fields

of

the

IPD.

If

deferred

prepared

is

enabled,

and

this

is

the

first

call

to

SQLDescribeParam(),

SQLNumResultCols(),

or

SQLDescribeCol(),

the

call

will

force

a

PREPARE

of

the

SQL

statement

to

be

flowed

to

the

server.

Syntax:

SQLRETURN

SQLDescribeParam

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ParameterNumber,

/*

ipar

*/

SQLSMALLINT

*DataTypePtr,

/*

pfSqlType

*/

SQLUINTEGER

*ParameterSizePtr,

/*

pcbParamDef

*/

SQLSMALLINT

*DecimalDigitsPtr,

/*

pibScale

*/

SQLSMALLINT

*NullablePtr);

/*

pfNullable

*/

Function

arguments:

Table

37.

SQLDescribeParam

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

ParameterNumber

input

Parameter

marker

number

ordered

sequentially

in

increasing

parameter

order,

starting

at

1.

SQLSMALLINT

*

DataTypePtr

output

Pointer

to

a

buffer

in

which

to

return

the

SQL

data

type

of

the

parameter.

This

value

is

read

from

the

SQL_DESC_CONCISE_TYPE

record

field

of

the

IPD.

When

ColumnNumber

is

equal

to

0

(for

a

bookmark

column),

SQL_BINARY

is

returned

in

*DataTypePtr

for

variable-length

bookmarks.

SQLUINTEGER

*

ParameterSizePtr

output

Pointer

to

a

buffer

in

which

to

return

the

size

of

the

column

or

expression

of

the

corresponding

parameter

marker

as

defined

by

the

data

source.

SQLSMALLINT

*

DecimalDigitsPtr

output

Pointer

to

a

buffer

in

which

to

return

the

number

of

decimal

digits

of

the

column

or

expression

of

the

corresponding

parameter

as

defined

by

the

data

source.

SQLSMALLINT

*

NullablePtr

output

Pointer

to

a

buffer

in

which

to

return

a

value

that

indicates

whether

the

parameter

allows

NULL

values.

This

value

is

read

from

the

SQL_DESC_NULLABLE

field

of

the

IPD.

One

of

the

following:

v

SQL_NO_NULLS:

The

parameter

does

not

allow

NULL

values

(this

is

the

default

value).

v

SQL_NULLABLE:

The

parameter

allows

NULL

values.

v

SQL_NULLABLE_UNKNOWN:

Cannot

determine

if

the

parameter

allows

NULL

values.

Usage:

Parameter

markers

are

numbered

in

increasing

order

as

they

appear

in

the

SQL

statement,

starting

with

1.

SQLDescribeParam()

does

not

return

the

type

(input,

input/output,

or

output)

of

a

parameter

in

an

SQL

statement.

Except

in

calls

to

stored

procedures,

all

parameters

in

SQL

statements

are

input

parameters.

To

determine

the

type

of

each

parameter

in

a

call

to

a

stored

procedure,

call

SQLProcedureColumns().

SQLDescribeParam

86

CLI

Guide

and

Reference,

Volume

2

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

38.

SQLDescribeParam

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07009

Invalid

descriptor

index.

The

value

specified

for

the

argument

ParameterNumber

less

than

1.

The

value

specified

for

the

argument

ParameterNumber

was

greater

than

the

number

of

parameters

in

the

associated

SQL

statement.

The

parameter

marker

was

part

of

a

non-DML

statement.

The

parameter

marker

was

part

of

a

SELECT

list.

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

connected

failed

before

the

function

completed

processing.

21S01

Insert

value

list

does

not

match

column

list.

The

number

of

parameters

in

the

INSERT

statement

did

not

match

the

number

of

columns

in

the

table

named

in

the

statement.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

The

function

was

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

SQLExecute()

SQLExecDirect(),

SQLBulkOperations(),

or

SQLSetPos()

was

called

for

the

StatementHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY013

Unexpected

memory

handling

error.

The

function

call

could

not

be

processed

because

the

underlying

memory

objects

could

not

be

accessed,

possibly

because

of

low

memory

conditions.

Restrictions:

SQLDescribeParam

Chapter

1.

DB2

CLI

functions

87

None.

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Parameter

marker

binding

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

on

page

49

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

on

page

105

v

“SQLNumParams

function

(CLI)

-

Get

number

of

parameters

in

a

SQL

statement”

on

page

231

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

on

page

240

v

“SQLProcedureColumns

function

(CLI)

-

Get

input/output

parameter

information

for

a

procedure”

on

page

248

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLDisconnect()

closes

the

connection

associated

with

the

database

connection

handle.

SQLEndTran()

must

be

called

before

calling

SQLDisconnect()

if

an

outstanding

transaction

exists

on

this

connection.

After

calling

this

function,

either

call

SQLConnect()

to

connect

to

another

database,

or

use

SQLFreeHandle()

to

free

the

connection

handle.

Syntax:

SQLRETURN

SQLDisconnect

(SQLHDBC

ConnectionHandle;)

/*

hdbc

*/

Function

arguments:

Table

39.

SQLDisconnect

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle

Usage:

If

an

application

calls

SQLDisconnect()

before

it

has

freed

all

the

statement

handles

associated

with

the

connection,

DB2

CLI

frees

them

after

it

successfully

disconnects

from

the

database.

SQLDescribeParam

88

CLI

Guide

and

Reference,

Volume

2

If

SQL_SUCCESS_WITH_INFO

is

returned,

it

implies

that

even

though

the

disconnect

from

the

database

is

successful,

additional

error

or

implementation

specific

information

is

available.

For

example,

a

problem

was

encountered

on

the

clean

up

subsequent

to

the

disconnect,

or

if

there

is

no

current

connection

because

of

an

event

that

occurred

independently

of

the

application

(such

as

communication

failure).

After

a

successful

SQLDisconnect()

call,

the

application

can

re-use

ConnectionHandle

to

make

another

SQLConnect()

or

SQLDriverConnect()

request.

An

application

should

not

rely

on

SQLDisconnect()

to

close

cursors

(with

both

stored

procedures

and

regular

client

applications).

In

both

cases

the

cursor

should

be

closed

using

SQLCloseCursor(),

then

the

statement

handle

freed

using

SQLFreeHandle().

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

40.

SQLDisconnect

SQLSTATEs

SQLSTATE

Description

Explanation

01002

Disconnect

error.

An

error

occurred

during

the

disconnect.

However,

the

disconnect

succeeded.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08003

Connection

is

closed.

The

connection

specified

in

the

argument

ConnectionHandle

was

not

open.

25000

25501

Invalid

transaction

state.

There

was

a

transaction

in

process

on

the

connection

specified

by

the

argument

ConnectionHandle.

The

transaction

remains

active,

and

the

connection

cannot

be

disconnected.

Note:

This

error

does

not

apply

to

stored

procedures

written

in

DB2

CLI.

25501

Invalid

transaction

state.

There

was

a

transaction

in

process

on

the

connection

specified

by

the

argument

ConnectionHandle.

The

transaction

remains

active,

and

the

connection

cannot

be

disconnected.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

Restrictions:

None.

Example:

SQLDisconnect

Chapter

1.

DB2

CLI

functions

89

SQLHANDLE

hdbc;

/*

connection

handle

*/

/*

...

*/

/*

disconnect

from

the

database

*/

cliRC

=

SQLDisconnect(hdbc);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Terminating

a

CLI

application”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

v

“SQLConnect

function

(CLI)

-

Connect

to

a

data

source”

on

page

73

v

“SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source”

on

page

90

v

“SQLEndTran

function

(CLI)

-

End

transactions

of

a

connection

or

an

Environment”

on

page

96

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

on

page

139

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbconn.c

--

How

to

connect

to

and

disconnect

from

a

database”

v

“dbmcon.c

--

How

to

use

multiple

databases”

v

“dbmconx.c

--

How

to

use

multiple

databases

with

embedded

SQL.”

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLDriverConnect()

is

an

alternative

to

SQLConnect().

Both

functions

establish

a

connection

to

the

target

database,

but

SQLDriverConnect()

supports

additional

connection

parameters

and

the

ability

to

prompt

the

user

for

connection

information.

Use

SQLDriverConnect()

when

the

data

source

requires

parameters

other

than

the

3

input

arguments

supported

by

SQLConnect()

(data

source

name,

user

ID

and

password),

or

when

you

want

to

use

DB2

CLI’s

graphical

user

interface

to

prompt

the

user

for

mandatory

connection

information.

Once

a

connection

is

established,

the

completed

connection

string

is

returned.

Applications

can

store

this

string

for

future

connection

requests.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLDisconnect

90

CLI

Guide

and

Reference,

Volume

2

SQLDriverConnectW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

Generic

SQLRETURN

SQLDriverConnect

(

SQLHDBC

ConnectionHandle,

/*

hdbc

*/

SQLHWND

WindowHandle,

/*

hwnd

*/

SQLCHAR

*InConnectionString,

/*

szConnStrIn

*/

SQLSMALLINT

InConnectionStringLength,

/*

cbConnStrIn

*/

SQLCHAR

*OutConnectionString,

/*

szConnStrOut

*/

SQLSMALLINT

OutConnectionStringCapacity,

/*

cbConnStrOutMax

*/

SQLSMALLINT

*OutConnectionStringLengthPtr,

/*

pcbConnStrOut

*/

SQLUSMALLINT

DriverCompletion);

/*

fDriverCompletion

*/

Function

arguments:

Table

41.

SQLDriverConnect

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle

SQLHWND

WindowHandle

input

Window

handle.

On

the

Windows

platform,

this

is

the

parent

Windows

handle.

Currently

the

window

handle

is

only

supported

on

Windows.

If

a

NULL

is

passed,

then

no

dialog

will

be

presented.

SQLCHAR

*

InConnectionString

input

A

full,

partial

or

empty

(null

pointer)

connection

string

(see

syntax

and

description

below).

SQLSMALLINT

InConnectionStringLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

InConnectionString.

SQLCHAR

*

OutConnectionString

output

Pointer

to

buffer

for

the

completed

connection

string.

If

the

connection

was

established

successfully,

this

buffer

will

contain

the

completed

connection

string.

Applications

should

allocate

at

least

SQL_MAX_OPTION_STRING_LENGTH

bytes

for

this

buffer.

SQLSMALLINT

OutConnectionString

Capacity

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

OutConnectionString.

SQLCHAR

*

OutConnectionString

LengthPtr

output

Pointer

to

the

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function),

excluding

the

null-termination

character,

available

to

return

in

the

OutConnectionString

buffer.

If

the

value

of

*OutConnectionStringLengthPtr

is

greater

than

or

equal

to

OutConnectionStringCapacity,

the

completed

connection

string

in

OutConnectionString

is

truncated

to

OutConnectionStringCapacity

-

1

SQLCHAR

or

SQLWCHAR

elements.

SQLDriverConnect

Chapter

1.

DB2

CLI

functions

91

|
|
|

|
|

|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|

Table

41.

SQLDriverConnect

arguments

(continued)

Data

type

Argument

Use

Description

SQLUSMALLINT

DriverCompletion

input

Indicates

when

DB2

CLI

should

prompt

the

user

for

more

information.

Possible

values:

v

SQL_DRIVER_PROMPT

v

SQL_DRIVER_COMPLETE

v

SQL_DRIVER_COMPLETE_REQUIRED

v

SQL_DRIVER_NOPROMPT

Usage:

InConnectionString

Argument

A

request

connection

string

has

the

following

syntax:

connection-string

::=

attribute[;]

|

attribute;

connection-string

attribute

::=

attribute-keyword=attribute-value

|

DRIVER=[{]attribute-value[}]

attribute-keyword

::=

DSN

|

UID

|

PWD

|

NEWPWD

|

driver-defined-attribute-keyword

attribute-value

::=

character-string

driver-defined-attribute-keyword

::=

identifier

where

v

character-string

has

zero

or

more

SQLCHAR

or

SQLWCHAR

elements

v

identifier

has

one

or

more

SQLCHAR

or

SQLWCHAR

elements

v

attribute-keyword

is

case

insensitive

v

attribute-value

may

be

case

sensitive

v

the

value

of

the

DSN

keyword

does

not

consist

solely

of

blanks

v

NEWPWD

is

used

as

part

of

a

change

password

request.

The

application

can

either

specify

the

new

string

to

use,

for

example,

NEWPWD=anewpass;

or

specify

NEWPWD=;

and

rely

on

a

dialog

box

generated

by

the

DB2

CLI

driver

to

prompt

for

the

new

password

Because

of

connection

string

and

initialization

file

grammar,

keywords

and

attribute

values

that

contain

the

characters

[]{}(),;?*=!@

should

be

avoided.

Because

of

the

grammar

in

the

system

information,

keywords

and

data

source

names

cannot

contain

the

backslash

(\)

character.

For

DB2

CLI

Version

2,

braces

are

required

around

the

DRIVER

keyword.

If

any

keywords

are

repeated

in

the

browse

request

connection

string,

DB2

CLI

uses

the

value

associated

with

the

first

occurrence

of

the

keyword.

If

the

DSN

and

DRIVER

keywords

are

included

in

the

same

browse

request

connection

string,

DB2

CLI

uses

whichever

keyword

appears

first.

OutConnectionString

Argument

The

result

connection

string

is

a

list

of

connection

attributes.

A

connection

attribute

consists

of

an

attribute

keyword

and

a

corresponding

attribute

value.

The

browse

result

connection

string

has

the

following

syntax:

SQLDriverConnect

92

CLI

Guide

and

Reference,

Volume

2

|
|

connection-string

::=

attribute[;]

|

attribute;

connection-string

attribute

::=

[*]attribute-keyword=attribute-value

attribute-keyword

::=

ODBC-attribute-keyword

|

driver-defined-attribute-keyword

ODBC-attribute-keyword

=

{UID

|

PWD}[:localized-identifier]

driver-defined-attribute-keyword

::=

identifier[:localized-identifier]

attribute-value

::=

{attribute-value-list}

|

?

(The

braces

are

literal;

they

are

returned

by

DB2

CLI.)

attribute-value-list

::=

character-string

[:localized-character

string]

|

character-string

[:localized-character

string],

attribute-value-list

where

v

character-string

and

localized-character

string

have

zero

or

more

SQLCHAR

or

SQLWCHAR

elements

v

identifier

and

localized-identifier

have

one

or

more

SQLCHAR

or

SQLWCHAR

elements;

attribute-keyword

is

case

insensitive

v

attribute-value

may

be

case

sensitive

Because

of

connection

string

and

initialization

file

grammar,

keywords,

localized

identifiers,

and

attribute

values

that

contain

the

characters

[]{}(),;?*=!@

should

be

avoided.

Because

of

the

grammar

in

the

system

information,

keywords

and

data

source

names

cannot

contain

the

backslash

(\)

character.

The

connection

string

is

used

to

pass

one

or

more

values

needed

to

complete

a

connection.

The

contents

of

the

connection

string

and

the

value

of

DriverCompletion

will

determine

if

DB2

CLI

needs

to

establish

a

dialog

with

the

user.

��

�

;

Connection

string

syntax

=

attribute

��

Connection

string

syntax

DSN

UID

PWD

NEWPWD

DB2

CLI-defined-keyword

Each

keyword

above

has

an

attribute

that

is

equal

to

the

following:

DSN

Data

source

name.

The

name

or

alias-name

of

the

database.

Required

if

DriverCompletion

is

equal

to

SQL_DRIVER_NOPROMPT.

UID

Authorization-name

(user

identifier).

PWD

The

password

corresponding

to

the

authorization

name.

If

there

is

no

password

for

the

user

ID,

an

empty

value

is

specified

(PWD=;).

NEWPWD

New

password

used

as

part

of

a

change

password

request.

The

application

can

either

specify

the

new

string

to

use,

for

example,

NEWPWD=anewpass;

or

specify

NEWPWD=;

and

rely

on

a

dialog

box

SQLDriverConnect

Chapter

1.

DB2

CLI

functions

93

|
|
|
|

generated

by

the

DB2

CLI

driver

to

prompt

for

the

new

password

(set

the

DriverCompletion

argument

to

anything

other

than

SQL_DRIVER_NOPROMPT).

Any

one

of

the

CLI

keywords

can

be

specified

on

the

connection

string.

If

any

keywords

are

repeated

in

the

connection

string,

the

value

associated

with

the

first

occurrence

of

the

keyword

is

used.

If

any

keywords

exists

in

the

CLI

initialization

file,

the

keywords

and

their

respective

values

are

used

to

augment

the

information

passed

to

DB2

CLI

in

the

connection

string.

If

the

information

in

the

CLI

initialization

file

contradicts

information

in

the

connection

string,

the

values

in

connection

string

take

precedence.

If

the

end

user

Cancels

a

dialog

box

presented,

SQL_NO_DATA_FOUND

is

returned.

The

following

values

of

DriverCompletion

determines

when

a

dialog

will

be

opened:

SQL_DRIVER_PROMPT:

A

dialog

is

always

initiated.

The

information

from

the

connection

string

and

the

CLI

initialization

file

are

used

as

initial

values,

to

be

supplemented

by

data

input

via

the

dialog

box.

SQL_DRIVER_COMPLETE:

A

dialog

is

only

initiated

if

there

is

insufficient

information

in

the

connection

string.

The

information

from

the

connection

string

is

used

as

initial

values,

to

be

supplemented

by

data

entered

via

the

dialog

box.

SQL_DRIVER_COMPLETE_REQUIRED:

A

dialog

is

only

initiated

if

there

is

insufficient

information

in

the

connection

string.

The

information

from

the

connection

string

is

used

as

initial

values.

Only

mandatory

information

is

requested.

The

user

is

prompted

for

required

information

only.

SQL_DRIVER_NOPROMPT:

The

user

is

not

prompted

for

any

information.

A

connection

is

attempted

with

the

information

contained

in

the

connection

string.

If

there

is

not

enough

information,

SQL_ERROR

is

returned.

Once

a

connection

is

established,

the

complete

connection

string

is

returned.

Applications

that

need

to

set

up

multiple

connections

to

the

same

database

for

a

given

user

ID

should

store

this

output

connection

string.

This

string

can

then

be

used

as

the

input

connection

string

value

on

future

SQLDriverConnect()

calls.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NO_DATA_FOUND

v

SQL_INVALID_HANDLE

v

SQL_ERROR

Diagnostics:

All

of

the

diagnostics

generated

by

SQLConnect()

can

be

returned

here

as

well.

The

following

table

shows

the

additional

diagnostics

that

can

be

returned.

SQLDriverConnect

94

CLI

Guide

and

Reference,

Volume

2

Table

42.

SQLDriverConnect

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

buffer

szConnstrOut

was

not

large

enough

to

hold

the

entire

connection

string.

The

argument

*OutConnectionStringLengthPtr

contains

the

actual

length

of

the

connection

string

available

for

return.

(Function

returns

SQL_SUCCESS_WITH_INFO)

01S00

Invalid

connection

string

attribute.

An

invalid

keyword

or

attribute

value

was

specified

in

the

input

connection

string,

but

the

connection

to

the

data

source

was

successful

anyway

because

one

of

the

following

occurred:

v

The

unrecognized

keyword

was

ignored.

v

The

invalid

attribute

value

was

ignored,

the

default

value

was

used

instead.

(Function

returns

SQL_SUCCESS_WITH_INFO)

HY000

General

error.

Dialog

Failed

The

information

specified

in

the

connection

string

was

insufficient

for

making

a

connect

request,

but

the

dialog

was

prohibited

by

setting

fCompletion

to

SQL_DRIVER_NOPROMPT.

The

attempt

to

display

the

dialog

failed.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

InConnectionStringLength

was

less

than

0,

but

not

equal

to

SQL_NTS.

The

value

specified

for

OutConnectionStringCapacity

was

less

than

0.

HY110

Invalid

driver

completion.

The

value

specified

for

the

argument

fCompletion

was

not

equal

to

one

of

the

valid

values.

Restrictions:

None.

Example:

rc

=

SQLDriverConnect(hdbc,

(SQLHWND)sqlHWND,

InConnectionString,

InConnectionStringLength,

OutConnectionString,

OutConnectionStringCapacity,

StrLength2,

DriveCompletion);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Initializing

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

v

“SQLConnect

function

(CLI)

-

Connect

to

a

data

source”

on

page

73

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLDriverConnect

Chapter

1.

DB2

CLI

functions

95

Related

samples:

v

“dbcongui.c

--

How

to

connect

to

a

database

with

a

graphical

user

interface

(GUI)”

v

“dbconn.c

--

How

to

connect

to

and

disconnect

from

a

database”

SQLEndTran

function

(CLI)

-

End

transactions

of

a

connection

or

an

Environment

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLEndTran()

requests

a

commit

or

rollback

operation

for

all

active

operations

on

all

statements

associated

with

a

connection,

or

for

all

connections

associated

with

an

environment.

Syntax:

SQLRETURN

SQLEndTran

(

SQLSMALLINT

HandleType,

/*

fHandleType

*/

SQLHANDLE

Handle,

/*

hHandle

*/

SQLSMALLINT

CompletionType);

/*

fType

*/

Function

arguments:

Table

43.

SQLEndTran

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

Handle

type

identifier.

Contains

either

SQL_HANDLE_ENV

if

Handle

is

an

environment

handle,

or

SQL_HANDLE_DBC

if

Handle

is

a

connection

handle.

SQLHANDLE

Handle

input

The

handle,

of

the

type

indicated

by

HandleType,

indicating

the

scope

of

the

transaction.

See

the

“Usage”

section

below

for

more

information.

SQLSMALLINT

CompletionType

input

One

of

the

following

two

values:

v

SQL_COMMIT

v

SQL_ROLLBACK

Usage:

If

HandleType

is

SQL_HANDLE_ENV

and

Handle

is

a

valid

environment

handle,

then

DB2

CLI

will

attempt

to

commit

or

roll

back

transactions

one

at

a

time,

depending

on

the

value

of

CompletionType,

on

all

connections

that

are

in

a

connected

state

on

that

environment.

SQL_SUCCESS

will

only

be

returned

if

it

receives

SQL_SUCCESS

for

each

connection.

If

it

receives

SQL_ERROR

on

one

or

more

connections,

it

will

return

SQL_ERROR

to

the

application,

and

the

diagnostic

information

will

be

placed

in

the

diagnostic

data

structure

of

the

environment.

To

determine

which

connection(s)

failed

during

the

commit

or

rollback

operation,

the

application

can

call

SQLGetDiagRec()

for

each

connection.

SQLEndTran()

should

not

be

used

when

working

in

a

Distributed

Unit

of

Work

environment.

The

transaction

manager

APIs

should

be

used

instead.

If

CompletionType

is

SQL_COMMIT,

SQLEndTran()

issues

a

commit

request

for

all

active

operations

on

any

statement

associated

with

an

affected

connection.

If

SQLDriverConnect

96

CLI

Guide

and

Reference,

Volume

2

CompletionType

is

SQL_ROLLBACK,

SQLEndTran()

issues

a

rollback

request

for

all

active

operations

on

any

statement

associated

with

an

affected

connection.

If

no

transactions

are

active,

SQLEndTran()

returns

SQL_SUCCESS

with

no

effect

on

any

data

sources.

To

determine

how

transaction

operations

affect

cursors,

an

application

calls

SQLGetInfo()

with

the

SQL_CURSOR_ROLLBACK_BEHAVIOR

and

SQL_CURSOR_COMMIT_BEHAVIOR

options.

If

the

SQL_CURSOR_ROLLBACK_BEHAVIOR

or

SQL_CURSOR_COMMIT_BEHAVIOR

value

equals

SQL_CB_DELETE,

SQLEndTran()

closes

and

deletes

all

open

cursors

on

all

statements

associated

with

the

connection

and

discards

all

pending

results.

SQLEndTran()

leaves

any

statement

present

in

an

allocated

(unprepared)

state;

the

application

can

reuse

them

for

subsequent

SQL

requests

or

can

call

SQLFreeStmt()

or

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_STMT

to

deallocate

them.

If

the

SQL_CURSOR_ROLLBACK_BEHAVIOR

or

SQL_CURSOR_COMMIT_BEHAVIOR

value

equals

SQL_CB_CLOSE,

SQLEndTran()

closes

all

open

cursors

on

all

statements

associated

with

the

connection.

SQLEndTran()

leaves

any

statement

present

in

a

prepared

state;

the

application

can

call

SQLExecute()

for

a

statement

associated

with

the

connection

without

first

calling

SQLPrepare().

If

the

SQL_CURSOR_ROLLBACK_BEHAVIOR

or

SQL_CURSOR_COMMIT_BEHAVIOR

value

equals

SQL_CB_PRESERVE,

SQLEndTran()

does

not

affect

open

cursors

associated

with

the

connection.

Cursors

remain

at

the

row

they

pointed

to

prior

to

the

call

to

SQLEndTran().

When

autocommit

mode

is

off,

calling

SQLEndTran()

with

either

SQL_COMMIT

or

SQL_ROLLBACK

when

no

transaction

is

active

will

return

SQL_SUCCESS

(indicating

that

there

is

no

work

to

be

committed

or

rolled

back)

and

have

no

effect

on

the

data

source,

unless

errors

not

related

to

transactions

occur.

When

autocommit

mode

is

on,

calling

SQLEndTran()

with

a

CompletionType

of

either

SQL_COMMIT

or

SQL_ROLLBACK

always

returns

SQL_SUCCESS,

unless

errors

not

related

to

transactions

occur.

When

a

DB2

CLI

application

is

running

in

autocommit

mode,

the

DB2

CLI

driver

does

not

pass

the

SQLEndTran()

statement

to

the

server.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

44.

SQLEndTran

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08003

Connection

is

closed.

The

ConnectionHandle

was

not

in

a

connected

state.

SQLEndTran

Chapter

1.

DB2

CLI

functions

97

Table

44.

SQLEndTran

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

08007

Connection

failure

during

transaction.

The

connection

associated

with

the

ConnectionHandle

failed

during

the

execution

of

the

function

and

it

cannot

be

determined

whether

the

requested

COMMIT

or

ROLLBACK

occurred

before

the

failure.

40001

Transaction

rollback.

The

transaction

was

rolled

back

due

to

a

resource

deadlock

with

another

transaction.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

An

asynchronously

executing

function

was

called

for

a

StatementHandle

associated

with

the

ConnectionHandle

and

was

still

executing

when

SQLEndTran()

was

called.

SQLExecute()

or

SQLExecDirect()

was

called

for

a

StatementHandle

associated

with

the

ConnectionHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY012

Invalid

transaction

code.

The

value

specified

for

the

argument

CompletionType

was

neither

SQL_COMMIT

nor

SQL_ROLLBACK.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

HandleType

was

neither

SQL_HANDLE_ENV

nor

SQL_HANDLE_DBC.

Restrictions:

None.

Example:

/*

commit

all

active

transactions

on

the

connection

*/

cliRC

=

SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_COMMIT)

/*

...

*/

/*

rollback

all

active

transactions

on

the

connection

*/

cliRC

=

SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_ROLLBACK);

/*

...

*/

/*

rollback

all

active

transactions

on

all

connections

in

this

environment

*/

cliRC

=

SQLEndTran(SQL_HANDLE_ENV,

henv,

SQL_ROLLBACK);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Multisite

updates

(two

phase

commit)

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

SQLEndTran

98

CLI

Guide

and

Reference,

Volume

2

v

“Terminating

a

CLI

application”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

on

page

139

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

on

page

172

v

“SQLGetInfo

function

(CLI)

-

Get

general

information”

on

page

178

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“tbmod.c

--

How

to

modify

table

data”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

SQLError

function

(CLI)

-

Retrieve

error

information

Deprecated:

Note:

In

ODBC

3.0,

SQLError()

has

been

deprecated

and

replaced

with

SQLGetDiagRec()

and

SQLGetDiagField().

Although

this

version

of

DB2

CLI

continues

to

support

SQLError(),

we

recommend

that

you

use

SQLGetDiagRec()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLErrorW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Migrating

to

the

new

function

To

read

the

error

diagnostic

records

for

a

statement

handle,

the

SQLError()

function,

SQLError(henv,

hdbc,

hstmt,

*szSqlState,

*pfNativeError,

*szErrorMsg,

cbErrorMsgMax,

*pcbErrorMsg);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLGetDiagRec(SQL_HANDLE_HSTMT,

hstmt,

1,

szSqlState,

pfNativeError,

szErrorMsg,

cbErrorMsgMax,

pcbErrorMsg);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Diagnostics

in

CLI

applications

overview”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

on

page

167

SQLEndTran

Chapter

1.

DB2

CLI

functions

99

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

on

page

172

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLExecDirect()

directly

executes

the

specified

SQL

statement

using

the

current

values

of

the

parameter

marker

variables

if

any

parameters

exist

in

the

statement.

The

statement

can

only

be

executed

once.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLExecDirectW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLExecDirect

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*StatementText,

/*

szSqlStr

*/

SQLINTEGER

TextLength);

/*

cbSqlStr

*/

Function

arguments:

Table

45.

SQLExecDirect

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

There

must

not

be

an

open

cursor

associated

with

StatementHandle.

SQLCHAR

*

StatementText

input

SQL

statement

string.

SQLINTEGER

TextLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

StatementText

argument,

or

SQL_NTS

if

StatementText

is

null-terminated.

Usage:

If

the

SQL

statement

text

contains

vendor

escape

clause

sequences,

DB2

CLI

will

first

modify

the

SQL

statement

text

to

the

appropriate

DB2-specific

format

before

submitting

it

for

preparation

and

execution.

If

the

application

does

not

generate

SQL

statements

that

contain

vendor

escape

clause

sequences,

then

it

should

set

the

SQL_ATTR_NOSCAN

statement

attribute

to

SQL_NOSCAN_ON

at

the

connection

level

so

that

DB2

CLI

does

not

perform

a

scan

for

vendor

escape

clauses.

The

SQL

statement

can

be

COMMIT

or

ROLLBACK

if

it

is

called

using

SQLExecDirect().

Doing

so

yields

the

same

result

as

calling

SQLEndTran()

on

the

current

connection

handle.

The

SQL

statement

string

may

contain

parameter

markers,

however

all

parameters

must

be

bound

before

calling

SQLExecDirect().

SQLError

100

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

If

the

SQL

statement

is

a

query,

SQLExecDirect()

will

generate

a

cursor

name,

and

open

the

cursor.

If

the

application

has

used

SQLSetCursorName()

to

associate

a

cursor

name

with

the

statement

handle,

DB2

CLI

associates

the

application

generated

cursor

name

with

the

internally

generated

one.

If

a

result

set

is

generated,

SQLFetch()

or

SQLFetchScroll()

will

retrieve

the

next

row

(or

rows)

of

data

into

bound

variables,

LOB

locators,

or

LOB

file

references.

If

the

SQL

statement

is

a

positioned

DELETE

or

a

positioned

UPDATE,

the

cursor

referenced

by

the

statement

must

be

positioned

on

a

row

and

must

be

defined

on

a

separate

statement

handle

under

the

same

connection

handle.

There

must

not

already

be

an

open

cursor

on

the

statement

handle.

If

SQLSetStmtAttr()

has

been

called

with

the

SQL_ATTR_PARAMSET_SIZE

attribute

to

specify

that

an

array

of

input

parameter

values

has

been

bound

to

each

parameter

marker,

then

the

application

needs

to

call

SQLExecDirect()

only

once

to

process

the

entire

array

of

input

parameter

values.

If

the

executed

statement

returns

multiple

result

sets

(one

for

each

set

of

input

parameters),

then

SQLMoreResults()

should

be

used

to

advance

to

the

next

result

set

once

processing

on

the

current

result

set

is

complete.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NEED_DATA

v

SQL_NO_DATA_FOUND

SQL_NEED_DATA

is

returned

when

the

application

has

requested

to

input

data-at-execute

parameter

values

by

setting

the

*StrLen_or_IndPtr

value

specified

during

SQLBindParameter()

to

SQL_DATA_AT_EXEC

for

one

or

more

parameters.

SQL_NO_DATA_FOUND

is

returned

if

the

SQL

statement

is

a

Searched

UPDATE

or

Searched

DELETE

and

no

rows

satisfy

the

search

condition.

Diagnostics:

Table

46.

SQLExecDirect

SQLSTATEs

SQLSTATE

Description

Explanation

01504

The

UPDATE

or

DELETE

statement

does

not

include

a

WHERE

clause.

StatementText

contained

an

UPDATE

or

DELETE

statement

which

did

not

contain

a

WHERE

clause.

(Function

returns

SQL_SUCCESS_WITH_INFO

or

SQL_NO_DATA_FOUND

if

there

were

no

rows

in

the

table).

01508

Statement

disqualified

for

blocking.

The

statement

was

disqualified

for

blocking

for

reasons

other

than

storage.

07001

Wrong

number

of

parameters.

The

number

of

parameters

bound

to

application

variables

using

SQLBindParameter()

was

less

than

the

number

of

parameter

markers

in

the

SQL

statement

contained

in

the

argument

StatementText.

07006

Invalid

conversion.

Transfer

of

data

between

DB2

CLI

and

the

application

variables

would

result

in

an

incompatible

data

conversion.

SQLExecDirect

Chapter

1.

DB2

CLI

functions

101

Table

46.

SQLExecDirect

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

21S01

Insert

value

list

does

not

match

column

list.

StatementText

contained

an

INSERT

statement

and

the

number

of

values

to

be

inserted

did

not

match

the

degree

of

the

derived

table.

21S02

Degrees

of

derived

table

does

not

match

column

list.

StatementText

contained

a

CREATE

VIEW

statement

and

the

number

of

names

specified

is

not

the

same

degree

as

the

derived

table

defined

by

the

query

specification.

22001

String

data

right

truncation.

A

character

string

assigned

to

a

character

type

column

exceeded

the

maximum

length

of

the

column.

22003

Numeric

value

out

of

range.

A

numeric

value

assigned

to

a

numeric

type

column

caused

truncation

of

the

whole

part

of

the

number,

either

at

the

time

of

assignment

or

in

computing

an

intermediate

result.

StatementText

contained

an

SQL

statement

with

an

arithmetic

expression

which

caused

division

by

zero.

Note:

as

a

result

the

cursor

state

is

undefined

for

DB2

Universal

Database

(the

cursor

will

remain

open

for

other

RDBMSs).

22005

Error

in

assignment.

StatementText

contained

an

SQL

statement

with

a

parameter

or

literal

and

the

value

or

LOB

locator

was

incompatible

with

the

data

type

of

the

associated

table

column.

The

length

associated

with

a

parameter

value

(the

contents

of

the

pcbValue

buffer

specified

on

SQLBindParameter())

is

not

valid.

The

argument

fSQLType

used

in

SQLBindParameter()

or

SQLSetParam(),

denoted

an

SQL

graphic

data

type,

but

the

deferred

length

argument

(pcbValue)

contains

an

odd

length

value.

The

length

value

must

be

even

for

graphic

data

types.

22007

Invalid

datetime

format.

StatementText

contained

an

SQL

statement

with

an

invalid

datetime

format;

that

is,

an

invalid

string

representation

or

value

was

specified,

or

the

value

was

an

invalid

date,

time,

or

timestamp.

22008

Datetime

field

overflow.

Datetime

field

overflow

occurred;

for

example,

an

arithmetic

operation

on

a

date

or

timestamp

has

a

result

that

is

not

within

the

valid

range

of

dates,

or

a

datetime

value

cannot

be

assigned

to

a

bound

variable

because

it

is

too

small.

22012

Division

by

zero

is

invalid.

StatementText

contained

an

SQL

statement

with

an

arithmetic

expression

that

caused

division

by

zero.

23000

Integrity

constraint

violation.

The

execution

of

the

SQL

statement

is

not

permitted

because

the

execution

would

cause

integrity

constraint

violation

in

the

DBMS.

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

24504

The

cursor

identified

in

the

UPDATE,

DELETE,

SET,

or

GET

statement

is

not

positioned

on

a

row.

Results

were

pending

on

the

StatementHandle

from

a

previous

query

or

a

cursor

associated

with

the

hstmt

had

not

been

closed.

34000

Invalid

cursor

name.

StatementText

contained

a

Positioned

DELETE

or

a

Positioned

UPDATE

and

the

cursor

referenced

by

the

statement

being

executed

was

not

open.

37xxx

a

Invalid

SQL

syntax.

StatementText

contained

one

or

more

of

the

following:

v

an

SQL

statement

that

the

connected

database

server

could

not

prepare

v

a

statement

containing

a

syntax

error

SQLExecDirect

102

CLI

Guide

and

Reference,

Volume

2

Table

46.

SQLExecDirect

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

40001

Transaction

rollback.

The

transaction

to

which

this

SQL

statement

belonged

was

rolled

back

due

to

a

deadlock

or

timeout.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

42xxx

Syntax

Error

or

Access

Rule

Violation.

425xx

indicates

the

authorization

ID

does

not

have

permission

to

execute

the

SQL

statement

contained

in

StatementText.

Other

42xxx

SQLSTATES

indicate

a

variety

of

syntax

or

access

problems

with

the

statement.

428A1

Unable

to

access

a

file

referenced

by

a

host

file

variable.

This

can

be

raised

for

any

of

the

following

scenarios.

The

associated

reason

code

in

the

text

identifies

the

particular

error:

v

01

-

The

file

name

length

is

invalid

or

the

file

name

and/or

the

path

has

an

invalid

format.

v

02

-

The

file

option

is

invalid.

It

must

have

one

of

the

following

values:

SQL_FILE_READ

-read

from

an

existing

file

SQL_FILE_CREATE

-create

a

new

file

for

write

SQL_FILE_OVERWRITE

-overwrite

an

existing

file.

If

the

file

does

not

exist,

create

the

file.

SQL_FILE_APPEND

-append

to

an

existing

file.

If

the

file

does

not

exist,

create

the

file.

v

03

-

The

file

cannot

be

found.

v

04

-

The

SQL_FILE_CREATE

option

was

specified

for

a

file

with

the

same

name

as

an

existing

file.

v

05

-

Access

to

the

file

was

denied.

The

user

does

not

have

permission

to

open

the

file.

v

06

-

Access

to

the

file

was

denied.

The

file

is

in

use

with

incompatible

modes.

Files

to

be

written

to

are

opened

in

exclusive

mode.

v

07

-

Disk

full

was

encountered

while

writing

to

the

file.

v

08

-

Unexpected

end

of

file

encountered

while

reading

from

the

file.

v

09

-

A

media

error

was

encountered

while

accessing

the

file.

42895

The

value

of

a

host

variable

in

the

EXECUTE

or

OPEN

statement

cannot

be

used

because

of

its

data

type.

The

LOB

locator

type

specified

on

the

bind

parameter

function

call

does

not

match

the

LOB

data

type

of

the

parameter

marker.

The

argument

fSQLType

used

on

the

bind

parameter

function

specified

a

LOB

locator

type

but

the

corresponding

parameter

marker

is

not

a

LOB.

44000

Integrity

constraint

violation.

StatementText

contained

an

SQL

statement

which

contained

a

parameter

or

literal.

This

parameter

value

was

NULL

for

a

column

defined

as

NOT

NULL

in

the

associated

table

column,

or

a

duplicate

value

was

supplied

for

a

column

constrained

to

contain

only

unique

values,

or

some

other

integrity

constraint

was

violated.

56084

LOB

data

is

not

supported

in

DRDA.

LOB

columns

cannot

either

be

selected

or

updated

when

connecting

to

host

or

AS/400

servers

(using

DB2

Connect).

58004

Unexpected

system

failure.

Unrecoverable

system

error.

S0001

Database

object

already

exists.

StatementText

contained

a

CREATE

TABLE

or

CREATE

VIEW

statement

and

the

table

name

or

view

name

specified

already

existed.

SQLExecDirect

Chapter

1.

DB2

CLI

functions

103

Table

46.

SQLExecDirect

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

S0002

Database

object

does

not

exist.

StatementText

contained

an

SQL

statement

that

references

a

table

name

or

view

name

which

does

not

exist.

S0011

Index

already

exists.

StatementText

contained

a

CREATE

INDEX

statement

and

the

specified

index

name

already

existed.

S0012

Index

not

found.

StatementText

contained

a

DROP

INDEX

statement

and

the

specified

index

name

did

not

exist.

S0021

Column

already

exists.

StatementText

contained

an

ALTER

TABLE

statement

and

the

column

specified

in

the

ADD

clause

was

not

unique

or

identified

an

existing

column

in

the

base

table.

S0022

Column

not

found.

StatementText

contained

an

SQL

statement

that

references

a

column

name

which

does

not

exist.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY009

Invalid

argument

value.

StatementText

was

a

null

pointer.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

argument

TextLength

was

less

than

1

but

not

equal

to

SQL_NTS.

HY092

Option

type

out

of

range.

The

FileOptions

argument

of

a

previous

SQLBindFileToParam()

operation

was

not

valid.

HY503

Invalid

file

name

length.

The

fileNameLength

argument

value

from

SQLBindFileToParam()

was

less

than

0,

but

not

equal

to

SQL_NTS.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Note:

a

xxx

refers

to

any

SQLSTATE

with

that

class

code.

Example,

37xxx

refers

to

any

SQLSTATE

in

the

37

class.

Restrictions:

None.

Example:

/*

directly

execute

a

statement

-

end

the

COMPOUND

statement

*/

cliRC

=

SQLExecDirect(hstmt,

(SQLCHAR

*)"SELECT

*

FROM

ORG",

SQL_NTS);

Related

concepts:

v

“Vendor

escape

clauses

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Parameter

marker

binding

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLExecDirect

104

CLI

Guide

and

Reference,

Volume

2

Related

tasks:

v

“Binding

parameter

markers

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Updating

and

deleting

data

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

on

page

105

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

on

page

117

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbmcon.c

--

How

to

use

multiple

databases”

v

“dbuse.c

--

How

to

use

a

database”

v

“tbmod.c

--

How

to

modify

table

data”

SQLExecute

function

(CLI)

-

Execute

a

statement

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLExecute()

executes

a

statement

that

was

successfully

prepared

using

SQLPrepare()

on

the

same

statement

handle,

once

or

multiple

times.

The

statement

is

executed

using

the

current

values

of

any

application

variables

that

were

bound

to

parameter

markers

by

SQLBindParameter()

or

SQLBindFileToParam().

Syntax:

SQLRETURN

SQLExecute

(SQLHSTMT

StatementHandle);

/*

hstmt

*/

Function

arguments:

Table

47.

SQLExecute

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

There

must

not

be

an

open

cursor

associated

with

StatementHandle.

Usage:

The

SQL

statement

string

previously

prepared

on

StatementHandle

using

SQLPrepare()

may

contain

parameter

markers.

All

parameters

must

be

bound

before

calling

SQLExecute().

Once

the

application

has

processed

the

results

from

the

SQLExecute()

call,

it

can

execute

the

statement

again

with

new

(or

the

same)

parameter

values.

SQLExecDirect

Chapter

1.

DB2

CLI

functions

105

A

statement

executed

by

SQLExecDirect()

cannot

be

re-executed

by

calling

SQLExecute().

Only

statements

prepared

with

SQLPrepare()

can

be

executed

and

re-executed

with

SQLExecute().

If

the

prepared

SQL

statement

is

a

query,

SQLExecute()

will

generate

a

cursor

name,

and

open

the

cursor.

If

the

application

has

used

SQLSetCursorName()

to

associate

a

cursor

name

with

the

statement

handle,

DB2

CLI

associates

the

application

generated

cursor

name

with

the

internally

generated

one.

To

execute

a

SELECT

statement

more

than

once

on

a

given

statement

handle,

the

application

must

close

the

cursor

by

calling

SQLCloseCursor()

or

SQLFreeStmt()

with

the

SQL_CLOSE

option.

There

must

not

be

an

open

cursor

on

the

statement

handle

when

calling

SQLExecute().

If

a

result

set

is

generated,

SQLFetch()

or

SQLFetchScroll()

will

retrieve

the

next

row

(or

rows)

of

data

into

bound

variables,

LOB

locators

or

LOB

file

references.

If

the

SQL

statement

is

a

positioned

DELETE

or

a

positioned

UPDATE,

the

cursor

referenced

by

the

statement

must

be

positioned

on

a

row

at

the

time

SQLExecute()

is

called,

and

must

be

defined

on

a

separate

statement

handle

under

the

same

connection

handle.

If

SQLSetStmtAttr()

has

been

called

with

the

SQL_ATTR_PARAMSET_SIZE

attribute

to

specify

that

an

array

of

input

parameter

values

has

been

bound

to

each

parameter

marker,

the

application

needs

to

call

SQLExecute()

only

once

to

process

the

entire

array

of

input

parameter

values.

If

the

executed

statement

returns

multiple

result

sets

(one

for

each

set

of

input

parameters),

then

SQLMoreResults()

should

be

used

to

advance

to

the

next

result

set

once

processing

on

the

current

result

set

is

complete.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NEED_DATA

v

SQL_NO_DATA_FOUND

SQL_NEED_DATA

is

returned

when

the

application

has

requested

to

input

data-at-execute

parameter

values

by

setting

the

*StrLen_or_IndPtr

value

specified

during

SQLBindParameter()

to

SQL_DATA_AT_EXECUTE

for

one

or

more

parameters.

SQL_NO_DATA_FOUND

is

returned

if

the

SQL

statement

is

a

searched

UPDATE

or

searched

DELETE

and

no

rows

satisfy

the

search

condition.

Diagnostics:

The

SQLSTATEs

for

SQLExecute()

include

all

those

for

SQLExecDirect()

except

for

HY009,

HY090

and

with

the

addition

of

the

SQLSTATE

in

the

table

below.

Any

SQLSTATE

that

SQLPrepare()

could

return

can

also

be

returned

on

a

call

to

SQLExecute()

as

a

result

of

deferred

prepare

behavior.

SQLExecute

106

CLI

Guide

and

Reference,

Volume

2

Table

48.

SQLExecute

SQLSTATEs

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

specified

StatementHandle

was

not

in

a

prepared

state.

SQLExecute()

was

called

without

first

calling

SQLPrepare().

Authorization:

None.

Example:

SQLHANDLE

hstmt;

/*

statement

handle

*/

SQLCHAR

*stmt

=

(SQLCHAR

*)"DELETE

FROM

org

WHERE

deptnumb

=

?

";

SQLSMALLINT

parameter1

=

0;

/*

allocate

a

statement

handle

*/

cliRC

=

SQLAllocHandle(SQL_HANDLE_STMT,

hdbc,

&hstmt);

/*

...

*/

/*

prepare

the

statement

*/

cliRC

=

SQLPrepare(hstmt,

stmt,

SQL_NTS);

/*

...

*/

/*

bind

parameter1

to

the

statement

*/

cliRC

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_SHORT,

SQL_SMALLINT,

0,

0,

¶meter1,

0,

NULL);

/*

...

*/

parameter1

=

15;

/*

execute

the

statement

for

parameter1

=

15

*/

cliRC

=

SQLExecute(hstmt);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Binding

parameter

markers

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Updating

and

deleting

data

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindFileToParam

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

parameter”

on

page

20

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

on

page

100

SQLExecute

Chapter

1.

DB2

CLI

functions

107

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

on

page

240

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“spclient.c

--

Call

various

stored

procedures”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

SQLExtendedBind

function

(CLI)

-

Bind

an

array

of

columns

Purpose:

Specification:

DB2

CLI

6

SQLExtendedBind()

is

used

to

bind

an

array

of

columns

or

parameters

instead

of

using

repeated

calls

to

SQLBindCol()

or

SQLBindParameter().

Syntax:

SQLRETURN

SQLExtendedBind

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLSMALLINT

fBindCol,

SQLSMALLINT

cRecords,

SQLSMALLINT

*

pfCType,

SQLPOINTER

*

rgbValue,

SQLINTEGER

*

cbValueMax,

SQLUINTEGER

*

puiPrecisionCType,

SQLSMALLINT

*

psScaleCType,

SQLINTEGER

**

pcbValue,

SQLINTEGER

**

piIndicator,

SQLSMALLINT

*

pfParamType,

SQLSMALLINT

*

pfSQLType,

SQLUINTEGER

*

pcbColDef,

SQLSMALLINT

*

pibScale

)

;

Function

arguments:

Table

49.

SQLExtendedBind()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLSMALLINT

fBindCol

input

If

SQL_TRUE

then

the

result

is

similar

to

SQLBindCol(),

otherwise,

it

is

similar

to

SQLBindParameter().

SQLSMALLINT

cRecords

input

Number

of

columns

or

parameters

to

bind.

SQLSMALLINT

*

pfCType

input

Array

of

values

for

the

application

data

type.

SQLPOINTER

*

rgbValue

input

Array

of

pointers

to

application

data

area.

SQLINTEGER

*

cbValueMax

input

Array

of

maximum

sizes

for

rgbValue.

SQLUINTEGER

*

puiPrecisionCType

input

Array

of

decimal

precision

values.

Each

value

is

used

only

if

the

application

data

type

of

the

corresponding

record

is

SQL_C_DECIMAL_IBM.

SQLExecute

108

CLI

Guide

and

Reference,

Volume

2

Table

49.

SQLExtendedBind()

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

*

psScaleCType

input

Array

of

decimal

scale

values.

Each

value

is

used

only

if

the

application

data

type

of

the

corresponding

record

is

SQL_C_DECIMAL_IBM.

SQLINTEGER

**

pcbValue

input

Array

of

pointers

to

length

values.

SQLINTEGER

**

piIndicator

input

Array

of

pointers

to

indicator

values.

SQLSMALLINT

*

pfParamType

input

Array

of

parameter

types.

Only

used

if

fBindCol

is

FALSE.

Each

row

in

this

array

serves

the

same

purpose

as

the

SQLBindParameter()

argument

InputOutputType.

It

can

be

set

to:

v

SQL_PARAM_INPUT

v

SQL_PARAM_INPUT_OUTPUT

v

SQL_PARAM_OUTPUT

SQLSMALLINT

*

pfSQLType

input

Array

of

SQL

data

types.

Only

used

if

fBindCol

is

FALSE.

Each

row

in

this

array

serves

the

same

purpose

as

the

SQLBindParameter()

argument

ParameterType.

SQLUINTEGER

*

pcbColDef

input

Array

of

SQL

precision

values.

Only

used

if

fBindCol

is

FALSE.

Each

row

in

this

array

serves

the

same

purpose

as

the

SQLBindParameter()

argument

ColumnSize.

SQLSMALLINT

*

pibScale

input

Array

of

SQL

scale

values.

Only

used

if

fBindCol

is

FALSE.

Each

row

in

this

array

serves

the

same

purpose

as

the

SQLBindParameter()

argument

DecimalDigits.

Usage:

The

argument

fBindCol

determines

whether

this

function

call

is

used

to

associate

(bind):

v

parameter

markers

in

an

SQL

statement

(as

with

SQLBindParameter())

-

fBindCol

=

SQL_FALSE

v

columns

in

a

result

set

(as

with

SQLBindCol())

-

fBindCol

=

SQL_TRUE

This

function

can

be

used

to

replace

multiple

calls

to

SQLBindCol()

or

SQLBindParameter(),

however,

important

differences

should

be

noted.

Depending

on

how

the

fBindCol

parameter

has

been

set,

the

input

expected

by

SQLExtendedBind()

is

similar

to

either

SQLBindCol()

or

SQLBindParameter()

with

the

following

exceptions:

v

When

SQLExtendedBind()

is

set

to

SQLBindCol()

mode:

–

targetValuePtr

must

be

a

positive

integer

that

specifies

in

bytes,

the

maximum

length

of

the

data

that

will

be

in

the

returned

column.
v

When

SQLExtendedBind()

is

set

to

SQLBindParameter()

mode:

–

ColumnSize

must

be

a

positive

integer

that

specifies

the

maximum

length

of

the

target

column

in

bytes,

where

applicable.

–

DecimalDigits

must

be

set

to

the

correct

scale

for

the

target

column,

where

applicable.

–

ValueType

of

SQL_C_DEFAULT

should

not

be

used.

SQLExtendedBind

Chapter

1.

DB2

CLI

functions

109

|
|
|
|
|

|

|
|

|

|
|

|
|

|

–

If

ValueType

is

a

locator

type,

the

corresponding

ParameterType

should

be

a

matching

locator

type.

–

All

ValueType

to

ParameterType

mappings

should

be

as

closely

matched

as

possible

to

minimize

the

conversion

that

DB2

CLI

must

perform.

Each

array

reference

passed

to

SQLExtendedBind()

must

contain

at

least

the

number

of

elements

indicated

by

cRecords.

If

the

calling

application

fails

to

pass

in

sufficiently

large

arrays,

DB2

CLI

may

attempt

to

read

beyond

the

end

of

the

arrays

resulting

in

corrupt

data

or

critical

application

failure.

Each

array

passed

to

SQLExtendedBind()

is

considered

to

be

a

deferred

argument,

which

means

the

values

in

the

array

are

examined

and

retrieved

at

the

time

of

execution.

As

a

result,

ensure

that

each

array

is

in

a

valid

state

and

contains

valid

data

when

DB2

CLI

executes

using

the

values

in

the

array.

Following

a

successful

execution,

if

a

statement

needs

to

be

executed

again,

you

do

not

need

to

call

SQLExtendedBind()

a

second

time

if

the

handles

passed

to

the

original

call

to

SQLExtendedBind()

still

refer

to

valid

arrays.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

50.

SQLExtendedBind()

SQLSTATEs

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

The

conversion

from

the

data

value

identified

by

a

row

in

the

pfCType

argument

to

the

data

type

identified

by

the

pfParamType

argument

is

not

a

meaningful

conversion.

(For

example,

conversion

from

SQL_C_DATE

to

SQL_DOUBLE.)

07009

Invalid

descriptor

index

The

value

specified

for

the

argument

cRecords

exceeded

the

maximum

number

of

columns

in

the

result

set.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY003

Program

type

out

of

range.

A

row

in

pfParamType

or

pfSQLType

was

not

a

valid

data

type

or

SQL_C_DEFAULT.

HY004

SQL

data

type

out

of

range.

The

value

specified

for

the

argument

pfParamType

is

not

a

valid

SQL

data

type.

HY009

Invalid

argument

value.

The

argument

rgbValue

was

a

null

pointer

and

the

argument

cbValueMax

was

a

null

pointer,

and

pfParamType

is

not

SQL_PARAM_OUTPUT.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

SQLExtendedBind

110

CLI

Guide

and

Reference,

Volume

2

|
|

|
|

|
|
|
|
|
|
|

Table

50.

SQLExtendedBind()

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY021

Inconsistent

descriptor

information

The

descriptor

information

checked

during

a

consistency

check

was

not

consistent.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

cbValueMax

is

less

than

1

and

the

argument

the

corresponding

row

in

pfParamType

or

pfSQLType

is

either

SQL_C_CHAR,

SQL_C_BINARY

or

SQL_C_DEFAULT.

HY093

Invalid

parameter

number.

The

value

specified

for

a

row

in

the

argument

pfCType

was

less

than

1

or

greater

than

the

maximum

number

of

parameters

supported

by

the

server.

HY094

Invalid

scale

value.

The

value

specified

for

pfParamType

was

either

SQL_DECIMAL

or

SQL_NUMERIC

and

the

value

specified

for

DecimalDigits

was

less

than

0

or

greater

than

the

value

for

the

argument

pcbColDef

(precision).

The

value

specified

for

pfParamType

was

SQL_C_TIMESTAMP

and

the

value

for

pfParamType

was

either

SQL_CHAR

or

SQL_VARCHAR

and

the

value

for

DecimalDigits

was

less

than

0

or

greater

than

6.

HY104

Invalid

precision

value.

The

value

specified

for

pfParamType

was

either

SQL_DECIMAL

or

SQL_NUMERIC

and

the

value

specified

by

pcbColDef

was

less

than

1.

HY105

Invalid

parameter

type.

pfParamType

is

not

one

of

SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT,

or

SQL_PARAM_INPUT_OUTPUT.

HYC00

Driver

not

capable.

DB2

CLI

recognizes,

but

does

not

support

the

data

type

specified

in

the

row

in

pfParamType

or

pfSQLType.

A

LOB

locator

C

data

type

was

specified,

but

the

connected

server

does

not

support

LOB

data

types.

Restrictions:

None.

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLExtendedBind

Chapter

1.

DB2

CLI

functions

111

SQLExtendedFetch

function

(CLI)

-

Extended

fetch

(fetch

array

of

rows)

Deprecated:

Note:

In

ODBC

3.0,

SQLExtendedFetch()

has

been

deprecated

and

replaced

with

SQLFetchScroll().

Although

this

version

of

DB2

CLI

continues

to

support

SQLExtendedFetch(),

we

recommend

that

you

use

SQLFetchScroll()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLExtendedFetch(hstmt,

SQL_FETCH_ABSOLUTE,

5,

&rowCount,

&rowStatus);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLFetchScroll(hstmt,

SQL_FETCH_ABSOLUTE,

5);

Note:

The

information

returned

in

the

rowCount

and

rowStatus

parameters

of

SQLExtendedFetch()

are

handled

by

SQLFetchScroll()

as

follows:

v

rowCount:

SQLFetchScroll()

returns

the

number

of

rows

fetched

in

the

buffer

pointed

to

by

the

SQL_ATTR_ROWS_FETCHED_PTR

statement

attribute.

v

rowStatus:

SQLFetchScroll()

returns

the

array

of

statuses

for

each

row

in

the

buffer

pointed

to

by

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute.

Related

reference:

v

“CLI

and

ODBC

function

summary”

on

page

1

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

v

“Statement

attributes

(CLI)

list”

on

page

334

SQLExtendedPrepare

function

(CLI)

-

Prepare

a

statement

and

set

statement

attributes

Purpose:

Specification:

DB2

CLI

6.0

SQLExtendedPrepare()

is

used

to

prepare

a

statement

and

set

a

group

of

statement

attributes,

all

in

one

call.

This

function

can

be

used

in

place

of

a

call

to

SQLPrepare()

followed

by

a

number

of

calls

to

SQLSetStmtAttr().

SQLExtendedFetch

112

CLI

Guide

and

Reference,

Volume

2

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLExtendedPrepareW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLExtendedPrepare(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*StatementText,

/*

pszSqlStmt

*/

SQLINTEGER

TextLength,

/*

cbSqlStmt

*/

SQLINTEGER

cPars,

SQLSMALLINT

sStmtType,

SQLINTEGER

cStmtAttrs,

SQLINTEGER

*piStmtAttr,

SQLINTEGER

*pvParams

);

Function

arguments:

Table

51.

SQLExtendedPrepare()

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLCHAR

*

StatementText

Input

SQL

statement

string.

SQLINTEGER

TextLength

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

StatementText

argument,

or

SQL_NTS

if

StatementText

is

null-terminated.

SQLINTEGER

cPars

Input

Number

of

parameter

markers

in

statement.

SQLSMALLINT

cStmtType

Input

Statement

type.

For

possible

values

see

“List

of

cStmtType

Values”

on

page

114.

SQLINTEGER

cStmtAttrs

Input

Number

of

statement

attributes

specified

on

this

call.

SQLINTEGER

*

piStmtAttr

Input

Array

of

statement

attributes

to

set.

SQLINTEGER

*

pvParams

Input

Array

of

corresponding

statement

attributes

values

to

set.

Usage:

The

first

three

arguments

of

this

function

are

exactly

the

same

as

the

arguments

in

SQLPrepare().

There

are

two

requirements

when

using

SQLExtendedPrepare():

1.

The

SQL

statements

will

not

be

scanned

for

ODBC/vendor

escape

clauses.

It

behaves

as

if

the

SQL_ATTR_NOSCAN

statement

attribute

is

set

to

SQL_NOSCAN.

If

the

SQL

statement

contains

ODBC/vendor

escape

clauses

then

SQLExtendedPrepare()

cannot

be

used.

2.

You

must

indicate

in

advance

(through

cPars)

the

number

of

parameter

markers

that

are

included

in

the

SQL

statement.

The

cPars

argument

indicates

the

number

of

parameter

markers

in

StatementText.

The

argument

cStmtType

is

used

to

indicate

the

type

of

statement

that

is

being

prepared.

See

“List

of

cStmtType

Values”

on

page

114

for

the

list

of

possible

values.

SQLExtendedPrepare

Chapter

1.

DB2

CLI

functions

113

|
|
|
|

The

final

three

arguments

are

used

to

indicate

a

set

of

statement

attributes

to

use.

Set

cStmtAttrs

to

the

number

of

statement

attributes

specified

on

this

call.

Create

two

arrays,

one

to

hold

the

list

of

statement

attributes,

one

to

hold

the

value

for

each.

Use

these

arrays

for

piStmtAttr

and

pvParams.

List

of

cStmtType

Values

The

argument

cStmtType

can

be

set

to

one

of

the

following

values:

v

SQL_CLI_STMT_UNDEFINED

v

SQL_CLI_STMT_ALTER_TABLE

v

SQL_CLI_STMT_CREATE_INDEX

v

SQL_CLI_STMT_CREATE_TABLE

v

SQL_CLI_STMT_CREATE_VIEW

v

SQL_CLI_STMT_DELETE_SEARCHED

v

SQL_CLI_STMT_DELETE_POSITIONED

v

SQL_CLI_STMT_GRANT

v

SQL_CLI_STMT_INSERT

v

SQL_CLI_STMT_REVOKE

v

SQL_CLI_STMT_SELECT

v

SQL_CLI_STMT_UPDATE_SEARCHED

v

SQL_CLI_STMT_UPDATE_POSITIONED

v

SQL_CLI_STMT_CALL

v

SQL_CLI_STMT_SELECT_FOR_UPDATE

v

SQL_CLI_STMT_WITH

v

SQL_CLI_STMT_SELECT_FOR_FETCH

v

SQL_CLI_STMT_VALUES

v

SQL_CLI_STMT_CREATE_TRIGGER

v

SQL_CLI_STMT_SELECT_OPTIMIZE_FOR_NROWS

v

SQL_CLI_STMT_SELECT_INTO

v

SQL_CLI_STMT_CREATE_PROCEDURE

v

SQL_CLI_STMT_CREATE_FUNCTION

v

SQL_CLI_STMT_SET_CURRENT_QUERY_OPT

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

52.

SQLExtendedPrepare

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01504

The

UPDATE

or

DELETE

statement

does

not

include

a

WHERE

clause.

StatementText

contained

an

UPDATE

or

DELETE

statement

which

did

not

contain

a

WHERE

clause.

01508

Statement

disqualified

for

blocking.

The

statement

was

disqualified

for

blocking

for

reasons

other

than

storage.

01S02

Option

value

changed.

DB2

CLI

did

not

support

a

value

specified

in

*pvParams,

or

a

value

specified

in

*pvParams

was

invalid

because

of

SQL

constraints

or

requirements,

so

DB2

CLI

substituted

a

similar

value.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

SQLExtendedPrepare

114

CLI

Guide

and

Reference,

Volume

2

Table

52.

SQLExtendedPrepare

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

connected

failed

before

the

function

completed

processing.

21S01

Insert

value

list

does

not

match

column

list.

StatementText

contained

an

INSERT

statement

and

the

number

of

values

to

be

inserted

did

not

match

the

degree

of

the

derived

table.

21S02

Degrees

of

derived

table

does

not

match

column

list.

StatementText

contained

a

CREATE

VIEW

statement

and

the

number

of

names

specified

is

not

the

same

degree

as

the

derived

table

defined

by

the

query

specification.

22018

Invalid

character

value

for

cast

specification.

*StatementText

contained

an

SQL

statement

that

contained

a

literal

or

parameter

and

the

value

was

incompatible

with

the

data

type

of

the

associated

table

column.

22019

Invalid

escape

character

The

argument

StatementText

contained

a

LIKE

predicate

with

an

ESCAPE

in

the

WHERE

clause,

and

the

length

of

the

escape

character

following

ESCAPE

was

not

equal

to

1.

22025

Invalid

escape

sequence

The

argument

StatementText

contained

“LIKE

pattern

value

ESCAPE

escape

character”

in

the

WHERE

clause,

and

the

character

following

the

escape

character

in

the

pattern

value

was

not

one

of

“%”

or

“_”.

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

34000

Invalid

cursor

name.

StatementText

contained

a

positioned

DELETE

or

a

positioned

UPDATE

and

the

cursor

referenced

by

the

statement

being

executed

was

not

open.

37xxx

a

Invalid

SQL

syntax.

StatementText

contained

one

or

more

of

the

following:

v

an

SQL

statement

that

the

connected

database

server

could

not

prepare

v

a

statement

containing

a

syntax

error

40001

Transaction

rollback.

The

transaction

to

which

this

SQL

statement

belonged

was

rolled

back

due

to

deadlock

or

timeout.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

42xxx

a

Syntax

Error

or

Access

Rule

Violation.

425xx

indicates

the

authorization

ID

does

not

have

permission

to

execute

the

SQL

statement

contained

in

StatementText.

Other

42xxx

SQLSTATES

indicate

a

variety

of

syntax

or

access

problems

with

the

statement.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

S0001

Database

object

already

exists.

StatementText

contained

a

CREATE

TABLE

or

CREATE

VIEW

statement

and

the

table

name

or

view

name

specified

already

existed.

S0002

Database

object

does

not

exist.

StatementText

contained

an

SQL

statement

that

references

a

table

name

or

a

view

name

which

did

not

exist.

S0011

Index

already

exists.

StatementText

contained

a

CREATE

INDEX

statement

and

the

specified

index

name

already

existed.

S0012

Index

not

found.

StatementText

contained

a

DROP

INDEX

statement

and

the

specified

index

name

did

not

exist.

S0021

Column

already

exists.

StatementText

contained

an

ALTER

TABLE

statement

and

the

column

specified

in

the

ADD

clause

was

not

unique

or

identified

an

existing

column

in

the

base

table.

SQLExtendedPrepare

Chapter

1.

DB2

CLI

functions

115

Table

52.

SQLExtendedPrepare

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

S0022

Column

not

found.

StatementText

contained

an

SQL

statement

that

references

a

column

name

which

did

not

exist.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY009

Invalid

argument

value.

StatementText

was

a

null

pointer.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY011

Operation

invalid

at

this

time.

The

Attribute

was

SQL_ATTR_CONCURRENCY,

SQL_

ATTR_CURSOR_TYPE,

SQL_ATTR_SIMULATE_CURSOR,

or

SQL_ATTR_USE_BOOKMARKS

and

the

statement

was

prepared.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY017

Invalid

use

of

an

automatically

allocated

descriptor

handle.

The

Attribute

argument

was

SQL_ATTR_IMP_ROW_DESC

or

SQL_ATTR_IMP_PARAM_DESC.

The

Attribute

argument

was

SQL_ATTR_APP_ROW_DESC

or

SQL_ATTR_APP_PARAM_DESC,

and

the

value

in

*ValuePtr

was

an

implicitly

allocated

descriptor

handle.

HY024

Invalid

attribute

value.

Given

the

specified

Attribute

value,

an

invalid

value

was

specified

in

*ValuePtr.

(DB2

CLI

returns

this

SQLSTATE

only

for

connection

and

statement

attributes

that

accept

a

discrete

set

of

values,

such

as

SQL_ATTR_ACCESS_MODE.

For

all

other

connection

and

statement

attributes,

the

driver

must

verify

the

value

specified

in

*ValuePtr.)

HY090

Invalid

string

or

buffer

length.

The

argument

TextLength

was

less

than

1,

but

not

equal

to

SQL_NTS.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

was

not

valid

for

this

version

of

DB2

CLI.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

Attribute

was

a

valid

connection

or

statement

attribute

for

the

version

of

the

DB2

CLI

driver,

but

was

not

supported

by

the

data

source.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

SQLExtendedPrepare

116

CLI

Guide

and

Reference,

Volume

2

Table

52.

SQLExtendedPrepare

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

Note:

a

xxx

refers

to

any

SQLSTATE

with

that

class

code.

Example,

37xxx

refers

to

any

SQLSTATE

in

the

37

class.

Note:

Not

all

DBMSs

report

all

of

the

above

diagnostic

messages

at

prepare

time.

If

deferred

prepare

is

left

on

as

the

default

behavior

(controlled

by

the

SQL_ATTR_DEFERRED_PREPARE

statement

attribute),

then

these

errors

could

occur

when

the

PREPARE

is

flowed

to

the

server.

The

application

must

be

able

to

handle

these

conditions

when

calling

functions

that

cause

this

flow.

These

functions

include

SQLExecute(),

SQLDescribeParam(),

SQLNumResultCols(),

SQLDescribeCol(),

and

SQLColAttribute().

Restrictions:

None.

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

on

page

240

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

v

“Statement

attributes

(CLI)

list”

on

page

334

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLFetch

function

(CLI)

-

Fetch

next

row

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLFetch()

advances

the

cursor

to

the

next

row

of

the

result

set,

and

retrieves

any

bound

columns.

Columns

may

be

bound

to:

v

application

storage

v

LOB

locators

v

LOB

file

references

When

SQLFetch()

is

called,

the

appropriate

data

transfer

is

performed,

along

with

any

data

conversion

if

conversion

was

indicated

when

the

column

was

bound.

The

columns

can

also

be

received

individually

after

the

fetch,

by

calling

SQLGetData().

SQLFetch()

can

only

be

called

after

a

result

set

has

been

generated

(using

the

same

statement

handle)

by

either

executing

a

query,

calling

SQLGetTypeInfo()

or

calling

a

catalog

function.

Syntax:

SQLRETURN

SQLFetch

(SQLHSTMT

StatementHandle);

/*

hstmt

*/

SQLExtendedPrepare

Chapter

1.

DB2

CLI

functions

117

Function

arguments:

Table

53.

SQLFetch

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

Usage:

SQLFetch()

can

only

be

called

after

a

result

set

has

been

generated

on

the

same

statement

handle.

Before

SQLFetch()

is

called

the

first

time,

the

cursor

is

positioned

before

the

start

of

the

result

set.

The

number

of

application

variables

bound

with

SQLBindCol()

must

not

exceed

the

number

of

columns

in

the

result

set

or

SQLFetch()

will

fail.

If

SQLBindCol()

has

not

been

called

to

bind

any

columns,

then

SQLFetch()

does

not

return

data

to

the

application,

but

just

advances

the

cursor.

In

this

case

SQLGetData()

could

be

called

to

obtain

all

of

the

columns

individually.

If

the

cursor

is

a

multirow

cursor

(that

is,

the

SQL_ATTR_ROW_ARRAY_SIZE

is

greater

than

1),

SQLGetData()

can

be

called

only

if

SQL_GD_BLOCK

is

returned

when

SQLGetInfo()

is

called

with

an

InfoType

of

SQL_GETDATA_EXTENSIONS.

(Not

all

DB2

data

sources

support

SQL_GD_BLOCK.)

Data

in

unbound

columns

is

discarded

when

SQLFetch()

advances

the

cursor

to

the

next

row.

For

fixed

length

data

types,

or

small

variable

length

data

types,

binding

columns

provides

better

performance

than

using

SQLGetData().

If

LOB

values

are

too

large

to

be

retrieved

in

one

fetch,

they

can

be

retrieved

in

pieces

by

either

using

SQLGetData()

(which

can

be

used

for

any

column

type),

or

by

binding

a

LOB

locator,

and

using

SQLGetSubString().

If

any

bound

storage

buffer

is

not

large

enough

to

hold

the

data

returned

by

SQLFetch(),

the

data

will

be

truncated.

If

character

data

is

truncated,

SQL_SUCCESS_WITH_INFO

is

returned,

and

an

SQLSTATE

is

generated

indicating

truncation.

The

SQLBindCol()

deferred

output

argument

pcbValue

will

contain

the

actual

length

of

the

column

data

retrieved

from

the

server.

The

application

should

compare

the

actual

output

length

to

the

input

buffer

length

(pcbValue

and

cbValueMax

arguments

from

SQLBindCol())

to

determine

which

character

columns

have

been

truncated.

Truncation

of

numeric

data

types

is

reported

as

a

warning

if

the

truncation

involves

digits

to

the

right

of

the

decimal

point.

If

truncation

occurs

to

the

left

of

the

decimal

point,

an

error

is

returned

(refer

to

the

diagnostics

section).

Truncation

of

graphic

data

types

is

treated

the

same

as

character

data

types,

except

that

the

rgbValue

buffer

is

filled

to

the

nearest

multiple

of

two

bytes

that

is

still

less

than

or

equal

to

the

cbValueMax

specified

in

SQLBindCol().

Graphic

(DBCS)

data

transferred

between

DB2

CLI

and

the

application

is

not

null-terminated

if

the

C

buffer

type

is

SQL_C_CHAR

(unless

the

CLI/ODBC

configuration

keyword

PATCH1

includes

the

value

64).

If

the

buffer

type

is

SQL_C_DBCHAR,

then

null-termination

of

graphic

data

does

occur.

Truncation

is

also

affected

by

the

SQL_ATTR_MAX_LENGTH

statement

attribute.

The

application

can

specify

that

DB2

CLI

should

not

report

truncation

by

calling

SQLSetStmtAttr()

with

SQL_ATTR_MAX_LENGTH

and

a

value

for

the

maximum

length

to

return

for

any

one

column,

and

by

allocating

a

rgbValue

buffer

of

the

SQLFetch

118

CLI

Guide

and

Reference,

Volume

2

same

size

(plus

the

null-terminator).

If

the

column

data

is

larger

than

the

set

maximum

length,

SQL_SUCCESS

will

be

returned

and

the

maximum

length,

not

the

actual

length

will

be

returned

in

pcbValue.

When

all

the

rows

have

been

retrieved

from

the

result

set,

or

the

remaining

rows

are

not

needed,

SQLCloseCursor()

or

SQLFreeStmt()

with

an

option

of

SQL_CLOSE

or

SQL_DROP

should

be

called

to

close

the

cursor

and

discard

the

remaining

data

and

associated

resources.

An

application

cannot

mix

SQLFetch()

with

SQLExtendedFetch()

calls

on

the

same

statement

handle.

It

can,

however,

mix

SQLFetch()

with

SQLFetchScroll()

calls

on

the

same

statement

handle.

Note

that

SQLExtendedFetch()

has

been

deprecated

and

replaced

with

SQLFetchScroll().

Positioning

the

cursor

When

the

result

set

is

created,

the

cursor

is

positioned

before

the

start

of

the

result

set.

SQLFetch()

fetches

the

next

rowset.

It

is

equivalent

to

calling

SQLFetchScroll()

with

FetchOrientation

set

to

SQL_FETCH_NEXT.

The

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

specifies

the

number

of

rows

in

the

rowset.

If

the

rowset

being

fetched

by

SQLFetch()

overlaps

the

end

of

the

result

set,

SQLFetch()

returns

a

partial

rowset.

That

is,

if

S

+

R-1

is

greater

than

L,

where

S

is

the

starting

row

of

the

rowset

being

fetched,

R

is

the

rowset

size,

and

L

is

the

last

row

in

the

result

set,

then

only

the

first

L-S+1

rows

of

the

rowset

are

valid.

The

remaining

rows

are

empty

and

have

a

status

of

SQL_ROW_NOROW.

Refer

to

the

cursor

positioning

rules

of

SQL_FETCH_NEXT

for

SQLFetchScroll()

for

more

information.

After

SQLFetch()

returns,

the

current

row

is

the

first

row

of

the

rowset.

Row

status

array

SQLFetch()

sets

values

in

the

row

status

array

in

the

same

manner

as

SQLFetchScroll()

and

SQLBulkOperations().

The

row

status

array

is

used

to

return

the

status

of

each

row

in

the

rowset.

The

address

of

this

array

is

specified

with

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute.

Rows

fetched

buffer

SQLFetch()

returns

the

number

of

rows

fetched

in

the

rows

fetched

buffer

including

those

rows

for

which

no

data

was

returned.

The

address

of

this

buffer

is

specified

with

the

SQL_ATTR_ROWSFETCHED_PTR

statement

attribute.

The

buffer

is

set

by

SQLFetch()

and

SQLFetchScroll().

Error

handling

Errors

and

warnings

can

apply

to

individual

rows

or

to

the

entire

function.

They

can

be

retrieved

using

the

SQLGetDiagField()

function.

Errors

and

Warnings

on

the

Entire

Function

If

an

error

applies

to

the

entire

function,

such

as

SQLSTATE

HYT00

(Timeout

expired)

or

SQLSTATE

24000

(Invalid

cursor

state),

SQLFetch()

returns

SQLFetch

Chapter

1.

DB2

CLI

functions

119

SQL_ERROR

and

the

applicable

SQLSTATE.

The

contents

of

the

rowset

buffers

are

undefined

and

the

cursor

position

is

unchanged.

If

a

warning

applies

to

the

entire

function,

SQLFetch()

returns

SQL_SUCCESS_WITH_INFO

and

the

applicable

SQLSTATE.

The

status

records

for

warnings

that

apply

to

the

entire

function

are

returned

before

the

status

records

that

apply

to

individual

rows.

Errors

and

warnings

in

individual

rows

If

an

error

(such

as

SQLSTATE

22012

(Division

by

zero))

or

a

warning

(such

as

SQLSTATE

01004

(Data

truncated))

applies

to

a

single

row,

SQLFetch()

returns

SQL_SUCCESS_WITH_INFO,

unless

an

error

occurs

in

every

row,

in

which

case

SQL_ERROR

is

returned.

SQLFetch()

also:

v

Sets

the

corresponding

element

of

the

row

status

array

to

SQL_ROW_ERROR

for

errors

or

SQL_ROW_SUCCESS_WITH_INFO

for

warnings.

v

Adds

zero

or

more

status

records

containing

SQLSTATEs

for

the

error

or

warning.

v

Sets

the

row

and

column

number

fields

in

the

status

records.

If

SQLFetch()

cannot

determine

a

row

or

column

number,

it

sets

that

number

to

SQL_ROW_NUMBER_UNKNOWN

or

SQL_COLUMN_NUMBER_UNKNOWN

respectively.

If

the

status

record

does

not

apply

to

a

particular

column,

SQLFetch()

sets

the

column

number

to

SQL_NO_COLUMN_NUMBER.

SQLFetch()

returns

the

status

records

in

row

number

order.

That

is,

it

returns

all

status

records

for

unknown

rows

(if

any),

then

all

status

records

for

the

first

row

(if

any),

then

all

status

records

for

the

second

row

(if

any),

and

so

on.

The

status

records

for

each

individual

row

are

ordered

according

to

the

normal

rules

for

ordering

status

records,

described

in

SQLGetDiagField().

Descriptors

and

SQLFetch

The

following

sections

describe

how

SQLFetch()

interacts

with

descriptors.

Argument

mappings

The

driver

does

not

set

any

descriptor

fields

based

on

the

arguments

of

SQLFetch().

Other

descriptor

fields

The

following

descriptor

fields

are

used

by

SQLFetch():

Table

54.

Descriptor

fields

Descriptor

field

Desc.

Location

Set

through

SQL_DESC_ARRAY_SIZE

ARD

header

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

SQL_DESC_ARRAY_STATUS_PTR

IRD

header

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

SQL_DESC_BIND_OFFSET_PTR

ARD

header

SQL_ATTR_ROW_BIND_OFFSET_PTR

statement

attribute

SQL_DESC_BIND_TYPE

ARD

header

SQL_ATTR_ROW_BIND_TYPE

statement

attribute

SQL_DESC_COUNT

ARD

header

ColumnNumber

argument

of

SQLBindCol()

SQLFetch

120

CLI

Guide

and

Reference,

Volume

2

Table

54.

Descriptor

fields

(continued)

Descriptor

field

Desc.

Location

Set

through

SQL_DESC_DATA_PTR

ARD

records

TargetValuePtr

argument

of

SQLBindCol()

SQL_DESC_INDICATOR_PTR

ARD

records

StrLen_or_IndPtr

argument

in

SQLBindCol()

SQL_DESC_OCTET_LENGTH

ARD

records

BufferLength

argument

in

SQLBindCol()

SQL_DESC_OCTET_LENGTH_PTR

ARD

records

StrLen_or_IndPtr

argument

in

SQLBindCol()

SQL_DESC_ROWS_PROCESSED_PTR

IRD

header

SQL_ATTR_ROWS_FETCHED_PTR

statement

attribute

SQL_DESC_TYPE

ARD

records

TargetType

argument

in

SQLBindCol()

All

descriptor

fields

can

also

be

set

through

SQLSetDescField().

Separate

length

and

indicator

buffers

Applications

can

bind

a

single

buffer

or

two

separate

buffers

to

be

used

to

hold

length

and

indicator

values.

When

an

application

calls

SQLBindCol(),

SQL_DESC_OCTET_LENGTH_PTR

and

SQL_DESC_INDICATOR_PTR

fields

of

the

ARD

are

set

to

the

same

address,

which

is

passed

in

the

StrLen_or_IndPtr

argument.

When

an

application

calls

SQLSetDescField()

or

SQLSetDescRec(),

it

can

set

these

two

fields

to

different

addresses.

SQLFetch()

determines

whether

the

application

has

specified

separate

length

and

indicator

buffers.

In

this

case,

when

the

data

is

not

NULL,

SQLFetch()

sets

the

indicator

buffer

to

0

and

returns

the

length

in

the

length

buffer.

When

the

data

is

NULL,

SQLFetch()

sets

the

indicator

buffer

to

SQL_NULL_DATA

and

does

not

modify

the

length

buffer.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND

is

returned

if

there

are

no

rows

in

the

result

set,

or

previous

SQLFetch()

calls

have

fetched

all

the

rows

from

the

result

set.

If

all

the

rows

have

been

fetched,

the

cursor

is

positioned

after

the

end

of

the

result

set.

Diagnostics:

Table

55.

SQLFetch

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

data

returned

for

one

or

more

columns

was

truncated.

String

values

or

numeric

values

are

right

truncated.

(SQL_SUCCESS_WITH_INFO

is

returned

if

no

error

occurred.)

07002

Too

many

columns.

A

column

number

specified

in

the

binding

for

one

or

more

columns

was

greater

than

the

number

of

columns

in

the

result

set.

07006

Invalid

conversion.

The

data

value

could

not

be

converted

in

a

meaningful

manner

to

the

data

type

specified

by

fCType

in

SQLBindCol()

SQLFetch

Chapter

1.

DB2

CLI

functions

121

Table

55.

SQLFetch

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

07009

Invalid

descriptor

index

Column

0

was

bound

but

bookmarks

are

not

being

used

(the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

set

to

SQL_UB_OFF).

22002

Invalid

output

or

indicator

buffer

specified.

The

pointer

value

specified

for

the

argument

pcbValue

in

SQLBindCol()

was

a

null

pointer

and

the

value

of

the

corresponding

column

is

null.

There

is

no

means

to

report

SQL_NULL_DATA.

The

pointer

specified

for

the

argument

IndicatorValue

in

SQLBindFileToCol()

was

a

null

pointer

and

the

value

of

the

corresponding

LOB

column

is

NULL.

There

is

no

means

to

report

SQL_NULL_DATA.

22003

Numeric

value

out

of

range.

Returning

the

numeric

value

(as

numeric

or

string)

for

one

or

more

columns

would

have

caused

the

whole

part

of

the

number

to

be

truncated

either

at

the

time

of

assignment

or

in

computing

an

intermediate

result.

A

value

from

an

arithmetic

expression

was

returned

which

resulted

in

division

by

zero.

Note:

The

associated

cursor

is

undefined

if

this

error

is

detected

by

DB2

Universal

Database.

If

the

error

was

detected

by

DB2

CLI

or

by

other

IBM

RDBMSs,

the

cursor

will

remain

open

and

continue

to

advance

on

subsequent

fetch

calls.

22005

Error

in

assignment.

A

returned

value

was

incompatible

with

the

data

type

of

binding.

A

returned

LOB

locator

was

incompatible

with

the

data

type

of

the

bound

column.

22007

Invalid

datetime

format.

Conversion

from

character

a

string

to

a

datetime

format

was

indicated,

but

an

invalid

string

representation

or

value

was

specified,

or

the

value

was

an

invalid

date.

The

value

of

a

date,

time,

or

timestamp

does

not

conform

to

the

syntax

for

the

specified

data

type.

22008

Datetime

field

overflow.

Datetime

field

overflow

occurred;

for

example,

an

arithmetic

operation

on

a

date

or

timestamp

has

a

result

that

is

not

within

the

valid

range

of

dates,

or

a

datetime

value

cannot

be

assigned

to

a

bound

variable

because

it

is

too

small.

22012

Division

by

zero

is

invalid.

A

value

from

an

arithmetic

expression

was

returned

which

resulted

in

division

by

zero.

24000

Invalid

cursor

state.

The

previous

SQL

statement

executed

on

the

statement

handle

was

not

a

query.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

SQLFetch

122

CLI

Guide

and

Reference,

Volume

2

Table

55.

SQLFetch

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

428A1

Unable

to

access

a

file

referenced

by

a

host

file

variable.

This

can

be

raised

for

any

of

the

following

scenarios.

The

associated

reason

code

in

the

text

identifies

the

particular

error:

v

01

-

The

file

name

length

is

invalid

or

the

file

name

and/or

the

path

has

an

invalid

format.

v

02

-

The

file

option

is

invalid.

It

must

have

one

of

the

following

values:

SQL_FILE_READ

-read

from

an

existing

file

SQL_FILE_CREATE

-create

a

new

file

for

write

SQL_FILE_OVERWRITE

-overwrite

an

existing

file.

If

the

file

does

not

exist,

create

the

file.

SQL_FILE_APPEND

-append

to

an

existing

file.

If

the

file

does

not

exist,

create

the

file.

v

03

-

The

file

cannot

be

found.

v

04

-

The

SQL_FILE_CREATE

option

was

specified

for

a

file

with

the

same

name

as

an

existing

file.

v

05

-

Access

to

the

file

was

denied.

The

user

does

not

have

permission

to

open

the

file.

v

06

-

Access

to

the

file

was

denied.

The

file

is

in

use

with

incompatible

modes.

Files

to

be

written

to

are

opened

in

exclusive

mode.

v

07

-

Disk

full

was

encountered

while

writing

to

the

file.

v

08

-

Unexpected

end

of

file

encountered

while

reading

from

the

file.

v

09

-

A

media

error

was

encountered

while

accessing

the

file.

54028

The

maximum

number

of

concurrent

LOB

handles

has

been

reached.

Maximum

LOB

locator

assigned.

The

maximum

number

of

concurrent

LOB

locators

has

been

reached.

A

new

locator

can

not

be

assigned.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

SQLFetch()

was

called

for

an

StatementHandle

after

SQLExtendedFetch()

was

called

and

before

SQLFreeStmt()

had

been

called

with

the

SQL_CLOSE

option.

The

function

was

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

SQLFetch

Chapter

1.

DB2

CLI

functions

123

Table

55.

SQLFetch

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY092

Option

type

out

of

range.

The

FileOptions

argument

of

a

previous

SQLBindFileToCol()

operation

was

not

valid.

HYC00

Driver

not

capable.

DB2

CLI

or

the

data

source

does

not

support

the

conversion

specified

by

the

combination

of

the

fCType

in

SQLBindCol()

or

SQLBindFileToCol()

and

the

SQL

data

type

of

the

corresponding

column.

A

call

to

SQLBindCol()

was

made

for

a

column

data

type

which

is

not

supported

by

DB2

CLI.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

/*

fetch

each

row

and

display

*/

cliRC

=

SQLFetch(hstmt);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

if

(cliRC

==

SQL_NO_DATA_FOUND)

{

printf("\n

Data

not

found.\n");

}

while

(cliRC

!=

SQL_NO_DATA_FOUND)

{

printf("

%-8d

%-14.14s

\n",

deptnumb.val,

location.val);

/*

fetch

next

row

*/

cliRC

=

SQLFetch(hstmt);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

}

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Result

set

terminology

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Retrieving

query

results

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLBindFileToCol

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

column”

on

page

16

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

on

page

100

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

on

page

105

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

SQLFetch

124

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

on

page

151

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

on

page

167

v

“Cursor

positioning

rules

for

SQLFetchScroll()

(CLI)”

on

page

131

v

“Statement

attributes

(CLI)

list”

on

page

334

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“tbread.c

--

How

to

read

data

from

tables”

SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLFetchScroll()

fetches

the

specified

rowset

of

data

from

the

result

set

and

returns

data

for

all

bound

columns.

Rowsets

can

be

specified

at

an

absolute

or

relative

position

or

by

bookmark.

Syntax:

SQLRETURN

SQLFetchScroll

(SQLHSTMT

StatementHandle,

SQLSMALLINT

FetchOrientation,

SQLINTEGER

FetchOffset);

Function

arguments:

Table

56.

SQLFetchScroll

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

FetchOrientation

input

Type

of

fetch:

v

SQL_FETCH_NEXT

v

SQL_FETCH_PRIOR

v

SQL_FETCH_FIRST

v

SQL_FETCH_LAST

v

SQL_FETCH_ABSOLUTE

v

SQL_FETCH_RELATIVE

v

SQL_FETCH_BOOKMARK

For

more

information,

see

“Positioning

the

Cursor”

on

page

126.

SQLINTEGER

FetchOffset

input

Number

of

the

row

to

fetch.

The

interpretation

of

this

argument

depends

on

the

value

of

the

FetchOrientation

argument.

For

more

information,

see

“Positioning

the

Cursor”

on

page

126.

Usage:

Overview

SQLFetchScroll()

returns

a

specified

rowset

from

the

result

set.

Rowsets

can

be

specified

by

absolute

or

relative

position

or

by

bookmark.

SQLFetchScroll()

can

be

SQLFetch

Chapter

1.

DB2

CLI

functions

125

called

only

while

a

result

set

exists,

that

is,

after

a

call

that

creates

a

result

set

and

before

the

cursor

over

that

result

set

is

closed.

If

any

columns

are

bound,

it

returns

the

data

in

those

columns.

If

the

application

has

specified

a

pointer

to

a

row

status

array

or

a

buffer

in

which

to

return

the

number

of

rows

fetched,

SQLFetchScroll()

returns

this

information

as

well.

Calls

to

SQLFetchScroll()

can

be

mixed

with

calls

to

SQLFetch()

but

cannot

be

mixed

with

calls

to

SQLExtendedFetch().

Positioning

the

cursor

When

the

result

set

is

created,

the

cursor

is

positioned

before

the

start

of

the

result

set.

SQLFetchScroll()

positions

the

block

cursor

based

on

the

values

of

the

FetchOrientation

and

FetchOffset

arguments

as

shown

in

the

following

table.

The

exact

rules

for

determining

the

start

of

the

new

rowset

are

shown

in

the

next

section.

FetchOrientation

Meaning

SQL_FETCH_NEXT

Return

the

next

rowset.

This

is

equivalent

to

calling

SQLFetch().

SQLFetchScroll()

ignores

the

value

of

FetchOffset.

SQL_FETCH_PRIOR

Return

the

prior

rowset.

SQLFetchScroll()

ignores

the

value

of

FetchOffset.

SQL_FETCH_RELATIVE

Return

the

rowset

FetchOffset

from

the

start

of

the

current

rowset.

SQL_FETCH_ABSOLUTE

Return

the

rowset

starting

at

row

FetchOffset.

SQL_FETCH_FIRST

Return

the

first

rowset

in

the

result

set.

SQLFetchScroll()

ignores

the

value

of

FetchOffset.

SQL_FETCH_LAST

Return

the

last

complete

rowset

in

the

result

set.

SQLFetchScroll()

ignores

the

value

of

FetchOffset.

SQL_FETCH_BOOKMARK

Return

the

rowset

FetchOffset

rows

from

the

bookmark

specified

by

the

SQL_ATTR_FETCH_BOOKMARK_PTR

statement

attribute.

Not

all

cursors

support

all

of

these

options.

A

static

forward-only

cursor,

for

example,

will

only

support

SQL_FETCH_NEXT.

Scrollable

cursors,

such

as

keyset

cursors,

will

support

all

of

these

options.

The

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

specifies

the

number

of

rows

in

the

rowset.

If

the

rowset

being

fetched

by

SQLFetchScroll()

overlaps

the

end

of

the

result

set,

SQLFetchScroll()

returns

a

partial

rowset.

That

is,

if

S

+

R-1

is

greater

than

L,

where

S

is

the

starting

row

of

the

rowset

being

fetched,

R

is

the

rowset

size,

and

L

is

the

last

row

in

the

result

set,

then

only

the

first

L-S+1

rows

of

the

rowset

are

valid.

The

remaining

rows

are

empty

and

have

a

status

of

SQL_ROW_NOROW.

After

SQLFetchScroll()

returns,

the

rowset

cursor

is

positioned

on

the

first

row

of

the

result

set.

Returning

data

in

bound

columns

SQLFetchScroll()

returns

data

in

bound

columns

in

the

same

way

as

SQLFetch().

If

no

columns

are

bound,

SQLFetchScroll()

does

not

return

data

but

does

move

the

block

cursor

to

the

specified

position.

As

with

SQLFetch(),

you

can

use

SQLGetData()

to

retrieve

the

information

in

this

case.

SQLFetchScroll

126

CLI

Guide

and

Reference,

Volume

2

Row

status

array

The

row

status

array

is

used

to

return

the

status

of

each

row

in

the

rowset.

The

address

of

this

array

is

specified

with

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute.

The

array

is

allocated

by

the

application

and

must

have

as

many

elements

as

are

specified

by

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute.

Its

values

are

set

by

SQLFetch(),

SQLFetchScroll(),

or

SQLSetPos()

(except

when

they

have

been

called

after

the

cursor

has

been

positioned

by

SQLExtendedFetch()).

If

the

value

of

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

is

a

null

pointer,

these

functions

do

not

return

the

row

status.

The

contents

of

the

row

status

array

buffer

are

undefined

if

SQLFetch()

or

SQLFetchScroll()

does

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO.

The

following

values

are

returned

in

the

row

status

array.

Row

status

array

value

Description

SQL_ROW_SUCCESS

The

row

was

successfully

fetched.

SQL_ROW_SUCCESS_WITH_INFO

The

row

was

successfully

fetched.

However,

a

warning

was

returned

about

the

row.

SQL_ROW_ERROR

An

error

occurred

while

fetching

the

row.

SQL_ROW_ADDED

The

row

was

inserted

by

SQLBulkOperations().

If

the

row

is

fetched

again,

or

is

refreshed

by

SQLSetPos()

its

status

is

SQL_ROW_SUCCESS.

This

value

is

not

set

by

SQLFetch()

or

SQLFetchScroll().

SQL_ROW_UPDATED

The

row

was

successfully

fetched

and

has

changed

since

it

was

last

fetched

from

this

result

set.

If

the

row

is

fetched

again

from

this

result

set,

or

is

refreshed

by

SQLSetPos(),

the

status

changes

to

the

row’s

new

status.

SQL_ROW_DELETED

The

row

has

been

deleted

since

it

was

last

fetched

from

this

result

set.

SQL_ROW_NOROW

The

rowset

overlapped

the

end

of

the

result

set

and

no

row

was

returned

that

corresponded

to

this

element

of

the

row

status

array.

Rows

fetched

buffer

The

rows

fetched

buffer

is

used

to

return

the

number

of

rows

fetched,

including

those

rows

for

which

no

data

was

returned

because

an

error

occurred

while

they

were

being

fetched.

In

other

words,

it

is

the

number

of

rows

for

which

the

value

in

the

row

status

array

is

not

SQL_ROW_NOROW.

The

address

of

this

buffer

is

specified

with

the

SQL_ATTR_ROWS_FETCHED_PTR

statement

attribute.

The

buffer

is

allocated

by

the

application.

It

is

set

by

SQLFetch()

and

SQLFetchScroll().

If

the

value

of

the

SQL_ATTR_ROWS_FETCHED_PTR

statement

attribute

is

a

null

pointer,

these

functions

do

not

return

the

number

of

rows

fetched.

To

determine

the

number

of

the

current

row

in

the

result

set,

an

application

can

call

SQLGetStmtAttr()

with

the

SQL_ATTR_ROW_NUMBER

attribute.

SQLFetchScroll

Chapter

1.

DB2

CLI

functions

127

The

contents

of

the

rows

fetched

buffer

are

undefined

if

SQLFetch()

or

SQLFetchScroll()

does

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

except

when

SQL_NO_DATA

is

returned,

in

which

case

the

value

in

the

rows

fetched

buffer

is

set

to

0.

Error

handling

SQLFetchScroll()

returns

errors

and

warnings

in

the

same

manner

as

SQLFetch().

Descriptors

and

SQLFetchScroll()

SQLFetchScroll()

interacts

with

descriptors

in

the

same

manner

as

SQLFetch().

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NO_DATA

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

The

return

code

associated

with

each

SQLSTATE

value

is

SQL_ERROR,

unless

noted

otherwise.

If

an

error

occurs

on

a

single

column,

SQLGetDiagField()

can

be

called

with

a

DiagIdentifier

of

SQL_DIAG_COLUMN_NUMBER

to

determine

the

column

the

error

occurred

on;

and

SQLGetDiagField()

can

be

called

with

a

DiagIdentifier

of

SQL_DIAG_ROW_NUMBER

to

determine

the

row

containing

that

column.

Table

57.

SQLFetchScroll

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

String

or

binary

data

returned

for

a

column

resulted

in

the

truncation

of

non-blank

character

or

non-NULL

binary

data.

String

values

are

right

truncated.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01S01

Error

in

row.

An

error

occurred

while

fetching

one

or

more

rows.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

(This

SQLSTATE

is

only

returned

when

connected

to

DB2

CLI

v2.)

01S06

Attempt

to

fetch

before

the

result

set

returned

the

first

rowset.

The

requested

rowset

overlapped

the

start

of

the

result

set

when

the

current

position

was

beyond

the

first

row,

and

either

FetchOrientation

was

SQL_PRIOR,

or

FetchOrientation

was

SQL_RELATIVE

with

a

negative

FetchOffset

whose

absolute

value

was

less

than

or

equal

to

the

current

SQL_ATTR_ROW_ARRAY_SIZE.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01S07

Fractional

truncation.

The

data

returned

for

a

column

was

truncated.

For

numeric

data

types,

the

fractional

part

of

the

number

was

truncated.

For

time

or

timestamp

data

types,

the

fractional

portion

of

the

time

was

truncated.

07002

Too

many

columns.

A

column

number

specified

in

the

binding

for

one

or

more

columns

was

greater

than

the

number

of

columns

in

the

result

set.

SQLFetchScroll

128

CLI

Guide

and

Reference,

Volume

2

Table

57.

SQLFetchScroll

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

A

data

value

of

a

column

in

the

result

set

could

not

be

converted

to

the

C

data

type

specified

by

TargetType

in

SQLBindCol().

07009

Invalid

descriptor

index.

Column

0

was

bound

and

the

SQL_USE_BOOKMARKS

statement

attribute

was

set

to

SQL_UB_OFF.

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

connected

failed

before

the

function

completed

processing.

22001

String

data

right

truncation.

A

variable-length

bookmark

returned

for

a

row

was

truncated.

22002

Invalid

output

or

indicator

buffer

specified.

NULL

data

was

fetched

into

a

column

whose

StrLen_or_IndPtr

set

by

SQLBindCol()

(or

SQL_DESC_INDICATOR_PTR

set

by

SQLSetDescField()

or

SQLSetDescRec())

was

a

null

pointer.

22003

Numeric

value

out

of

range.

Returning

the

numeric

value

(as

numeric

or

string)

for

one

or

more

bound

columns

would

have

caused

the

whole

(as

opposed

to

fractional)

part

of

the

number

to

be

truncated.

22007

Invalid

datetime

format.

A

character

column

in

the

result

set

was

bound

to

a

date,

time,

or

timestamp

C

structure,

and

a

value

in

the

column

was,

respectively,

an

invalid

date,

time,

or

timestamp.

22012

Division

by

zero

is

invalid.

A

value

from

an

arithmetic

expression

was

returned

which

resulted

in

division

by

zero.

22018

Invalid

character

value

for

cast

specification.

A

character

column

in

the

result

set

was

bound

to

a

character

C

buffer

and

the

column

contained

a

character

for

which

there

was

no

representation

in

the

character

set

of

the

buffer.

A

character

column

in

the

result

set

was

bound

to

an

approximate

numeric

C

buffer

and

a

value

in

the

column

could

not

be

cast

to

a

valid

approximate

numeric

value.

A

character

column

in

the

result

set

was

bound

to

an

exact

numeric

C

buffer

and

a

value

in

the

column

could

not

be

cast

to

a

valid

exact

numeric

value.

A

character

column

in

the

result

set

was

bound

to

a

datetime

C

buffer

and

a

value

in

the

column

could

not

be

cast

to

a

valid

datetime

value.

24000

Invalid

cursor

state.

The

StatementHandle

was

in

an

executed

state

but

no

result

set

was

associated

with

the

StatementHandle.

40001

Transaction

rollback.

The

transaction

in

which

the

fetch

was

executed

was

terminated

to

prevent

deadlock.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

SQLFetchScroll

Chapter

1.

DB2

CLI

functions

129

Table

57.

SQLFetchScroll

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

specified

StatementHandle

was

not

in

an

executed

state.

The

function

was

called

without

first

calling

SQLExecDirect(),

SQLExecute(),

or

a

catalog

function.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

SQLExecute()

or

SQLExecDirect()

was

called

for

the

StatementHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

SQLFetchScroll()

was

called

for

a

StatementHandle

after

SQLExtendedFetch()

was

called

and

before

SQLFreeStmt()

with

SQL_CLOSE

was

called.

HY106

Fetch

type

out

of

range.

The

value

specified

for

the

argument

FetchOrientation

was

invalid.

The

argument

FetchOrientation

was

SQL_FETCH_BOOKMARK,

and

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

set

to

SQL_UB_OFF.

The

value

of

the

SQL_CURSOR_TYPE

statement

attribute

was

SQL_CURSOR_FORWARD_ONLY

and

the

value

of

argument

FetchOrientation

was

not

SQL_FETCH_NEXT.

HY107

Row

value

out

of

range.

The

value

specified

with

the

SQL_ATTR_CURSOR_TYPE

statement

attribute

was

SQL_CURSOR_KEYSET_DRIVEN,

but

the

value

specified

with

the

SQL_ATTR_KEYSET_SIZE

statement

attribute

was

greater

than

0

and

less

than

the

value

specified

with

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute.

HY111

Invalid

bookmark

value.

The

argument

FetchOrientation

was

SQL_FETCH_BOOKMARK

and

the

bookmark

pointed

to

by

the

value

in

the

SQL_ATTR_FETCH_BOOKMARK_PTR

statement

attribute

was

not

valid

or

was

a

null

pointer.

HYC00

Driver

not

capable.

The

specified

fetch

type

is

not

supported.

The

conversion

specified

by

the

combination

of

the

TargetType

in

SQLBindCol()

and

the

SQL

data

type

of

the

corresponding

column

is

not

supported.

Restrictions:

None.

Example:

/*

fetch

the

rowset:

row15,

row16,

row17,

row18,

row19

*/

printf("\n

Fetch

the

rowset:

row15,

row16,

row17,

row18,

row19.\n");

/*

fetch

the

rowset

and

return

data

for

all

bound

columns

*/

cliRC

=

SQLFetchScroll(hstmt,

SQL_FETCH_ABSOLUTE,

15);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

/*

call

SQLFetchScroll

with

SQL_FETCH_RELATIVE

offset

3

*/

printf("

SQLFetchScroll

with

SQL_FETCH_RELATIVE

offset

3.\n");

printf("

COL1

COL2

\n");

printf("

-------------\n");

SQLFetchScroll

130

CLI

Guide

and

Reference,

Volume

2

/*

fetch

the

rowset

and

return

data

for

all

bound

columns

*/

cliRC

=

SQLFetchScroll(hstmt,

SQL_FETCH_RELATIVE,

3);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Result

set

terminology

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Diagnostics

in

CLI

applications

overview”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLExtendedFetch

function

(CLI)

-

Extended

fetch

(fetch

array

of

rows)”

on

page

112

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

on

page

117

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

on

page

167

v

“SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute”

on

page

215

v

“SQLSetPos

function

(CLI)

-

Set

the

cursor

position

in

a

rowset”

on

page

284

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

v

“Cursor

positioning

rules

for

SQLFetchScroll()

(CLI)”

on

page

131

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

Cursor

positioning

rules

for

SQLFetchScroll()

(CLI)

The

following

sections

describe

the

exact

rules

for

each

value

of

FetchOrientation.

These

rules

use

the

following

notation:

FetchOrientation

Meaning

Before

start

The

block

cursor

is

positioned

before

the

start

of

the

result

set.

If

the

first

row

of

the

new

rowset

is

before

the

start

of

the

result

set,

SQLFetchScroll()

returns

SQL_NO_DATA.

After

end

The

block

cursor

is

positioned

after

the

end

of

the

result

set.

If

the

first

row

of

the

new

rowset

is

after

the

end

of

the

result

set,

SQLFetchScroll()

returns

SQL_NO_DATA.

CurrRowsetStart

The

number

of

the

first

row

in

the

current

rowset.

LastResultRow

The

number

of

the

last

row

in

the

result

set.

RowsetSize

The

rowset

size.

FetchOffset

The

value

of

the

FetchOffset

argument.

SQLFetchScroll

Chapter

1.

DB2

CLI

functions

131

BookmarkRow

The

row

corresponding

to

the

bookmark

specified

by

the

SQL_ATTR_FETCH_BOOKMARK_PTR

statement

attribute.

SQL_FETCH_NEXT

rules:

Table

58.

SQL_FETCH_NEXT

rules:

Condition

First

row

of

new

rowset

Before

start

1

CurrRowsetStart

+

RowsetSize

<=

LastResultRow

CurrRowsetStart

+

RowsetSize

CurrRowsetStart

+

RowsetSize

>

LastResultRow

After

end

After

end

After

end

SQL_FETCH_PRIOR

rules:

Table

59.

SQL_FETCH_PRIOR

rules:

Condition

First

row

of

new

rowset

Before

start

Before

start

CurrRowsetStart

=

1

Before

start

1

<

CurrRowsetStart

<=

RowsetSize

1

a

CurrRowsetStart

>

RowsetSize

CurrRowsetStart

-

RowsetSize

After

end

AND

LastResultRow

<

RowsetSize

1

a

After

end

AND

LastResultRow

>=

RowsetSize

LastResultRow

-

RowsetSize

+

1

a

SQLFetchScroll()

returns

SQLSTATE

01S06

(Attempt

to

fetch

before

the

result

set

returned

the

first

rowset.)

and

SQL_SUCCESS_WITH_INFO.

SQL_FETCH_RELATIVE

rules:

Table

60.

SQL_FETCH_RELATIVE

rules:

Condition

First

row

of

new

rowset

(Before

start

AND

FetchOffset

>

0)

OR

(After

end

AND

FetchOffset

<

0)

--

a

Before

start

AND

FetchOffset

<=

0

Before

start

CurrRowsetStart

=

1

AND

FetchOffset

<

0

Before

start

CurrRowsetStart

>

1

AND

CurrRowsetStart

+

FetchOffset

<

1

AND

|FetchOffset|

>

RowsetSize

Before

start

CurrRowsetStart

>

1

AND

CurrRowsetStart

+

FetchOffset

<

1

AND

|FetchOffset|

<=

RowsetSize

1

b

1

<=

CurrRowsetStart

+

FetchOffset

<=

LastResultRow

CurrRowsetStart

+

FetchOffset

CurrRowsetStart

+

FetchOffset

>

LastResultRow

After

end

After

end

AND

FetchOffset

>=

0

After

end

a

SQLFetchScroll()

returns

the

same

rowset

as

if

it

was

called

with

FetchOrientation

set

to

SQL_FETCH_ABSOLUTE.

For

more

information,

see

the

“SQL_FETCH_ABSOLUTE”

section.

b

SQLFetchScroll()

returns

SQLSTATE

01S06

(Attempt

to

fetch

before

the

result

set

returned

the

first

rowset.)

and

SQL_SUCCESS_WITH_INFO.

SQLFetchScroll

132

CLI

Guide

and

Reference,

Volume

2

SQL_FETCH_ABSOLUTE

rules:

Table

61.

SQL_FETCH_ABSOLUTE

rules:

Condition

First

row

of

new

rowset

FetchOffset

<

0

AND

|FetchOffset|

<=

LastResultRow

LastResultRow

+

FetchOffset

+

1

FetchOffset

<

0

AND

|FetchOffset|

>

LastResultRow

AND

|FetchOffset|

>

RowsetSize

Before

start

FetchOffset

<

0

AND

|FetchOffset|

>

LastResultRow

AND

|FetchOffset|

<=

RowsetSize

1

a

FetchOffset

=

0

Before

start

1

<=

FetchOffset

<=

LastResultRow

FetchOffset

FetchOffset

>

LastResultRow

After

end

a

SQLFetchScroll()

returns

SQLSTATE

01S06

(Attempt

to

fetch

before

the

result

set

returned

the

first

rowset.)

and

SQL_SUCCESS_WITH_INFO.

SQL_FETCH_FIRST

rules:

Table

62.

SQL_FETCH_FIRST

rules:

Condition

First

row

of

new

rowset

Any

1

SQL_FETCH_LAST

rules:

Table

63.

SQL_FETCH_LAST

rules:

Condition

First

row

of

new

rowset

RowsetSize

<=

LastResultRow

LastResultRow

-

RowsetSize

+

1

RowsetSize

>

LastResultRow

1

SQL_FETCH_BOOKMARK

rules:

Table

64.

SQL_FETCH_BOOKMARK

rules:

Condition

First

row

of

new

rowset

BookmarkRow

+

FetchOffset

<

1

Before

start

1

<=

BookmarkRow

+

FetchOffset

<=

LastResultRow

BookmarkRow

+FetchOffset

BookmarkRow

+

FetchOffset

>

LastResultRow

After

end

Related

concepts:

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

SQLForeignKeys

function

(CLI)

-

Get

the

list

of

foreign

key

columns

Purpose:

SQLFetchScroll

Chapter

1.

DB2

CLI

functions

133

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLForeignKeys()

returns

information

about

foreign

keys

for

the

specified

table.

The

information

is

returned

in

an

SQL

result

set

which

can

be

processed

using

the

same

functions

that

are

used

to

retrieve

a

result

generated

by

a

query.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLForeignKeysW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLForeignKeys

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*PKCatalogName,

/*

szPkCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbPkCatalogName

*/

SQLCHAR

*PKSchemaName,

/*

szPkSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbPkSchemaName

*/

SQLCHAR

*PKTableName,

/*

szPkTableName

*/

SQLSMALLINT

NameLength3,

/*

cbPkTableName

*/

SQLCHAR

*FKCatalogName,

/*

szFkCatalogName

*/

SQLSMALLINT

NameLength4,

/*

cbFkCatalogName

*/

SQLCHAR

*FKSchemaName,

/*

szFkSchemaName

*/

SQLSMALLINT

NameLength5,

/*

cbFkSchemaName

*/

SQLCHAR

*FKTableName,

/*

szFkTableName

*/

SQLSMALLINT

NameLength6);

/*

cbFkTableName

*/

Function

arguments:

Table

65.

SQLForeignKeys

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLCHAR

*

PKCatalogName

input

Catalog

qualifier

of

the

3-part

primary

key

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Unix

and

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

PKCatalogName,

or

SQL_NTS

if

PKCatalogName

is

null-terminated.

SQLCHAR

*

PKSchemaName

input

Schema

qualifier

of

the

primary

key

table.

SQLSMALLINT

NameLength2

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

PKSchemaName,

or

SQL_NTS

if

PKSchemaName

is

null-terminated.

SQLCHAR

*

PKTableName

input

Name

of

the

table

name

containing

the

primary

key.

SQLSMALLINT

NameLength3

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

PKTableName,

or

SQL_NTS

if

PKTableName

is

null-terminated.

SQLForeignKeys

134

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|
|
|

|
|
|
|

Table

65.

SQLForeignKeys

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

FKCatalogName

input

Catalog

qualifier

of

the

3-part

foreign

key

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Unix

and

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength4

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength4

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

FKCatalogName,

or

SQL_NTS

if

FKCatalogName

is

null-terminated.

SQLCHAR

*

FKSchemaName

input

Schema

qualifier

of

the

table

containing

the

foreign

key.

SQLSMALLINT

NameLength5

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

FKSchemaName,

or

SQL_NTS

if

FKSchemaName

is

null-terminated.

SQLCHAR

*

FKTableName

input

Name

of

the

table

containing

the

foreign

key.

SQLSMALLINT

NameLength6

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

FKTableName,

or

SQL_NTS

if

FKTableName

is

null-terminated.

Usage:

If

PKTableName

contains

a

table

name,

and

FKTableName

is

an

empty

string,

SQLForeignKeys()

returns

a

result

set

containing

the

primary

key

of

the

specified

table

and

all

of

the

foreign

keys

(in

other

tables)

that

refer

to

it.

If

FKTableName

contains

a

table

name,

and

PKTableName

is

an

empty

string,

SQLForeignKeys()

returns

a

result

set

containing

all

of

the

foreign

keys

in

the

specified

table

and

the

primary

keys

(in

other

tables)

to

which

they

refer.

If

both

PKTableName

and

FKTableName

contain

table

names,

SQLForeignKeys()

returns

the

foreign

keys

in

the

table

specified

in

FKTableName

that

refer

to

the

primary

key

of

the

table

specified

in

PKTableName.

This

should

be

one

key

at

the

most.

If

the

schema

qualifier

argument

associated

with

a

table

name

is

not

specified,

then

the

schema

name

defaults

to

the

one

currently

in

effect

for

the

current

connection.

“Columns

Returned

by

SQLForeignKeys”

on

page

136

lists

the

columns

of

the

result

set

generated

by

the

SQLForeignKeys()

call.

If

the

foreign

keys

associated

with

a

primary

key

are

requested,

the

result

set

is

ordered

by

FKTABLE_CAT,

FKTABLE_SCHEM,

FKTABLE_NAME,

and

ORDINAL_POSITION.

If

the

primary

keys

associated

with

a

foreign

key

are

requested,

the

result

set

is

ordered

by

PKTABLE_CAT,

PKTABLE_SCHEM,

PKTABLE_NAME,

and

ORDINAL_POSITION.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

SQLForeignKeys

Chapter

1.

DB2

CLI

functions

135

|
|
|
|

|
|
|
|

|
|
|
|

|
|

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

room

for

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN,

SQL_MAX_TABLE_NAME_LEN,

and

SQL_MAX_COLUMN_NAME_LEN

to

determine

respectively

the

actual

lengths

of

the

associated

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

COLUMN_NAME

columns

supported

by

the

connected

DBMS.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

Columns

returned

by

SQLForeignKeys

Column

1

PKTABLE_CAT

(VARCHAR(128))

Name

of

the

catalog

for

PKTABLE_NAME.

The

value

is

NULL

if

this

table

does

not

have

catalogs.

Column

2

PKTABLE_SCHEM

(VARCHAR(128))

Name

of

the

schema

containing

PKTABLE_NAME.

Column

3

PKTABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

table

containing

the

primary

key.

Column

4

PKCOLUMN_NAME

(VARCHAR(128)

not

NULL)

Primary

key

column

name.

Column

5

FKTABLE_CAT

(VARCHAR(128))

Name

of

the

catalog

for

FKTABLE_NAME.

The

value

is

NULL

if

this

table

does

not

have

catalogs.

Column

6

FKTABLE_SCHEM

(VARCHAR(128))

Name

of

the

schema

containing

FKTABLE_NAME.

Column

7

FKTABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

table

containing

the

foreign

key.

Column

8

FKCOLUMN_NAME

(VARCHAR(128)

not

NULL)

Foreign

key

column

name.

Column

9

KEY_SEQ

(SMALLINT

not

NULL)

Ordinal

position

of

the

column

in

the

key,

starting

at

1.

Column

10

UPDATE_RULE

(SMALLINT)

Action

to

be

applied

to

the

foreign

key

when

the

SQL

operation

is

UPDATE:

v

SQL_RESTRICT

v

SQL_NO_ACTION

The

update

rule

for

IBM

DB2

DBMSs

is

always

either

RESTRICT

or

SQL_NO_ACTION.

However,

ODBC

applications

may

encounter

the

following

UPDATE_RULE

values

when

connected

to

non-IBM

RDBMSs:

v

SQL_CASCADE

v

SQL_SET_NULL

Column

11

DELETE_RULE

(SMALLINT)

Action

to

be

applied

to

the

foreign

key

when

the

SQL

operation

is

DELETE:

v

SQL_CASCADE

v

SQL_NO_ACTION

v

SQL_RESTRICT

v

SQL_SET_DEFAULT

v

SQL_SET_NULL

SQLForeignKeys

136

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|
|
|

Column

12

FK_NAME

(VARCHAR(128))

Foreign

key

identifier.

NULL

if

not

applicable

to

the

data

source.

Column

13

PK_NAME

(VARCHAR(128))

Primary

key

identifier.

NULL

if

not

applicable

to

the

data

source.

Column

14

DEFERRABILITY

(SMALLINT)

One

of:

v

SQL_INITIALLY_DEFERRED

v

SQL_INITIALLY_IMMEDIATE

v

SQL_NOT_DEFERRABLE

Note:

The

column

names

used

by

DB2

CLI

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLForeignKeys()

result

set

in

ODBC.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

66.

SQLForeignKeys

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

is

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY009

Invalid

argument

value.

The

arguments

PKTableName

and

FKTableName

were

both

NULL

pointers.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

For

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

The

length

of

the

table

or

owner

name

is

greater

than

the

maximum

length

supported

by

the

server.

SQLForeignKeys

Chapter

1.

DB2

CLI

functions

137

Table

66.

SQLForeignKeys

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

/*

get

the

list

of

foreign

key

columns

*/

cliRC

=

SQLForeignKeys(hstmt,

NULL,

0,

tbSchema,

SQL_NTS,

tbName,

SQL_NTS,

NULL,

0,

NULL,

SQL_NTS,

NULL,

SQL_NTS);

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Foreign

key

clause”

in

the

Administration

Guide:

Implementation

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLPrimaryKeys

function

(CLI)

-

Get

primary

key

columns

of

a

table”

on

page

245

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbconstr.c

--

How

to

work

with

constraints

associated

with

tables”

SQLFreeConnect

function

(CLI)

-

Free

connection

handle

Deprecated:

Note:

In

ODBC

3.0,

SQLFreeConnect()

has

been

deprecated

and

replaced

with

SQLFreeHandle().

SQLForeignKeys

138

CLI

Guide

and

Reference,

Volume

2

Although

this

version

of

DB2

CLI

continues

to

support

SQLFreeConnect(),

we

recommend

that

you

use

SQLFreeHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLFreeConnect(hdbc);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLFreeHandle(SQL_HANDLE_DBC,

hdbc);

Related

reference:

v

“SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source”

on

page

88

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

on

page

139

SQLFreeEnv

function

(CLI)

-

Free

environment

handle

Deprecated:

Note:

In

ODBC

3.0,

SQLFreeEnv()

has

been

deprecated

and

replaced

with

SQLFreeHandle().

Although

this

version

of

DB2

CLI

continues

to

support

SQLFreeEnv(),

we

recommend

that

you

use

SQLFreeHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLFreeEnv(henv);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLFreeHandle(SQL_HANDLE_ENV,

henv);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

on

page

139

SQLFreeHandle

function

(CLI)

-

Free

handle

resources

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLFreeHandle()

frees

resources

associated

with

a

specific

environment,

connection,

statement,

or

descriptor

handle.

SQLFreeConnect

Chapter

1.

DB2

CLI

functions

139

Note:

This

function

is

a

generic

function

for

freeing

resources.

It

replaces

the

ODBC

2.0

functions

SQLFreeConnect()

(for

freeing

a

connection

handle),

and

SQLFreeEnv()

(for

freeing

an

environment

handle).

SQLFreeHandle()

also

replaces

the

ODBC

2.0

function

SQLFreeStmt()

(with

the

SQL_DROP

Option)

for

freeing

a

statement

handle.

Syntax:

SQLRETURN

SQLFreeHandle

(

SQLSMALLINT

HandleType,

/*

fHandleType

*/

SQLHANDLE

Handle);

/*

hHandle

*/

Function

arguments:

Table

67.

SQLFreeHandle

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

The

type

of

handle

to

be

freed

by

SQLFreeHandle().

Must

be

one

of

the

following

values:

v

SQL_HANDLE_ENV

v

SQL_HANDLE_DBC

v

SQL_HANDLE_STMT

v

SQL_HANDLE_DESC

If

HandleType

is

not

one

of

the

above

values,

SQLFreeHandle()

returns

SQL_INVALID_HANDLE.

SQLHANDLE

Handle

input

The

handle

to

be

freed.

Usage:

SQLFreeHandle()

is

used

to

free

handles

for

environments,

connections,

statements,

and

descriptors.

An

application

should

not

use

a

handle

after

it

has

been

freed;

DB2

CLI

does

not

check

the

validity

of

a

handle

in

a

function

call.

Return

codes:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

If

SQLFreeHandle()

returns

SQL_ERROR,

the

handle

is

still

valid.

Diagnostics:

Table

68.

SQLFreeHandle

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08S01

Communication

link

failure.

The

HandleType

argument

was

SQL_HANDLE_DBC,

and

the

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

trying

to

connect

failed

before

the

function

completed

processing.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

SQLFreeHandle

140

CLI

Guide

and

Reference,

Volume

2

Table

68.

SQLFreeHandle

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

The

HandleType

argument

was

SQL_HANDLE_ENV,

and

at

least

one

connection

was

in

an

allocated

or

connected

state.

SQLDisconnect()

and

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_DBC

must

be

called

for

each

connection

before

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_ENV.

The

HandleType

argument

was

SQL_HANDLE_DBC,

and

the

function

was

called

before

calling

SQLDisconnect()

for

the

connection.

The

HandleType

argument

was

SQL_HANDLE_STMT;

an

asynchronously

executing

function

was

called

on

the

statement

handle;

and

the

function

was

still

executing

when

this

function

was

called.

The

HandleType

argument

was

SQL_HANDLE_STMT;

SQLExecute()

or

SQLExecDirect()

was

called

with

the

statement

handle,

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

(DM)

All

subsidiary

handles

and

other

resources

were

not

released

before

SQLFreeHandle()

was

called.

HY013

Unexpected

memory

handling

error.

The

HandleType

argument

was

SQL_HANDLE_STMT

or

SQL_HANDLE_DESC,

and

the

function

call

could

not

be

processed

because

the

underlying

memory

objects

could

not

be

accessed,

possibly

because

of

low

memory

conditions.

HY017

Invalid

use

of

an

automatically

allocated

descriptor

handle.

The

Handle

argument

was

set

to

the

handle

for

an

automatically

allocated

descriptor

or

an

implementation

descriptor.

Restrictions:

None.

Example:

/*

free

the

statement

handle

*/

cliRC

=

SQLFreeHandle(SQL_HANDLE_STMT,

hstmt2);

SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_STMT,

hstmt2,

cliRC,

henv,

hdbc,

pOutSqlrc,

outMsg,

"SQLFreeHandle");

/*

...

*/

/*

free

the

database

handle

*/

cliRC

=

SQLFreeHandle(SQL_HANDLE_DBC,

hdbc);

SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_DBC,

hdbc,

cliRC,

henv,

hdbc,

pOutSqlrc,

outMsg,

SQLFreeHandle

Chapter

1.

DB2

CLI

functions

141

"SQLFreeHandle");

/*

free

the

environment

handle

*/

cliRC

=

SQLFreeHandle(SQL_HANDLE_ENV,

henv);

SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_ENV,

henv,

cliRC,

henv,

hdbc,

pOutSqlrc,

outMsg,

"SQLFreeHandle");

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

on

page

49

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbmod.c

--

How

to

modify

table

data”

v

“tbread.c

--

How

to

read

data

from

tables”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

SQLFreeStmt

function

(CLI)

-

Free

(or

reset)

a

statement

handle

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLFreeStmt()

ends

processing

on

the

statement

referenced

by

the

statement

handle.

Use

this

function

to:

v

Close

a

cursor

and

discard

all

pending

results

v

Disassociate

(reset)

parameters

from

application

variables

and

LOB

file

references

v

Unbind

columns

from

application

variables

and

LOB

file

references

v

Drop

the

statement

handle

and

free

the

DB2

CLI

resources

associated

with

the

statement

handle.

SQLFreeStmt()

is

called

after

executing

an

SQL

statement

and

processing

the

results.

Syntax:

SQLRETURN

SQLFreeStmt

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

Option);

/*

fOption

*/

Function

arguments:

SQLFreeHandle

142

CLI

Guide

and

Reference,

Volume

2

Table

69.

SQLFreeStmt

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLUSMALLINT

Option

input

Option

which

specifies

the

manner

of

freeing

the

statement

handle.

The

option

must

have

one

of

the

following

values:

v

SQL_CLOSE

v

SQL_DROP

v

SQL_UNBIND

v

SQL_RESET_PARAMS

Usage:

SQLFreeStmt()

can

be

called

with

the

following

options:

SQL_CLOSE

The

cursor

(if

any)

associated

with

the

statement

handle

(StatementHandle)

is

closed

and

all

pending

results

are

discarded.

The

application

can

reopen

the

cursor

by

calling

SQLExecute()

with

the

same

or

different

values

in

the

application

variables

(if

any)

that

are

bound

to

StatementHandle.

The

cursor

name

is

retained

until

the

statement

handle

is

dropped

or

a

subsequent

call

to

SQLGetCursorName()

is

successful.

If

no

cursor

has

been

associated

with

the

statement

handle,

this

option

has

no

effect

(no

warning

or

error

is

generated).

SQLCloseCursor()

can

also

be

used

to

close

a

cursor.

SQL_DROP

DB2

CLI

resources

associated

with

the

input

statement

handle

are

freed,

and

the

handle

is

invalidated.

The

open

cursor,

if

any,

is

closed

and

all

pending

results

are

discarded.

This

option

has

been

replaced

with

a

call

to

SQLFreeHandle()

with

the

HandleType

set

to

SQL_HANDLE_STMT.

Although

this

version

of

DB2

CLI

continues

to

support

this

option,

we

recommend

that

you

begin

using

SQLFreeHandle()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

SQL_UNBIND

Sets

the

SQL_DESC_COUNT

field

of

the

ARD

(Application

Row

Descriptor)

to

0,

releasing

all

column

buffers

bound

by

SQLBindCol()

or

SQLBindFileToCol()

for

the

given

StatementHandle.

This

does

not

unbind

the

bookmark

column;

to

do

that,

the

SQL_DESC_DATA_PTR

field

of

the

ARD

for

the

bookmark

column

is

set

to

NULL.

Note

that

if

this

operation

is

performed

on

an

explicitly

allocated

descriptor

that

is

shared

by

more

than

one

statement,

the

operation

will

affect

the

bindings

of

all

statements

that

share

the

descriptor.

SQL_RESET_PARAMS

Sets

the

SQL_DESC_COUNT

field

of

the

APD

(Application

Parameter

Descriptor)

to

0,

releasing

all

parameter

buffers

set

by

SQLBindParameter()

or

SQLBindFileToParam()

for

the

given

StatementHandle.

Note

that

if

this

operation

is

performed

on

an

explicitly

allocated

descriptor

that

is

shared

by

more

than

one

statement,

this

operation

will

affect

the

bindings

of

all

the

statements

that

share

the

descriptor.

SQLFreeStmt()

has

no

effect

on

LOB

locators,

call

SQLExecDirect()

with

the

FREE

LOCATOR

statement

to

free

a

locator.

SQLFreeStmt

Chapter

1.

DB2

CLI

functions

143

It

is

possible

to

reuse

a

statement

handle

to

execute

a

different

statement:

v

If

the

handle

was

associated

with

a

query,

catalog

function

or

SQLGetTypeInfo(),

you

must

close

the

cursor.

v

If

the

handle

was

bound

with

a

different

number

or

type

of

parameters,

the

parameters

must

be

reset.

v

If

the

handle

was

bound

with

a

different

number

or

type

of

column

bindings,

the

columns

must

be

unbound.

Alternatively

you

may

drop

the

statement

handle

and

allocate

a

new

one.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO

is

not

returned

if

Option

is

set

to

SQL_DROP,

as

there

would

be

no

statement

handle

to

use

when

SQLGetDiagRec()

or

SQLGetDiagField()

is

called.

Diagnostics:

Table

70.

SQLFreeStmt

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Option

was

not

SQL_CLOSE,

SQL_DROP,

SQL_UNBIND,

or

SQL_RESET_PARAMS.

HY506

Error

closing

a

file.

Error

encountered

while

trying

to

close

a

temporary

file.

Authorization:

None.

Example:

/*

free

the

statement

handle

*/

cliRC

=

SQLFreeStmt(hstmt,

SQL_UNBIND);

rc

=

HandleInfoPrint(SQL_HANDLE_STMT,

hstmt,

cliRC,

__LINE__,

__FILE__);

if

(rc

!=

0)

{

return

1;

}

/*

free

the

statement

handle

*/

cliRC

=

SQLFreeStmt(hstmt,

SQL_RESET_PARAMS);

rc

=

HandleInfoPrint(SQL_HANDLE_STMT,

hstmt,

cliRC,

__LINE__,

__FILE__);

if

(rc

!=

0)

SQLFreeStmt

144

CLI

Guide

and

Reference,

Volume

2

{

return

1;

}

/*

free

the

statement

handle

*/

cliRC

=

SQLFreeStmt(hstmt,

SQL_CLOSE);

rc

=

HandleInfoPrint(SQL_HANDLE_STMT,

hstmt,

cliRC,

__LINE__,

__FILE__);

if

(rc

!=

0)

{

return

1;

}

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“LOB

usage

in

ODBC

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

v

“SQLCloseCursor

function

(CLI)

-

Close

cursor

and

discard

pending

results”

on

page

51

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

on

page

139

v

“SQLGetTypeInfo

function

(CLI)

-

Get

data

type

information”

on

page

222

v

“SQLSetCursorName

function

(CLI)

-

Set

cursor

name”

on

page

270

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“utilcli.c

--

Utility

functions

used

by

DB2

CLI

samples”

SQLGetConnectAttr

function

(CLI)

-

Get

current

attribute

setting

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLGetConnectAttr()

returns

the

current

setting

of

a

connection

attribute.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLGetConnectAttrW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLGetConnectAttr(SQLHDBC

ConnectionHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

BufferLength,

SQLINTEGER

*StringLengthPtr);

Function

arguments:

Table

71.

SQLGetConnectAttr

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle.

SQLFreeStmt

Chapter

1.

DB2

CLI

functions

145

Table

71.

SQLGetConnectAttr

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

Attribute

input

Attribute

to

retrieve.

SQLPOINTER

ValuePtr

output

A

pointer

to

memory

in

which

to

return

the

current

value

of

the

attribute

specified

by

Attribute.

SQLINTEGER

BufferLength

input

v

If

ValuePtr

points

to

a

character

string,

this

argument

should

be

the

length

of

*ValuePtr.

v

If

ValuePtr

is

a

pointer,

but

not

to

a

string,

then

BufferLength

should

have

the

value

SQL_IS_POINTER.

v

If

the

value

in

*ValuePtr

is

a

Unicode

string

the

BufferLength

argument

must

be

an

even

number.

SQLINTEGER

*

StringLengthPtr

output

A

pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

null-termination

character)

available

to

return

in

*ValuePtr.

If

ValuePtr

is

a

null

pointer,

no

length

is

returned.

If

the

attribute

value

is

a

character

string,

and

the

number

of

bytes

available

to

return

is

greater

than

BufferLength

minus

the

length

of

the

null-termination

character,

the

data

in

*ValuePtr

is

truncated

to

BufferLength

minus

the

length

of

the

null-termination

character

and

is

null-terminated

by

DB2

CLI.

Usage:

If

Attribute

specifies

an

attribute

that

returns

a

string,

ValuePtr

must

be

a

pointer

to

a

buffer

for

the

string.

The

maximum

length

of

the

string,

including

the

null

termination

character,

will

be

BufferLength

bytes.

Depending

on

the

attribute,

an

application

does

not

need

to

establish

a

connection

prior

to

calling

SQLGetConnectAttr().

However,

if

SQLGetConnectAttr()

is

called

and

the

specified

attribute

does

not

have

a

default

and

has

not

been

set

by

a

prior

call

to

SQLSetConnectAttr(),

SQLGetConnectAttr()

will

return

SQL_NO_DATA.

If

Attribute

is

SQL_ATTR_TRACE

or

SQL_ATTR_TRACEFILE,

ConnectionHandle

does

not

have

to

be

valid,

and

SQLGetConnectAttr()

will

not

return

SQL_ERROR

if

ConnectionHandle

is

invalid.

These

attributes

apply

to

all

connections.

SQLGetConnectAttr()

will

return

SQL_ERROR

if

another

argument

is

invalid.

While

an

application

can

set

statement

attributes

using

SQLSetConnectAttr(),

an

application

cannot

use

SQLGetConnectAttr()

to

retrieve

statement

attribute

values;

it

must

call

SQLGetStmtAttr()

to

retrieve

the

setting

of

statement

attributes.

The

SQL_ATTR_AUTO_IPD

connection

attribute

can

be

returned

by

a

call

to

SQLGetConnectAttr(),

but

cannot

be

set

by

a

call

to

SQLSetConnectAttr().

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NO_DATA

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

SQLGetConnectAttr

146

CLI

Guide

and

Reference,

Volume

2

Table

72.

SQLGetConnectAttr

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

data

returned

in

*ValuePtr

was

truncated

to

be

BufferLength

minus

the

length

of

a

null

termination

character.

The

length

of

the

untruncated

string

value

is

returned

in

*StringLengthPtr.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08003

Connection

is

closed.

An

Attribute

value

was

specified

that

required

an

open

connection.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

SQLBrowseConnect()

was

called

for

the

ConnectionHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

SQLBrowseConnect()

returned

SQL_SUCCESS_WITH_INFO

or

SQL_SUCCESS.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

was

less

than

0.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

was

not

valid.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

Attribute

was

a

valid

connection

or

statement

attribute

for

the

version

of

the

DB2

CLI

driver,

but

was

not

supported

by

the

data

source.

Restrictions:

None.

Example:

SQLINTEGER

autocommit;

/*

...

*/

/*

get

the

current

setting

for

the

AUTOCOMMIT

attribute

*/

cliRC

=

SQLGetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,

&autocommit,

0,

NULL);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

v

“Connection

attributes

(CLI)

list”

on

page

321

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLGetConnectAttr

Chapter

1.

DB2

CLI

functions

147

SQLGetConnectOption

function

(CLI)

-

Return

current

setting

of

a

connect

option

Deprecated:

Note:

In

ODBC

version

3,

SQLGetConnectOption()

has

been

deprecated

and

replaced

with

SQLGetConnectAttr().

Although

this

version

of

DB2

CLI

continues

to

support

SQLGetConnectOption(),

we

recommend

that

you

begin

using

SQLGetConnectAttr()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLGetConnectOptionW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Migrating

to

the

new

function

The

statement:

SQLGetConnectOption(hdbc,

SQL_ATTR_AUTOCOMMIT,

pvAutoCommit);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLGetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,

pvAutoCommit,

SQL_IS_POINTER,

NULL);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetConnectAttr

function

(CLI)

-

Get

current

attribute

setting”

on

page

145

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLGetCursorName

function

(CLI)

-

Get

cursor

name

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLGetCursorName()

returns

the

cursor

name

associated

with

the

input

statement

handle.

If

a

cursor

name

was

explicitly

set

by

calling

SQLSetCursorName(),

this

name

will

be

returned;

otherwise,

an

implicitly

generated

name

will

be

returned.

Unicode

Equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLGetCursorNameW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

SQLGetConnectOption

148

CLI

Guide

and

Reference,

Volume

2

Syntax:

SQLRETURN

SQLGetCursorName

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CursorName,

/*

szCursor

*/

SQLSMALLINT

BufferLength,

/*

cbCursorMax

*/

SQLSMALLINT

*NameLengthPtr);

/*

pcbCursor

*/

Function

arguments:

Table

73.

SQLGetCursorName

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLCHAR

*

CursorName

output

Cursor

name

SQLSMALLINT

BufferLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CursorName.

SQLSMALLINT

*

NameLengthPtr

output

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function),

excluding

the

null-termination

character,

available

to

return

for

CursorName.

Usage:

SQLGetCursorName()

will

return

the

cursor

name

set

explicitly

with

SQLSetCursorName(),

or

if

no

name

was

set,

it

will

return

the

cursor

name

internally

generated

by

DB2

CLI.

If

SQLGetCursorName()

is

called

before

a

statement

has

been

prepared

on

the

input

statement

handle,

an

error

will

result.

The

internal

cursor

name

is

generated

on

a

statement

handle

the

first

time

dynamic

SQL

is

prepared

on

the

statement

handle,

not

when

the

handle

is

allocated.

If

a

name

is

set

explicitly

using

SQLSetCursorName(),

this

name

will

be

returned

until

the

statement

is

dropped,

or

until

another

explicit

name

is

set.

Internally

generated

cursor

names

always

begin

with

SQLCUR

or

SQL_CUR.

Cursor

names

are

always

18

SQLCHAR

or

SQLWCHAR

elements

or

less,

and

are

always

unique

within

a

connection.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

74.

SQLGetCursorName

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

cursor

name

returned

in

CursorName

was

longer

than

the

value

in

BufferLength,

and

is

truncated

to

BufferLength

-

1

bytes.

The

argument

NameLengthPtr

contains

the

length

of

the

full

cursor

name

available

for

return.

The

function

returns

SQL_SUCCESS_WITH_INFO.

SQLGetCursorName

Chapter

1.

DB2

CLI

functions

149

|
|
|

|
|
|
|

|
|
|

Table

74.

SQLGetCursorName

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

For

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

is

less

than

0.

Restrictions:

ODBC

generated

cursor

names

start

with

SQL_CUR,

DB2

CLI

generated

cursor

names

start

with

SQLCUR,

and

X/Open

CLI

generated

cursor

names

begin

with

either

SQLCUR

or

SQL_CUR.

Example:

SQLCHAR

cursorName[20];

/*

...

*/

/*

get

the

cursor

name

of

the

SELECT

statement

*/

cliRC

=

SQLGetCursorName(hstmtSelect,

cursorName,

20,

&cursorLen);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLSetCursorName

function

(CLI)

-

Set

cursor

name”

on

page

270

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

v

“tbmod.c

--

How

to

modify

table

data”

SQLGetCursorName

150

CLI

Guide

and

Reference,

Volume

2

SQLGetData

function

(CLI)

-

Get

data

from

a

column

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLGetData()

retrieves

data

for

a

single

column

in

the

current

row

of

the

result

set.

This

is

an

alternative

to

SQLBindCol(),

which

is

used

to

transfer

data

directly

into

application

variables

or

LOB

locators

on

each

SQLFetch()

or

SQLFetchScroll()

call.

An

application

can

either

bind

LOBs

with

SQLBindCol()

or

use

SQLGetData()

to

retrieve

LOBs,

but

both

methods

cannot

be

used

together.

SQLGetData()

can

also

be

used

to

retrieve

large

data

values

in

pieces.

SQLFetch()

or

SQLFetchScroll()

must

be

called

before

SQLGetData().

After

calling

SQLGetData()

for

each

column,

SQLFetch()

or

SQLFetchScroll()

is

called

to

retrieve

the

next

row.

Syntax:

SQLRETURN

SQLGetData

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

ColumnNumber,

/*

icol

*/

SQLSMALLINT

TargetType,

/*

fCType

*/

SQLPOINTER

TargetValuePtr,

/*

rgbValue

*/

SQLINTEGER

BufferLength,

/*

cbValueMax

*/

SQLINTEGER

*StrLen_or_IndPtr);

/*

pcbValue

*/

Function

arguments:

Table

75.

SQLGetData

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLUSMALLINT

ColumnNumber

input

Column

number

for

which

the

data

retrieval

is

requested.

Result

set

columns

are

numbered

sequentially

from

left

to

right.

v

Column

numbers

start

at

1

if

bookmarks

are

not

used

(SQL_ATTR_USE_BOOKMARKS

statement

attribute

set

to

SQL_UB_OFF).

v

Column

numbers

start

at

0

if

bookmarks

are

used

(the

statement

attribute

set

to

SQL_UB_ON

or

SQL_UB_VARIABLE).

SQLGetData

Chapter

1.

DB2

CLI

functions

151

|
|

Table

75.

SQLGetData

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

TargetType

input

The

C

data

type

of

the

column

identifier

by

ColumnNumber.

The

following

types

are

supported:

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CHAR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCHAR

v

SQL_C_DBCLOB_LOCATOR

v

SQL_C_DECIMAL_IBM

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

v

SQL_C_NUMERIC

a

v

SQL_C_SBIGINT

v

SQL_C_SHORT

v

SQL_C_TYPE_DATE

v

SQL_C_TYPE_TIME

v

SQL_C_TYPE_TIMESTAMP

v

SQL_C_TINYINT

v

SQL_C_UBIGINT

v

SQL_C_UTINYINT

v

SQL_C_WCHAR

Specifying

SQL_ARD_TYPE

results

in

the

data

being

converted

to

the

data

type

specified

in

the

SQL_DESC_CONCISE_TYPE

field

of

the

ARD.

Specifying

SQL_C_DEFAULT

results

in

the

data

being

converted

to

its

default

C

data

type.

SQLPOINTER

TargetValuePtr

output

Pointer

to

buffer

where

the

retrieved

column

data

is

to

be

stored.

SQLINTEGER

BufferLength

input

Maximum

size

of

the

buffer

pointed

to

by

TargetValuePtr.

This

value

is

ignored

when

the

driver

returns

fixed-length

data.

SQLINTEGER

*

StrLen_or_IndPtr

output

Pointer

to

value

which

indicates

the

number

of

bytes

DB2

CLI

has

available

to

return

in

the

TargetValuePtr

buffer.

If

the

data

is

being

retrieved

in

pieces,

this

contains

the

number

of

bytes

still

remaining.

The

value

is

SQL_NULL_DATA

if

the

data

value

of

the

column

is

null.

If

this

pointer

is

NULL

and

SQLFetch()

has

obtained

a

column

containing

null

data,

then

this

function

will

fail

because

it

has

no

means

of

reporting

this.

If

SQLFetch()

has

fetched

a

column

containing

binary

data,

then

the

pointer

to

StrLen_or_IndPtr

must

not

be

NULL

or

this

function

will

fail

because

it

has

no

other

means

of

informing

the

application

about

the

length

of

the

data

retrieved

in

the

TargetValuePtr

buffer.

Note:

DB2

CLI

will

provide

some

performance

enhancement

if

TargetValuePtr

is

placed

consecutively

in

memory

after

StrLen_or_IndPtr

Usage:

SQLGetData

152

CLI

Guide

and

Reference,

Volume

2

Different

DB2

data

sources

have

different

restrictions

on

how

SQLGetData()

may

be

used.

For

an

application

to

be

sure

about

the

functional

capabilities

of

this

function,

it

should

call

SQLGetInfo()

with

any

of

the

following

SQL_GETDATA_EXTENSIONS

options:

v

SQL_GD_ANY_COLUMN:

If

this

option

is

returned,

SQLGetData()

can

be

called

for

any

unbound

column,

including

those

before

the

last

bound

column.

All

DB2

data

sources

support

this

feature.

v

SQL_GD_ANY_ORDER:

If

this

option

is

returned,

SQLGetData()

can

be

called

for

unbound

columns

in

any

order.

All

DB2

data

sources

support

this

feature.

v

SQL_GD_BLOCK:

If

this

option

if

returned

by

SQLGetInfo()

for

the

SQL_GETDATA_EXTENSIONS

InfoType

argument,

then

the

driver

will

support

calls

to

SQLGetData()

when

the

rowset

size

is

greater

than

1.

The

application

can

also

call

SQLSetPos()

with

the

SQL_POSITION

option

to

position

the

cursor

on

the

correct

row

before

calling

SQLGetData().

At

least

DB2

UDB

for

Unix

and

Windows

data

sources

support

this

feature.

v

SQL_GD_BOUND:

If

this

option

is

returned,

SQLGetData()

can

be

called

for

bound

columns

as

well

as

unbound

columns.

DB2

UDB

does

not

currently

support

this

feature.

SQLGetData()

can

also

be

used

to

retrieve

long

columns

if

the

C

data

type

(TargetType)

is

SQL_C_CHAR,

SQL_C_BINARY,

SQL_C_DBCHAR,

SQL_C_WCHAR,

or

if

TargetType

is

SQL_C_DEFAULT

and

the

column

type

denotes

a

binary

or

character

string.

Upon

each

SQLGetData()

call,

if

the

data

available

for

return

is

greater

than

or

equal

to

BufferLength,

truncation

occurs.

Truncation

is

indicated

by

a

function

return

code

of

SQL_SUCCESS_WITH_INFO

coupled

with

a

SQLSTATE

denoting

data

truncation.

The

application

can

call

SQLGetData()

again,

with

the

same

ColumnNumber

value,

to

get

subsequent

data

from

the

same

unbound

column

starting

at

the

point

of

truncation.

To

obtain

the

entire

column,

the

application

repeats

such

calls

until

the

function

returns

SQL_SUCCESS.

The

next

call

to

SQLGetData()

returns

SQL_NO_DATA_FOUND.

Although

SQLGetData()

can

be

used

for

the

sequential

retrieval

of

LOB

column

data,

use

the

DB2

CLI

LOB

functions

if

only

a

portion

of

the

LOB

data

or

a

few

sections

of

the

LOB

column

data

are

needed:

1.

Bind

the

column

to

a

LOB

locator.

2.

Fetch

the

row.

3.

Use

the

locator

in

a

SQLGetSubString()

call,

to

retrieve

the

data

in

pieces

(SQLGetLength()

and

SQLGetPosition()

may

also

be

required

in

order

to

determine

the

values

of

some

of

the

arguments).

4.

Repeat

step

2.

Truncation

is

also

affected

by

the

SQL_ATTR_MAX_LENGTH

statement

attribute.

The

application

can

specify

that

truncation

is

not

to

be

reported

by

calling

SQLSetStmtAttr()

with

SQL_ATTR_MAX_LENGTH

and

a

value

for

the

maximum

length

to

return

for

any

one

column,

and

by

allocating

a

TargetValuePtr

buffer

of

the

same

size

(plus

the

null-terminator).

If

the

column

data

is

larger

than

the

set

maximum

length,

SQL_SUCCESS

will

be

returned

and

the

maximum

length,

not

the

actual

length

will

be

returned

in

StrLen_or_IndPtr.

To

discard

the

column

data

part

way

through

the

retrieval,

the

application

can

call

SQLGetData()

with

ColumnNumber

set

to

the

next

column

position

of

interest.

To

discard

data

that

has

not

been

retrieved

for

the

entire

row,

the

application

should

call

SQLFetch()

to

advance

the

cursor

to

the

next

row;

or,

if

it

does

not

want

any

SQLGetData

Chapter

1.

DB2

CLI

functions

153

more

data

from

the

result

set,

the

application

can

close

the

cursor

by

calling

SQLCloseCursor()

or

SQLFreeStmt()

with

the

SQL_CLOSE

or

SQL_DROP

option.

The

TargetType

input

argument

determines

the

type

of

data

conversion

(if

any)

needed

before

the

column

data

is

placed

into

the

storage

area

pointed

to

by

TargetValuePtr.

For

SQL

graphic

column

data:

v

The

length

of

the

TargetValuePtr

buffer

(BufferLength)

should

be

a

multiple

of

2.

The

application

can

determine

the

SQL

data

type

of

the

column

by

first

calling

SQLDescribeCol()

or

SQLColAttribute().

v

The

pointer

to

StrLen_or_IndPtr

must

not

be

NULL

since

DB2

CLI

will

be

storing

the

number

of

octets

stored

in

TargetValuePtr.

v

If

the

data

is

to

be

retrieved

in

piecewise

fashion,

DB2

CLI

will

attempt

to

fill

TargetValuePtr

to

the

nearest

multiple

of

two

octets

that

is

still

less

than

or

equal

to

BufferLength.

This

means

if

BufferLength

is

not

a

multiple

of

two,

the

last

byte

in

that

buffer

will

be

untouched;

DB2

CLI

will

not

split

a

double-byte

character.

The

content

returned

in

TargetValuePtr

is

always

null-terminated

unless

the

column

data

to

be

retrieved

is

binary,

or

if

the

SQL

data

type

of

the

column

is

graphic

(DBCS)

and

the

C

buffer

type

is

SQL_C_CHAR.

If

the

application

is

retrieving

the

data

in

multiple

chunks,

it

should

make

the

proper

adjustments

(for

example,

strip

off

the

null-terminator

before

concatenating

the

pieces

back

together

assuming

the

null

termination

environment

attribute

is

in

effect).

Truncation

of

numeric

data

types

is

reported

as

a

warning

if

the

truncation

involves

digits

to

the

right

of

the

decimal

point.

If

truncation

occurs

to

the

left

of

the

decimal

point,

an

error

is

returned

(refer

to

the

diagnostics

section).

With

the

exception

of

scrollable

cursors,

applications

that

use

SQLFetchScroll()

to

retrieve

data

should

call

SQLGetData()

only

when

the

rowset

size

is

1

(equivalent

to

issuing

SQLFetch()).

SQLGetData()

can

only

retrieve

column

data

for

a

row

where

the

cursor

is

currently

positioned.

Using

SQLGetData()

with

Scrollable

Cursors

SQLGetData()

can

also

be

used

with

scrollable

cursors.

You

can

save

a

pointer

to

any

row

in

the

result

set

with

a

bookmark.

The

application

can

then

use

that

bookmark

as

a

relative

position

to

retrieve

a

rowset

of

information.

Once

you

have

positioned

the

cursor

to

a

row

in

a

rowset

using

SQLSetPos(),

you

can

obtain

the

bookmark

value

from

column

0

using

SQLGetData().

In

most

cases

you

will

not

want

to

bind

column

0

and

retrieve

the

bookmark

value

for

every

row,

but

use

SQLGetData()

to

retrieve

the

bookmark

value

for

the

specific

row

you

require.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

SQLGetData

154

CLI

Guide

and

Reference,

Volume

2

SQL_NO_DATA_FOUND

is

returned

when

the

preceding

SQLGetData()

call

has

retrieved

all

of

the

data

for

this

column.

SQL_SUCCESS

is

returned

if

a

zero-length

string

is

retrieved

by

SQLGetData().

If

this

is

the

case,

StrLen_or_IndPtr

will

contain

0,

and

TargetValuePtr

will

contain

a

null

terminator.

If

the

preceding

call

to

SQLFetch()

failed,

SQLGetData()

should

not

be

called

since

the

result

is

undefined.

Diagnostics:

Table

76.

SQLGetData

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

Data

returned

for

the

specified

column

(ColumnNumber)

was

truncated.

String

or

numeric

values

are

right

truncated.

SQL_SUCCESS_WITH_INFO

is

returned.

07006

Invalid

conversion.

The

data

value

cannot

be

converted

to

the

C

data

type

specified

by

the

argument

TargetType.

The

function

has

been

called

before

for

the

same

ColumnNumber

value

but

with

a

different

TargetType

value.

07009

Invalid

descriptor

index.

The

value

specified

for

ColumnNumber

was

equal

to

0,

and

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

SQL_UB_OFF.

The

value

specified

for

the

argument

ColumnNumber

was

greater

than

the

number

of

columns

in

the

result

set.

22002

Invalid

output

or

indicator

buffer

specified.

The

pointer

value

specified

for

the

argument

StrLen_or_IndPtr

was

a

null

pointer

and

the

value

of

the

column

is

null.

There

is

no

means

to

report

SQL_NULL_DATA.

22003

Numeric

value

out

of

range.

Returning

the

numeric

value

(as

numeric

or

string)

for

the

column

would

have

caused

the

whole

part

of

the

number

to

be

truncated.

22005

Error

in

assignment.

A

returned

value

was

incompatible

with

the

data

type

denoted

by

the

argument

TargetType.

22007

Invalid

datetime

format.

Conversion

from

character

a

string

to

a

datetime

format

was

indicated,

but

an

invalid

string

representation

or

value

was

specified,

or

the

value

was

an

invalid

date.

22008

Datetime

field

overflow.

Datetime

field

overflow

occurred;

for

example,

an

arithmetic

operation

on

a

date

or

timestamp

has

a

result

that

is

not

within

the

valid

range

of

dates,

or

a

datetime

value

cannot

be

assigned

to

a

bound

variable

because

it

is

too

small.

24000

Invalid

cursor

state.

The

previous

SQLFetch()

resulted

in

SQL_ERROR

or

SQL_NO_DATA

found;

as

a

result,

the

cursor

is

not

positioned

on

a

row.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY003

Program

type

out

of

range.

TargetType

was

not

a

valid

data

type

or

SQL_C_DEFAULT.

SQLGetData

Chapter

1.

DB2

CLI

functions

155

Table

76.

SQLGetData

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

specified

StatementHandle

was

not

in

a

cursor

positioned

state.

The

function

was

called

without

first

calling

SQLFetch().

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

For

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

of

the

argument

BufferLength

is

less

than

0

and

the

argument

TargetType

is

SQL_C_CHAR,

SQL_C_BINARY,

SQL_C_DBCHAR

or

(SQL_C_DEFAULT

and

the

default

type

is

one

of

SQL_C_CHAR,

SQL_C_BINARY,

or

SQL_C_DBCHAR).

HYC00

Driver

not

capable.

The

SQL

data

type

for

the

specified

data

type

is

recognized

but

not

supported

by

DB2

CLI.

The

requested

conversion

from

the

SQL

data

type

to

the

application

data

TargetType

cannot

be

performed

by

DB2

CLI

or

the

data

source.

The

column

was

bound

using

SQLBindFileToCol().

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

/*

use

SQLGetData

to

get

the

results

*/

/*

get

data

from

column

1

*/

cliRC

=

SQLGetData(hstmt,

1,

SQL_C_SHORT,

&deptnumb.val,

0,

&deptnumb.ind);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

/*

get

data

from

column

2

*/

cliRC

=

SQLGetData(hstmt,

2,

SQL_C_CHAR,

location.val,

15,

&location.ind);

Related

concepts:

SQLGetData

156

CLI

Guide

and

Reference,

Volume

2

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

on

page

117

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

v

“tbread.c

--

How

to

read

data

from

tables”

v

“tut_read.c

--

How

to

read

data

from

tables”

SQLGetDataLinkAttr

function

(CLI)

-

Get

DataLink

attribute

value

Purpose:

Specification:

DB2

CLI

5.2

ISO

CLI

Return

the

current

value

of

an

attribute

of

a

datalink

value.

Syntax:

SQLRETURN

SQLGetDataLinkAttr

(

SQLHSTMT

StatementHandle,

/*

hStmt

*/

SQLSMALLINT

Attribute,

/*

fAttrType

*/

SQLCHAR

*DataLink,

/*

*pDataLink

*/

SQLINTEGER

DataLinkLength,

/*

cbDataLink

*/

SQLPOINTER

*ValuePtr,

/*

pAttribute

*/

SQLINTEGER

BufferLength,

/*

cbAttributeMax

*/

SQLINTEGER

*StringLengthPtr);

/*

*pcbAttribute

*/

Function

arguments:

Table

77.

SQLGetDataLinkAttr

Arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Used

only

for

diagnostic

reporting.

SQLSMALLINT

Attribute

input

Identifies

the

attribute

of

the

DataLink

that

is

to

be

extracted.

Possible

values

are:

v

SQL_ATTR_DATALINK_COMMENT

v

SQL_ATTR_DATALINK_LINKTYPE

v

SQL_ATTR_DATALINK_URLCOMPLETE

(complete

URL

to

access

a

file)

v

SQL_ATTR_DATALINK_URLPATH

(to

access

a

file

within

a

file

server)

v

SQL_ATTR_DATALINK_URLPATHONLY

(file

path

only)

v

SQL_ATTR_DATALINK_URLSCHEME

v

SQL_ATTR_DATALINK_URLSERVER

SQLGetData

Chapter

1.

DB2

CLI

functions

157

Table

77.

SQLGetDataLinkAttr

Arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

DataLink

input

The

DATALINK

value

from

which

the

attribute

is

to

be

extracted.

SQLINTEGER

DataLinkLength

input

The

length

of

the

DataLink

value.

If

the

DataLink

argument

contains

a

null-terminated

string,

a

value

of

SQL_NTS

may

be

passed

for

DataLinkLength.

SQLPOINTER

*

ValuePtr

output

A

pointer

to

memory

in

which

to

return

the

value

of

the

attribute

specified

by

Attribute.

SQLINTEGER

BufferLength

input

The

amount

of

storage

available

at

ValuePtr

to

hold

the

return

value.

SQLINTEGER

*

StringLength

output

A

pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

null-termination

character)

available

to

return

in

*Attribute.

If

Attribute

is

a

null

pointer,

no

length

is

returned.

If

the

number

of

bytes

available

to

return

is

greater

than

BufferLength

minus

the

length

of

the

null-termination

character,

then

SQLSTATE

HY090

is

returned.

Usage:

The

function

is

used

with

a

DATALINK

value

that

was

retrieved

from

the

database

or

built

using

SQLBuildDataLink().

The

AttrType

value

determines

the

attribute

from

the

DATALINK

value

that

is

returned.

The

maximum

length

of

the

string,

including

the

null

termination

character,

will

be

BufferLength

bytes.

Return

codes:

v

SQL_SUCCESS

v

SQL_NO_DATA

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

78.

SQLGetDataLinkAttr

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

01004

Data

truncated.

The

data

returned

in

*ValuePtr

was

truncated

to

be

BufferLength

minus

the

length

of

the

null

termination

character.

The

length

of

the

untruncated

string

value

is

returned

in

*StringLengthPtr.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

SQLGetDataLinkAttr

158

CLI

Guide

and

Reference,

Volume

2

Table

78.

SQLGetDataLinkAttr

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY009

Invalid

argument

value.

The

value

specified

for

the

argument

*DataLink

was

a

null

pointer

or

was

not

valid.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

the

argument

BufferLength

was

less

than

0

or

the

values

specified

for

the

argument

DataLinkLength

was

less

than

0

and

not

equal

to

SQL_NTS.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

AttrType

was

not

valid.

Restrictions:

None.

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBuildDataLink

function

(CLI)

-

Build

DATALINK

value”

on

page

41

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLGetDescField()

returns

the

current

settings

of

a

single

field

of

a

descriptor

record.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLGetDescFieldW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLGetDescField

(

SQLHDESC

DescriptorHandle,

SQLSMALLINT

RecNumber,

SQLSMALLINT

FieldIdentifier,

SQLPOINTER

ValuePtr,

/*

Value

*/

SQLINTEGER

BufferLength,

SQLINTEGER

*StringLengthPtr);

/*

*StringLength

*/

Function

arguments:

Table

79.

SQLGetDescField

arguments

Data

type

Argument

Use

Description

SQLHDESC

DescriptorHandle

input

Descriptor

handle.

SQLGetDataLinkAttr

Chapter

1.

DB2

CLI

functions

159

Table

79.

SQLGetDescField

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

RecNumber

input

Indicates

the

descriptor

record

from

which

the

application

seeks

information.

Descriptor

records

are

numbered

from

0,

with

record

number

0

being

the

bookmark

record.

If

the

FieldIdentifier

argument

indicates

a

field

of

the

descriptor

header

record,

RecNumber

must

be

0.

If

RecNumber

is

less

than

SQL_DESC_COUNT,

but

the

row

does

not

contain

data

for

a

column

or

parameter,

a

call

to

SQLGetDescField()

will

return

the

default

values

of

the

fields.

SQLSMALLINT

FieldIdentifier

input

Indicates

the

field

of

the

descriptor

whose

value

is

to

be

returned.

SQLPOINTER

ValuePtr

output

Pointer

to

a

buffer

in

which

to

return

the

descriptor

information.

The

data

type

depends

on

the

value

of

FieldIdentifier.

SQLINTEGER

BufferLength

input

v

If

ValuePtr

points

to

a

character

string,

this

argument

should

be

the

length

of

*ValuePtr.

v

If

ValuePtr

is

a

pointer,

but

not

to

a

string,

then

BufferLength

should

have

the

value

SQL_IS_POINTER.

v

If

the

value

in

*ValuePtr

is

of

a

Unicode

data

type

the

BufferLength

argument

must

be

an

even

number.

SQLSMALLINT

*

StringLengthPtr

output

Pointer

to

the

total

number

of

bytes

(excluding

the

number

of

bytes

required

for

the

null

termination

character)

available

to

return

in

*ValuePtr.

Usage:

An

application

can

call

SQLGetDescField()

to

return

the

value

of

a

single

field

of

a

descriptor

record.

A

call

to

SQLGetDescField()

can

return

the

setting

of

any

field

in

any

descriptor

type,

including

header

fields,

record

fields,

and

bookmark

fields.

An

application

can

obtain

the

settings

of

multiple

fields

in

the

same

or

different

descriptors,

in

arbitrary

order,

by

making

repeated

calls

to

SQLGetDescField().

SQLGetDescField()

can

also

be

called

to

return

DB2

CLI

defined

descriptor

fields.

For

performance

reasons,

an

application

should

not

call

SQLGetDescField()

for

an

IRD

before

executing

a

statement.

Calling

SQLGetDescField()

in

this

case

causes

the

CLI

driver

to

describe

the

statement,

resulting

in

an

extra

network

flow.

When

deferred

prepare

is

on

and

SQLGetDescField()

is

called,

you

lose

the

benefit

of

deferred

prepare

because

the

statement

must

be

prepared

at

the

server

to

obtain

describe

information.

The

settings

of

multiple

fields

that

describe

the

name,

data

type,

and

storage

of

column

or

parameter

data

can

also

be

retrieved

in

a

single

call

to

SQLGetDescRec().

SQLGetStmtAttr()

can

be

called

to

return

the

value

of

a

single

field

in

the

descriptor

header

that

has

an

associated

statement

attribute.

When

an

application

calls

SQLGetDescField()

to

retrieve

the

value

of

a

field

that

is

undefined

for

a

particular

descriptor

type,

the

function

returns

SQLSTATE

HY091

(Invalid

descriptor

field

identifier).

When

an

application

calls

SQLGetDescField()

to

retrieve

the

value

of

a

field

that

is

defined

for

a

particular

descriptor

type,

but

has

no

default

value

and

has

not

been

set

yet,

the

function

returns

SQL_SUCCESS

but

SQLGetDescField

160

CLI

Guide

and

Reference,

Volume

2

the

value

returned

for

the

field

is

undefined.

Refer

to

the

list

of

initialization

values

of

descriptor

fields

for

any

default

values

which

may

exist.

The

SQL_DESC_ALLOC_TYPE

header

field

is

available

as

read-only.

This

field

is

defined

for

all

types

of

descriptors.

Each

of

these

fields

is

defined

either

for

the

IRD

only,

or

for

both

the

IRD

and

the

IPD.

SQL_DESC_AUTO_UNIQUE_VALUE

SQL_DESC_LITERAL_SUFFIX

SQL_DESC_BASE_COLUMN_NAME

SQL_DESC_LOCAL_TYPE_NAME

SQL_DESC_CASE_SENSITIVE

SQL_DESC_SCHEMA_NAME

SQL_DESC_CATALOG_NAME

SQL_DESC_SEARCHABLE

SQL_DESC_DISPLAY_SIZE

SQL_DESC_TABLE_NAME

SQL_DESC_FIXED_PREC_SCALE

SQL_DESC_TYPE_NAME

SQL_DESC_LABEL

SQL_DESC_UNSIGNED

SQL_DESC_LITERAL_PREFIX

SQL_DESC_UPDATABLE

Refer

to

the

list

of

descriptor

FieldIdentifier

values

for

more

information

about

the

above

fields.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_NO_DATA

v

SQL_INVALID_HANDLE

SQL_NO_DATA

is

returned

if

RecNumber

is

greater

than

the

number

of

descriptor

records.

SQL_NO_DATA

is

returned

if

DescriptorHandle

is

an

IRD

handle

and

the

statement

is

in

the

prepared

or

executed

state,

but

there

was

no

open

cursor

associated

with

it.

Diagnostics:

Table

80.

SQLGetDescField

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

buffer

*ValuePtr

was

not

large

enough

to

return

the

entire

descriptor

field,

so

the

field

was

truncated.

The

length

of

the

untruncated

descriptor

field

is

returned

in

*StringLengthPtr.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07009

Invalid

descriptor

index.

The

value

specified

for

the

RecNumber

argument

was

less

than

1,

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

SQL_UB_OFF,

and

the

field

was

not

a

header

field

or

a

DB2

CLI

defined

field.

The

FieldIdentifier

argument

was

a

record

field,

and

the

RecNumber

argument

was

0.

The

RecNumber

argument

was

less

than

0,

and

the

field

was

not

a

header

field

or

a

DB2

CLI

defined

field.

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

connected

failed

before

the

function

completed

processing.

SQLGetDescField

Chapter

1.

DB2

CLI

functions

161

Table

80.

SQLGetDescField

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY007

Associated

statement

is

not

prepared.

DescriptorHandle

was

associated

with

an

IRD,

and

the

associated

statement

handle

was

not

in

the

prepared

or

executed

state.

HY010

Function

sequence

error.

DescriptorHandle

was

associated

with

a

StatementHandle

for

which

an

asynchronously

executing

function

(not

this

one)

was

called

and

was

still

executing

when

this

function

was

called.

DescriptorHandle

was

associated

with

a

StatementHandle

for

which

SQLExecute()

or

SQLExecDirect()

was

called

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY021

Inconsistent

descriptor

information.

The

descriptor

information

checked

during

a

consistency

check

was

not

consistent.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

HY091

Invalid

descriptor

field

identifier.

FieldIdentifier

was

undefined

for

the

DescriptorHandle.

The

value

specified

for

the

RecNumber

argument

was

greater

than

the

value

in

the

SQL_DESC_COUNT

field.

Restrictions:

None.

Example:

/*

see

how

the

field

SQL_DESC_PARAMETER_TYPE

is

set

*/

cliRC

=

SQLGetDescField(hIPD,

1,

/*

look

at

the

parameter

*/

SQL_DESC_PARAMETER_TYPE,

&descFieldParameterType,

/*

result

*/

SQL_IS_SMALLINT,

NULL);

/*

...

*/

/*

see

how

the

descriptor

record

field

SQL_DESC_TYPE_NAME

is

set

*/

rc

=

SQLGetDescField(hIRD,

(SQLSMALLINT)colCount,

SQL_DESC_TYPE_NAME,

/*

record

field

*/

descFieldTypeName,

/*

result

*/

25,

NULL);

/*

...

*/

/*

see

how

the

descriptor

record

field

SQL_DESC_LABEL

is

set

*/

rc

=

SQLGetDescField(hIRD,

SQLGetDescField

162

CLI

Guide

and

Reference,

Volume

2

|

(SQLSMALLINT)colCount,

SQL_DESC_LABEL,

/*

record

field

*/

descFieldLabel,

/*

result

*/

25,

NULL);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Consistency

checks

for

descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

on

page

163

v

“SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute”

on

page

215

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

on

page

362

v

“Descriptor

FieldIdentifier

argument

values

(CLI)”

on

page

351

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLGetDescRec()

returns

the

current

settings

of

multiple

fields

of

a

descriptor

record.

The

fields

returned

describe

the

name,

data

type,

and

storage

of

column

or

parameter

data.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLGetDescRecW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLGetDescRec

(

SQLHDESC

DescriptorHandle,

/*

hDesc

*/

SQLSMALLINT

RecNumber,

SQLCHAR

*Name,

SQLSMALLINT

BufferLength,

SQLSMALLINT

*StringLengthPtr,

/*

*StringLength

*/

SQLSMALLINT

*TypePtr,

/*

*Type

*/

SQLSMALLINT

*SubTypePtr,

/*

*SubType

*/

SQLINTEGER

*LengthPtr,

/*

*Length

*/

SQLSMALLINT

*PrecisionPtr,

/*

*Precision

*/

SQLSMALLINT

*ScalePtr,

/*

*Scale

*/

SQLSMALLINT

*NullablePtr);

/*

*Nullable

*/

SQLGetDescField

Chapter

1.

DB2

CLI

functions

163

Function

arguments:

Table

81.

SQLGetDescRec

arguments

Data

type

Argument

Use

Description

SQLHDESC

DescriptorHandle

input

Descriptor

handle.

SQLSMALLINT

RecNumber

input

Indicates

the

descriptor

record

from

which

the

application

seeks

information.

Descriptor

records

are

numbered

from

0,

with

record

number

0

being

the

bookmark

record.

The

RecNumber

argument

must

be

less

than

or

equal

to

the

value

of

SQL_DESC_COUNT.

If

RecNumber

is

less

than

SQL_DESC_COUNT,

but

the

row

does

not

contain

data

for

a

column

or

parameter,

a

call

to

SQLGetDescRec()

will

return

the

default

values

of

the

fields.

SQLCHAR

*

Name

output

A

pointer

to

a

buffer

in

which

to

return

the

SQL_DESC_NAME

field

for

the

descriptor

record.

SQLINTEGER

BufferLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

*Name

buffer.

SQLSMALLINT

*

StringLengthPtr

output

A

pointer

to

a

buffer

in

which

to

return

the

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

available

to

return

in

the

Name

buffer,

excluding

the

null-termination

character.

If

the

number

of

SQLCHAR

or

SQLWCHAR

elements

was

greater

than

or

equal

to

BufferLength,

the

data

in

*Name

is

truncated

to

BufferLength

minus

the

length

of

a

null-termination

character,

and

is

null

terminated

by

DB2

CLI.

SQLSMALLINT

*

TypePtr

output

A

pointer

to

a

buffer

in

which

to

return

the

value

of

the

SQL_DESC_TYPE

field

for

the

descriptor

record.

SQLSMALLINT

*

SubTypePtr

output

For

records

whose

type

is

SQL_DATETIME,

this

is

a

pointer

to

a

buffer

in

which

to

return

the

value

of

the

SQL_DESC_DATETIME_INTERVAL_CODE

field.

SQLINTEGER

*

LengthPtr

output

A

pointer

to

a

buffer

in

which

to

return

the

value

of

the

SQL_DESC_OCTET_LENGTH

field

for

the

descriptor

record.

SQLSMALLINT

*

PrecisionPtr

output

A

pointer

to

a

buffer

in

which

to

return

the

value

of

the

SQL_DESC_PRECISION

field

for

the

descriptor

record.

SQLSMALLINT

*

ScalePtr

output

A

pointer

to

a

buffer

in

which

to

return

the

value

of

the

SQL_DESC_SCALE

field

for

the

descriptor

record.

SQLSMALLINT

*

NullablePtr

output

A

pointer

to

a

buffer

in

which

to

return

the

value

of

the

SQL_DESC_NULLABLE

field

for

the

descriptor

record.

Usage:

An

application

can

call

SQLGetDescRec()

to

retrieve

the

values

of

the

following

fields

for

a

single

column

or

parameter:

v

SQL_DESC_NAME

v

SQL_DESC_TYPE

SQLGetDescRec

164

CLI

Guide

and

Reference,

Volume

2

|
|
|

|
|
|
|
|
|
|
|
|
|

v

SQL_DESC_DATETIME_INTERVAL_CODE

(for

records

whose

type

is

SQL_DATETIME)

v

SQL_DESC_OCTET_LENGTH

v

SQL_DESC_PRECISION

v

SQL_DESC_SCALE

v

SQL_DESC_NULLABLE

SQLGetDescRec()

does

not

retrieve

the

values

for

header

fields.

An

application

can

inhibit

the

return

of

a

field’s

setting

by

setting

the

argument

corresponding

to

the

field

to

a

null

pointer.

When

an

application

calls

SQLGetDescRec()

to

retrieve

the

value

of

a

field

that

is

undefined

for

a

particular

descriptor

type,

the

function

returns

SQL_SUCCESS

but

the

value

returned

for

the

field

is

undefined.

For

example,

calling

SQLGetDescRec()

for

the

SQL_DESC_NAME

or

SQL_DESC_NULLABLE

field

of

an

APD

or

ARD

will

return

SQL_SUCCESS

but

an

undefined

value

for

the

field.

When

an

application

calls

SQLGetDescRec()

to

retrieve

the

value

of

a

field

that

is

defined

for

a

particular

descriptor

type,

but

has

no

default

value

and

has

not

been

set

yet,

the

function

returns

SQL_SUCCESS

but

the

value

returned

for

the

field

is

undefined.

The

values

of

fields

can

also

be

retrieved

individually

by

a

call

to

SQLGetDescField().

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_NO_DATA

v

SQL_INVALID_HANDLE

SQL_NO_DATA

is

returned

if

RecNumber

is

greater

than

the

number

of

descriptor

records.

SQL_NO_DATA

is

returned

if

DescriptorHandle

is

an

IRD

handle

and

the

statement

in

the

prepared

or

executed

state,

but

there

was

no

open

cursor

associated

with

it.

Diagnostics:

Table

82.

SQLGetDescRec

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

buffer

*Name

was

not

large

enough

to

return

the

entire

descriptor

field,

so

the

field

was

truncated.

The

length

of

the

untruncated

descriptor

field

is

returned

in

*StringLengthPtr.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07009

Invalid

descriptor

index.

The

RecNumber

argument

was

set

to

0

and

the

DescriptorHandle

argument

was

an

IPD

handle.

The

RecNumber

argument

was

set

to

0,

and

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

set

to

SQL_UB_OFF.

The

RecNumber

argument

was

less

than

0.

SQLGetDescRec

Chapter

1.

DB2

CLI

functions

165

Table

82.

SQLGetDescRec

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

connected

failed

before

the

function

completed

processing.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY007

Associated

statement

is

not

prepared.

DescriptorHandle

was

associated

with

an

IRD,

and

the

associated

statement

handle

was

not

in

the

prepared

or

executed

state.

HY010

Function

sequence

error.

DescriptorHandle

was

associated

with

a

StatementHandle

for

which

an

asynchronously

executing

function

(not

this

one)

was

called

and

was

still

executing

when

this

function

was

called.

DescriptorHandle

was

associated

with

a

StatementHandle

for

which

SQLExecute()

or

SQLExecDirect()

was

called

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

Restrictions:

None.

Example:

/*

get

multiple

field

settings

of

descriptor

record

*/

rc

=

SQLGetDescRec(hIRD,

i,

colname,

sizeof(colname),

&namelen,

&type,

&subtype,

&width,

&precision,

&scale,

&nullable);

/*

...

*/

/*

get

the

record/column

value

after

setting

*/

rc

=

SQLGetDescRec(hARD,

i,

colname,

sizeof(colname),

&namelen,

&type,

&subtype,

&width,

&precision,

&scale,

&nullable);

SQLGetDescRec

166

CLI

Guide

and

Reference,

Volume

2

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

on

page

159

v

“SQLSetDescRec

function

(CLI)

-

Set

multiple

descriptor

fields

for

a

column

or

parameter

data”

on

page

278

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

on

page

362

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLGetDiagField()

returns

the

current

value

of

a

field

of

a

diagnostic

data

structure,

associated

with

a

specific

handle,

that

contains

error,

warning,

and

status

information.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLGetDiagFieldW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLGetDiagField

(

SQLSMALLINT

HandleType,

/*

fHandleType

*/

SQLHANDLE

Handle,

/*

hHandle

*/

SQLSMALLINT

RecNumber,

/*

iRecNumber

*/

SQLSMALLINT

DiagIdentifier,

/*

fDiagIdentifier

*/

SQLPOINTER

DiagInfoPtr,

/*

pDiagInfo

*/

SQLSMALLINT

BufferLength,

/*

cbDiagInfoMax

*/

SQLSMALLINT

*StringLengthPtr);

/*

*pcgDiagInfo

*/

Function

arguments:

SQLGetDescRec

Chapter

1.

DB2

CLI

functions

167

Table

83.

SQLGetDiagField

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

A

handle

type

identifier

that

describes

the

type

of

handle

for

which

diagnostics

are

desired.

Must

be

one

of

the

following:

v

SQL_HANDLE_ENV

v

SQL_HANDLE_DBC

v

SQL_HANDLE_STMT

v

SQL_HANDLE_DESC

SQLHANDLE

Handle

input

A

handle

for

the

diagnostic

data

structure,

of

the

type

indicated

by

HandleType.

SQLSMALLINT

RecNumber

input

Indicates

the

status

record

from

which

the

application

seeks

information.

Status

records

are

numbered

from

1.

If

the

DiagIdentifier

argument

indicates

any

field

of

the

diagnostics

header

record,

RecNumber

must

be

0.

If

not,

it

should

be

greater

than

0.

SQLSMALLINT

DiagIdentifier

input

Indicates

the

field

of

the

diagnostic

data

structure

whose

value

is

to

be

returned.

For

more

information,

see

“DiagIdentifier

argument”

on

page

170.

SQLPOINTER

DiagInfoPtr

output

Pointer

to

a

buffer

in

which

to

return

the

diagnostic

information.

The

data

type

depends

on

the

value

of

DiagIdentifier.

SQLINTEGER

BufferLength

input

If

DiagIdentifier

is

ODBC-defined

diagnostic:

v

If

DiagInfoPtr

points

to

a

character

string

or

binary

buffer,

BufferLength

should

be

the

length

of

*DiagInfoPtr.

v

If

*DiagInfoPtr

is

an

integer,

BufferLength

is

ignored.

v

If

*DiagInfoPtr

is

a

Unicode

string,

BufferLength

must

be

an

even

number.

If

DiagIdentifier

is

a

DB2

CLI

diagnostic:

v

If

*DiagInfoPtr

is

a

pointer

to

a

character

string,

BufferLength

is

the

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

stored

the

string,

or

SQL_NTS.

v

If

*DiagInfoPtr

is

a

pointer

to

a

binary

buffer,

then

the

application

places

the

result

of

the

SQL_LEN_BINARY_ATTR(length)

macro

in

BufferLength.

This

places

a

negative

value

in

BufferLength.

v

If

*DiagInfoPtr

is

a

pointer

to

a

value

other

than

a

character

string

or

binary

string,

then

BufferLength

should

have

the

value

SQL_IS_POINTER.

v

If

*DiagInfoPtr

contains

a

fixed-length

data

type,

then

BufferLength

is

SQL_IS_INTEGER,

SQL_IS_UINTEGER,

SQL_IS_SMALLINT,

or

SQL_IS_USMALLINT,

as

appropriate.

SQLGetDiagField

168

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|

Table

83.

SQLGetDiagField

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

*

StringLengthPtr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function),

excluding

the

number

of

bytes

required

for

the

null-termination

character,

available

to

return

in

*DiagInfoPtr,

for

character

data.

If

the

number

of

bytes

available

to

return

is

greater

than

BufferLength,

then

the

text

in

*DiagInfoPtr

is

truncated

to

BufferLength

minus

the

length

of

a

null-termination

character.

This

argument

is

ignored

for

non-character

data.

Usage:

An

application

typically

calls

SQLGetDiagField()

to

accomplish

one

of

three

goals:

1.

To

obtain

specific

error

or

warning

information

when

a

function

call

has

returned

the

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO

(or

SQL_NEED_DATA

for

the

SQLBrowseConnect()

function)

return

codes.

2.

To

find

out

the

number

of

rows

in

the

data

source

that

were

affected

when

insert,

delete,

or

update

operations

were

performed

with

a

call

to

SQLExecute(),

SQLExecDirect(),

SQLBulkOperations(),

or

SQLSetPos()

(from

the

SQL_DIAG_ROW_COUNT

header

field),

or

to

find

out

the

number

of

rows

that

exist

in

the

current

open

static

scrollable

cursor

(from

the

SQL_DIAG_CURSOR_ROW_COUNT

header

field).

3.

To

determine

which

function

was

executed

by

a

call

to

SQLExecDirect()

or

SQLExecute()

(from

the

SQL_DIAG_DYNAMIC_FUNCTION

and

SQL_DIAG_DYNAMIC_FUNCTION_CODE

header

fields).

Any

DB2

CLI

function

can

post

zero

or

more

errors

each

time

it

is

called,

so

an

application

can

call

SQLGetDiagField()

after

any

function

call.

SQLGetDiagField()

retrieves

only

the

diagnostic

information

most

recently

associated

with

the

diagnostic

data

structure

specified

in

the

Handle

argument.

If

the

application

calls

another

function,

any

diagnostic

information

from

a

previous

call

with

the

same

handle

is

lost.

An

application

can

scan

all

diagnostic

records

by

incrementing

RecNumber,

as

long

as

SQLGetDiagField()

returns

SQL_SUCCESS.

The

number

of

status

records

is

indicated

in

the

SQL_DIAG_NUMBER

header

field.

Calls

to

SQLGetDiagField()

are

non-destructive

as

far

as

the

header

and

status

records

are

concerned.

The

application

can

call

SQLGetDiagField()

again

at

a

later

time

to

retrieve

a

field

from

a

record,

as

long

as

another

function

other

than

SQLGetDiagField(),

SQLGetDiagRec(),

or

SQLError()

has

not

been

called

in

the

interim,

which

would

post

records

on

the

same

handle.

An

application

can

call

SQLGetDiagField()

to

return

any

diagnostic

field

at

any

time,

with

the

exception

of

SQL_DIAG_ROW_COUNT,

which

will

return

SQL_ERROR

if

Handle

was

not

a

statement

handle

on

which

an

SQL

statement

had

been

executed.

If

any

other

diagnostic

field

is

undefined,

the

call

to

SQLGetDiagField()

will

return

SQL_SUCCESS

(provided

no

other

error

is

encountered),

and

an

undefined

value

is

returned

for

the

field.

HandleType

argument

SQLGetDiagField

Chapter

1.

DB2

CLI

functions

169

|
|
|
|
|
|
|
|
|
|
|

Each

handle

type

can

have

diagnostic

information

associated

with

it.

The

HandleType

argument

denotes

the

handle

type

of

Handle.

Some

header

and

record

fields

cannot

be

returned

for

all

types

of

handles:

environment,

connection,

statement,

and

descriptor.

Those

handles

for

which

a

field

is

not

applicable

are

indicated

in

the

Header

Field

and

Record

Fields

sections

below.

No

DB2

CLI-specific

header

diagnostic

field

should

be

associated

with

an

environment

handle.

DiagIdentifier

argument

This

argument

indicates

the

identifier

of

the

field

desired

from

the

diagnostic

data

structure.

If

RecNumber

is

greater

than

or

equal

to

1,

the

data

in

the

field

describes

the

diagnostic

information

returned

by

a

function.

If

RecNumber

is

0,

the

field

is

in

the

header

of

the

diagnostic

data

structure,

so

it

contains

data

pertaining

to

the

function

call

that

returned

the

diagnostic

information,

not

the

specific

information.

Refer

to

the

list

of

header

and

record

fields

for

the

DiagIdentifier

argument

for

further

information.

Sequence

of

status

records

Status

records

are

placed

in

a

sequence

based

upon

row

number

and

the

type

of

the

diagnostic.

If

there

are

two

or

more

status

records,

the

sequence

of

the

records

is

determined

first

by

row

number.

The

following

rules

apply

to

determining

the

sequence

of

errors

by

row:

v

Records

that

do

not

correspond

to

any

row

appear

in

front

of

records

that

correspond

to

a

particular

row,

since

SQL_NO_ROW_NUMBER

is

defined

to

be

-1.

v

Records

for

which

the

row

number

is

unknown

appear

in

front

of

all

other

records,

since

SQL_ROW_NUMBER_UNKNOWN

is

defined

to

be

-2.

v

For

all

records

that

pertain

to

specific

rows,

records

are

sorted

by

the

value

in

the

SQL_DIAG_ROW_NUMBER

field.

All

errors

and

warnings

of

the

first

row

affected

are

listed,

then

all

errors

and

warnings

of

the

next

row

affected,

and

so

on.

Within

each

row,

or

for

all

those

records

that

do

not

correspond

to

a

row

or

for

which

the

row

number

is

unknown,

the

first

record

listed

is

determined

using

a

set

of

sorting

rules.

After

the

first

record,

the

order

of

the

other

records

affecting

a

row

is

undefined.

An

application

cannot

assume

that

errors

precede

warnings

after

the

first

record.

Applications

should

scan

the

entire

diagnostic

data

structure

to

obtain

complete

information

on

an

unsuccessful

call

to

a

function.

The

following

rules

are

followed

to

determine

the

first

record

within

a

row.

The

record

with

the

highest

rank

is

the

first

record.

v

Errors.

Status

records

that

describe

errors

have

the

highest

rank.

The

following

rules

are

followed

to

sort

errors:

–

Records

that

indicate

a

transaction

failure

or

possible

transaction

failure

outrank

all

other

records.

SQLGetDiagField

170

CLI

Guide

and

Reference,

Volume

2

–

If

two

or

more

records

describe

the

same

error

condition,

then

SQLSTATEs

defined

by

the

X/Open

CLI

specification

(classes

03

through

HZ)

outrank

ODBC-

and

driver-defined

SQLSTATEs.
v

Implementation-defined

No

Data

values.

Status

records

that

describe

DB2

CLI

No

Data

values

(class

02)

have

the

second

highest

rank.

v

Warnings.

Status

records

that

describe

warnings

(class

01)

have

the

lowest

rank.

If

two

or

more

records

describe

the

same

warning

condition,

then

warning

SQLSTATEs

defined

by

the

X/Open

CLI

specification

outrank

ODBC-

and

driver-defined

SQLSTATEs.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA

Diagnostics:

SQLGetDiagField()

does

not

post

error

values

for

itself.

It

uses

the

following

return

values

to

report

the

outcome

of

its

own

execution:

v

SQL_SUCCESS:

The

function

successfully

returned

diagnostic

information.

v

SQL_SUCCESS_WITH_INFO:

*DiagInfoPtr

was

too

small

to

hold

the

requested

diagnostic

field

so

the

data

in

the

diagnostic

field

was

truncated.

To

determine

that

a

truncation

occurred,

the

application

must

compare

BufferLength

to

the

actual

number

of

bytes

available,

which

is

written

to

*StringLengthPtr.

v

SQL_INVALID_HANDLE:

The

handle

indicated

by

HandleType

and

Handle

was

not

a

valid

handle.

v

SQL_ERROR:

One

of

the

following

occurred:

–

The

DiagIdentifier

argument

was

not

one

of

the

valid

values.

–

The

DiagIdentifier

argument

was

SQL_DIAG_CURSOR_ROW_COUNT,

SQL_DIAG_DYNAMIC_FUNCTION,

SQL_DIAG_DYNAMIC_FUNCTION_CODE,

or

SQL_DIAG_ROW_COUNT,

but

Handle

was

not

a

statement

handle.

–

The

RecNumber

argument

was

negative

or

0

when

DiagIdentifier

indicated

a

field

from

a

diagnostic

record.

RecNumber

is

ignored

for

header

fields.

–

The

value

requested

was

a

character

string

and

BufferLength

was

less

than

zero.
v

SQL_NO_DATA:

RecNumber

was

greater

than

the

number

of

diagnostic

records

that

existed

for

the

handle

specified

in

Handle.

The

function

also

returns

SQL_NO_DATA

for

any

positive

RecNumber

if

there

are

no

diagnostic

records

for

Handle.

Restrictions:

None.

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLGetDiagField

Chapter

1.

DB2

CLI

functions

171

v

“Diagnostics

in

CLI

applications

overview”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

on

page

172

v

“Header

and

record

fields

for

the

DiagIdentifier

argument

(CLI)”

on

page

369

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLGetDiagRec()

returns

the

current

values

of

multiple

fields

of

a

diagnostic

record

that

contains

error,

warning,

and

status

information.

Unlike

SQLGetDiagField(),

which

returns

one

diagnostic

field

per

call,

SQLGetDiagRec()

returns

several

commonly

used

fields

of

a

diagnostic

record:

the

SQLSTATE,

native

error

code,

and

error

message

text.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLGetDiagRecW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLGetDiagRec

(

SQLSMALLINT

HandleType,

/*

fHandleType

*/

SQLHANDLE

Handle,

/*

hHandle

*/

SQLSMALLINT

RecNumber,

/*

iRecNumber

*/

SQLCHAR

*SQLState,

/*

*pszSqlState

*/

SQLINTEGER

*NativeErrorPtr,

/*

*pfNativeError

*/

SQLCHAR

*MessageText,

/*

*pszErrorMsg

*/

SQLSMALLINT

BufferLength,

/*

cbErrorMsgMax

*/

SQLSMALLINT

*TextLengthPtr);

/*

*pcbErrorMsg

*/

Function

arguments:

Table

84.

SQLGetDiagRec

arguments

Data

type

Argument

Use

Description

SQLSMALLINT

HandleType

input

A

handle

type

identifier

that

describes

the

type

of

handle

for

which

diagnostics

are

desired.

Must

be

one

of

the

following:

v

SQL_HANDLE_ENV

v

SQL_HANDLE_DBC

v

SQL_HANDLE_STMT

v

SQL_HANDLE_DESC

SQLHANDLE

Handle

input

A

handle

for

the

diagnostic

data

structure,

of

the

type

indicated

by

HandleType.

SQLSMALLINT

RecNumber

input

Indicates

the

status

record

from

which

the

application

seeks

information.

Status

records

are

numbered

from

1.

SQLGetDiagField

172

CLI

Guide

and

Reference,

Volume

2

Table

84.

SQLGetDiagRec

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

SQLState

output

Pointer

to

a

buffer

in

which

to

return

a

five-character

SQLSTATE

code

pertaining

to

the

diagnostic

record

RecNumber.

The

first

two

characters

indicate

the

class;

the

next

three

indicate

the

subclass.

SQLINTEGER

*

NativeErrorPtr

output

Pointer

to

a

buffer

in

which

to

return

the

native

error

code,

specific

to

the

data

source.

SQLCHAR

*

MessageText

output

Pointer

to

a

buffer

in

which

to

return

the

error

message

text.

The

fields

returned

by

SQLGetDiagRec()

are

contained

in

a

text

string.

SQLINTEGER

BufferLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

MessageText

buffer.

SQLSMALLINT

*

TextLengthPtr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function),

excluding

the

null-termination

character,

available

to

return

in

*MessageText.

If

the

number

of

SQLCHAR

or

SQLWCHAR

elements

available

to

return

is

greater

than

BufferLength,

then

the

error

message

text

in

*MessageText

is

truncated

to

BufferLength

minus

the

length

of

a

null-termination

character.

Usage:

An

application

typically

calls

SQLGetDiagRec()

when

a

previous

call

to

a

DB2

CLI

function

has

returned

anything

other

than

SQL_SUCCESS.

However,

any

function

can

post

zero

or

more

errors

each

time

it

is

called,

so

an

application

can

call

SQLGetDiagRec()

after

any

function

call.

An

application

can

call

SQLGetDiagRec()

multiple

times

to

return

some

or

all

of

the

records

in

the

diagnostic

data

structure.

SQLGetDiagRec()

returns

a

character

string

containing

the

following

fields

of

the

diagnostic

data

structure

record:

SQL_DIAG_MESSAGE_TEXT

(return

type

CHAR

*)

An

informational

message

on

the

error

or

warning.

SQL_DIAG_NATIVE

(return

type

SQLINTEGER)

A

driver/data-source-specific

native

error

code.

If

there

is

no

native

error

code,

the

driver

returns

0.

SQL_DIAG_SQLSTATE

(return

type

CHAR

*)

A

five-character

SQLSTATE

diagnostic

code.

SQLGetDiagRec()

cannot

be

used

to

return

fields

from

the

header

of

the

diagnostic

data

structure

(the

RecNumber

argument

must

be

greater

than

0).

The

application

should

call

SQLGetDiagField()

for

this

purpose.

SQLGetDiagRec()

retrieves

only

the

diagnostic

information

most

recently

associated

with

the

handle

specified

in

the

Handle

argument.

If

the

application

calls

another

function,

except

SQLGetDiagRec()

or

SQLGetDiagField(),

any

diagnostic

information

from

the

previous

calls

on

the

same

handle

is

lost.

An

application

can

scan

all

diagnostic

records

by

looping,

incrementing

RecNumber,

as

long

as

SQLGetDiagRec()

returns

SQL_SUCCESS.

Calls

to

SQLGetDiagRec()

are

SQLGetDiagRec

Chapter

1.

DB2

CLI

functions

173

|
|
|

|
|
|
|
|
|
|
|
|

non-destructive

to

the

header

and

record

fields.

The

application

can

call

SQLGetDiagRec()

again

at

a

later

time

to

retrieve

a

field

from

a

record,

as

long

as

no

other

function,

except

SQLGetDiagRec()

or

SQLGetDiagField(),

has

been

called

in

the

interim.

The

application

can

call

SQLGetDiagField()

to

retrieve

the

value

of

the

SQL_DIAG_NUMBER

field,

which

is

the

total

number

of

diagnostic

records

available.

SQLGetDiagRec()

should

then

be

called

that

many

times.

HandleType

argument

Each

handle

type

can

have

diagnostic

information

associated

with

it.

The

HandleType

argument

denotes

the

handle

type

of

Handle.

Some

header

and

record

fields

cannot

be

returned

for

all

types

of

handles:

environment,

connection,

statement,

and

descriptor.

Those

handles

for

which

a

field

is

not

applicable

are

indicated

in

the

list

of

header

and

record

fields

for

the

DiagIdentifier

argument.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

SQLGetDiagRec()

does

not

post

error

values

for

itself.

It

uses

the

following

return

values

to

report

the

outcome

of

its

own

execution:

v

SQL_SUCCESS:

The

function

successfully

returned

diagnostic

information.

v

SQL_SUCCESS_WITH_INFO:

The

*MessageText

buffer

was

too

small

to

hold

the

requested

diagnostic

message.

No

diagnostic

records

were

generated.

To

determine

that

a

truncation

occurred,

the

application

must

compare

BufferLength

to

the

actual

number

of

bytes

available,

which

is

written

to

*StringLengthPtr.

v

SQL_INVALID_HANDLE:

The

handle

indicated

by

HandleType

and

Handle

was

not

a

valid

handle.

v

SQL_ERROR:

One

of

the

following

occurred:

–

RecNumber

was

negative

or

0.

–

BufferLength

was

less

than

zero.
v

SQL_NO_DATA:

RecNumber

was

greater

than

the

number

of

diagnostic

records

that

existed

for

the

handle

specified

in

Handle.

The

function

also

returns

SQL_NO_DATA

for

any

positive

RecNumber

if

there

are

no

diagnostic

records

for

Handle.

Example:

/*

get

multiple

fields

settings

of

diagnostic

record

*/

SQLGetDiagRec(SQL_HANDLE_STMT,

hstmt,

1,

sqlstate,

&sqlcode,

message,

200,

&length);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLGetDiagRec

174

CLI

Guide

and

Reference,

Volume

2

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

on

page

167

v

“Header

and

record

fields

for

the

DiagIdentifier

argument

(CLI)”

on

page

369

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“spclient.c

--

Call

various

stored

procedures”

v

“utilcli.c

--

Utility

functions

used

by

DB2

CLI

samples”

SQLGetEnvAttr

function

(CLI)

-

Retrieve

current

environment

attribute

value

Purpose:

Specification:

DB2

CLI

2.1

ISO

CLI

SQLGetEnvAttr()

returns

the

current

setting

for

the

specified

environment

attribute.

These

options

are

set

using

the

SQLSetEnvAttr()

function.

Syntax:

SQLRETURN

SQLGetEnvAttr

(

SQLHENV

EnvironmentHandle,

/*

henv

*/

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

/*

Value

*/

SQLINTEGER

BufferLength,

SQLINTEGER

*StringLengthPtr);

/*

StringLength

*/

Function

arguments:

Table

85.

SQLGetEnvAttr

arguments

Data

type

Argument

Use

Description

SQLHENV

EnvironmentHandle

input

Environment

handle.

SQLINTEGER

Attribute

input

Attribute

to

receive.

Refer

to

the

list

of

environment

attributes

and

their

descriptions.

SQLPOINTER

ValuePtr

output

A

pointer

to

memory

in

which

to

return

the

current

value

of

the

attribute

specified

by

Attribute.

SQLINTEGER

BufferLength

input

Maximum

size

of

buffer

pointed

to

by

ValuePtr,

if

the

attribute

value

is

a

character

string;

otherwise,

ignored.

SQLGetDiagRec

Chapter

1.

DB2

CLI

functions

175

Table

85.

SQLGetEnvAttr

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

StringLengthPtr

output

Pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

number

of

bytes

returned

for

the

null-termination

character)

available

to

return

in

ValuePtr.

If

ValuePtr

is

a

null

pointer,

no

length

is

returned.

If

the

attribute

value

is

a

character

string,

and

the

number

of

bytes

available

to

return

is

greater

than

or

equal

to

BufferLength,

the

data

in

ValuePtr

is

truncated

to

BufferLength

minus

the

length

of

a

null-termination

character

and

is

null-terminated

by

DB2

CLI.

If

Attribute

does

not

denote

a

string,

then

DB2

CLI

ignores

BufferLength

and

does

not

set

StringLengthPtr.

Usage:

SQLGetEnvAttr()

can

be

called

at

any

time

between

the

allocation

and

freeing

of

the

environment

handle.

It

obtains

the

current

value

of

the

environment

attribute.

Return

codes:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

86.

SQLGetEnvAttr

SQLSTATEs

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY092

Option

type

out

of

range.

An

invalid

Attribute

value

was

specified.

Restrictions:

None.

Example:

/*

retrieve

the

current

environment

attribute

value

*/

cliRC

=

SQLGetEnvAttr(henv,

SQL_ATTR_OUTPUT_NTS,

&output_nts,

0,

NULL);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Handle

freeing

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Initializing

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLGetEnvAttr

176

CLI

Guide

and

Reference,

Volume

2

Related

reference:

v

“SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute”

on

page

281

v

“Environment

attributes

(CLI)

list”

on

page

317

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“cli_info.c

--

How

to

get

and

set

environment

attributes

at

the

client

level”

SQLGetFunctions

function

(CLI)

-

Get

functions

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

ISO

CLI

SQLGetFunctions()

can

be

used

to

query

whether

a

specific

DB2

CLI

or

ODBC

function

is

supported.

This

allows

applications

to

adapt

to

varying

levels

of

support

when

connecting

to

different

database

servers.

A

connection

to

a

database

server

must

exist

before

calling

this

function.

Syntax:

SQLRETURN

SQLGetFunctions

(

SQLHDBC

ConnectionHandle,

/*

hdbc

*/

SQLUSMALLINT

FunctionId,

/*

fFunction

*/

SQLUSMALLINT

*SupportedPtr);

/*

pfExists

*/

Function

arguments:

Table

87.

SQLGetFunctions

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Database

connection

handle.

SQLUSMALLINT

FunctionId

input

The

function

being

queried.

SQLUSMALLINT

*

SupportedPtr

output

Pointer

to

location

where

this

function

will

return

SQL_TRUE

or

SQL_FALSE

depending

on

whether

the

function

being

queried

is

supported.

Usage:

If

FunctionId

is

set

to

SQL_API_ALL_FUNCTIONS,

then

SupportedPtr

must

point

to

an

SQLSMALLINT

array

of

100

elements.

The

array

is

indexed

by

the

FunctionId

values

used

to

identify

many

of

the

functions.

Some

elements

of

the

array

are

unused

and

reserved.

Since

some

FunctionId

values

are

greater

than

100,

the

array

method

can

not

be

used

to

obtain

a

list

of

functions.

The

SQLGetFunctions()

call

must

be

explicitly

issued

for

all

FunctionId

values

equal

to

or

above

100.

The

complete

set

of

FunctionId

values

is

defined

in

sqlcli1.h.

Note:

The

LOB

support

functions

(SQLGetLength(),

SQLGetPosition(),

SQLGetSubString(),

SQLBindFileToCol(),

SQLBindFileToCol())

are

not

supported

when

connected

to

IBM

RDBMSs

that

do

not

support

LOB

data

types.

Return

codes:

SQLGetEnvAttr

Chapter

1.

DB2

CLI

functions

177

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

88.

SQLGetFunctions

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

SQLGetFunctions()

was

called

before

a

database

connection

was

established.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

Authorization:

None.

Example:

/*

check

to

see

if

SQLGetInfo()

is

supported

*/

cliRC

=

SQLGetFunctions(hdbc,

SQL_API_SQLGETINFO,

&supported);

References:

None.

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbinfo.c

--

How

to

get

and

set

information

at

the

database

level”

v

“dbinfo.out

--

HOW

TO

GET

AND

SET

DATABASE

INFORMATION

(CLI)”

v

“ilinfo.c

--

How

to

get

information

at

the

installation

image

level”

v

“ininfo.c

--

How

to

get

information

at

the

instance

level”

SQLGetInfo

function

(CLI)

-

Get

general

information

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLGetFunctions

178

CLI

Guide

and

Reference,

Volume

2

SQLGetInfo()

returns

general

information

about

the

DBMS

that

the

application

is

currently

connected

to.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLGetInfoW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLGetInfo

(

SQLHDBC

ConnectionHandle,

/*

hdbc

*/

SQLUSMALLINT

InfoType,

/*

fInfoType

*/

SQLPOINTER

InfoValuePtr,

/*

rgbInfoValue

*/

SQLSMALLINT

BufferLength,

/*

cbInfoValueMax

*/

SQLSMALLINT

*StringLengthPtr);

/*

pcbInfoValue

*/

Function

arguments:

Table

89.

SQLGetInfo

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Database

connection

handle

SQLUSMALLINT

InfoType

input

The

type

of

information

desired.

The

possible

values

for

this

argument

are

described

in

“Information

returned

by

SQLGetInfo()”

on

page

180.

SQLPOINTER

InfoValuePtr

output

(also

input)

Pointer

to

buffer

where

this

function

will

store

the

desired

information.

Depending

on

the

type

of

information

being

retrieved,

5

types

of

information

can

be

returned:

v

16

bit

integer

value

v

32

bit

integer

value

v

32

bit

binary

value

v

32

bit

mask

v

null-terminated

character

string

If

the

InfoType

argument

is

SQL_DRIVER_HDESC

or

SQL_DRIVER_HSTMT,

the

InfoValuePtr

argument

is

both

input

and

output.

SQLSMALLINT

BufferLength

input

Maximum

length

of

the

buffer

pointed

by

InfoValuePtr

pointer.

If

*InfoValuePtr

is

a

Unicode

string,

the

BufferLength

argument

must

be

an

even

number.

SQLSMALLINT

*

StringLengthPtr

output

Pointer

to

location

where

this

function

will

return

the

total

number

of

bytes

of

information

available

to

return.

In

the

case

of

string

output,

this

size

does

not

include

the

null

terminating

character.

If

the

value

in

the

location

pointed

to

by

StringLengthPtr

is

greater

than

the

size

of

the

InfoValuePtr

buffer

as

specified

in

BufferLength,

then

the

string

output

information

would

be

truncated

to

BufferLength

-

1

bytes

and

the

function

would

return

with

SQL_SUCCESS_WITH_INFO.

Usage:

SQLGetInfo

Chapter

1.

DB2

CLI

functions

179

|
|
|
|

Refer

to

“Information

returned

by

SQLGetInfo()”

for

a

list

of

the

possible

values

of

InfoType

and

a

description

of

the

information

that

SQLGetInfo()

would

return

for

that

value.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

90.

SQLGetInfo

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

requested

information

was

returned

as

a

string

and

its

length

exceeded

the

length

of

the

application

buffer

as

specified

in

BufferLength.

The

argument

StringLengthPtr

contains

the

actual

(not

truncated)

length

of

the

requested

information.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08003

Connection

is

closed.

The

type

of

information

requested

in

InfoType

requires

an

open

connection.

Only

SQL_ODBC_VER

does

not

require

an

open

connection.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

argument

BufferLength

was

less

than

0.

HY096

Information

type

out

of

range.

An

invalid

InfoType

was

specified.

HYC00

Driver

not

capable.

The

value

specified

in

the

argument

InfoType

is

not

supported

by

either

DB2

CLI

or

the

data

source.

Restrictions:

None.

Example:

/*

get

server

name

information

*/

cliRC

=

SQLGetInfo(hdbc,

SQL_DBMS_NAME,

imageInfoBuf,

255,

&outlen);

/*

...

*/

/*

get

client

driver

name

information

*/

cliRC

=

SQLGetInfo(hdbc,

SQL_DRIVER_NAME,

imageInfoBuf,

255,

&outlen);

Information

returned

by

SQLGetInfo():

Note:

DB2

CLI

returns

a

value

for

each

InfoType

in

this

table.

If

the

InfoType

does

not

apply

or

is

not

supported,

the

result

is

dependent

on

the

return

type.

If

the

return

type

is

a:

v

Character

string

(″Y″

or

″N″),

″N″

is

returned.

SQLGetInfo

180

CLI

Guide

and

Reference,

Volume

2

v

Character

string

(not

″Y″

or

″N″),

an

empty

string

is

returned.

v

32-bit

integer,

0

(zero)

is

returned.

v

32-bit

mask,

0

(zero)

is

returned.

SQL_ACCESSIBLE_PROCEDURES

(string)

A

character

string

of

″Y″

indicates

that

the

user

can

execute

all

procedures

returned

by

the

function

SQLProcedures().

″N″

indicates

there

may

be

procedures

returned

that

the

user

cannot

execute.

SQL_ACCESSIBLE_TABLES

(string)

A

character

string

of

″Y″

indicates

that

the

user

is

guaranteed

SELECT

privilege

to

all

tables

returned

by

the

function

SQLTables().

″N″

indicates

that

there

may

be

tables

returned

that

the

user

cannot

access.

SQL_AGGREGATE_FUNCTIONS

(32-bit

mask)

A

bitmask

enumerating

support

for

aggregation

functions:

v

SQL_AF_ALL

v

SQL_AF_AVG

v

SQL_AF_COUNT

v

SQL_AF_DISTINCT

v

SQL_AF_MAX

v

SQL_AF_MIN

v

SQL_AF_SUM

SQL_ALTER_DOMAIN

(32-bit

mask)

DB2

CLI

returns

0

indicating

that

the

ALTER

DOMAIN

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_AD_ADD_CONSTRAINT_DEFERRABLE

v

SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE

v

SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED

v

SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE

v

SQL_AD_ADD_DOMAIN_CONSTRAINT

v

SQL_AD_ADD_DOMAIN_DEFAULT

v

SQL_AD_CONSTRAINT_NAME_DEFINITION

v

SQL_AD_DROP_DOMAIN_CONSTRAINT

v

SQL_AD_DROP_DOMAIN_DEFAULT

SQL_ALTER_TABLE

(32-bit

mask)

Indicates

which

clauses

in

the

ALTER

TABLE

statement

are

supported

by

the

DBMS.

v

SQL_AT_ADD_COLUMN_COLLATION

v

SQL_AT_ADD_COLUMN_DEFAULT

v

SQL_AT_ADD_COLUMN_SINGLE

v

SQL_AT_ADD_CONSTRAINT

v

SQL_AT_ADD_TABLE_CONSTRAINT

v

SQL_AT_CONSTRAINT_NAME_DEFINITION

v

SQL_AT_DROP_COLUMN_CASCADE

v

SQL_AT_DROP_COLUMN_DEFAULT

v

SQL_AT_DROP_COLUMN_RESTRICT

v

SQL_AT_DROP_TABLE_CONSTRAINT_CASCADE

v

SQL_AT_DROP_TABLE_CONSTRAINT_RESTRICT

v

SQL_AT_SET_COLUMN_DEFAULT

v

SQL_AT_CONSTRAINT_INITIALLY_DEFERRED

v

SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE

v

SQL_AT_CONSTRAINT_DEFERRABLE

v

SQL_AT_CONSTRAINT_NON_DEFERRABLE

SQLGetInfo

Chapter

1.

DB2

CLI

functions

181

SQL_APPLICATION_CODEPAGE

(32-bit

unsigned

integer)

Indicates

the

application

code

page.

SQL_ASYNC_MODE

(32-bit

unsigned

integer)

Indicates

the

level

of

asynchronous

support

in

the

driver:

v

SQL_AM_CONNECTION,

connection

level

asynchronous

execution

is

supported.

Either

all

statement

handles

associated

with

a

given

connection

handle

are

in

asynchronous

mode,

or

all

are

in

synchronous

mode.

A

statement

handle

on

a

connection

cannot

be

in

asynchronous

mode

while

another

statement

handle

on

the

same

connection

is

in

synchronous

mode,

and

vice

versa.

v

SQL_AM_STATEMENT,

statement

level

asynchronous

execution

is

supported.

Some

statement

handles

associated

with

a

connection

handle

can

be

in

asynchronous

mode,

while

other

statement

handles

on

the

same

connection

are

in

synchronous

mode.

v

SQL_AM_NONE,

asynchronous

mode

is

not

supported.

This

value

is

also

returned

if

the

DB2

CLI/ODBC

configuration

keyword

ASYNCENABLE

is

set

to

disable

asynchronous

execution.

SQL_BATCH_ROW_COUNT

(32-bit

mask)

Indicates

how

row

counts

are

dealt

with.

DB2

CLI

always

returns

SQL_BRC_ROLLED_UP

indicating

that

row

counts

for

consecutive

INSERT,

DELETE,

or

UPDATE

statements

are

rolled

up

into

one.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_BRC_PROCEDURES

v

SQL_BRC_EXPLICIT

SQL_BATCH_SUPPORT

(32-bit

mask)

Indicates

which

levels

of

batches

are

supported:

v

SQL_BS_SELECT_EXPLICIT,

supports

explicit

batches

that

can

have

result-set

generating

statements.

v

SQL_BS_ROW_COUNT_EXPLICIT,

supports

explicit

batches

that

can

have

row-count

generating

statements.

v

SQL_BS_SELECT_PROC,

supports

explicit

procedures

that

can

have

result-set

generating

statements.

v

SQL_BS_ROW_COUNT_PROC,

supports

explicit

procedures

that

can

have

row-count

generating

statements.

SQL_BOOKMARK_PERSISTENCE

(32-bit

mask)

Indicates

when

bookmarks

remain

valid

after

an

operation:

v

SQL_BP_CLOSE,

bookmarks

are

valid

after

an

application

calls

SQLFreeStmt()

with

the

SQL_CLOSE

option,

or

SQLCloseCursor()

to

close

the

cursor

associated

with

a

statement.

v

SQL_BP_DELETE,

the

bookmark

for

a

row

is

valid

after

that

row

has

been

deleted.

v

SQL_BP_DROP,

bookmarks

are

valid

after

an

application

calls

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_STMT

to

drop

a

statement.

v

SQL_BP_TRANSACTION,

bookmarks

are

valid

after

an

application

commits

or

rolls

back

a

transaction.

v

SQL_BP_UPDATE,

the

bookmark

for

a

row

is

valid

after

any

column

in

that

row

has

been

updated,

including

key

columns.

v

SQL_BP_OTHER_HSTMT,

a

bookmark

associated

with

one

statement

can

be

used

with

another

statement.

Unless

SQL_BP_CLOSE

or

SQL_BP_DROP

is

specified,

the

cursor

on

the

first

statement

must

be

open.

SQLGetInfo

182

CLI

Guide

and

Reference,

Volume

2

|
|

SQL_CATALOG_LOCATION

(16-bit

integer)

A

16-bit

integer

value

indicated

the

position

of

the

qualifier

in

a

qualified

table

name.

DB2

CLI

always

returns

SQL_CL_START

for

this

information

type.

ODBC

also

defines

the

value

SQL_CL_END

which

is

not

returned

by

DB2

CLI.

In

previous

versions

of

DB2

CLI

this

InfoType

was

SQL_QUALIFIER_LOCATION.

SQL_CATALOG_NAME

(string)

A

character

string

of

″Y″

indicates

that

the

server

supports

catalog

names.

″N″

indicates

that

catalog

names

are

not

supported.

SQL_CATALOG_NAME_SEPARATOR

(string)

The

character(s)

used

as

a

separator

between

a

catalog

name

and

the

qualified

name

element

that

follows

or

precedes

it.

In

previous

versions

of

DB2

CLI

this

InfoType

was

SQL_QUALIFIER_NAME_SEPARATOR.

SQL_CATALOG_TERM

(string)

The

database

vendor’s

terminology

for

a

qualifier

(catalog).

The

name

that

the

vendor

uses

for

the

high

order

part

of

a

three

part

name.

Since

DB2

CLI

does

not

support

three

part

names,

a

zero-length

string

is

returned.

In

previous

versions

of

DB2

CLI

this

InfoType

was

SQL_QUALIFIER_TERM.

SQL_CATALOG_USAGE

(32-bit

mask)

This

is

similar

to

SQL_SCHEMA_USAGE

except

that

this

is

used

for

catalogs.

A

32-bit

mask

enumerating

the

statements

in

which

catalogs

can

be

used:

v

SQL_CU_DML_STATEMENTS

-

Catalogs

are

supported

in

all

DML

statements.

v

SQL_CU_INDEX_DEFINITION

-

Catalogs

are

supported

in

all

index

definition

statements.

v

SQL_CU_PRIVILEGE_DEFINITION

-

Catalogs

are

supported

in

all

privilege

definition

statements.

v

SQL_CU_PROCEDURE_INVOCATION

-

Catalogs

are

supported

in

the

ODBC

procedure

invocation

statement.

v

SQL_CU_TABLE_DEFINITION

-

Catalogs

are

supported

in

all

table

definition

statements.

A

value

of

zero

is

returned

if

catalogs

are

not

supported

by

the

data

source.

In

previous

versions

of

DB2

CLI,

this

InfoType

was

SQL_QUALIFIER_USAGE.

SQL_COLLATION_SEQ

(string)

The

name

of

the

collation

sequence.

This

is

a

character

string

that

indicates

the

name

of

the

default

collation

for

the

default

character

set

for

this

server

(for

example

ISO

8859-1

or

EBCDIC).

If

this

is

unknown,

an

empty

string

will

be

returned.

SQLGetInfo

Chapter

1.

DB2

CLI

functions

183

SQL_COLUMN_ALIAS

(string)

Returns

″Y″

if

column

aliases

are

supported,

or

″N″

if

they

are

not.

SQL_CONCAT_NULL_BEHAVIOR

(16-bit

integer)

Indicates

how

the

concatenation

of

NULL

valued

character

data

type

columns

with

non-NULL

valued

character

data

type

columns

is

handled.

v

SQL_CB_NULL

-

indicates

the

result

is

a

NULL

value

(this

is

the

case

for

IBM

RDBMS).

v

SQL_CB_NON_NULL

-

indicates

the

result

is

a

concatenation

of

non-NULL

column

values.

SQL_CONVERT_BIGINT

SQL_CONVERT_BINARY

SQL_CONVERT_BIT

SQL_CONVERT_CHAR

SQL_CONVERT_DATE

SQL_CONVERT_DECIMAL

SQL_CONVERT_DOUBLE

SQL_CONVERT_FLOAT

SQL_CONVERT_INTEGER

SQL_CONVERT_INTERVAL_YEAR_MONTH

SQL_CONVERT_INTERVAL_DAY_TIME

SQL_CONVERT_LONGVARBINARY

SQL_CONVERT_LONGVARCHAR

SQL_CONVERT_NUMERIC

SQL_CONVERT_REAL

SQL_CONVERT_SMALLINT

SQL_CONVERT_TIME

SQL_CONVERT_TIMESTAMP

SQL_CONVERT_TINYINT

SQL_CONVERT_VARBINARY

SQL_CONVERT_VARCHAR

SQL_CONVERT_WCHAR

SQL_CONVERT_WLONGVARCHAR

SQL_CONVERT_WVARCHAR

(all

above

are

32-bit

masks)

Indicates

the

conversions

supported

by

the

data

source

with

the

CONVERT

scalar

function

for

data

of

the

type

named

in

the

InfoType.

If

the

bitmask

equals

zero,

the

data

source

does

not

support

any

conversions

for

the

data

of

the

named

type,

including

conversions

to

the

same

data

type.

For

example,

to

find

out

if

a

data

source

supports

the

conversion

of

SQL_INTEGER

data

to

the

SQL_DECIMAL

data

type,

an

application

calls

SQLGetInfo()

with

InfoType

of

SQL_CONVERT_INTEGER.

The

application

then

ANDs

the

returned

bitmask

with

SQL_CVT_DECIMAL.

If

the

resulting

value

is

nonzero

then

the

conversion

is

supported.

The

following

bitmasks

are

used

to

determine

which

conversions

are

supported:

v

SQL_CVT_BIGINT

v

SQL_CVT_BINARY

v

SQL_CVT_BIT

v

SQL_CVT_CHAR

v

SQL_CVT_DATE

v

SQL_CVT_DECIMAL

v

SQL_CVT_DOUBLE

v

SQL_CVT_FLOAT

SQLGetInfo

184

CLI

Guide

and

Reference,

Volume

2

v

SQL_CVT_INTEGER

v

SQL_CVT_INTERVAL_YEAR_MONTH

v

SQL_CVT_INTERVAL_DAY_TIME

v

SQL_CVT_LONGVARBINARY

v

SQL_CVT_LONGVARCHAR

v

SQL_CVT_NUMERIC

v

SQL_CVT_REAL

v

SQL_CVT_SMALLINT

v

SQL_CVT_TIME

v

SQL_CVT_TIMESTAMP

v

SQL_CVT_TINYINT

v

SQL_CVT_VARBINARY

v

SQL_CVT_VARCHAR

v

SQL_CVT_WCHAR

v

SQL_CVT_WLONGVARCHAR

v

SQL_CVT_WVARCHAR

SQL_CONNECT_CODEPAGE

(32-bit

unsigned

integer)

Indicates

the

code

page

of

the

current

connection.

SQL_CONVERT_FUNCTIONS

(32-bit

mask)

Indicates

the

scalar

conversion

functions

supported

by

the

driver

and

associated

data

source.

DB2

CLI

Version

2.1.1

and

later

supports

ODBC

scalar

conversions

between

char

variables

(CHAR,

VARCHAR,

LONG

VARCHAR

and

CLOB)

and

DOUBLE

(or

FLOAT).

v

SQL_FN_CVT_CONVERT

-

used

to

determine

which

conversion

functions

are

supported.

SQL_CORRELATION_NAME

(16-bit

integer)

Indicates

the

degree

of

correlation

name

support

by

the

server:

v

SQL_CN_ANY,

supported

and

can

be

any

valid

user-defined

name.

v

SQL_CN_NONE,

correlation

name

not

supported.

v

SQL_CN_DIFFERENT,

correlation

name

supported

but

it

must

be

different

than

the

name

of

the

table

that

it

represent.

SQL_CREATE_ASSERTION

(32-bit

mask)

Indicates

which

clauses

in

the

CREATE

ASSERTION

statement

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

CREATE

ASSERTION

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_CA_CREATE_ASSERTION

v

SQL_CA_CONSTRAINT_INITIALLY_DEFERRED

v

SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE

v

SQL_CA_CONSTRAINT_DEFERRABLE

v

SQL_CA_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_CHARACTER_SET

(32-bit

mask)

Indicates

which

clauses

in

the

CREATE

CHARACTER

SET

statement

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

CREATE

CHARACTER

SET

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_CCS_CREATE_CHARACTER_SET

v

SQL_CCS_COLLATE_CLAUSE

v

SQL_CCS_LIMITED_COLLATION

SQLGetInfo

Chapter

1.

DB2

CLI

functions

185

|
|

SQL_CREATE_COLLATION

(32-bit

mask)

Indicates

which

clauses

in

the

CREATE

COLLATION

statement

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

CREATE

COLLATION

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_CCOL_CREATE_COLLATION

SQL_CREATE_DOMAIN

(32-bit

mask)

Indicates

which

clauses

in

the

CREATE

DOMAIN

statement

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

CREATE

DOMAIN

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_CDO_CREATE_DOMAIN

v

SQL_CDO_CONSTRAINT_NAME_DEFINITION

v

SQL_CDO_DEFAULT

v

SQL_CDO_CONSTRAINT

v

SQL_CDO_COLLATION

v

SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED

v

SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE

v

SQL_CDO_CONSTRAINT_DEFERRABLE

v

SQL_CDO_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_SCHEMA

(32-bit

mask)

Indicates

which

clauses

in

the

CREATE

SCHEMA

statement

are

supported

by

the

DBMS:

v

SQL_CS_CREATE_SCHEMA

v

SQL_CS_AUTHORIZATION

v

SQL_CS_DEFAULT_CHARACTER_SET

SQL_CREATE_TABLE

(32-bit

mask)

Indicates

which

clauses

in

the

CREATE

TABLE

statement

are

supported

by

the

DBMS.

The

following

bitmasks

are

used

to

determine

which

clauses

are

supported:

v

SQL_CT_CREATE_TABLE

v

SQL_CT_TABLE_CONSTRAINT

v

SQL_CT_CONSTRAINT_NAME_DEFINITION

The

following

bits

specify

the

ability

to

create

temporary

tables:

v

SQL_CT_COMMIT_PRESERVE,

deleted

rows

are

preserved

on

commit.

v

SQL_CT_COMMIT_DELETE,

deleted

rows

are

deleted

on

commit.

v

SQL_CT_GLOBAL_TEMPORARY,

global

temporary

tables

can

be

created.

v

SQL_CT_LOCAL_TEMPORARY,

local

temporary

tables

can

be

created.

The

following

bits

specify

the

ability

to

create

column

constraints:

v

SQL_CT_COLUMN_CONSTRAINT,

specifying

column

constraints

is

supported.

v

SQL_CT_COLUMN_DEFAULT,

specifying

column

defaults

is

supported.

v

SQL_CT_COLUMN_COLLATION,

specifying

column

collation

is

supported.

The

following

bits

specify

the

supported

constraint

attributes

if

specifying

column

or

table

constraints

is

supported:

v

SQL_CT_CONSTRAINT_INITIALLY_DEFERRED

v

SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE

v

SQL_CT_CONSTRAINT_DEFERRABLE

SQLGetInfo

186

CLI

Guide

and

Reference,

Volume

2

v

SQL_CT_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_TRANSLATION

(32-bit

mask)

Indicates

which

clauses

in

the

CREATE

TRANSLATION

statement

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

CREATE

TRANSLATION

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

is

not

returned

by

DB2

CLI:

v

SQL_CTR_CREATE_TRANSLATION

SQL_CREATE_VIEW

(32-bit

mask)

Indicates

which

clauses

in

the

CREATE

VIEW

statement

are

supported

by

the

DBMS:

v

SQL_CV_CREATE_VIEW

v

SQL_CV_CHECK_OPTION

v

SQL_CV_CASCADED

v

SQL_CV_LOCAL

A

return

value

of

0

means

that

the

CREATE

VIEW

statement

is

not

supported.

SQL_CURSOR_COMMIT_BEHAVIOR

(16-bit

integer)

Indicates

how

a

COMMIT

operation

affects

cursors.

A

value

of:

v

SQL_CB_DELETE,

destroy

cursors

and

drops

access

plans

for

dynamic

SQL

statements.

v

SQL_CB_CLOSE,

destroy

cursors,

but

retains

access

plans

for

dynamic

SQL

statements

(including

non-query

statements)

v

SQL_CB_PRESERVE,

retains

cursors

and

access

plans

for

dynamic

statements

(including

non-query

statements).

Applications

can

continue

to

fetch

data,

or

close

the

cursor

and

re-execute

the

query

without

re-preparing

the

statement.

Note:

After

COMMIT,

a

FETCH

must

be

issued

to

reposition

the

cursor

before

actions

such

as

positioned

updates

or

deletes

can

be

taken.

SQL_CURSOR_ROLLBACK_BEHAVIOR

(16-bit

integer)

Indicates

how

a

ROLLBACK

operation

affects

cursors.

A

value

of:

v

SQL_CB_DELETE,

destroy

cursors

and

drops

access

plans

for

dynamic

SQL

statements.

v

SQL_CB_CLOSE,

destroy

cursors,

but

retains

access

plans

for

dynamic

SQL

statements

(including

non-query

statements)

v

SQL_CB_PRESERVE,

retains

cursors

and

access

plans

for

dynamic

statements

(including

non-query

statements).

Applications

can

continue

to

fetch

data,

or

close

the

cursor

and

re-execute

the

query

without

re-preparing

the

statement.

Note:

DB2

servers

do

not

have

the

SQL_CB_PRESERVE

property.

SQL_CURSOR_SENSITIVITY

(32-bit

unsigned

integer)

Indicates

support

for

cursor

sensitivity:

v

SQL_INSENSITIVE,

all

cursors

on

the

statement

handle

show

the

result

set

without

reflecting

any

changes

made

to

it

by

any

other

cursor

within

the

same

transaction.

v

SQL_UNSPECIFIED,

it

is

unspecified

whether

cursors

on

the

statement

handle

make

visible

the

changes

made

to

a

result

set

by

another

cursor

within

the

same

transaction.

Cursors

on

the

statement

handle

may

make

visible

none,

some,

or

all

such

changes.

v

SQL_SENSITIVE,

cursors

are

sensitive

to

changes

made

by

other

cursors

within

the

same

transaction.

SQLGetInfo

Chapter

1.

DB2

CLI

functions

187

SQL_DATA_SOURCE_NAME

(string)

A

character

string

with

the

data

source

name

used

during

connection.

If

the

application

called

SQLConnect(),

this

is

the

value

of

the

szDSN

argument.

If

the

application

called

SQLDriverConnect()

or

SQLBrowseConnect(),

this

is

the

value

of

the

DSN

keyword

in

the

connection

string

passed

to

the

driver.

If

the

connection

string

did

not

contain

the

DSN

keyword,

this

is

an

empty

string.

SQL_DATA_SOURCE_READ_ONLY

(string)

A

character

string

of

″Y″

indicates

that

the

database

is

set

to

READ

ONLY

mode,

″N″

indicates

that

is

not

set

to

READ

ONLY

mode.

This

characteristic

pertains

only

to

the

data

source

itself;

it

is

not

characteristic

of

the

driver

that

enables

access

to

the

data

source.

SQL_DATABASE_CODEPAGE

(32-bit

unsigned

integer)

Indicates

the

code

page

of

the

database

that

the

application

is

currently

connected

to.

SQL_DATABASE_NAME

(string)

The

name

of

the

current

database

in

use

Note:

This

string

is

the

same

as

that

returned

by

the

SELECT

CURRENT

SERVER

statement

on

non-host

systems.

For

host

databases,

such

as

DB2

for

OS/390

or

DB2

for

OS/400,

the

string

returned

is

the

DCS

database

name

that

was

provided

when

the

CATALOG

DCS

DATABASE

DIRECTORY

command

was

issued

at

the

DB2

Connect

gateway.

SQL_DATETIME_LITERALS

(32-bit

unsigned

integer)

Indicates

the

datetime

literals

that

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

datetime

literals

are

not

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_DL_SQL92_DATE

v

SQL_DL_SQL92_TIME

v

SQL_DL_SQL92_TIMESTAMP

v

SQL_DL_SQL92_INTERVAL_YEAR

v

SQL_DL_SQL92_INTERVAL_MONTH

v

SQL_DL_SQL92_INTERVAL_DAY

v

SQL_DL_SQL92_INTERVAL_HOUR

v

SQL_DL_SQL92_INTERVAL_MINUTE

v

SQL_DL_SQL92_INTERVAL_SECOND

v

SQL_DL_SQL92_INTERVAL_YEAR_TO_MONTH

v

SQL_DL_SQL92_INTERVAL_DAY_TO_HOUR

v

SQL_DL_SQL92_INTERVAL_DAY_TO_MINUTE

v

SQL_DL_SQL92_INTERVAL_DAY_TO_SECOND

v

SQL_DL_SQL92_INTERVAL_HOUR_TO_MINUTE

v

SQL_DL_SQL92_INTERVAL_HOUR_TO_SECOND

v

SQL_DL_SQL92_INTERVAL_MINUTE_TO_SECOND

SQL_DBMS_NAME

(string)

The

name

of

the

DBMS

product

being

accessed

For

example:

v

″DB2/6000″

v

″DB2/2″

SQL_DBMS_VER

(string)

The

Version

of

the

DBMS

product

accessed.

A

string

of

the

form

SQLGetInfo

188

CLI

Guide

and

Reference,

Volume

2

|
|
|

’mm.vv.rrrr’

where

mm

is

the

major

version,

vv

is

the

minor

version

and

rrrr

is

the

release.

For

example,

″0r.01.0000″

translates

to

major

version

r,

minor

version

1,

release

0.

SQL_DDL_INDEX

(32-bit

unsigned

integer)

Indicates

support

for

the

creation

and

dropping

of

indexes:

v

SQL_DI_CREATE_INDEX

v

SQL_DI_DROP_INDEX

SQL_DEFAULT_TXN_ISOLATION

(32-bit

mask)

The

default

transaction

isolation

level

supported

One

of

the

following

masks

are

returned:

v

SQL_TXN_READ_UNCOMMITTED

=

Changes

are

immediately

perceived

by

all

transactions

(dirty

read,

non-repeatable

read,

and

phantoms

are

possible).

This

is

equivalent

to

IBM’s

Uncommitted

Read

level.

v

SQL_TXN_READ_COMMITTED

=

Row

read

by

transaction

1

can

be

altered

and

committed

by

transaction

2

(non-repeatable

read

and

phantoms

are

possible)

This

is

equivalent

to

IBM’s

Cursor

Stability

level.

v

SQL_TXN_REPEATABLE_READ

=

A

transaction

can

add

or

remove

rows

matching

the

search

condition

or

a

pending

transaction

(repeatable

read,

but

phantoms

are

possible)

This

is

equivalent

to

IBM’s

Read

Stability

level.

v

SQL_TXN_SERIALIZABLE

=

Data

affected

by

pending

transaction

is

not

available

to

other

transactions

(repeatable

read,

phantoms

are

not

possible)

This

is

equivalent

to

IBM’s

Repeatable

Read

level.

v

SQL_TXN_VERSIONING

=

Not

applicable

to

IBM

DBMSs.

v

SQL_TXN_NOCOMMIT

=

Any

changes

are

effectively

committed

at

the

end

of

a

successful

operation;

no

explicit

commit

or

rollback

is

allowed.

This

is

a

DB2

UDB

for

AS/400

isolation

level.

In

IBM

terminology,

v

SQL_TXN_READ_UNCOMMITTED

is

Uncommitted

Read;

v

SQL_TXN_READ_COMMITTED

is

Cursor

Stability;

v

SQL_TXN_REPEATABLE_READ

is

Read

Stability;

v

SQL_TXN_SERIALIZABLE

is

Repeatable

Read.

SQL_DESCRIBE_PARAMETER

(string)

″Y″

if

parameters

can

be

described;

″N″

if

not.

SQL_DM_VER

(string)

Reserved.

SQL_DRIVER_HDBC

(32

bits)

DB2

CLI’s

database

handle

SQL_DRIVER_HDESC

(32

bits)

DB2

CLI’s

descriptor

handle

SQL_DRIVER_HENV

(32

bits)

DB2

CLI’s

environment

handle

SQL_DRIVER_HLIB

(32

bits)

Reserved.

SQLGetInfo

Chapter

1.

DB2

CLI

functions

189

SQL_DRIVER_HSTMT

(32

bits)

DB2

CLI’s

statement

handle

In

an

ODBC

environment

with

an

ODBC

Driver

Manager,

if

InfoType

is

set

to

SQL_DRIVER_HSTMT,

the

Driver

Manager

statement

handle

(i.e.

the

one

returned

from

SQLAllocStmt())

must

be

passed

on

input

in

rgbInfoValue

from

the

application.

In

this

case

rgbInfoValue

is

both

an

input

and

an

output

argument.

The

ODBC

Driver

Manager

is

responsible

for

returning

the

mapped

value.

ODBC

applications

wishing

to

call

DB2

CLI

specific

functions

(such

as

the

LOB

functions)

can

access

them,

by

passing

these

handle

values

to

the

functions

after

loading

the

DB2

CLI

library

and

issuing

an

operating

system

call

to

invoke

the

desired

functions.

SQL_DRIVER_NAME

(string)

The

file

name

of

the

DB2

CLI

implementation.

SQL_DRIVER_ODBC_VER

(string)

The

version

number

of

ODBC

that

the

Driver

supports.

DB2

CLI

will

return

″03.00″.

SQL_DRIVER_VER

(string)

The

version

of

the

CLI

driver.

A

string

of

the

form

’mm.vv.rrrr’

where

mm

is

the

major

version,

vv

is

the

minor

version

and

rrrr

is

the

release.

For

example,

″05.01.0000″

translates

to

major

version

5,

minor

version

1,

release

0.

SQL_DROP_ASSERTION

(32-bit

unsigned

integer)

Indicates

which

clause

in

the

DROP

ASSERTION

statement

is

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

DROP

ASSERTION

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

is

not

returned

by

DB2

CLI:

v

SQL_DA_DROP_ASSERTION

SQL_DROP_CHARACTER_SET

(32-bit

unsigned

integer)

Indicates

which

clause

in

the

DROP

CHARACTER

SET

statement

is

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

DROP

CHARACTER

SET

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

is

not

returned

by

DB2

CLI:

v

SQL_DCS_DROP_CHARACTER_SET

SQL_DROP_COLLATION

(32-bit

unsigned

integer)

Indicates

which

clause

in

the

DROP

COLLATION

statement

is

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

DROP

COLLATION

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

is

not

returned

by

DB2

CLI:

v

SQL_DC_DROP_COLLATION

SQL_DROP_DOMAIN

(32-bit

unsigned

integer)

Indicates

which

clauses

in

the

DROP

DOMAIN

statement

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

DROP

DOMAIN

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_DD_DROP_DOMAIN

v

SQL_DD_CASCADE

v

SQL_DD_RESTRICT

SQLGetInfo

190

CLI

Guide

and

Reference,

Volume

2

SQL_DROP_SCHEMA

(32-bit

unsigned

integer)

Indicates

which

clauses

in

the

DROP

SCHEMA

statement

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

DROP

SCHEMA

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_DS_CASCADE

v

SQL_DS_RESTRICT

SQL_DROP_TABLE

(32-bit

unsigned

integer)

Indicates

which

clauses

in

the

DROP

TABLE

statement

are

supported

by

the

DBMS:

v

SQL_DT_DROP_TABLE

v

SQL_DT_CASCADE

v

SQL_DT_RESTRICT

SQL_DROP_TRANSLATION

(32-bit

unsigned

integer)

Indicates

which

clauses

in

the

DROP

TRANSLATION

statement

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

DROP

TRANSLATION

statement

is

not

supported.

ODBC

also

defines

the

following

value

that

is

not

returned

by

DB2

CLI:

v

SQL_DTR_DROP_TRANSLATION

SQL_DROP_VIEW

(32-bit

unsigned

integer)

Indicates

which

clauses

in

the

DROP

VIEW

statement

are

supported

by

the

DBMS.

DB2

CLI

always

returns

zero;

the

DROP

VIEW

statement

is

not

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_DV_CASCADE

v

SQL_DV_RESTRICT

SQL_DTC_TRANSITION_COST

(32-bit

unsigned

mask)

Used

by

Microsoft

Transaction

Server

to

determine

whether

or

not

the

enlistment

process

for

a

connection

is

expensive.

DB2

CLI

returns:

v

SQL_DTC_ENLIST_EXPENSIVE

v

SQL_DTC_UNENLIST_EXPENSIVE

SQL_DYNAMIC_CURSOR_ATTRIBUTES1

(32-bit

mask)

Indicates

the

attributes

of

a

dynamic

cursor

that

are

supported

by

DB2

CLI

(subset

1

of

2).

v

SQL_CA1_NEXT

v

SQL_CA1_ABSOLUTE

v

SQL_CA1_RELATIVE

v

SQL_CA1_BOOKMARK

v

SQL_CA1_LOCK_EXCLUSIVE

v

SQL_CA1_LOCK_NO_CHANGE

v

SQL_CA1_LOCK_UNLOCK

v

SQL_CA1_POS_POSITION

v

SQL_CA1_POS_UPDATE

v

SQL_CA1_POS_DELETE

v

SQL_CA1_POS_REFRESH

v

SQL_CA1_POSITIONED_UPDATE

v

SQL_CA1_POSITIONED_DELETE

v

SQL_CA1_SELECT_FOR_UPDATE

v

SQL_CA1_BULK_ADD

v

SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v

SQL_CA1_BULK_DELETE_BY_BOOKMARK

v

SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQLGetInfo

Chapter

1.

DB2

CLI

functions

191

SQL_DYNAMIC_CURSOR_ATTRIBUTES2

(32-bit

mask)

Indicates

the

attributes

of

a

dynamic

cursor

that

are

supported

by

DB2

CLI

(subset

2

of

2).

v

SQL_CA2_READ_ONLY_CONCURRENCY

v

SQL_CA2_LOCK_CONCURRENCY

v

SQL_CA2_OPT_ROWVER_CONCURRENCY

v

SQL_CA2_OPT_VALUES_CONCURRENCY

v

SQL_CA2_SENSITIVITY_ADDITIONS

v

SQL_CA2_SENSITIVITY_DELETIONS

v

SQL_CA2_SENSITIVITY_UPDATES

v

SQL_CA2_MAX_ROWS_SELECT

v

SQL_CA2_MAX_ROWS_INSERT

v

SQL_CA2_MAX_ROWS_DELETE

v

SQL_CA2_MAX_ROWS_UPDATE

v

SQL_CA2_MAX_ROWS_CATALOG

v

SQL_CA2_MAX_ROWS_AFFECTS_ALL

v

SQL_CA2_CRC_EXACT

v

SQL_CA2_CRC_APPROXIMATE

v

SQL_CA2_SIMULATE_NON_UNIQUE

v

SQL_CA2_SIMULATE_TRY_UNIQUE

v

SQL_CA2_SIMULATE_UNIQUE

SQL_EXPRESSIONS_IN_ORDERBY

(string)

The

character

string

″Y″

indicates

the

database

server

supports

the

DIRECT

specification

of

expressions

in

the

ORDER

BY

list,

″N″

indicates

that

it

does

not.

SQL_FETCH_DIRECTION

(32-bit

mask)

The

supported

fetch

directions.

The

following

bit-masks

are

used

in

conjunction

with

the

flag

to

determine

which

options

are

supported.

v

SQL_FD_FETCH_NEXT

v

SQL_FD_FETCH_FIRST

v

SQL_FD_FETCH_LAST

v

SQL_FD_FETCH_PREV

v

SQL_FD_FETCH_ABSOLUTE

v

SQL_FD_FETCH_RELATIVE

v

SQL_FD_FETCH_RESUME

SQL_FILE_USAGE

(16-bit

integer)

Indicates

how

a

single-tier

driver

directly

treats

files

in

a

data

source.

The

DB2

CLI

driver

is

not

a

single-tier

driver

and

therefor

always

returns

SQL_FILE_NOT_SUPPORTED.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_FILE_TABLE

v

SQL_FILE_CATALOG

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

(32-bit

mask)

Indicates

the

attributes

of

a

forward-only

cursor

that

are

supported

by

DB2

CLI

(subset

1

of

2).

v

SQL_CA1_NEXT

v

SQL_CA1_POSITIONED_UPDATE

v

SQL_CA1_POSITIONED_DELETE

v

SQL_CA1_SELECT_FOR_UPDATE

v

SQL_CA1_LOCK_EXCLUSIVE

v

SQL_CA1_LOCK_NO_CHANGE

v

SQL_CA1_LOCK_UNLOCK

SQLGetInfo

192

CLI

Guide

and

Reference,

Volume

2

v

SQL_CA1_POS_POSITION

v

SQL_CA1_POS_UPDATE

v

SQL_CA1_POS_DELETE

v

SQL_CA1_POS_REFRESH

v

SQL_CA1_BULK_ADD

v

SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v

SQL_CA1_BULK_DELETE_BY_BOOKMARK

v

SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2

(32-bit

mask)

Indicates

the

attributes

of

a

forward-only

cursor

that

are

supported

by

DB2

CLI

(subset

2

of

2).

v

SQL_CA2_READ_ONLY_CONCURRENCY

v

SQL_CA2_LOCK_CONCURRENCY

v

SQL_CA2_MAX_ROWS_SELECT

v

SQL_CA2_MAX_ROWS_CATALOG

v

SQL_CA2_OPT_ROWVER_CONCURRENCY

v

SQL_CA2_OPT_VALUES_CONCURRENCY

v

SQL_CA2_SENSITIVITY_ADDITIONS

v

SQL_CA2_SENSITIVITY_DELETIONS

v

SQL_CA2_SENSITIVITY_UPDATES

v

SQL_CA2_MAX_ROWS_INSERT

v

SQL_CA2_MAX_ROWS_DELETE

v

SQL_CA2_MAX_ROWS_UPDATE

v

SQL_CA2_MAX_ROWS_AFFECTS_ALL

v

SQL_CA2_CRC_EXACT

v

SQL_CA2_CRC_APPROXIMATE

v

SQL_CA2_SIMULATE_NON_UNIQUE

v

SQL_CA2_SIMULATE_TRY_UNIQUE

v

SQL_CA2_SIMULATE_UNIQUE

SQL_GETDATA_EXTENSIONS

(32-bit

mask)

Indicates

whether

extensions

to

the

SQLGetData()

function

are

supported.

The

following

extensions

are

currently

identified

and

supported

by

DB2

CLI:

v

SQL_GD_ANY_COLUMN,

SQLGetData()

can

be

called

for

unbound

columns

that

precede

the

last

bound

column.

v

SQL_GD_ANY_ORDER,

SQLGetData()

can

be

called

for

columns

in

any

order.

ODBC

also

defines

the

following

extensions

which

are

not

returned

by

DB2

CLI:

v

SQL_GD_BLOCK

v

SQL_GD_BOUND

SQL_GROUP_BY

(16-bit

integer)

Indicates

the

degree

of

support

for

the

GROUP

BY

clause

by

the

server:

v

SQL_GB_NO_RELATION,

there

is

no

relationship

between

the

columns

in

the

GROUP

BY

and

in

the

SELECT

list

v

SQL_GB_NOT_SUPPORTED,

GROUP

BY

not

supported

v

SQL_GB_GROUP_BY_EQUALS_SELECT,

GROUP

BY

must

include

all

non-aggregated

columns

in

the

select

list.

v

SQL_GB_GROUP_BY_CONTAINS_SELECT,

the

GROUP

BY

clause

must

contain

all

non-aggregated

columns

in

the

SELECT

list.

v

SQL_GB_COLLATE,

a

COLLATE

clause

can

be

specified

at

the

end

of

each

grouping

column.

SQLGetInfo

Chapter

1.

DB2

CLI

functions

193

SQL_IDENTIFIER_CASE

(16-bit

integer)

Indicates

case

sensitivity

of

object

names

(such

as

table-name).

A

value

of:

v

SQL_IC_UPPER

=

identifier

names

are

stored

in

upper

case

in

the

system

catalog.

v

SQL_IC_LOWER

=

identifier

names

are

stored

in

lower

case

in

the

system

catalog.

v

SQL_IC_SENSITIVE

=

identifier

names

are

case

sensitive,

and

are

stored

in

mixed

case

in

the

system

catalog.

v

SQL_IC_MIXED

=

identifier

names

are

not

case

sensitive,

and

are

stored

in

mixed

case

in

the

system

catalog.

Note:

Identifier

names

in

IBM

DBMSs

are

not

case

sensitive.

SQL_IDENTIFIER_QUOTE_CHAR

(string)

Indicates

the

character

used

to

surround

a

delimited

identifier

SQL_INDEX_KEYWORDS

(32-bit

mask)

Indicates

the

keywords

in

the

CREATE

INDEX

statement

that

are

supported:

v

SQL_IK_NONE,

none

of

the

keywords

are

supported.

v

SQL_IK_ASC,

ASC

keyword

is

supported.

v

SQL_IK_DESC,

DESC

keyword

is

supported.

v

SQL_IK_ALL,

all

keywords

are

supported.

To

see

if

the

CREATE

INDEX

statement

is

supported,

an

application

can

call

SQLGetInfo()

with

the

SQL_DLL_INDEX

InfoType.

SQL_INFO_SCHEMA_VIEWS

(32-bit

mask)

Indicates

the

views

in

the

INFORMATION_SCHEMA

that

are

supported.

DB2

CLI

always

returns

zero;

no

views

in

the

INFORMATION_SCHEMA

are

supported.

ODBC

also

defines

the

following

values

that

are

not

returned

by

DB2

CLI:

v

SQL_ISV_ASSERTIONS

v

SQL_ISV_CHARACTER_SETS

v

SQL_ISV_CHECK_CONSTRAINTS

v

SQL_ISV_COLLATIONS

v

SQL_ISV_COLUMN_DOMAIN_USAGE

v

SQL_ISV_COLUMN_PRIVILEGES

v

SQL_ISV_COLUMNS

v

SQL_ISV_CONSTRAINT_COLUMN_USAGE

v

SQL_ISV_CONSTRAINT_TABLE_USAGE

v

SQL_ISV_DOMAIN_CONSTRAINTS

v

SQL_ISV_DOMAINS

v

SQL_ISV_KEY_COLUMN_USAGE

v

SQL_ISV_REFERENTIAL_CONSTRAINTS

v

SQL_ISV_SCHEMATA

v

SQL_ISV_SQL_LANGUAGES

v

SQL_ISV_TABLE_CONSTRAINTS

v

SQL_ISV_TABLE_PRIVILEGES

v

SQL_ISV_TABLES

v

SQL_ISV_TRANSLATIONS

v

SQL_ISV_USAGE_PRIVILEGES

v

SQL_ISV_VIEW_COLUMN_USAGE

v

SQL_ISV_VIEW_TABLE_USAGE

v

SQL_ISV_VIEWS

SQLGetInfo

194

CLI

Guide

and

Reference,

Volume

2

SQL_INSERT_STATEMENT

(32-bit

mask)

Indicates

support

for

INSERT

statements:

v

SQL_IS_INSERT_LITERALS

v

SQL_IS_INSERT_SEARCHED

v

SQL_IS_SELECT_INTO

SQL_INTEGRITY

(string)

The

″Y″

character

string

indicates

that

the

data

source

supports

Integrity

Enhanced

Facility

(IEF)

in

SQL89

and

in

X/Open

XPG4

Embedded

SQL,

an

″N″

indicates

it

does

not.

In

previous

versions

of

DB2

CLI

this

InfoType

was

SQL_ODBC_SQL_OPT_IEF.

SQL_KEYSET_CURSOR_ATTRIBUTES1

(32-bit

mask)

Indicates

the

attributes

of

a

keyset

cursor

that

are

supported

by

DB2

CLI

(subset

1

of

2).

v

SQL_CA1_NEXT

v

SQL_CA1_ABSOLUTE

v

SQL_CA1_RELATIVE

v

SQL_CA1_BOOKMARK

v

SQL_CA1_LOCK_EXCLUSIVE

v

SQL_CA1_LOCK_NO_CHANGE

v

SQL_CA1_LOCK_UNLOCK

v

SQL_CA1_POS_POSITION

v

SQL_CA1_POS_UPDATE

v

SQL_CA1_POS_DELETE

v

SQL_CA1_POS_REFRESH

v

SQL_CA1_POSITIONED_UPDATE

v

SQL_CA1_POSITIONED_DELETE

v

SQL_CA1_SELECT_FOR_UPDATE

v

SQL_CA1_BULK_ADD

v

SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v

SQL_CA1_BULK_DELETE_BY_BOOKMARK

v

SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_KEYSET_CURSOR_ATTRIBUTES2

(32-bit

mask)

Indicates

the

attributes

of

a

keyset

cursor

that

are

supported

by

DB2

CLI

(subset

2

of

2).

v

SQL_CA2_READ_ONLY_CONCURRENCY

v

SQL_CA2_LOCK_CONCURRENCY

v

SQL_CA2_OPT_ROWVER_CONCURRENCY

v

SQL_CA2_OPT_VALUES_CONCURRENCY

v

SQL_CA2_SENSITIVITY_ADDITIONS

v

SQL_CA2_SENSITIVITY_DELETIONS

v

SQL_CA2_SENSITIVITY_UPDATES

v

SQL_CA2_MAX_ROWS_SELECT

v

SQL_CA2_MAX_ROWS_INSERT

v

SQL_CA2_MAX_ROWS_DELETE

v

SQL_CA2_MAX_ROWS_UPDATE

v

SQL_CA2_MAX_ROWS_CATALOG

v

SQL_CA2_MAX_ROWS_AFFECTS_ALL

v

SQL_CA2_CRC_EXACT

v

SQL_CA2_CRC_APPROXIMATE

v

SQL_CA2_SIMULATE_NON_UNIQUE

v

SQL_CA2_SIMULATE_TRY_UNIQUE

v

SQL_CA2_SIMULATE_UNIQUE

SQLGetInfo

Chapter

1.

DB2

CLI

functions

195

SQL_KEYWORDS

(string)

A

character

string

containing

a

comma-separated

list

of

all

data

source-specific

keywords.

This

is

a

list

of

all

reserved

keywords.

Interoperable

applications

should

not

use

these

keywords

in

object

names.

This

list

does

not

contain

keywords

specific

to

ODBC

or

keywords

used

by

both

the

data

source

and

ODBC.

SQL_LIKE_ESCAPE_CLAUSE

(string)

A

character

string

″Y″

if

the

data

source

supports

an

escape

character

for

the

percent

character

(%)

and

underscore

(_)

character

in

a

LIKE

predicate,

and

the

driver

supports

the

ODBC

syntax

for

defining

a

LIKE

predicate

escape

character;

″N″

otherwise.

SQL_LOCK_TYPES

(32-bit

mask)

Reserved

option,

zero

is

returned

for

the

bit-mask.

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS

(32-bit

unsigned

integer)

The

maximum

number

of

active

concurrent

statements

in

asynchronous

mode

that

DB2

CLI

can

support

on

a

given

connection.

This

value

is

zero

if

there

is

no

specific

limit,

or

the

limit

is

unknown.

SQL_MAX_BINARY_LITERAL_LEN

(32-bit

unsigned

integer)

A

32-bit

unsigned

integer

value

specifying

the

maximum

length

(number

of

hexadecimal

characters,

excluding

the

literal

prefix

and

suffix

returned

by

SQLGetTypeInfo())

of

a

binary

literal

in

an

SQL

statement.

For

example,

the

binary

literal

0xFFAA

has

a

length

of

4.

If

there

is

no

maximum

length

or

the

length

is

unknown,

this

value

is

set

to

zero.

SQL_MAX_CATALOG_NAME_LEN

(16-bit

integer)

The

maximum

length

of

a

catalog

name

in

the

data

source.

This

value

is

zero

if

there

is

no

maximum

length,

or

the

length

is

unknown.

In

previous

versions

of

DB2

CLI

this

fInfoType

was

SQL_MAX_QUALIFIER_NAME_LEN.

SQL_MAX_CHAR_LITERAL_LEN

(32-bit

unsigned

integer)

The

maximum

length

of

a

character

literal

in

an

SQL

statement

(in

bytes).

Zero

if

there

is

no

limit.

SQL_MAX_COLUMN_NAME_LEN

(16-bit

integer)

The

maximum

length

of

a

column

name

(in

bytes).

Zero

if

there

is

no

limit.

SQL_MAX_COLUMNS_IN_GROUP_BY

(16-bit

integer)

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

a

GROUP

BY

clause.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_INDEX

(16-bit

integer)

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

an

index.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_ORDER_BY

(16-bit

integer)

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

an

ORDER

BY

clause.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_SELECT

(16-bit

integer)

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

a

select

list.

Zero

if

no

limit.

SQL_MAX_COLUMNS_IN_TABLE

(16-bit

integer)

Indicates

the

maximum

number

of

columns

that

the

server

supports

in

a

base

table.

Zero

if

no

limit.

SQLGetInfo

196

CLI

Guide

and

Reference,

Volume

2

SQL_MAX_CONCURRENT_ACTIVITIES

(16-bit

integer)

The

maximum

number

of

active

environments

that

the

DB2

CLI

driver

can

support.

If

there

is

no

specified

limit

or

the

limit

is

unknown,

this

value

is

set

to

zero.

In

previous

versions

of

DB2

CLI

this

InfoType

was

SQL_ACTIVE_ENVIRONMENTS.

SQL_MAX_CURSOR_NAME_LEN

(16-bit

integer)

The

maximum

length

of

a

cursor

name

(in

bytes).

This

value

is

zero

if

there

is

no

maximum

length,

or

the

length

is

unknown.

SQL_MAX_DRIVER_CONNECTIONS

(16-bit

integer)

The

maximum

number

of

active

connections

supported

per

application.

Zero

is

returned,

indicating

that

the

limit

is

dependent

on

system

resources.

In

previous

versions

of

DB2

CLI

this

InfoType

was

SQL_ACTIVE_CONNECTIONS.

SQL_MAX_IDENTIFIER_LEN

(16-bit

integer)

The

maximum

size

(in

characters)

that

the

data

source

supports

for

user-defined

names.

SQL_MAX_INDEX_SIZE

(32-bit

unsigned

integer)

Indicates

the

maximum

size

in

bytes

that

the

server

supports

for

the

combined

columns

in

an

index.

Zero

if

no

limit.

SQL_MAX_PROCEDURE_NAME_LEN

(16-bit

integer)

The

maximum

length

of

a

procedure

name

(in

bytes).

SQL_MAX_ROW_SIZE

(32-bit

unsigned

integer)

Specifies

the

maximum

length

in

bytes

that

the

server

supports

in

single

row

of

a

base

table.

Zero

if

no

limit.

SQL_MAX_ROW_SIZE_INCLUDES_LONG

(string)

Set

to

″Y″

to

indicate

that

the

value

returned

by

SQL_MAX_ROW_SIZE

InfoType

includes

the

length

of

product-specific

long

string

data

types.

Otherwise,

set

to

″N″.

SQL_MAX_SCHEMA_NAME_LEN

(16-bit

integer)

The

maximum

length

of

a

schema

qualifier

name

(in

bytes).

In

previous

versions

of

DB2

CLI

this

fInfoType

was

SQL_MAX_OWNER_NAME_LEN.

SQL_MAX_STATEMENT_LEN

(32-bit

unsigned

integer)

Indicates

the

maximum

length

of

an

SQL

statement

string

in

bytes,

including

the

number

of

white

spaces

in

the

statement.

SQL_MAX_TABLE_NAME_LEN

(16-bit

integer)

The

maximum

length

of

a

table

name

(in

bytes).

SQL_MAX_TABLES_IN_SELECT

(16-bit

integer)

Indicates

the

maximum

number

of

table

names

allowed

in

a

FROM

clause

in

a

<query

specification>.

SQL_MAX_USER_NAME_LEN

(16-bit

integer)

Indicates

the

maximum

size

allowed

for

a

<user

identifier>

(in

bytes).

SQL_MULT_RESULT_SETS

(string)

The

character

string

″Y″

indicates

that

the

database

supports

multiple

result

sets,

″N″

indicates

that

it

does

not.

SQLGetInfo

Chapter

1.

DB2

CLI

functions

197

SQL_MULTIPLE_ACTIVE_TXN

(string)

The

character

string

″Y″

indicates

that

active

transactions

on

multiple

connections

are

allowed,

″N″

indicates

that

only

one

connection

at

a

time

can

have

an

active

transaction.

DB2

CLI

returns

″N″

for

coordinated

distributed

unit

of

work

(CONNECT

TYPE

2)

connections,

(since

the

transaction

or

Unit

Of

Work

spans

all

connections),

and

returns

″Y″

for

all

other

connections.

SQL_NEED_LONG_DATA_LEN

(string)

A

character

string

reserved

for

the

use

of

ODBC.

“N”

is

always

returned.

SQL_NON_NULLABLE_COLUMNS

(16-bit

integer)

Indicates

whether

non-nullable

columns

are

supported:

v

SQL_NNC_NON_NULL,

columns

can

be

defined

as

NOT

NULL.

v

SQL_NNC_NULL,

columns

can

not

be

defined

as

NOT

NULL.

SQL_NULL_COLLATION

(16-bit

integer)

Indicates

where

NULLs

are

sorted

in

a

result

set:

v

SQL_NC_HIGH,

null

values

sort

high

v

SQL_NC_LOW,

to

indicate

that

null

values

sort

low

SQL_NUMERIC_FUNCTIONS

(32-bit

mask)

Indicates

the

ODBC

scalar

numeric

functions

supported

These

functions

are

intended

to

be

used

with

the

ODBC

vendor

escape

sequence.

The

following

bit-masks

are

used

to

determine

which

numeric

functions

are

supported:

v

SQL_FN_NUM_ABS

v

SQL_FN_NUM_ACOS

v

SQL_FN_NUM_ASIN

v

SQL_FN_NUM_ATAN

v

SQL_FN_NUM_ATAN2

v

SQL_FN_NUM_CEILING

v

SQL_FN_NUM_COS

v

SQL_FN_NUM_COT

v

SQL_FN_NUM_DEGREES

v

SQL_FN_NUM_EXP

v

SQL_FN_NUM_FLOOR

v

SQL_FN_NUM_LOG

v

SQL_FN_NUM_LOG10

v

SQL_FN_NUM_MOD

v

SQL_FN_NUM_PI

v

SQL_FN_NUM_POWER

v

SQL_FN_NUM_RADIANS

v

SQL_FN_NUM_RAND

v

SQL_FN_NUM_ROUND

v

SQL_FN_NUM_SIGN

v

SQL_FN_NUM_SIN

v

SQL_FN_NUM_SQRT

v

SQL_FN_NUM_TAN

v

SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE

(16-bit

integer)

The

level

of

ODBC

conformance.

v

SQL_OAC_NONE

v

SQL_OAC_LEVEL1

v

SQL_OAC_LEVEL2

SQLGetInfo

198

CLI

Guide

and

Reference,

Volume

2

SQL_ODBC_INTERFACE_CONFORMANCE

(32-bit

unsigned

integer)

Indicates

the

level

of

the

ODBC

3.0

interface

that

the

DB2

CLI

driver

conforms

to:

v

SQL_OIC_CORE,

the

minimum

level

that

all

ODBC

drivers

are

expected

to

conform

to.

This

level

includes

basic

interface

elements

such

as

connection

functions;

functions

for

preparing

and

executing

an

SQL

statement;

basic

result

set

metadata

functions;

basic

catalog

functions;

and

so

on.

v

SQL_OIC_LEVEL1,

a

level

including

the

core

standards

compliance

level

functionality,

plus

scrollable

cursors,

bookmarks,

positioned

updates

and

deletes,

and

so

on.

v

SQL_OIC_LEVEL2,

a

level

including

level

1

standards

compliance

level

functionality,

plus

advanced

features

such

as

sensitive

cursors;

update,

delete,

and

refresh

by

bookmarks;

stored

procedure

support;

catalog

functions

for

primary

and

foreign

keys;

multi-catalog

support;

and

so

on.

SQL_ODBC_SAG_CLI_CONFORMANCE

(16-bit

integer)

The

compliance

to

the

functions

of

the

SQL

Access

Group

(SAG)

CLI

specification.

A

value

of:

v

SQL_OSCC_NOT_COMPLIANT

-

the

driver

is

not

SAG-compliant.

v

SQL_OSCC_COMPLIANT

-

the

driver

is

SAG-compliant.

SQL_ODBC_SQL_CONFORMANCE

(16-bit

integer)

A

value

of:

v

SQL_OSC_MINIMUM,

minimum

ODBC

SQL

grammar

supported

v

SQL_OSC_CORE,

core

ODBC

SQL

Grammar

supported

v

SQL_OSC_EXTENDED,

extended

ODBC

SQL

Grammar

supported

SQL_ODBC_VER

(string)

The

version

number

of

ODBC

that

the

driver

manager

supports.

DB2

CLI

will

return

the

string

″03.01.0000″.

SQL_OJ_CAPABILITIES

(32-bit

mask)

A

32-bit

bit-mask

enumerating

the

types

of

outer

join

supported.

The

bitmasks

are:

v

SQL_OJ_LEFT

:

Left

outer

join

is

supported.

v

SQL_OJ_RIGHT

:

Right

outer

join

is

supported.

v

SQL_OJ_FULL

:

Full

outer

join

is

supported.

v

SQL_OJ_NESTED

:

Nested

outer

join

is

supported.

v

SQL_OJ_ORDERED

:

The

order

of

the

tables

underlying

the

columns

in

the

outer

join

ON

clause

need

not

be

in

the

same

order

as

the

tables

in

the

JOIN

clause.

v

SQL_OJ_INNER

:

The

inner

table

of

an

outer

join

can

also

be

an

inner

join.

v

SQL_OJ_ALL_COMPARISONS_OPS

:

Any

predicate

may

be

used

in

the

outer

join

ON

clause.

If

this

bit

is

not

set,

only

the

equality

(=)

comparison

operator

can

be

used

in

outer

joins.

SQL_ORDER_BY_COLUMNS_IN_SELECT

(string)

Set

to

″Y″

if

columns

in

the

ORDER

BY

clauses

must

be

in

the

select

list;

otherwise

set

to

″N″.

SQL_OUTER_JOINS

(string)

The

character

string:

SQLGetInfo

Chapter

1.

DB2

CLI

functions

199

v

″Y″

indicates

that

outer

joins

are

supported,

and

DB2

CLI

supports

the

ODBC

outer

join

request

syntax.

v

″N″

indicates

that

it

is

not

supported.

SQL_PARAM_ARRAY_ROW_COUNTS

(32-bit

unsigned

integer)

Indicates

the

availability

of

row

counts

in

a

parameterized

execution:

v

SQL_PARC_BATCH,

individual

row

counts

are

available

for

each

set

of

parameters.

This

is

conceptually

equivalent

to

the

driver

generating

a

batch

of

SQL

statements,

one

for

each

parameter

set

in

the

array.

Extended

error

information

can

be

retrieved

by

using

the

SQL_PARAM_STATUS_PTR

descriptor

field.

v

SQL_PARC_NO_BATCH,

there

is

only

one

row

count

available,

which

is

the

cumulative

row

count

resulting

from

the

execution

of

the

statement

for

the

entire

array

of

parameters.

This

is

conceptually

equivalent

to

treating

the

statement

along

with

the

entire

parameter

array

as

one

atomic

unit.

Errors

are

handled

the

same

as

if

one

statement

were

executed.

SQL_PARAM_ARRAY_SELECTS

(32-bit

unsigned

integer)

Indicates

the

availability

of

result

sets

in

a

parameterized

execution:

v

SQL_PAS_BATCH,

there

is

one

result

set

available

per

set

of

parameters.

This

is

conceptually

equivalent

to

the

driver

generating

a

batch

of

SQL

statements,

one

for

each

parameter

set

in

the

array.

v

SQL_PAS_NO_BATCH,

there

is

only

one

result

set

available,

which

represents

the

cumulative

result

set

resulting

from

the

execution

of

the

statement

for

the

entire

array

of

parameters.

This

is

conceptually

equivalent

to

treating

the

statement

along

with

the

entire

parameter

array

as

one

atomic

unit.

v

SQL_PAS_NO_SELECT,

a

driver

does

not

allow

a

result-set

generating

statement

to

be

executed

with

an

array

of

parameters.

SQL_POS_OPERATIONS

(32-bit

mask)

Reserved

option,

zero

is

returned

for

the

bit-mask.

SQL_POSITIONED_STATEMENTS

(32-bit

mask)

Indicates

the

degree

of

support

for

Positioned

UPDATE

and

Positioned

DELETE

statements:

v

SQL_PS_POSITIONED_DELETE

v

SQL_PS_POSITIONED_UPDATE

v

SQL_PS_SELECT_FOR_UPDATE,

indicates

whether

or

not

the

server

requires

the

FOR

UPDATE

clause

to

be

specified

on

a

<query

expression>

in

order

for

a

column

to

be

updateable

via

the

cursor.

SQL_PROCEDURE_TERM

(string)

The

name

a

database

vendor

uses

for

a

procedure

SQL_PROCEDURES

(string)

A

character

string

of

″Y″

indicates

that

the

data

source

supports

procedures

and

DB2

CLI

supports

the

ODBC

procedure

invocation

syntax

specified

by

the

CALL

statement.

″N″

indicates

that

it

does

not.

SQL_QUOTED_IDENTIFIER_CASE

(16-bit

integer)

Returns:

v

SQL_IC_UPPER

-

quoted

identifiers

in

SQL

are

case

insensitive

and

stored

in

upper

case

in

the

system

catalog.

v

SQL_IC_LOWER

-

quoted

identifiers

in

SQL

are

case

insensitive

and

are

stored

in

lower

case

in

the

system

catalog.

v

SQL_IC_SENSITIVE

-

quoted

identifiers

(delimited

identifiers)

in

SQL

are

case

sensitive

and

are

stored

in

mixed

case

in

the

system

catalog.

SQLGetInfo

200

CLI

Guide

and

Reference,

Volume

2

v

SQL_IC_MIXED

-

quoted

identifiers

in

SQL

are

case

insensitive

and

are

stored

in

mixed

case

in

the

system

catalog.

This

should

be

contrasted

with

the

SQL_IDENTIFIER_CASE

InfoType

which

is

used

to

determine

how

(unquoted)

identifiers

are

stored

in

the

system

catalog.

SQL_ROW_UPDATES

(string)

A

character

string

of

″Y″

indicates

a

keyset-driven

or

mixed

cursor

maintains

row

versions

or

values

for

all

fetched

rows

and

therefore

can

only

detect

any

updates

made

to

a

row

by

any

user

since

the

row

was

last

fetched.

(This

only

applies

to

updates,

not

to

deletions

or

insertions.)

The

driver

can

return

the

SQL_ROW_UPDATED

flag

to

the

row

status

array

when

SQLFetchScroll()

is

called.

Otherwise,

″N″.

SQL_SCHEMA_TERM

(string)

The

database

vendor’s

terminology

for

a

schema

(owner).

In

previous

versions

of

DB2

CLI

this

InfoType

was

SQL_OWNER_TERM.

SQL_SCHEMA_USAGE

(32-bit

mask)

Indicates

the

type

of

SQL

statements

that

have

schema

(owners)

associated

with

them

when

these

statements

are

executed,

Schema

qualifiers

(owners)

are:

v

SQL_SU_DML_STATEMENTS

-

supported

in

all

DML

statements.

v

SQL_SU_PROCEDURE_INVOCATION

-

supported

in

the

procedure

invocation

statement.

v

SQL_SU_TABLE_DEFINITION

-

supported

in

all

table

definition

statements.

v

SQL_SU_INDEX_DEFINITION

-

supported

in

all

index

definition

statements.

v

SQL_SU_PRIVILEGE_DEFINITION

-

supported

in

all

privilege

definition

statements

(i.e.

grant

and

revoke

statements).

In

previous

versions

of

DB2

CLI

this

InfoType

was

SQL_OWNER_USAGE.

SQL_SCROLL_CONCURRENCY

(32-bit

mask)

Indicates

the

concurrency

options

supported

for

the

cursor.

The

following

bit-masks

are

used

in

conjunction

with

the

flag

to

determine

which

options

are

supported:

v

SQL_SCCO_READ_ONLY

v

SQL_SCCO_LOCK

v

SQL_SCCO_TIMESTAMP

v

SQL_SCCO_VALUES

DB2

CLI

returns

SQL_SCCO_LOCK.

indicating

that

the

lowest

level

of

locking

that

is

sufficient

to

ensure

the

row

can

be

updated

is

used.

SQL_SCROLL_OPTIONS

(32-bit

mask)

The

scroll

options

supported

for

scrollable

cursors.

The

following

bit-masks

are

used

in

conjunction

with

the

flag

to

determine

which

options

are

supported:

v

SQL_SO_FORWARD_ONLY:

The

cursor

only

scrolls

forward.

v

SQL_SO_KEYSET_DRIVEN:

The

driver

saves

and

uses

the

keys

for

every

row

in

the

result

set.

v

SQL_SO_STATIC:

The

data

in

the

result

set

is

static.

v

SQL_SO_DYNAMIC:

The

driver

keeps

the

keys

for

every

row

in

the

rowset

(the

keyset

size

is

the

same

as

the

rowset

size).

SQLGetInfo

Chapter

1.

DB2

CLI

functions

201

v

SQL_SO_MIXED:

The

driver

keeps

the

keys

for

every

row

in

the

keyset,

and

the

keyset

size

is

greater

than

the

rowset

size.

The

cursor

is

keyset-driven

inside

the

keyset

and

dynamic

outside

the

keyset.

SQL_SEARCH_PATTERN_ESCAPE

(string)

Used

to

specify

what

the

driver

supports

as

an

escape

character

for

catalog

functions

such

as

SQLTables(),

SQLColumns().

SQL_SERVER_NAME

(string)

The

Name

of

the

DB2

Instance.

In

contrast

to

SQL_DATA_SOURCE_NAME,

this

is

the

actual

name

of

the

database

server.

(Some

DBMSs

provide

a

different

name

on

CONNECT

than

the

real

server-name

of

the

database.)

SQL_SPECIAL_CHARACTERS

(string)

A

character

string

containing

all

special

characters

(that

is,

all

characters

except

a...z,

A...Z,

0...9,

and

underscore)

that

can

be

used

in

an

identifier

name,

such

as

table,

column,

or

index

name,

on

the

data

source.

For

example,

″@#″.

If

an

identifier

contains

one

or

more

of

these

characters,

the

identifier

must

be

a

delimited

identifier.

SQL_SQL_CONFORMANCE

(32-bit

unsigned

integer)

Indicates

the

level

of

SQL-92

supported:

v

SQL_SC_SQL92_ENTRY,

entry

level

SQL-92

compliant.

v

SQL_SC_FIPS127_2_TRANSITIONAL,

FIPS

127-2

transitional

level

compliant.

v

SQL_SC_SQL92_FULL,

full

level

SQL-92

compliant.

v

SQL_SC_

SQL92_INTERMEDIATE,

intermediate

level

SQL-92

compliant.

SQL_SQL92_DATETIME_FUNCTIONS

(32-bit

mask)

Indicates

the

datetime

scalar

functions

that

are

supported

by

DB2

CLI

and

the

data

source:

v

SQL_SDF_CURRENT_DATE

v

SQL_SDF_CURRENT_TIME

v

SQL_SDF_CURRENT_TIMESTAMP

SQL_SQL92_FOREIGN_KEY_DELETE_RULE

(32-bit

mask)

Indicates

the

rules

supported

for

a

foreign

key

in

a

DELETE

statement,

as

defined

by

SQL-92:

v

SQL_SFKD_CASCADE

v

SQL_SFKD_NO_ACTION

v

SQL_SFKD_SET_DEFAULT

v

SQL_SFKD_SET_NULL

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE

(32-bit

mask)

Indicates

the

rules

supported

for

a

foreign

key

in

an

UPDATE

statement,

as

defined

by

SQL-92:

v

SQL_SFKU_CASCADE

v

SQL_SFKU_NO_ACTION

v

SQL_SFKU_SET_DEFAULT

v

SQL_SFKU_SET_NULL

SQL_SQL92_GRANT

(32-bit

mask)

Indicates

the

clauses

supported

in

a

GRANT

statement,

as

defined

by

SQL-92:

v

SQL_SG_DELETE_TABLE

v

SQL_SG_INSERT_COLUMN

v

SQL_SG_INSERT_TABLE

v

SQL_SG_REFERENCES_TABLE

v

SQL_SG_REFERENCES_COLUMN

SQLGetInfo

202

CLI

Guide

and

Reference,

Volume

2

v

SQL_SG_SELECT_TABLE

v

SQL_SG_UPDATE_COLUMN

v

SQL_SG_UPDATE_TABLE

v

SQL_SG_USAGE_ON_DOMAIN

v

SQL_SG_USAGE_ON_CHARACTER_SET

v

SQL_SG_USAGE_ON_COLLATION

v

SQL_SG_USAGE_ON_TRANSLATION

v

SQL_SG_WITH_GRANT_OPTION

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS

(32-bit

mask)

Indicates

the

numeric

value

scalar

functions

that

are

supported

by

DB2

CLI

and

the

data

source,

as

defined

in

SQL-92:

v

SQL_SNVF_BIT_LENGTH

v

SQL_SNVF_CHAR_LENGTH

v

SQL_SNVF_CHARACTER_LENGTH

v

SQL_SNVF_EXTRACT

v

SQL_SNVF_OCTET_LENGTH

v

SQL_SNVF_POSITION

SQL_SQL92_PREDICATES

(32-bit

mask)

Indicates

the

predicates

supported

in

a

SELECT

statement,

as

defined

by

SQL-92.

v

SQL_SP_BETWEEN

v

SQL_SP_COMPARISON

v

SQL_SP_EXISTS

v

SQL_SP_IN

v

SQL_SP_ISNOTNULL

v

SQL_SP_ISNULL

v

SQL_SP_LIKE

v

SQL_SP_MATCH_FULL

v

SQL_SP_MATCH_PARTIAL

v

SQL_SP_MATCH_UNIQUE_FULL

v

SQL_SP_MATCH_UNIQUE_PARTIAL

v

SQL_SP_OVERLAPS

v

SQL_SP_QUANTIFIED_COMPARISON

v

SQL_SP_UNIQUE

SQL_SQL92_RELATIONAL_JOIN_OPERATORS

(32-bit

mask)

Indicates

the

relational

join

operators

supported

in

a

SELECT

statement,

as

defined

by

SQL-92.

v

SQL_SRJO_CORRESPONDING_CLAUSE

v

SQL_SRJO_CROSS_JOIN

v

SQL_SRJO_EXCEPT_JOIN

v

SQL_SRJO_FULL_OUTER_JOIN

v

SQL_SRJO_INNER_JOIN

(indicates

support

for

the

INNER

JOIN

syntax,

not

for

the

inner

join

capability)

v

SQL_SRJO_INTERSECT_JOIN

v

SQL_SRJO_LEFT_OUTER_JOIN

v

SQL_SRJO_NATURAL_JOIN

v

SQL_SRJO_RIGHT_OUTER_JOIN

v

SQL_SRJO_UNION_JOIN

SQL_SQL92_REVOKE

(32-bit

mask)

Indicates

which

clauses

the

data

source

supports

in

the

REVOKE

statement,

as

defined

by

SQL-92:

v

SQL_SR_CASCADE

v

SQL_SR_DELETE_TABLE

v

SQL_SR_GRANT_OPTION_FOR

SQLGetInfo

Chapter

1.

DB2

CLI

functions

203

v

SQL_SR_INSERT_COLUMN

v

SQL_SR_INSERT_TABLE

v

SQL_SR_REFERENCES_COLUMN

v

SQL_SR_REFERENCES_TABLE

v

SQL_SR_RESTRICT

v

SQL_SR_SELECT_TABLE

v

SQL_SR_UPDATE_COLUMN

v

SQL_SR_UPDATE_TABLE

v

SQL_SR_USAGE_ON_DOMAIN

v

SQL_SR_USAGE_ON_CHARACTER_SET

v

SQL_SR_USAGE_ON_COLLATION

v

SQL_SR_USAGE_ON_TRANSLATION

SQL_SQL92_ROW_VALUE_CONSTRUCTOR

(32-bit

mask)

Indicates

the

row

value

constructor

expressions

supported

in

a

SELECT

statement,

as

defined

by

SQL-92.

v

SQL_SRVC_VALUE_EXPRESSION

v

SQL_SRVC_NULL

v

SQL_SRVC_DEFAULT

v

SQL_SRVC_ROW_SUBQUERY

SQL_SQL92_STRING_FUNCTIONS

(32-bit

mask)

Indicates

the

string

scalar

functions

that

are

supported

by

DB2

CLI

and

the

data

source,

as

defined

by

SQL-92:

v

SQL_SSF_CONVERT

v

SQL_SSF_LOWER

v

SQL_SSF_UPPER

v

SQL_SSF_SUBSTRING

v

SQL_SSF_TRANSLATE

v

SQL_SSF_TRIM_BOTH

v

SQL_SSF_TRIM_LEADING

v

SQL_SSF_TRIM_TRAILING

SQL_SQL92_VALUE_EXPRESSIONS

(32-bit

mask)

Indicates

the

value

expressions

supported,

as

defined

by

SQL-92.

v

SQL_SVE_CASE

v

SQL_SVE_CAST

v

SQL_SVE_COALESCE

v

SQL_SVE_NULLIF

SQL_STANDARD_CLI_CONFORMANCE

(32-bit

mask)

Indicates

the

CLI

standard

or

standards

to

which

DB2

CLI

conforms:

v

SQL_SCC_XOPEN_CLI_VERSION1

v

SQL_SCC_ISO92_CLI

SQL_STATIC_CURSOR_ATTRIBUTES1

(32-bit

mask)

Indicates

the

attributes

of

a

static

cursor

that

are

supported

by

DB2

CLI

(subset

1

of

2):

v

SQL_CA1_NEXT

v

SQL_CA1_ABSOLUTE

v

SQL_CA1_RELATIVE

v

SQL_CA1_BOOKMARK

v

SQL_CA1_LOCK_NO_CHANGE

v

SQL_CA1_LOCK_EXCLUSIVE

v

SQL_CA1_LOCK_UNLOCK

v

SQL_CA1_POS_POSITION

v

SQL_CA1_POS_UPDATE

v

SQL_CA1_POS_DELETE

SQLGetInfo

204

CLI

Guide

and

Reference,

Volume

2

v

SQL_CA1_POS_REFRESH

v

SQL_CA1_POSITIONED_UPDATE

v

SQL_CA1_POSITIONED_DELETE

v

SQL_CA1_SELECT_FOR_UPDATE

v

SQL_CA1_BULK_ADD

v

SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v

SQL_CA1_BULK_DELETE_BY_BOOKMARK

v

SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_STATIC_CURSOR_ATTRIBUTES2

(32-bit

mask)

Indicates

the

attributes

of

a

static

cursor

that

are

supported

by

DB2

CLI

(subset

2

of

2):

v

SQL_CA2_READ_ONLY_CONCURRENCY

v

SQL_CA2_LOCK_CONCURRENCY

v

SQL_CA2_OPT_ROWVER_CONCURRENCY

v

SQL_CA2_OPT_VALUES_CONCURRENCY

v

SQL_CA2_SENSITIVITY_ADDITIONS

v

SQL_CA2_SENSITIVITY_DELETIONS

v

SQL_CA2_SENSITIVITY_UPDATES

v

SQL_CA2_MAX_ROWS_SELECT

v

SQL_CA2_MAX_ROWS_INSERT

v

SQL_CA2_MAX_ROWS_DELETE

v

SQL_CA2_MAX_ROWS_UPDATE

v

SQL_CA2_MAX_ROWS_CATALOG

v

SQL_CA2_MAX_ROWS_AFFECTS_ALL

v

SQL_CA2_CRC_EXACT

v

SQL_CA2_CRC_APPROXIMATE

v

SQL_CA2_SIMULATE_NON_UNIQUE

v

SQL_CA2_SIMULATE_TRY_UNIQUE

v

SQL_CA2_SIMULATE_UNIQUE

SQL_STATIC_SENSITIVITY

(32-bit

mask)

Indicates

whether

changes

made

by

an

application

with

a

positioned

update

or

delete

statement

can

be

detected

by

that

application:

v

SQL_SS_ADDITIONS:

Added

rows

are

visible

to

the

cursor;

the

cursor

can

scroll

to

these

rows.

All

DB2

servers

see

added

rows.

v

SQL_SS_DELETIONS:

Deleted

rows

are

no

longer

available

to

the

cursor

and

do

not

leave

a

hole

in

the

result

set;

after

the

cursor

scrolls

from

a

deleted

row,

it

cannot

return

to

that

row.

v

SQL_SS_UPDATES:

Updates

to

rows

are

visible

to

the

cursor;

if

the

cursor

scrolls

from

and

returns

to

an

updated

row,

the

data

returned

by

the

cursor

is

the

updated

data,

not

the

original

data.

SQL_STRING_FUNCTIONS

(32-bit

mask)

Indicates

which

string

functions

are

supported.

The

following

bit-masks

are

used

to

determine

which

string

functions

are

supported:

v

SQL_FN_STR_ASCII

v

SQL_FN_STR_BIT_LENGTH

v

SQL_FN_STR_CHAR

v

SQL_FN_STR_CHAR_LENGTH

v

SQL_FN_STR_CHARACTER_LENGTH

v

SQL_FN_STR_CONCAT

v

SQL_FN_STR_DIFFERENCE

v

SQL_FN_STR_INSERT

v

SQL_FN_STR_LCASE

v

SQL_FN_STR_LEFT

SQLGetInfo

Chapter

1.

DB2

CLI

functions

205

v

SQL_FN_STR_LENGTH

v

SQL_FN_STR_LOCATE

v

SQL_FN_STR_LOCATE_2

v

SQL_FN_STR_LTRIM

v

SQL_FN_STR_OCTET_LENGTH

v

SQL_FN_STR_POSITION

v

SQL_FN_STR_REPEAT

v

SQL_FN_STR_REPLACE

v

SQL_FN_STR_RIGHT

v

SQL_FN_STR_RTRIM

v

SQL_FN_STR_SOUNDEX

v

SQL_FN_STR_SPACE

v

SQL_FN_STR_SUBSTRING

v

SQL_FN_STR_UCASE

If

an

application

can

call

the

LOCATE

scalar

function

with

the

string_exp1,

string_exp2,

and

start

arguments,

the

SQL_FN_STR_LOCATE

bitmask

is

returned.

If

an

application

can

only

call

the

LOCATE

scalar

function

with

the

string_exp1

and

string_exp2,

the

SQL_FN_STR_LOCATE_2

bitmask

is

returned.

If

the

LOCATE

scalar

function

is

fully

supported,

both

bitmasks

are

returned.

SQL_SUBQUERIES

(32-bit

mask)

Indicates

which

predicates

support

subqueries:

v

SQL_SQ_COMPARISION

-

the

comparison

predicate

v

SQL_SQ_CORRELATE_SUBQUERIES

-

all

predicates

that

support

subqueries

support

correlated

subqueries

v

SQL_SQ_EXISTS

-

the

exists

predicate

v

SQL_SQ_IN

-

the

in

predicate

v

SQL_SQ_QUANTIFIED

-

the

predicates

containing

a

quantification

scalar

function.

SQL_SYSTEM_FUNCTIONS

(32-bit

mask)

Indicates

which

scalar

system

functions

are

supported.

The

following

bit-masks

are

used

to

determine

which

scalar

system

functions

are

supported:

v

SQL_FN_SYS_DBNAME

v

SQL_FN_SYS_IFNULL

v

SQL_FN_SYS_USERNAME

Note:

These

functions

are

intended

to

be

used

with

the

escape

sequence

in

ODBC.

SQL_TABLE_TERM

(string)

The

database

vendor’s

terminology

for

a

table

SQL_TIMEDATE_ADD_INTERVALS

(32-bit

mask)

Indicates

whether

or

not

the

special

ODBC

system

function

TIMESTAMPADD

is

supported,

and,

if

it

is,

which

intervals

are

supported.

The

following

bitmasks

are

used

to

determine

which

intervals

are

supported:

v

SQL_FN_TSI_FRAC_SECOND

v

SQL_FN_TSI_SECOND

v

SQL_FN_TSI_MINUTE

v

SQL_FN_TSI_HOUR

v

SQL_FN_TSI_DAY

v

SQL_FN_TSI_WEEK

SQLGetInfo

206

CLI

Guide

and

Reference,

Volume

2

v

SQL_FN_TSI_MONTH

v

SQL_FN_TSI_QUARTER

v

SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS

(32-bit

mask)

Indicates

whether

or

not

the

special

ODBC

system

function

TIMESTAMPDIFF

is

supported,

and,

if

it

is,

which

intervals

are

supported.

The

following

bitmasks

are

used

to

determine

which

intervals

are

supported:

v

SQL_FN_TSI_FRAC_SECOND

v

SQL_FN_TSI_SECOND

v

SQL_FN_TSI_MINUTE

v

SQL_FN_TSI_HOUR

v

SQL_FN_TSI_DAY

v

SQL_FN_TSI_WEEK

v

SQL_FN_TSI_MONTH

v

SQL_FN_TSI_QUARTER

v

SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS

(32-bit

mask)

Indicates

which

time

and

date

functions

are

supported.

The

following

bit-masks

are

used

to

determine

which

date

functions

are

supported:

v

SQL_FN_TD_CURRENT_DATE

v

SQL_FN_TD_CURRENT_TIME

v

SQL_FN_TD_CURRENT_TIMESTAMP

v

SQL_FN_TD_CURDATE

v

SQL_FN_TD_CURTIME

v

SQL_FN_TD_DAYNAME

v

SQL_FN_TD_DAYOFMONTH

v

SQL_FN_TD_DAYOFWEEK

v

SQL_FN_TD_DAYOFYEAR

v

SQL_FN_TD_EXTRACT

v

SQL_FN_TD_HOUR

v

SQL_FN_TD_JULIAN_DAY

v

SQL_FN_TD_MINUTE

v

SQL_FN_TD_MONTH

v

SQL_FN_TD_MONTHNAME

v

SQL_FN_TD_NOW

v

SQL_FN_TD_QUARTER

v

SQL_FN_TD_SECOND

v

SQL_FN_TD_SECONDS_SINCE_MIDNIGHT

v

SQL_FN_TD_TIMESTAMPADD

v

SQL_FN_TD_TIMESTAMPDIFF

v

SQL_FN_TD_WEEK

v

SQL_FN_TD_YEAR

Note:

These

functions

are

intended

to

be

used

with

the

escape

sequence

in

ODBC.

SQL_TXN_CAPABLE

(16-bit

integer)

Indicates

whether

transactions

can

contain

DDL

or

DML

or

both.

v

SQL_TC_NONE

=

transactions

not

supported.

v

SQL_TC_DML

=

transactions

can

only

contain

DML

statements

(SELECT,

INSERT,

UPDATE,

DELETE,

etc.)

DDL

statements

(CREATE

TABLE,

DROP

INDEX,

etc.)

encountered

in

a

transaction

cause

an

error.

SQLGetInfo

Chapter

1.

DB2

CLI

functions

207

v

SQL_TC_DDL_COMMIT

=

transactions

can

only

contain

DML

statements.

DDL

statements

encountered

in

a

transaction

cause

the

transaction

to

be

committed.

v

SQL_TC_DDL_IGNORE

=

transactions

can

only

contain

DML

statements.

DDL

statements

encountered

in

a

transaction

are

ignored.

v

SQL_TC_ALL

=

transactions

can

contain

DDL

and

DML

statements

in

any

order.

SQL_TXN_ISOLATION_OPTION

(32-bit

mask)

The

transaction

isolation

levels

available

at

the

currently

connected

database

server.

The

following

masks

are

used

in

conjunction

with

the

flag

to

determine

which

options

are

supported:

v

SQL_TXN_READ_UNCOMMITTED

v

SQL_TXN_READ_COMMITTED

v

SQL_TXN_REPEATABLE_READ

v

SQL_TXN_SERIALIZABLE

v

SQL_TXN_NOCOMMIT

v

SQL_TXN_VERSIONING

For

descriptions

of

each

level

refer

to

SQL_DEFAULT_TXN_ISOLATION.

SQL_UNION

(32-bit

mask)

Indicates

if

the

server

supports

the

UNION

operator:

v

SQL_U_UNION

-

supports

the

UNION

clause

v

SQL_U_UNION_ALL

-

supports

the

ALL

keyword

in

the

UNION

clause

If

SQL_U_UNION_ALL

is

set,

so

is

SQL_U_UNION.

SQL_USER_NAME

(string)

The

user

name

used

in

a

particular

database.

This

is

the

identifier

specified

on

the

SQLConnect()

call.

SQL_XOPEN_CLI_YEAR

(string)

Indicates

the

year

of

publication

of

the

X/Open

specification

with

which

the

version

of

the

driver

fully

complies.

Related

concepts:

v

“Vendor

escape

clauses

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetTypeInfo

function

(CLI)

-

Get

data

type

information”

on

page

222

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“CLI/ODBC

configuration

keywords

listing

by

category”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“ilinfo.c

--

How

to

get

information

at

the

installation

image

level”

v

“ininfo.c

--

How

to

get

information

at

the

instance

level”

SQLGetInfo

208

CLI

Guide

and

Reference,

Volume

2

SQLGetLength

function

(CLI)

-

Retrieve

length

of

a

string

value

Purpose:

Specification:

DB2

CLI

2.1

SQLGetLength()

is

used

to

retrieve

the

length

of

a

large

object

value,

referenced

by

a

large

object

locator

that

has

been

returned

from

the

server

(as

a

result

of

a

fetch,

or

an

SQLGetSubString()

call)

during

the

current

transaction.

Syntax:

SQLRETURN

SQLGetLength

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLSMALLINT

LocatorCType,

SQLINTEGER

Locator,

SQLINTEGER

*StringLength,

SQLINTEGER

*IndicatorValue);

Function

arguments:

Table

91.

SQLGetLength

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

This

can

be

any

statement

handle

which

has

been

allocated

but

which

does

not

currently

have

a

prepared

statement

assigned

to

it.

SQLSMALLINT

LocatorCType

input

The

C

type

of

the

source

LOB

locator.

This

may

be:

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCLOB_LOCATOR

SQLINTEGER

Locator

input

Must

be

set

to

the

LOB

locator

value.

SQLINTEGER

*

StringLength

output

The

length

of

the

returned

information

in

rgbValue

in

bytesa

if

the

target

C

buffer

type

is

intended

for

a

binary

or

character

string

variable

and

not

a

locator

value.

If

the

pointer

is

set

to

NULL

then

the

SQLSTATE

HY009

is

returned.

SQLINTEGER

*

IndicatorValue

output

Always

set

to

zero.

Note:

a

This

is

in

characters

for

DBCLOB

data.

Usage:

SQLGetLength()

can

be

used

to

determine

the

length

of

the

data

value

represented

by

a

LOB

locator.

It

is

used

by

applications

to

determine

the

overall

length

of

the

referenced

LOB

value

so

that

the

appropriate

strategy

to

obtain

some

or

all

of

the

LOB

value

can

be

chosen.

The

length

is

calculated

by

the

database

server

using

the

server

code

page,

and

so

if

the

application

code

page

is

different

from

the

server

code

page,

then

there

may

be

some

complexity

in

calculating

space

requirements

on

the

client.

The

application

will

need

to

allow

for

code

page

expansion

if

any

is

needed.

The

Locator

argument

can

contain

any

valid

LOB

locator

which

has

not

been

explicitly

freed

using

a

FREE

LOCATOR

statement

nor

implicitly

freed

because

the

transaction

during

which

it

was

created

has

ended.

SQLGetLength

Chapter

1.

DB2

CLI

functions

209

The

statement

handle

must

not

have

been

associated

with

any

prepared

statements

or

catalog

function

calls.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

92.

SQLGetLength

SQLSTATEs

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

The

combination

of

LocatorCType

and

Locator

is

not

valid.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY003

Program

type

out

of

range.

LocatorCType

is

not

one

of

SQL_C_CLOB_LOCATOR,

SQL_C_BLOB_LOCATOR,

or

SQL_C_DBCLOB_LOCATOR.

HY009

Invalid

argument

value.

Pointer

to

StringLength

was

NULL.

HY010

Function

sequence

error.

The

specified

StatementHandle

is

not

in

an

allocated

state.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HYC00

Driver

not

capable.

The

application

is

currently

connected

to

a

data

source

that

does

not

support

large

objects.

0F001

The

LOB

token

variable

does

not

currently

represent

any

value.

The

value

specified

for

Locator

has

not

been

associated

with

a

LOB

locator.

Restrictions:

This

function

is

not

available

when

connected

to

a

DB2

server

that

does

not

support

large

objects.

Call

SQLGetFunctions()

with

the

function

type

set

to

SQL_API_SQLGETLENGTH

and

check

the

fExists

output

argument

to

determine

if

the

function

is

supported

for

the

current

connection.

Example:

SQLGetLength

210

CLI

Guide

and

Reference,

Volume

2

/*

get

the

length

of

the

whole

CLOB

data

*/

cliRC

=

SQLGetLength(hstmtLocUse,

SQL_C_CLOB_LOCATOR,

clobLoc,

&clobLen,

&ind);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Large

object

usage

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“LOB

locators

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetSubString

function

(CLI)

-

Retrieve

portion

of

a

string

value”

on

page

219

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

SQLGetPosition

function

(CLI)

-

Return

starting

position

of

string

Purpose:

Specification:

DB2

CLI

2.1

SQLGetPosition()

is

used

to

return

the

starting

position

of

one

string

within

a

LOB

value

(the

source).

The

source

value

must

be

a

LOB

locator,

the

search

string

can

be

a

LOB

locator

or

a

literal

string.

The

source

and

search

LOB

locators

can

be

any

that

have

been

returned

from

the

database

from

a

fetch

or

a

SQLGetSubString()

call

during

the

current

transaction.

Syntax:

SQLRETURN

SQLGetPosition

(SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLSMALLINT

LocatorCType,

SQLINTEGER

SourceLocator,

SQLINTEGER

SearchLocator,

SQLCHAR

*SearchLiteral,

SQLINTEGER

SearchLiteralLength,

SQLUINTEGER

FromPosition,

SQLUINTEGER

*LocatedAt,

SQLINTEGER

*IndicatorValue);

Function

arguments:

Table

93.

SQLGetPosition

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

This

can

be

any

statement

handle

which

has

been

allocated

but

which

does

not

currently

have

a

prepared

statement

assigned

to

it.

SQLGetLength

Chapter

1.

DB2

CLI

functions

211

Table

93.

SQLGetPosition

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

LocatorCType

input

The

C

type

of

the

source

LOB

locator.

This

may

be:

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCLOB_LOCATOR

SQLINTEGER

Locator

input

Locator

must

be

set

to

the

source

LOB

locator.

SQLINTEGER

SearchLocator

input

If

the

SearchLiteral

pointer

is

NULL

and

if

SearchLiteralLength

is

set

to

0,

then

SearchLocator

must

be

set

to

the

LOB

locator

associated

with

the

search

string;

otherwise,

this

argument

is

ignored.

SQLCHAR

*

SearchLiteral

input

This

argument

points

to

the

area

of

storage

that

contains

the

search

string

literal.

If

SearchLiteralLength

is

0,

this

pointer

must

be

NULL.

SQLINTEGER

SearchLiteralLength

input

The

length

of

the

string

in

SearchLiteral(in

bytes).

a

If

this

argument

value

is

0,

then

the

argument

SearchLocator

is

meaningful.

SQLUINTEGER

FromPosition

input

For

BLOBs

and

CLOBs,

this

is

the

position

of

the

first

byte

within

the

source

string

at

which

the

search

is

to

start.

For

DBCLOBs,

this

is

the

first

character.

The

start

byte

or

character

is

numbered

1.

SQLUINTEGER

*

LocatedAt

output

For

BLOBs

and

CLOBs,

this

is

the

byte

position

at

which

the

string

was

located

or,

if

not

located,

the

value

zero.

For

DBCLOBs,

this

is

the

character

position.

If

the

length

of

the

source

string

is

zero,

the

value

1

is

returned.

SQLINTEGER

*

IndicatorValue

output

Always

set

to

zero.

Note:

a

This

is

in

bytes

even

for

DBCLOB

data.

Usage:

SQLGetPosition()

is

used

in

conjunction

with

SQLGetSubString()

in

order

to

obtain

any

portion

of

a

LOB

in

a

random

manner.

In

order

to

use

SQLGetSubString(),

the

location

of

the

substring

within

the

overall

string

must

be

known

in

advance.

In

situations

where

the

start

of

that

substring

can

be

found

by

a

search

string,

SQLGetPosition()

can

be

used

to

obtain

the

starting

position

of

that

substring.

The

Locator

and

SearchLocator

(if

used)

arguments

can

contain

any

valid

LOB

locator

which

has

not

been

explicitly

freed

using

a

FREE

LOCATOR

statement

or

implicitly

freed

because

the

transaction

during

which

it

was

created

has

ended.

The

Locator

and

SearchLocator

must

have

the

same

LOB

locator

type.

The

statement

handle

must

not

have

been

associated

with

any

prepared

statements

or

catalog

function

calls.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

SQLGetPosition

212

CLI

Guide

and

Reference,

Volume

2

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

94.

SQLGetPosition

SQLSTATEs

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

The

combination

of

LocatorCType

and

either

of

the

LOB

locator

values

is

not

valid.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

42818

The

operands

of

an

operator

or

function

are

not

compatible.

The

length

of

the

pattern

is

longer

than

the

maximum

data

length

of

the

associated

variable

SQL

data

type:

v

for

LocatorCType

of

SQL_C_CLOB_LOCATOR,

the

literal

maximum

size

is

that

of

an

SQLVARCHAR

v

for

LocatorCType

of

SQL_C_BLOB_LOCATOR,

the

literal

maximum

size

is

that

of

an

SQLVARBINARY

v

for

LocatorCType

of

SQL_C_DBLOB_LOCATOR,

the

literal

maximum

size

is

that

of

an

SQLVARGRAPHIC

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY009

Invalid

argument

value.

The

pointer

to

the

LocatedAt

argument

was

NULL.

The

argument

value

for

FromPosition

was

not

greater

than

0.

LocatorCType

is

not

one

of

SQL_C_CLOB_LOCATOR,

SQL_C_BLOB_LOCATOR,

or

SQL_C_DBCLOB_LOCATOR.

HY010

Function

sequence

error.

The

specified

StatementHandle

is

not

in

an

allocated

state.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

of

SearchLiteralLength

was

less

than

1,

and

not

SQL_NTS.

HYC00

Driver

not

capable.

The

application

is

currently

connected

to

a

data

source

that

does

not

support

large

objects.

0F001

The

LOB

token

variable

does

not

currently

represent

any

value.

The

value

specified

for

Locator

or

SearchLocator

is

not

currently

a

LOB

locator.

Restrictions:

SQLGetPosition

Chapter

1.

DB2

CLI

functions

213

This

function

is

not

available

when

connected

to

a

DB2

server

that

does

not

support

large

objects.

Call

SQLGetFunctions()

with

the

function

type

set

to

SQL_API_SQLGETPOSITION

and

check

the

fExists

output

argument

to

determine

if

the

function

is

supported

for

the

current

connection.

Example:

/*

get

the

starting

position

of

the

CLOB

piece

of

data

*/

cliRC

=

SQLGetPosition(hstmtLocUse,

SQL_C_CLOB_LOCATOR,

clobLoc,

0,

(SQLCHAR

*)"Interests",

strlen("Interests"),

1,

&clobPiecePos,

&ind);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Large

object

usage

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“LOB

locators

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetLength

function

(CLI)

-

Retrieve

length

of

a

string

value”

on

page

209

v

“SQLGetSubString

function

(CLI)

-

Retrieve

portion

of

a

string

value”

on

page

219

v

“FREE

LOCATOR

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

SQLGetSQLCA

function

(CLI)

-

Get

SQLCA

data

structure

Deprecated:

Note:

SQLGetSQLCA()

has

been

deprecated.

Although

this

version

of

DB2

CLI

continues

to

support

SQLGetSQLCA(),

we

recommend

that

you

stop

using

it

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Use

SQLGetDiagField()

and

SQLGetDiagRec()

to

retrieve

diagnostic

information.

Related

concepts:

v

“Diagnostics

in

CLI

applications

overview”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

on

page

167

SQLGetPosition

214

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

on

page

172

v

“SQLCA

(SQL

communications

area)”

in

the

SQL

Reference,

Volume

1

Related

samples:

v

“clisqlca.c

--

How

to

retrieve

SQLCA-equivalent

information

”

SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLGetStmtAttr()

returns

the

current

setting

of

a

statement

attribute.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLGetStmtAttrW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLGetStmtAttr

(SQLHSTMT

StatementHandle,

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

SQLINTEGER

BufferLength,

SQLINTEGER

*StringLengthPtr);

Function

arguments:

Table

95.

SQLGetStmtAttr

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLINTEGER

Attribute

input

Attribute

to

retrieve.

SQLPOINTER

ValuePtr

output

Pointer

to

a

buffer

in

which

to

return

the

value

of

the

attribute

specified

in

Attribute.

SQLGetSQLCA

Chapter

1.

DB2

CLI

functions

215

Table

95.

SQLGetStmtAttr

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

BufferLength

input

If

Attribute

is

an

ODBC-defined

attribute

and

ValuePtr

points

to

a

character

string

or

a

binary

buffer,

this

argument

should

be

the

length

of

*ValuePtr.

If

Attribute

is

an

ODBC-defined

attribute

and

*ValuePtr

is

an

integer,

BufferLength

is

ignored.

If

Attribute

is

a

DB2

CLI

attribute,

the

application

indicates

the

nature

of

the

attribute

by

setting

the

BufferLength

argument.

BufferLength

can

have

the

following

values:

v

If

*ValuePtr

is

a

pointer

to

a

character

string,

then

BufferLength

is

the

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

string,

or

SQL_NTS.

v

If

*ValuePtr

is

a

pointer

to

a

binary

buffer,

then

the

application

places

the

result

of

the

SQL_LEN_BINARY_ATTR(length)

macro

in

BufferLength.

This

places

a

negative

value

in

BufferLength.

v

If

*ValuePtr

is

a

pointer

to

a

value

other

than

a

character

string

or

binary

string,

then

BufferLength

should

have

the

value

SQL_IS_POINTER.

v

If

*ValuePtr

is

contains

a

fixed-length

data

type,

then

BufferLength

is

either

SQL_IS_INTEGER

or

SQL_IS_UINTEGER,

as

appropriate.

v

If

the

value

returned

in

ValuePtr

is

a

Unicode

string,

the

BufferLength

argument

must

be

an

even

number.

SQLSMALLINT

*

StringLengthPtr

output

A

pointer

to

a

buffer

in

which

to

return

the

total

number

of

bytes

(excluding

the

null

termination

character)

available

to

return

in

*ValuePtr.

If

this

is

a

null

pointer,

no

length

is

returned.

If

the

attribute

value

is

a

character

string,

and

the

number

of

bytes

available

to

return

is

greater

than

or

equal

to

BufferLength,

the

data

in

*ValuePtr

is

truncated

to

BufferLength

minus

the

length

of

a

null

termination

character

and

is

null-terminated

by

the

DB2

CLI.

Usage:

A

call

to

SQLGetStmtAttr()

returns

in

*ValuePtr

the

value

of

the

statement

attribute

specified

in

Attribute.

That

value

can

either

be

a

32-bit

value

or

a

null-terminated

character

string.

If

the

value

is

a

null-terminated

string,

the

application

specifies

the

maximum

length

of

that

string

in

the

BufferLength

argument,

and

DB2

CLI

returns

the

length

of

that

string

in

the

*StringLengthPtr

buffer.

If

the

value

is

a

32-bit

value,

the

BufferLength

and

StringLengthPtr

arguments

are

not

used.

The

following

statement

attributes

are

read-only,

so

can

be

retrieved

by

SQLGetStmtAttr(),

but

not

set

by

SQLSetStmtAttr().

Refer

to

the

list

of

statement

attributes

for

all

statement

attributes

that

can

be

set

and

retrieved.

v

SQL_ATTR_IMP_PARAM_DESC

v

SQL_ATTR_IMP_ROW_DESC

v

SQL_ATTR_ROW_NUMBER

Return

codes:

v

SQL_SUCCESS

SQLGetStmtAttr

216

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|

|
|
|

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

96.

SQLGetStmtAttr

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

data

returned

in

*ValuePtr

was

truncated

to

be

BufferLength

minus

the

length

of

a

null

termination

character.

The

length

of

the

untruncated

string

value

is

returned

in

*StringLengthPtr.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

24000

Invalid

cursor

state.

The

argument

Attribute

was

SQL_ATTR_ROW_NUMBER

and

the

cursor

was

not

open,

or

the

cursor

was

positioned

before

the

start

of

the

result

set

or

after

the

end

of

the

result

set.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

An

asynchronously

executing

function

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

SQLExecute()

or

SQLExecDirect()

was

called

for

the

StatementHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

specified

for

argument

BufferLength

was

less

than

0.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

was

not

valid

for

this

version

of

DB2

CLI

HY109

Invalid

cursor

position.

The

Attribute

argument

was

SQL_ATTR_ROW_NUMBER

and

the

row

had

been

deleted

or

could

not

be

fetched.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

Attribute

was

a

valid

DB2

CLI

attribute

for

the

version

of

DB2

CLI,

but

was

not

supported

by

the

data

source.

Restrictions:

None.

Example:

SQLGetStmtAttr

Chapter

1.

DB2

CLI

functions

217

/*

get

the

handle

for

the

implicitly

allocated

descriptor

*/

rc

=

SQLGetStmtAttr(hstmt,

SQL_ATTR_IMP_ROW_DESC,

&hIRD,

SQL_IS_INTEGER,

&indicator);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetConnectAttr

function

(CLI)

-

Get

current

attribute

setting”

on

page

145

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

v

“Statement

attributes

(CLI)

list”

on

page

334

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbinfo.c

--

How

to

get

and

set

information

at

the

database

level”

v

“dbuse.c

--

How

to

use

a

database”

SQLGetStmtOption

function

(CLI)

-

Return

current

setting

of

a

statement

option

Deprecated:

Note:

In

ODBC

3.0,

SQLGetStmtOption()

has

been

deprecated

and

replaced

with

SQLGetStmtAttr().

Although

this

version

of

DB2

CLI

continues

to

support

SQLGetStmtOption(),

we

recommend

that

you

use

SQLGetStmtAttr()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLGetStmtOption(hstmt,

SQL_ATTR_CURSOR_HOLD,

pvCursorHold);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLGetStmtAttr(hstmt,

SQL_ATTR_CURSOR_HOLD,

pvCursorHold,

SQL_IS_INTEGER,

NULL);

Related

reference:

v

“CLI

and

ODBC

function

summary”

on

page

1

v

“SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute”

on

page

215

SQLGetStmtAttr

218

CLI

Guide

and

Reference,

Volume

2

SQLGetSubString

function

(CLI)

-

Retrieve

portion

of

a

string

value

Purpose:

Specification:

DB2

CLI

2.1

SQLGetSubString()

is

used

to

retrieve

a

portion

of

a

large

object

value,

referenced

by

a

large

object

locator

that

has

been

returned

from

the

server

(returned

by

a

fetch

or

a

previous

SQLGetSubString()

call)

during

the

current

transaction.

Syntax:

SQLRETURN

SQLGetSubString

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLSMALLINT

LocatorCType,

SQLINTEGER

SourceLocator,

SQLUINTEGER

FromPosition,

SQLUINTEGER

ForLength,

SQLSMALLINT

TargetCType,

SQLPOINTER

DataPtr,

/*

rgbValue

*/

SQLINTEGER

BufferLength,

/*

cbValueMax

*/

SQLINTEGER

*StringLength,

SQLINTEGER

*IndicatorValue);

Function

arguments:

Table

97.

SQLGetSubString

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

This

can

be

any

statement

handle

which

has

been

allocated

but

which

does

not

currently

have

a

prepared

statement

assigned

to

it.

SQLSMALLINT

LocatorCType

input

The

C

type

of

the

source

LOB

locator.

This

may

be:

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DBCLOB_LOCATOR

SQLINTEGER

Locator

input

Locator

must

be

set

to

the

source

LOB

locator

value.

SQLUINTEGER

FromPosition

input

For

BLOBs

and

CLOBs,

this

is

the

position

of

the

first

byte

to

be

returned

by

the

function.

For

DBCLOBs,

this

is

the

first

character.

The

start

byte

or

character

is

numbered

1.

SQLUINTEGER

ForLength

input

This

is

the

length

of

the

string

to

be

returned

by

the

function.

For

BLOBs

and

CLOBs,

this

is

the

length

in

bytes.

For

DBCLOBs,

this

is

the

length

in

characters.

If

FromPosition

is

less

than

the

length

of

the

source

string

but

FromPosition

+

ForLength

-

1

extends

beyond

the

end

of

the

source

string,

the

result

is

padded

on

the

right

with

the

necessary

number

of

characters

(X’00’

for

BLOBs,

single

byte

blank

character

for

CLOBs,

and

double

byte

blank

character

for

DBCLOBs).

SQLGetSubString

Chapter

1.

DB2

CLI

functions

219

Table

97.

SQLGetSubString

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

TargetCType

input

The

C

data

type

of

the

DataPtr.

The

target

must

always

be

either

a

LOB

locator

C

buffer

type:

v

SQL_C_CLOB_LOCATOR

v

SQL_C_BLOB_LOCATOR

v

SQL_C_DBCLOB_LOCATOR

or

a

C

string

type:

v

SQL_C_CHAR

v

SQL_C_WCHAR

v

SQL_C_BINARY

v

SQL_C_DBCHAR

SQLPOINTER

DataPtr

output

Pointer

to

the

buffer

where

the

retrieved

string

value

or

a

LOB

locator

is

to

be

stored.

SQLINTEGER

BufferLength

input

Maximum

size

of

the

buffer

pointed

to

by

DataPtr

in

bytes.

SQLINTEGER

*

StringLength

output

The

length

of

the

returned

information

in

DataPtr

in

bytesa

if

the

target

C

buffer

type

is

intended

for

a

binary

or

character

string

variable

and

not

a

locator

value.

If

the

pointer

is

set

to

NULL,

nothing

is

returned.

SQLINTEGER

*

IndicatorValue

output

Always

set

to

zero.

Note:

a

This

is

in

bytes

even

for

DBCLOB

data.

Usage:

SQLGetSubString()

is

used

to

obtain

any

portion

of

the

string

that

is

represented

by

the

LOB

locator.

There

are

two

choices

for

the

target:

v

The

target

can

be

an

appropriate

C

string

variable.

v

A

new

LOB

value

can

be

created

on

the

server

and

the

LOB

locator

for

that

value

can

be

assigned

to

a

target

application

variable

on

the

client.

SQLGetSubString()

can

be

used

as

an

alternative

to

SQLGetData()

for

getting

LOB

data

in

pieces.

In

this

case

a

column

is

first

bound

to

a

LOB

locator,

which

is

then

used

to

fetch

the

LOB

as

a

whole

or

in

pieces.

The

Locator

argument

can

contain

any

valid

LOB

locator

which

has

not

been

explicitly

freed

using

a

FREE

LOCATOR

statement

nor

implicitly

freed

because

the

transaction

during

which

it

was

created

has

ended.

The

statement

handle

must

not

have

been

associated

with

any

prepared

statements

or

catalog

function

calls.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLGetSubString

220

CLI

Guide

and

Reference,

Volume

2

Diagnostics:

Table

98.

SQLGetSubString

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

amount

of

data

to

be

returned

is

longer

than

BufferLength.

The

actual

length

of

data

available

for

return

is

stored

in

StringLength.

07006

Invalid

conversion.

The

value

specified

for

TargetCType

was

not

SQL_C_CHAR,

SQL_WCHAR,

SQL_C_BINARY,

SQL_C_DBCHAR,

or

a

LOB

locator.

The

value

specified

for

TargetCType

is

inappropriate

for

the

source

(for

example

SQL_C_DBCHAR

for

a

BLOB

column).

22011

A

substring

error

occurred.

FromPosition

is

greater

than

the

of

length

of

the

source

string.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY003

Program

type

out

of

range.

LocatorCType

is

not

one

of

SQL_C_CLOB_LOCATOR,

SQL_C_BLOB_LOCATOR,

or

SQL_C_DBCLOB_LOCATOR.

HY009

Invalid

argument

value.

The

value

specified

for

FromPosition

or

for

ForLength

was

not

a

positive

integer.

HY010

Function

sequence

error.

The

specified

StatementHandle

is

not

in

an

allocated

state.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

value

of

BufferLength

was

less

than

0.

HYC00

Driver

not

capable.

The

application

is

currently

connected

to

a

data

source

that

does

not

support

large

objects.

0F001

No

locator

currently

assigned

The

value

specified

for

Locator

is

not

currently

a

LOB

locator.

Restrictions:

This

function

is

not

available

when

connected

to

a

DB2

server

that

does

not

support

large

objects.

Call

SQLGetFunctions()

with

the

function

type

set

to

SQL_API_SQLGETSUBSTRING

and

check

the

fExists

output

argument

to

determine

if

the

function

is

supported

for

the

current

connection.

Example:

/*

read

the

piece

of

CLOB

data

in

buffer

*/

cliRC

=

SQLGetSubString(hstmtLocUse,

SQL_C_CLOB_LOCATOR,

SQLGetSubString

Chapter

1.

DB2

CLI

functions

221

clobLoc,

clobPiecePos,

clobLen

-

clobPiecePos,

SQL_C_CHAR,

buffer,

clobLen

-

clobPiecePos

+

1,

&clobPieceLen,

&ind);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“LOB

usage

in

ODBC

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

on

page

117

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

on

page

151

v

“SQLGetLength

function

(CLI)

-

Retrieve

length

of

a

string

value”

on

page

209

v

“SQLGetPosition

function

(CLI)

-

Return

starting

position

of

string”

on

page

211

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

SQLGetTypeInfo

function

(CLI)

-

Get

data

type

information

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLGetTypeInfo()

returns

information

about

the

data

types

that

are

supported

by

the

DBMSs

associated

with

DB2

CLI.

The

information

is

returned

in

an

SQL

result

set.

The

columns

can

be

received

using

the

same

functions

that

are

used

to

process

a

query.

Syntax:

SQLRETURN

SQLGetTypeInfo

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLSMALLINT

DataType);

/*

fSqlType

*/

Function

arguments:

Table

99.

SQLGetTypeInfo

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLGetSubString

222

CLI

Guide

and

Reference,

Volume

2

Table

99.

SQLGetTypeInfo

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

DataType

input

The

SQL

data

type

being

queried.

The

supported

types

are:

v

SQL_ALL_TYPES

v

SQL_BIGINT

v

SQL_BINARY

v

SQL_BIT

v

SQL_BLOB

v

SQL_CHAR

v

SQL_CLOB

v

SQL_DATE

v

SQL_DBCLOB

v

SQL_DECIMAL

v

SQL_DOUBLE

v

SQL_FLOAT

v

SQL_GRAPHIC

v

SQL_INTEGER

v

SQL_LONGVARBINARY

v

SQL_LONGVARCHAR

v

SQL_LONGVARGRAPHIC

v

SQL_NUMERIC

v

SQL_REAL

v

SQL_SMALLINT

v

SQL_TIME

v

SQL_TIMESTAMP

v

SQL_TINYINT

v

SQL_VARBINARY

v

SQL_VARCHAR

v

SQL_VARGRAPHIC

If

SQL_ALL_TYPES

is

specified,

information

about

all

supported

data

types

would

be

returned

in

ascending

order

by

TYPE_NAME.

All

unsupported

data

types

would

be

absent

from

the

result

set.

Usage:

Since

SQLGetTypeInfo()

generates

a

result

set

and

is

equivalent

to

executing

a

query,

it

will

generate

a

cursor

and

begin

a

transaction.

To

prepare

and

execute

another

statement

on

this

statement

handle,

the

cursor

must

be

closed.

If

SQLGetTypeInfo()

is

called

with

an

invalid

DataType,

an

empty

result

set

is

returned.

If

either

the

LONGDATACOMPAT

keyword

or

the

SQL_ATTR_LONGDATA_COMPAT

connection

attribute

is

set,

then

SQL_LONGVARBINARY,

SQL_LONGVARCHAR

and

SQL_LONGVARGRAPHIC

will

be

returned

for

the

DATA_TYPE

argument

instead

of

SQL_BLOB,

SQL_CLOB

and

SQL_DBCLOB.

The

columns

of

the

result

set

generated

by

this

function

are

described

below.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

The

data

types

returned

are

those

that

can

be

used

in

a

CREATE

TABLE,

ALTER

SQLGetTypeInfo

Chapter

1.

DB2

CLI

functions

223

TABLE,

DDL

statement.

Non-persistent

data

types

such

as

the

locator

data

types

are

not

part

of

the

returned

result

set.

User-defined

data

types

are

not

returned

either.

Columns

returned

by

SQLGetTypeInfo

Column

1

TYPE_NAME

(VARCHAR(128)

NOT

NULL

Data

Type)

Data

source-dependent

data

type

name;

for

example,

″CHAR()″,

″LONG

VARBINARY″.

Applications

must

use

this

name

in

the

CREATE

TABLE

and

ALTER

TABLE

statements.

Column

2

DATA_TYPE

(SMALLINT

NOT

NULL

Data

Type)

SQL

data

type

define

values,

e.g.

SQL_VARCHAR,

SQL_BLOB,

SQL_DATE,

SQL_INTEGER.

Column

3

COLUMN_SIZE

(INTEGER

Data

Type)

If

the

data

type

is

a

character

or

binary

string,

then

this

column

contains

the

maximum

length

in

bytes;

if

it

is

a

graphic

(DBCS)

string,

this

is

the

number

of

double

byte

characters

for

the

column

(the

CLI/ODBC

configuration

keyword

Graphic

can

change

this

default

behaviour).

For

date,

time,

timestamp

data

types,

this

is

the

total

number

of

characters

required

to

display

the

value

when

converted

to

character.

For

numeric

data

types,

this

is

the

total

number

of

digits

(precision).

Column

4

LITERAL_PREFIX

(VARCHAR(128)

Data

Type)

Character

that

DB2

recognizes

as

a

prefix

for

a

literal

of

this

data

type.

This

column

is

null

for

data

types

where

a

literal

prefix

is

not

applicable.

Column

5

LITERAL_SUFFIX

(VARCHAR(128)

Data

Type)

Character

that

DB2

recognizes

as

a

suffix

for

a

literal

of

this

data

type.

This

column

is

null

for

data

types

where

a

literal

prefix

is

not

applicable.

Column

6

CREATE_PARAMS

(VARCHAR(128)

Data

Type)

The

text

of

this

column

contains

a

list

of

keywords,

separated

by

commas,

corresponding

to

each

parameter

the

application

may

specify

in

parenthesis

when

using

the

name

in

the

TYPE_NAME

column

as

a

data

type

in

SQL.

The

keywords

in

the

list

can

be

any

of

the

following:

LENGTH,

PRECISION,

SCALE.

They

appear

in

the

order

that

the

SQL

syntax

requires

that

they

be

used.

A

NULL

indicator

is

returned

if

there

are

no

parameters

for

the

data

type

definition,

(such

as

INTEGER).

Note:

The

intent

of

CREATE_PARAMS

is

to

enable

an

application

to

customize

the

interface

for

a

DDL

builder.

An

application

should

expect,

using

this,

only

to

be

able

to

determine

the

number

of

arguments

required

to

define

the

data

type

and

to

have

localized

text

that

could

be

used

to

label

an

edit

control.

Column

7

NULLABLE

(SMALLINT

NOT

NULL

Data

Type)

Indicates

whether

the

data

type

accepts

a

NULL

value

v

Set

to

SQL_NO_NULLS

if

NULL

values

are

disallowed.

v

Set

to

SQL_NULLABLE

if

NULL

values

are

allowed.

v

Set

to

SQL_NULLABLE_UNKNOWN

if

it

is

not

known

whether

NULL

values

are

allowed

or

not.

Column

8

CASE_SENSITIVE

(SMALLINT

NOT

NULL

Data

Type)

Indicates

whether

a

character

data

type

is

case-sensitive

in

collations

and

comparisons.

Valid

values

are

SQL_TRUE

and

SQL_FALSE.

SQLGetTypeInfo

224

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|

|
|

|

Column

9

SEARCHABLE

(SMALLINT

NOT

NULL

Data

Type)

Indicates

how

the

data

type

is

used

in

a

WHERE

clause.

Valid

values

are:

v

SQL_UNSEARCHABLE

:

if

the

data

type

cannot

be

used

in

a

WHERE

clause.

v

SQL_LIKE_ONLY

:

if

the

data

type

can

be

used

in

a

WHERE

clause

only

with

the

LIKE

predicate.

v

SQL_ALL_EXCEPT_LIKE

:

if

the

data

type

can

be

used

in

a

WHERE

clause

with

all

comparison

operators

except

LIKE.

v

SQL_SEARCHABLE

:

if

the

data

type

can

be

used

in

a

WHERE

clause

with

any

comparison

operator.

Column

10

UNSIGNED_ATTRIBUTE

(SMALLINT

Data

Type)

Indicates

whether

the

data

type

is

unsigned.

The

valid

values

are:

SQL_TRUE,

SQL_FALSE

or

NULL.

A

NULL

indicator

is

returned

if

this

attribute

is

not

applicable

to

the

data

type.

Column

11

FIXED_PREC_SCALE

(SMALLINT

NOT

NULL

Data

Type)

Contains

the

value

SQL_TRUE

if

the

data

type

is

exact

numeric

and

always

has

the

same

precision

and

scale;

otherwise,

it

contains

SQL_FALSE.

Column

12

AUTO_INCREMENT

(SMALLINT

Data

Type)

Contains

SQL_TRUE

if

a

column

of

this

data

type

is

automatically

set

to

a

unique

value

when

a

row

is

inserted;

otherwise,

contains

SQL_FALSE.

Column

13

LOCAL_TYPE_NAME

(VARCHAR(128)

Data

Type)

This

column

contains

any

localized

(native

language)

name

for

the

data

type

that

is

different

from

the

regular

name

of

the

data

type.

If

there

is

no

localized

name,

this

column

is

NULL.

This

column

is

intended

for

display

only.

The

character

set

of

the

string

is

locale-dependent

and

is

typically

the

default

character

set

of

the

database.

Column

14

MINIMUM_SCALE

(INTEGER

Data

Type)

The

minimum

scale

of

the

SQL

data

type.

If

a

data

type

has

a

fixed

scale,

the

MINIMUM_SCALE

and

MAXIMUM_SCALE

columns

both

contain

the

same

value.

NULL

is

returned

where

scale

is

not

applicable.

Column

15

MAXIMUM_SCALE

(INTEGER

Data

Type)

The

maximum

scale

of

the

SQL

data

type.

NULL

is

returned

where

scale

is

not

applicable.

If

the

maximum

scale

is

not

defined

separately

in

the

DBMS,

but

is

defined

instead

to

be

the

same

as

the

maximum

length

of

the

column,

then

this

column

contains

the

same

value

as

the

COLUMN_SIZE

column.

Column

16

SQL_DATA_TYPE

(SMALLINT

NOT

NULL

Data

Type)

The

value

of

the

SQL

data

type

as

it

appears

in

the

SQL_DESC_TYPE

field

of

the

descriptor.

This

column

is

the

same

as

the

DATA_TYPE

column

(except

for

interval

and

datetime

data

types

which

DB2

CLI

does

not

support).

Column

17

SQL_DATETIME_SUB

(SMALLINT

Data

Type)

This

field

is

always

NULL

(DB2

CLI

does

not

support

interval

and

datetime

data

types).

Column

18

NUM_PREC_RADIX

(INTEGER

Data

Type)

If

the

data

type

is

an

approximate

numeric

type,

this

column

contains

the

value

2

to

indicate

that

COLUMN_SIZE

specifies

a

number

of

bits.

For

exact

numeric

types,

this

column

contains

the

value

10

to

indicate

that

COLUMN_SIZE

specifies

a

number

of

decimal

digits.

Otherwise,

this

column

is

NULL.

SQLGetTypeInfo

Chapter

1.

DB2

CLI

functions

225

Column

19

INTERVAL_PRECISION

(SMALLINT

Data

Type)

This

field

is

always

NULL

(DB2

CLI

does

not

support

interval

data

types).

Return

codes:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

100.

SQLGetTypeInfo

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

StatementHandle

had

not

been

closed.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY004

SQL

data

type

out

of

range.

An

invalid

DataType

was

specified.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Example:

/*

get

data

type

information

*/

cliRC

=

SQLGetTypeInfo(hstmt,

SQL_ALL_TYPES);

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

on

page

125

v

“SQLGetInfo

function

(CLI)

-

Get

general

information”

on

page

178

v

“SQLSetColAttributes

function

(CLI)

-

Set

column

attributes”

on

page

264

v

“ALTER

TABLE

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

TABLE

statement”

in

the

SQL

Reference,

Volume

2

SQLGetTypeInfo

226

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“CLI/ODBC

configuration

keywords

listing

by

category”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtinfo.c

--

How

get

information

about

data

types”

SQLMoreResults

function

(CLI)

-

Determine

if

there

are

more

result

sets

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLMoreResults()

determines

whether

there

is

more

information

available

on

the

statement

handle

which

has

been

associated

with:

v

an

array

input

of

parameter

values

for

a

query

v

a

stored

procedure

that

is

returning

result

sets

v

or

batched

SQL

Syntax:

SQLRETURN

SQLMoreResults

(SQLHSTMT

StatementHandle);

/*

hstmt

*/

Function

arguments:

Table

101.

SQLMoreResults

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

Usage:

This

function

is

used

to

return

multiple

results

set

in

a

sequential

manner

upon

the

execution

of:

v

a

parameterized

query

with

an

array

of

input

parameter

values

specified

with

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

and

SQLBindParameter(),

or

v

a

stored

procedure

containing

SQL

queries,

the

cursors

of

which

have

been

left

open

so

that

the

result

sets

remain

accessible

when

the

stored

procedure

has

finished

execution.

For

this

scenario,

the

stored

procedure

is

typically

trying

to

return

multiple

result

sets.

v

or

batched

SQL.

When

multiple

SQL

statements

are

batched

together

during

a

single

SQLExecute()

or

SQLExecDirect().

After

completely

processing

the

first

result

set,

the

application

can

call

SQLMoreResults()

to

determine

if

another

result

set

is

available.

If

the

current

result

set

has

unfetched

rows,

SQLMoreResults()

discards

them

by

closing

the

cursor

and,

if

another

result

set

is

available,

returns

SQL_SUCCESS.

If

all

the

result

sets

have

been

processed,

SQLMoreResults()

returns

SQL_NO_DATA_FOUND.

SQLGetTypeInfo

Chapter

1.

DB2

CLI

functions

227

Applications

that

want

to

be

able

to

manipulate

more

than

one

result

set

at

the

same

time

can

use

the

DB2

CLI

function

SQLNextResult()

to

move

a

result

set

to

another

statement

handle.

SQLNextResult()

does

not

support

batched

statements.

When

using

batched

SQL,

SQLExecute()

or

SQLExecDirect()

will

only

execute

the

first

SQL

statement

in

the

batch.

SQLMoreResults()

can

then

be

called

to

execute

the

next

SQL

statement

and

will

return

SQL_SUCCESS

if

the

next

statement

is

successfully

executed.

If

there

are

no

more

statements

to

be

executed,

then

SQL_NO_DATA_FOUND

is

returned.

If

the

batched

SQL

statement

is

an

UPDATE,

INSERT,

or

DELETE

statement,

then

SQLRowCount()

can

be

called

to

determine

the

number

of

rows

affected.

If

SQLCloseCursor()

or

if

SQLFreeStmt()

is

called

with

the

SQL_CLOSE

option,

or

SQLFreeHandle()

is

called

with

HandleType

set

to

SQL_HANDLE_STMT,

all

pending

result

sets

on

this

statement

handle

are

discarded.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

Diagnostics:

Table

102.

SQLMoreResults

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

In

addition

SQLMoreResults()

can

return

the

SQLSTATEs

associated

with

SQLExecute().

Example:

cliRC

=

SQLMoreResults(hstmt);

Related

concepts:

SQLMoreResults

228

CLI

Guide

and

Reference,

Volume

2

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Calling

stored

procedures

from

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

on

page

139

v

“SQLFreeStmt

function

(CLI)

-

Free

(or

reset)

a

statement

handle”

on

page

142

v

“SQLNextResult

function

(CLI)

-

Associate

next

result

set

with

another

statement

handle”

on

page

233

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“spcall.c

--

Call

individual

stored

procedures”

v

“spclient.c

--

Call

various

stored

procedures”

v

“spclires.c

--

Contrast

stored

procedure

multiple

result

set

handling

methods”

SQLNativeSql

function

(CLI)

-

Get

native

SQL

text

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLNativeSql()

is

used

to

show

how

DB2

CLI

interprets

vendor

escape

clauses.

If

the

original

SQL

string

passed

in

by

the

application

contained

vendor

escape

clause

sequences,

then

DB2

CLI

will

return

the

transformed

SQL

string

that

would

be

seen

by

the

data

source

(with

vendor

escape

clauses

either

converted

or

discarded,

as

appropriate).

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLNativeSqlW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLNativeSql

(

SQLHDBC

ConnectionHandle,

/*

hdbc

*/

SQLCHAR

*InStatementText,

/*

szSqlStrIn

*/

SQLINTEGER

TextLength1,

/*

cbSqlStrIn

*/

SQLCHAR

*OutStatementText,

/*

szSqlStr

*/

SQLINTEGER

BufferLength,

/*

cbSqlStrMax

*/

SQLINTEGER

*TextLength2Ptr);

/*

pcbSqlStr

*/

Function

arguments:

Table

103.

SQLNativeSql

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

Handle

SQLCHAR

*

InStatementText

input

Input

SQL

string

SQLMoreResults

Chapter

1.

DB2

CLI

functions

229

Table

103.

SQLNativeSql

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

TextLength1

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

InStatementText.

SQLCHAR

*

OutStatementText

output

Pointer

to

buffer

for

the

transformed

output

string

SQLINTEGER

BufferLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

OutStatementText.

SQLINTEGER

*

TextLength2Ptr

output

The

total

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function),

excluding

the

null-terminator,

available

to

return

in

OutStatementText.

If

the

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

available

to

return

is

greater

than

or

equal

to

BufferLength,

the

output

SQL

string

in

OutStatementText

is

truncated

to

BufferLength

-

1

SQLCHAR

or

SQLWCHAR

elements.

Usage:

This

function

is

called

when

the

application

wishes

to

examine

or

display

the

transformed

SQL

string

that

would

be

passed

to

the

data

source

by

DB2

CLI.

Translation

(mapping)

would

only

occur

if

the

input

SQL

statement

string

contains

vendor

escape

clause

sequence(s).

DB2

CLI

can

only

detect

vendor

escape

clause

syntax

errors

when

SQLNativeSql()

is

called.

Because

DB2

CLI

does

not

pass

the

transformed

SQL

string

to

the

data

source

for

preparation,

syntax

errors

that

are

detected

by

the

DBMS

are

not

generated

at

this

time.

(The

statement

is

not

passed

to

the

data

source

for

preparation

because

the

preparation

may

potentially

cause

the

initiation

of

a

transaction.)

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

104.

SQLNativeSql

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

buffer

OutStatementText

was

not

large

enough

to

contain

the

entire

SQL

string,

so

truncation

occurred.

The

argument

TextLength2Ptr

contains

the

total

length

of

the

untruncated

SQL

string.

(Function

returns

with

SQL_SUCCESS_WITH_INFO)

08003

Connection

is

closed.

The

ConnectionHandle

does

not

reference

an

open

database

connection.

37000

Invalid

SQL

syntax.

The

input

SQL

string

in

InStatementText

contained

a

syntax

error.

SQLNativeSql

230

CLI

Guide

and

Reference,

Volume

2

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

Table

104.

SQLNativeSql

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY009

Invalid

argument

value.

The

argument

InStatementText

is

a

NULL

pointer.

The

argument

OutStatementText

is

a

NULL

pointer.

HY090

Invalid

string

or

buffer

length.

The

argument

TextLength1

was

less

than

0,

but

not

equal

to

SQL_NTS.

The

argument

BufferLength

was

less

than

0.

Restrictions:

None.

Related

concepts:

v

“Vendor

escape

clauses

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLNumParams

function

(CLI)

-

Get

number

of

parameters

in

a

SQL

statement

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLNumParams()

returns

the

number

of

parameter

markers

in

an

SQL

statement.

Syntax:

SQLRETURN

SQLNumParams

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLSMALLINT

*ParameterCountPtr);

/*

pcpar

*/

Function

arguments:

Table

105.

SQLNumParams

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLSMALLINT

*

ParameterCountPtr

Output

Number

of

parameters

in

the

statement.

Usage:

SQLNativeSql

Chapter

1.

DB2

CLI

functions

231

If

the

prepared

SQL

statement

associated

with

Statement

Handle

contains

batch

SQL

(multiple

SQL

statements

separated

by

a

semicolon

’;’),

the

parameters

are

counted

for

the

entire

string

and

are

not

differentiated

by

the

individual

statements

making

up

the

batch.

This

function

can

only

be

called

after

the

statement

associated

with

StatementHandle

has

been

prepared.

If

the

statement

does

not

contain

any

parameter

markers,

ParameterCountPtr

is

set

to

0.

An

application

can

call

this

function

to

determine

how

many

SQLBindParameter()

(or

SQLBindFileToParam())

calls

are

necessary

for

the

SQL

statement

associated

with

the

statement

handle.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

106.

SQLNumParams

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

This

function

was

called

before

SQLPrepare()

was

called

for

the

specified

StatementHandle

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Related

concepts:

SQLNumParams

232

CLI

Guide

and

Reference,

Volume

2

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Parameter

marker

binding

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLNextResult

function

(CLI)

-

Associate

next

result

set

with

another

statement

handle

Purpose:

Specification:

DB2

CLI

7.x

SQLNextResult()

allows

non-sequential

access

to

multiple

result

sets

returned

from

a

stored

procedure.

Syntax:

SQLRETURN

SQLNextResult

(SQLHSTMT

StatementHandle1

SQLHSTMT

StatementHandle2);

Function

arguments:

Table

107.

SQLNextResult

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle1

input

Statement

handle.

SQLHSTMT

StatementHandle2

input

Statement

handle.

Usage:

A

stored

procedure

returns

multiple

result

sets

by

leaving

one

or

more

cursors

open

after

exiting.

The

first

result

set

is

always

accessed

by

using

the

statement

handle

that

called

the

stored

procedure.

If

multiple

result

sets

are

returned,

either

SQLMoreResults()

or

SQLNextResult()

can

be

used

to

describe

and

fetch

the

result

set.

SQLMoreResults()

is

used

to

close

the

cursor

for

the

first

result

set

and

allow

the

next

result

set

to

be

processed

on

the

same

statement

handle,

whereas

SQLNextResult()

moves

the

next

result

set

to

StatementHandle2,

without

closing

the

cursor

on

StatementHandle1.

Both

functions

return

SQL_NO_DATA_FOUND

if

there

are

no

result

sets

to

be

fetched.

Using

SQLNextResult()

allows

result

sets

to

be

processed

in

any

order

once

they

have

been

transferred

to

other

statement

handles.

Mixed

calls

to

SQLMoreResults()

and

SQLNextResult()

are

allowed

until

there

are

no

more

cursors

(open

result

sets)

on

StatementHandle1.

When

SQLNextResult()

returns

SQL_SUCCESS,

the

next

result

set

is

no

longer

associated

with

StatementHandle1.

Instead,

the

next

result

set

is

associated

with

StatementHandle2,

as

if

a

call

to

SQLExecDirect()

had

just

successfully

executed

a

query

on

StatementHandle2.

The

cursor,

therefore,

can

be

described

using

SQLNumResultCols(),

SQLDescribeCol(),

or

SQLColAttribute().

After

SQLNextResult()

has

been

called,

the

result

set

now

associated

with

StatementHandle2

is

removed

from

the

chain

of

remaining

result

sets

and

cannot

be

SQLNumParams

Chapter

1.

DB2

CLI

functions

233

|

|

used

again

in

either

SQLNextResult()

or

SQLMoreResults().

This

means

that

for

’n’

result

sets,

SQLNextResult()

can

be

called

successfully

at

most

’n-1’

times.

If

SQLCloseCursor()

or

if

SQLFreeStmt()

is

called

with

the

SQL_CLOSE

option,

or

SQLFreeHandle()

is

called

with

HandleType

set

to

SQL_HANDLE_STMT,

all

pending

result

sets

on

this

statement

handle

are

discarded.

SQLNextResult()

returns

SQL_ERROR

if

StatementHandle2

has

an

open

cursor

or

StatementHandle1

and

StatementHandle2

are

not

on

the

same

connection.

If

any

errors

or

warnings

are

returned,

SQLGetDiagRec()

must

always

be

called

on

StatementHandle1.

Note:

SQLMoreResults()

also

works

with

a

parameterized

query

with

an

array

of

input

parameter

values

specified

with

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

and

SQLBindParameter().

SQLNextResult(),

however,

does

not

support

this.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NO_DATA_FOUND

Diagnostics:

Table

108.

SQLNextResult

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

Link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

the

memory

required

to

support

execution

or

completion

of

the

function.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

StatementHandle2

has

an

open

cursor

associated

with

it.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

the

memory

required

to

support

execution

or

completion

of

the

function.

HYT00

Time-out

expired.

The

time-out

period

expired

before

the

data

source

returned

the

result

set.

The

time-out

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

Only

SQLMoreResults()

can

be

used

for

parameterized

queries

and

batched

SQL.

Example:

SQLNextResult

234

CLI

Guide

and

Reference,

Volume

2

/*

use

SQLNextResult

to

push

Result

Set

2

onto

the

second

statement

handle

*/

cliRC

=

SQLNextResult(hstmt,

hstmt2);

/*

open

second

cursor

*/

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Calling

stored

procedures

from

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLMoreResults

function

(CLI)

-

Determine

if

there

are

more

result

sets”

on

page

227

v

“Statement

attributes

(CLI)

list”

on

page

334

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“spclires.c

--

Contrast

stored

procedure

multiple

result

set

handling

methods”

SQLNumResultCols

function

(CLI)

-

Get

number

of

result

columns

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLNumResultCols()

returns

the

number

of

columns

in

the

result

set

associated

with

the

input

statement

handle.

SQLPrepare()

or

SQLExecDirect()

must

be

called

before

calling

this

function.

After

calling

this

function,

you

can

call

SQLColAttribute(),

or

one

of

the

bind

column

functions.

Syntax:

SQLRETURN

SQLNumResultCols

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLSMALLINT

*ColumnCountPtr);

/*

pccol

*/

Function

arguments:

Table

109.

SQLNumResultCols

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLSMALLINT

*

ColumnCountPtr

output

Number

of

columns

in

the

result

set

Usage:

The

function

sets

the

output

argument

to

zero

if

the

last

statement

or

function

executed

on

the

input

statement

handle

did

not

generate

a

result

set.

Return

codes:

v

SQL_SUCCESS

SQLNextResult

Chapter

1.

DB2

CLI

functions

235

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

110.

SQLNumResultCols

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

The

function

was

called

prior

to

calling

SQLPrepare()

or

SQLExecDirect()

for

the

StatementHandle.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Authorization:

None.

Example:

/*

identify

the

number

of

output

columns

*/

cliRC

=

SQLNumResultCols(hstmt,

&nResultCols);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Result

set

terminology

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

SQLNumResultCols

236

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindFileToCol

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

column”

on

page

16

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

on

page

82

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

on

page

100

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

on

page

240

v

“SQLSetColAttributes

function

(CLI)

-

Set

column

attributes”

on

page

264

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“spclient.c

--

Call

various

stored

procedures”

v

“spclires.c

--

Contrast

stored

procedure

multiple

result

set

handling

methods”

v

“tbread.c

--

How

to

read

data

from

tables”

SQLParamData

function

(CLI)

-

Get

next

parameter

for

which

a

data

value

is

needed

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

ISO

CLI

SQLParamData()

is

used

in

conjunction

with

SQLPutData()

to

send

long

data

in

pieces.

It

can

also

be

used

to

send

fixed-length

data

at

execution

time.

Syntax:

SQLRETURN

SQLParamData

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLPOINTER

*ValuePtrPtr

);

/*

prgbValue

*/

Function

arguments:

Table

111.

SQLParamData

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLPOINTER

*

ValuePtrPtr

output

Pointer

to

a

buffer

in

which

to

return

the

address

of

the

ParameterValuePtr

buffer

specified

in

SQLBindParameter()

(for

parameter

data)

or

the

address

of

the

TargetValuePtr

buffer

specified

in

SQLBindCol()

(for

column

data),

as

contained

in

the

SQL_DESC_DATA_PTR

descriptor

record

field.

Usage:

SQLParamData()

returns

SQL_NEED_DATA

if

there

is

at

least

one

SQL_DATA_AT_EXEC

parameter

for

which

data

still

has

not

been

assigned.

This

function

returns

an

application-provided

value

in

ValuePtrPtr

supplied

by

the

application

during

a

previous

SQLBindParameter()

call.

SQLPutData()

is

called

one

or

more

times

(in

the

case

of

long

data)

to

send

the

parameter

data.

SQLParamData()

is

called

to

signal

that

all

the

data

has

been

sent

for

the

current

parameter

and

to

advance

to

the

next

SQL_DATA_AT_EXEC

parameter.

SQLNumResultCols

Chapter

1.

DB2

CLI

functions

237

SQL_SUCCESS

is

returned

when

all

the

parameters

have

been

assigned

data

values

and

the

associated

statement

has

been

executed

successfully.

If

any

errors

occur

during

or

before

actual

statement

execution,

SQL_ERROR

is

returned.

If

SQLParamData()

returns

SQL_NEED_DATA,

then

only

SQLPutData()

or

SQLCancel()

calls

can

be

made.

All

other

function

calls

using

this

statement

handle

will

fail.

In

addition,

all

function

calls

referencing

the

parent

connection

handle

of

StatementHandle

will

fail

if

they

involve

changing

any

attribute

or

state

of

that

connection;

that

is,

that

following

function

calls

on

the

parent

connection

handle

are

also

not

permitted:

v

SQLSetConnectAttr()

v

SQLEndTran()

Should

they

be

invoked

during

an

SQL_NEED_DATA

sequence,

these

functions

will

return

SQL_ERROR

with

SQLSTATE

of

HY010

and

the

processing

of

the

SQL_DATA_AT_EXEC

parameters

will

not

be

affected.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NEED_DATA

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

v

SQL_NEED_DATA

Diagnostics:

SQLParamData()

can

return

any

SQLSTATE

returned

by

the

SQLPrepare(),

SQLExecDirect(),

and

SQLExecute()

functions.

In

addition,

the

following

diagnostics

can

also

be

generated:

Table

112.

SQLParamData

SQLSTATEs

SQLSTATE

Description

Explanation

07006

Invalid

conversion.

Transfer

of

data

between

DB2

CLI

and

the

application

variables

would

result

in

incompatible

data

conversion.

22026

String

data,

length

mismatch

The

SQL_NEED_LONG_DATA_LEN

information

type

in

SQLGetInfo()

was

’Y’

and

less

data

was

sent

for

a

long

parameter

(the

data

type

was

SQL_LONGVARCHAR,

SQL_LONGVARBINARY,

or

other

long

data

type)

than

was

specified

with

the

StrLen_or_IndPtr

argument

in

SQLBindParameter().

The

SQL_NEED_LONG_DATA_LEN

information

type

in

SQLGetInfo()

was

’Y’

and

less

data

was

sent

for

a

long

column

(the

data

type

was

SQL_LONGVARCHAR,

SQL_LONGVARBINARY,

or

other

long

data

type)

than

was

specified

in

the

length

buffer

corresponding

to

a

column

in

a

row

of

data

that

was

updated

with

SQLSetPos().

40001

Transaction

rollback.

The

transaction

to

which

this

SQL

statement

belonged

was

rolled

back

due

to

a

deadlock

or

timeout.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

SQLParamData

238

CLI

Guide

and

Reference,

Volume

2

Table

112.

SQLParamData

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE

and

for

which

no

implementation-specific

SQLSTATE

was

defined.

The

error

message

returned

by

SQLGetDiagRec()

in

the

argument

MessageText

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

SQLParamData()

was

called

out

of

sequence.

This

call

is

only

valid

after

an

SQLExecDirect()

or

an

SQLExecute(),

or

after

an

SQLPutData()

call.

Even

though

this

function

was

called

after

an

SQLExecDirect()

or

an

SQLExecute()

call,

there

were

no

SQL_DATA_AT_EXEC

parameters

(left)

to

process.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY092

Option

type

out

of

range.

The

FileOptions

argument

of

a

previous

SQLBindFileToParam()

operation

was

not

valid.

HY506

Error

closing

a

file.

Error

encountered

while

trying

to

close

a

temporary

file.

HY509

Error

deleting

a

file.

Error

encountered

while

trying

to

delete

a

temporary

file.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

/*

get

next

parameter

for

which

a

data

value

is

needed

*/

cliRC

=

SQLParamData(hstmt,

(SQLPOINTER

*)&valuePtr);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Large

object

usage

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Long

data

for

bulk

inserts

and

updates

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

on

page

49

v

“SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter”

on

page

259

SQLParamData

Chapter

1.

DB2

CLI

functions

239

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

SQLParamOptions

function

(CLI)

-

Specify

an

input

array

for

a

parameter

Deprecated:

Note:

In

ODBC

3.0,

SQLParamOptions()

has

been

deprecated

and

replaced

with

SQLSetStmtAttr().

Although

this

version

of

DB2

CLI

continues

to

support

SQLParamOptions(),

we

recommend

that

you

use

SQLSetStmtAttr()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLParamOptions(hstmt,

crow,

pirow);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLSetStmtAttr(hstmt,

fOption,

pvParam,

fStrLen);

Related

reference:

v

“CLI

and

ODBC

function

summary”

on

page

1

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

SQLPrepare

function

(CLI)

-

Prepare

a

statement

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLPrepare()

associates

an

SQL

statement

with

the

input

statement

handle

provided.

The

application

can

include

one

or

more

parameter

markers

in

the

SQL

statement.

To

include

a

parameter

marker,

the

application

embeds

a

question

mark

(?)

into

the

SQL

string

at

the

appropriate

position.

The

application

can

reference

this

prepared

statement

by

passing

the

statement

handle

to

other

functions.

If

the

statement

handle

has

been

previously

used

with

a

query

statement

(or

any

function

that

returns

a

result

set),

either

SQLCloseCursor()

or

SQLFreeStmt()

with

the

SQL_CLOSE

option

must

be

called

to

close

the

cursor

before

calling

SQLPrepare().

SQLParamData

240

CLI

Guide

and

Reference,

Volume

2

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLPrepareW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLPrepare

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*StatementText,

/*

szSqlStr

*/

SQLINTEGER

TextLength);

/*

cbSqlStr

*/

Function

arguments:

Table

113.

SQLPrepare

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

There

must

not

be

an

open

cursor

associated

with

StatementHandle.

SQLCHAR

*

StatementText

input

SQL

statement

string

SQLINTEGER

TextLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

StatementText

argument,

or

SQL_NTS

if

StatementText

is

null-terminated.

Usage:

Deferred

prepare

is

on

by

default.

The

prepare

request

is

not

sent

to

the

server

until

either

SQLDescribeParam(),

SQLExecute(),

SQLNumResultCols(),

SQLDescribeCol(),

or

SQLColAttribute()

is

called

using

the

same

statement

handle

as

the

prepared

statement.

This

minimizes

network

flow

and

improves

performance.

If

the

SQL

statement

text

contains

vendor

escape

clause

sequences,

DB2

CLI

will

first

modify

the

SQL

statement

text

to

the

appropriate

DB2

specific

format

before

submitting

it

to

the

database

for

preparation.

If

the

application

does

not

generate

SQL

statements

that

contain

vendor

escape

clause

sequences

then

the

SQL_ATTR_NOSCAN

statement

attribute

should

be

set

to

SQL_NOSCAN

at

the

connection

level

so

that

DB2

CLI

does

not

perform

a

scan

for

any

vendor

escape

clauses.

Once

a

statement

has

been

prepared

using

SQLPrepare(),

the

application

can

request

information

about

the

format

of

the

result

set

(if

the

statement

was

a

query)

by

calling:

v

SQLNumResultCols()

v

SQLDescribeCol()

v

SQLColAttribute()

Information

about

the

parameter

markers

in

StatementText

can

be

requested

using

the

following:

v

SQLDescribeParam()

v

SQLNumParams()

Note:

The

first

invocation

of

any

of

the

above

functions

except

SQLNumParams()

will

force

the

PREPARE

request

to

be

sent

to

the

server

if

deferred

prepare

is

enabled.

SQLPrepare

Chapter

1.

DB2

CLI

functions

241

|
|
|
|

The

SQL

statement

string

may

contain

parameter

markers

and

SQLNumParams()

can

be

called

to

determine

the

number

of

parameter

markers

in

the

statement.

A

parameter

marker

is

represented

by

a

“?”

character,

and

is

used

to

indicate

a

position

in

the

statement

where

an

application-supplied

value

is

to

be

substituted

when

SQLExecute()

is

called.

The

bind

parameter

functions,

SQLBindParameter(),

SQLSetParam()

and

SQLBindFileToParam(),

are

used

to

bind

or

associate

application

variables

with

each

parameter

marker

and

to

indicate

if

any

data

conversion

should

be

performed

at

the

time

the

data

is

transferred.

An

application

can

call

SQLDescribeParam()

to

retrieve

information

about

the

data

expected

by

the

database

server

for

the

parameter

marker.

All

parameters

must

be

bound

before

calling

SQLExecute().

Refer

to

the

PREPARE

statement

for

information

on

rules

related

to

parameter

markers.

Once

the

application

has

processed

the

results

from

the

SQLExecute()

call,

it

can

execute

the

statement

again

with

new

(or

the

same)

parameter

values.

The

SQL

statement

can

be

COMMIT

or

ROLLBACK

and

executing

either

of

these

statements

has

the

same

effect

as

calling

SQLEndTran()

on

the

current

connection

handle.

If

the

SQL

statement

is

a

positioned

DELETE

or

a

positioned

UPDATE,

the

cursor

referenced

by

the

statement

must

be

defined

on

a

separate

statement

handle

under

the

same

connection

handle

and

same

isolation

level.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

114.

SQLPrepare

SQLSTATEs

SQLSTATE

Description

Explanation

01504

The

UPDATE

or

DELETE

statement

does

not

include

a

WHERE

clause.

StatementText

contained

an

UPDATE

or

DELETE

statement

which

did

not

contain

a

WHERE

clause.

01508

Statement

disqualified

for

blocking.

The

statement

was

disqualified

for

blocking

for

reasons

other

than

storage.

21S01

Insert

value

list

does

not

match

column

list.

StatementText

contained

an

INSERT

statement

and

the

number

of

values

to

be

inserted

did

not

match

the

degree

of

the

derived

table.

21S02

Degrees

of

derived

table

does

not

match

column

list.

StatementText

contained

a

CREATE

VIEW

statement

and

the

number

of

names

specified

is

not

the

same

degree

as

the

derived

table

defined

by

the

query

specification.

22018

Invalid

character

value

for

cast

specification.

StatementText

contained

an

SQL

statement

that

contained

a

literal

or

parameter

and

the

value

was

incompatible

with

the

data

type

of

the

associated

table

column.

22019

Invalid

escape

character

The

argument

StatementText

contained

a

LIKE

predicate

with

an

ESCAPE

in

the

WHERE

clause,

and

the

length

of

the

escape

character

following

ESCAPE

was

not

equal

to

1.

SQLPrepare

242

CLI

Guide

and

Reference,

Volume

2

Table

114.

SQLPrepare

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

22025

Invalid

escape

sequence

The

argument

StatementText

contained

“LIKE

pattern

value

ESCAPE

escape

character”

in

the

WHERE

clause,

and

the

character

following

the

escape

character

in

the

pattern

value

was

not

one

of

“%”

or

“_”.

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

34000

Invalid

cursor

name.

StatementText

contained

a

positioned

DELETE

or

a

positioned

UPDATE

and

the

cursor

referenced

by

the

statement

being

executed

was

not

open.

37xxx

a

Invalid

SQL

syntax.

StatementText

contained

one

or

more

of

the

following:

v

an

SQL

statement

that

the

connected

database

server

could

not

prepare

v

a

statement

containing

a

syntax

error

40001

Transaction

rollback.

The

transaction

to

which

this

SQL

statement

belonged

was

rolled

back

due

to

deadlock

or

timeout.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

42xxx

a

Syntax

Error

or

Access

Rule

Violation.

425xx

indicates

the

authorization

ID

does

not

have

permission

to

execute

the

SQL

statement

contained

in

StatementText.

Other

42xxx

SQLSTATES

indicate

a

variety

of

syntax

or

access

problems

with

the

statement.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

S0001

Database

object

already

exists.

StatementText

contained

a

CREATE

TABLE

or

CREATE

VIEW

statement

and

the

table

name

or

view

name

specified

already

existed.

S0002

Database

object

does

not

exist.

StatementText

contained

an

SQL

statement

that

references

a

table

name

or

a

view

name

which

did

not

exist.

S0011

Index

already

exists.

StatementText

contained

a

CREATE

INDEX

statement

and

the

specified

index

name

already

existed.

S0012

Index

not

found.

StatementText

contained

a

DROP

INDEX

statement

and

the

specified

index

name

did

not

exist.

S0021

Column

already

exists.

StatementText

contained

an

ALTER

TABLE

statement

and

the

column

specified

in

the

ADD

clause

was

not

unique

or

identified

an

existing

column

in

the

base

table.

S0022

Column

not

found.

StatementText

contained

an

SQL

statement

that

references

a

column

name

which

did

not

exist.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY009

Invalid

argument

value.

StatementText

was

a

null

pointer.

SQLPrepare

Chapter

1.

DB2

CLI

functions

243

Table

114.

SQLPrepare

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

argument

TextLength

was

less

than

1,

but

not

equal

to

SQL_NTS.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Note:

a

xxx

refers

to

any

SQLSTATE

with

that

class

code.

Example,

37xxx

refers

to

any

SQLSTATE

in

the

37

class.

Note:

Not

all

DBMSs

report

all

of

the

above

diagnostic

messages

at

prepare

time.

If

deferred

prepare

is

left

on

as

the

default

behavior

(controlled

by

the

SQL_ATTR_DEFERRED_PREPARE

statement

attribute),

then

these

errors

could

occur

when

the

PREPARE

is

flowed

to

the

server.

The

application

must

be

able

to

handle

these

conditions

when

calling

functions

that

cause

this

flow.

These

functions

include

SQLExecute(),

SQLDescribeParam(),

SQLNumResultCols(),

SQLDescribeCol(),

and

SQLColAttribute().

Authorization:

None.

Example:

SQLCHAR

*stmt

=

(SQLCHAR

*)"DELETE

FROM

org

WHERE

deptnumb

=

?

";

/*

...

*/

/*

prepare

the

statement

*/

cliRC

=

SQLPrepare(hstmt,

stmt,

SQL_NTS);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindFileToParam

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

parameter”

on

page

20

v

“SQLColAttribute

function

(CLI)

-

Return

a

column

attribute”

on

page

53

SQLPrepare

244

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

on

page

82

v

“SQLDescribeParam

function

(CLI)

-

Return

description

of

a

parameter

marker”

on

page

85

v

“SQLEndTran

function

(CLI)

-

End

transactions

of

a

connection

or

an

Environment”

on

page

96

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

on

page

105

v

“SQLNumParams

function

(CLI)

-

Get

number

of

parameters

in

a

SQL

statement”

on

page

231

v

“SQLNumResultCols

function

(CLI)

-

Get

number

of

result

columns”

on

page

235

v

“SQLSetParam

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

283

v

“COMMIT

statement”

in

the

SQL

Reference,

Volume

2

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

v

“ROLLBACK

statement”

in

the

SQL

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“Statement

attributes

(CLI)

list”

on

page

334

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

v

“tbmod.c

--

How

to

modify

table

data”

SQLPrimaryKeys

function

(CLI)

-

Get

primary

key

columns

of

a

table

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLPrimaryKeys()

returns

a

list

of

column

names

that

comprise

the

primary

key

for

a

table.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLPrimaryKeysW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLPrimaryKeys

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CatalogName,

/*

szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

*SchemaName,

/*

szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

*TableName,

/*

szTableName

*/

SQLSMALLINT

NameLength3);

/*

cbTableName

*/

Function

arguments:

SQLPrepare

Chapter

1.

DB2

CLI

functions

245

Table

115.

SQLPrimaryKeys

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLCHAR

*

CatalogName

input

Catalog

qualifier

of

a

3-part

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Unix

and

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CatalogName,

or

SQL_NTS

if

CatalogName

is

null-terminated.

SQLCHAR

*

SchemaName

input

Schema

qualifier

of

table

name.

SQLSMALLINT

NameLength2

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

SchemaName,

or

SQL_NTS

if

SchemaName

is

null-terminated.

SQLCHAR

*

TableName

input

Table

name.

SQLSMALLINT

NameLength3

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

TableName,

or

SQL_NTS

if

TableName

is

null-terminated.

Usage:

SQLPrimaryKeys()

returns

the

primary

key

columns

from

a

single

table.

Search

patterns

cannot

be

used

to

specify

any

of

the

arguments.

The

result

set

contains

the

columns

listed

in

“Columns

Returned

By

SQLPrimaryKeys”

on

page

247,

ordered

by

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME

and

ORDINAL_POSITION.

Since

calls

to

SQLPrimaryKeys()

in

many

cases

map

to

a

complex

and,

thus,

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

If

the

schema

name

is

not

provided,

then

the

schema

name

defaults

to

the

one

currently

in

effect

for

the

current

connection.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

room

for

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN,

SQL_MAX_TABLE_NAME_LEN,

and

SQL_MAX_COLUMN_NAME_LEN

to

determine

respectively

the

actual

lengths

of

the

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

COLUMN_NAME

columns

supported

by

the

connected

DBMS.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

SQLPrimaryKeys

246

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

Columns

Returned

By

SQLPrimaryKeys

Column

1

TABLE_CAT

(VARCHAR(128))

Primary

key

table

catalog

name.

The

value

is

NULL

if

this

table

does

not

have

catalogs.

Column

2

TABLE_SCHEM

(VARCHAR(128))

The

name

of

the

schema

containing

TABLE_NAME.

Column

3

TABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

specified

table.

Column

4

COLUMN_NAME

(VARCHAR(128)

not

NULL)

Primary

key

column

name.

Column

5

KEY_SEQ

(SMALLINT

not

NULL)

Column

sequence

number

in

the

primary

key,

starting

with

1.

Column

6

PK_NAME

(VARCHAR(128))

Primary

key

identifier.

NULL

if

not

applicable

to

the

data

source.

Note:

The

column

names

used

by

DB2

CLI

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLPrimaryKeys()

result

set

in

ODBC.

If

the

specified

table

does

not

contain

a

primary

key,

an

empty

result

set

is

returned.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

116.

SQLPrimaryKeys

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

SQLPrimaryKeys

Chapter

1.

DB2

CLI

functions

247

Table

116.

SQLPrimaryKeys

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

HYC00

Driver

not

capable.

DB2

CLI

does

not

support

catalog

as

a

qualifier

for

table

name.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

/*

get

the

primary

key

columns

of

a

table

*/

cliRC

=

SQLPrimaryKeys(hstmt,

NULL,

0,

tbSchema,

SQL_NTS,

tbName,

SQL_NTS);

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Primary

keys”

in

the

Administration

Guide:

Planning

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLForeignKeys

function

(CLI)

-

Get

the

list

of

foreign

key

columns”

on

page

133

v

“SQLStatistics

function

(CLI)

-

Get

index

and

statistics

information

for

a

base

table”

on

page

302

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbconstr.c

--

How

to

work

with

constraints

associated

with

tables”

SQLProcedureColumns

function

(CLI)

-

Get

input/output

parameter

information

for

a

procedure

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLProcedureColumns()

returns

a

list

of

input

and

output

parameters

associated

with

a

stored

procedure.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

SQLPrimaryKeys

248

CLI

Guide

and

Reference,

Volume

2

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLProcedureColumnsW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLProcedureColumns(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CatalogName,

/*

szProcCatalog

*/

SQLSMALLINT

NameLength1,

/*

cbProcCatalog

*/

SQLCHAR

*SchemaName,

/*

szProcSchema

*/

SQLSMALLINT

NameLength2,

/*

cbProcSchema

*/

SQLCHAR

*ProcName,

/*

szProcName

*/

SQLSMALLINT

NameLength3,

/*

cbProcName

*/

SQLCHAR

*ColumnName,

/*

szColumnName

*/

SQLSMALLINT

NameLength4);

/*

cbColumnName

*/

Function

arguments:

Table

117.

SQLProcedureColumns

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLCHAR

*

CatalogName

input

Catalog

qualifier

of

a

3-part

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

workstations)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CatalogName,

or

SQL_NTS

if

CatalogName

is

null-terminated.

SQLCHAR

*

SchemaName

input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

schema

name.

For

DB2

for

MVS/ESA

V

4.1

and

above,

all

the

stored

procedures

are

in

one

schema;

the

only

acceptable

value

for

the

SchemaName

argument

is

a

null

pointer.

If

a

value

is

specified,

an

empty

result

set

and

SQL_SUCCESS

are

returned.

For

DB2

Universal

Database,

SchemaName

can

contain

a

valid

pattern

value.

For

more

information

about

valid

search

patterns,

refer

to

the

catalog

functions

input

arguments.

SQLSMALLINT

NameLength2

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

SchemaName,

or

SQL_NTS

if

SchemaName

is

null-terminated.

SQLCHAR

*

ProcName

input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

procedure

name.

SQLSMALLINT

NameLength3

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

ProcName,

or

SQL_NTS

if

ProcName

is

null-terminated.

SQLProcedureColumns

Chapter

1.

DB2

CLI

functions

249

|
|
|
|

|
|
|
|

|
|
|
|

Table

117.

SQLProcedureColumns

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

ColumnName

input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

parameter

name.

This

argument

is

to

be

used

to

further

qualify

the

result

set

already

restricted

by

specifying

a

non-empty

value

for

ProcName

and/or

SchemaName.

SQLSMALLINT

NameLength4

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

ColumnName,

or

SQL_NTS

if

ColumnName

is

null-terminated.

Usage:

SQLProcedureColumns()

returns

the

information

in

a

result

set,

ordered

by

PROCEDURE_CAT,

PROCEDURE_SCHEM,

PROCEDURE_NAME,

and

COLUMN_TYPE.

“Columns

returned

by

SQLProcedureColumns”

lists

the

columns

in

the

result

set.

Applications

should

be

aware

that

columns

beyond

the

last

column

may

be

defined

in

future

releases.

Since

calls

to

SQLProcedureColumns()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

room

for

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN,

and

SQL_MAX_COLUMN_NAME_LEN

to

determine

respectively

the

actual

lengths

of

the

TABLE_CAT,

TABLE_SCHEM,

and

COLUMN_NAME

columns

supported

by

the

connected

DBMS.

If

the

SQL_ATTR_LONGDATA_COMPAT

connection

attribute

is

set,

LOB

column

types

will

be

reported

as

LONG

VARCHAR,

LONG

VARBINARY

or

LONG

VARGRAPHIC

types.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

If

the

stored

procedure

is

at

a

DB2

for

MVS/ESA

V4.1

up

to

V6

server,

the

name

of

the

stored

procedure

must

be

registered

in

the

server’s

SYSIBM.SYSPROCEDURES

catalog

table.

For

V7

and

later

servers,

the

stored

procedures

must

be

registered

in

the

server’s

SYSIBM.SYSROUTINES

and

SYSIBM.SYSPARAMS

catalog

tables.

For

versions

of

other

DB2

servers

that

do

not

provide

facilities

for

a

stored

procedure

catalog,

an

empty

result

set

will

be

returned.

DB2

CLI

will

return

information

on

the

input,

input/output,

and

output

parameters

associated

with

the

stored

procedure,

but

cannot

return

descriptor

information

for

any

result

sets

that

the

stored

procedure

might

return.

Columns

returned

by

SQLProcedureColumns

SQLProcedureColumns

250

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|
|
|
|
|
|
|

Column

1

PROCEDURE_CAT

(VARCHAR(128))

Procedure

catalog

name.

The

value

is

NULL

if

this

procedure

does

not

have

catalogs.

Column

2

PROCEDURE_SCHEM

(VARCHAR(128))

Name

of

the

schema

containing

PROCEDURE_NAME.

(This

is

also

NULL

for

DB2

for

MVS/ESA

V

4.1

or

later

SQLProcedureColumns()

result

sets.)

Column

3

PROCEDURE_NAME

(VARCHAR(128))

Name

of

the

procedure.

Column

4

COLUMN_NAME

(VARCHAR(128))

Name

of

the

parameter.

Column

5

COLUMN_TYPE

(SMALLINT

not

NULL)

Identifies

the

type

information

associated

with

this

row.

The

values

can

be:

v

SQL_PARAM_TYPE_UNKNOWN

:

the

parameter

type

is

unknown.

Note:

This

is

not

returned.

v

SQL_PARAM_INPUT

:

this

parameter

is

an

input

parameter.

v

SQL_PARAM_INPUT_OUTPUT

:

this

parameter

is

an

input

/

output

parameter.

v

SQL_PARAM_OUTPUT

:

this

parameter

is

an

output

parameter.

v

SQL_RETURN_VALUE

:

the

procedure

column

is

the

return

value

of

the

procedure.

Note:

This

is

not

returned.

v

SQL_RESULT_COL

:

this

parameter

is

actually

a

column

in

the

result

set.

Note:

This

is

not

returned.

Column

6

DATA_TYPE

(SMALLINT

not

NULL)

SQL

data

type.

Column

7

TYPE_NAME

(VARCHAR(128)

not

NULL)

Character

string

representing

the

name

of

the

data

type

corresponding

to

DATA_TYPE.

Column

8

COLUMN_SIZE

(INTEGER)

If

the

DATA_TYPE

column

value

denotes

a

character

or

binary

string,

then

this

column

contains

the

maximum

length

in

SQLCHAR

or

SQLWCHAR

elements;

if

it

is

a

graphic

(DBCS)

string,

this

is

the

number

of

double

byte

SQLCHAR

or

SQLWCHAR

elements

for

the

parameter.

For

date,

time,

timestamp

data

types,

this

is

the

total

number

of

SQLCHAR

or

SQLWCHAR

elements

required

to

display

the

value

when

converted

to

character.

For

numeric

data

types,

this

is

either

the

total

number

of

digits,

or

the

total

number

of

bits

allowed

in

the

column,

depending

on

the

value

in

the

NUM_PREC_RADIX

column

in

the

result

set.

See

also

the

table

of

data

type

precision.

Column

9

BUFFER_LENGTH

(INTEGER)

The

maximum

number

of

bytes

for

the

associated

C

buffer

to

store

data

from

this

parameter

if

SQL_C_DEFAULT

were

specified

on

the

SQLBindCol(),

SQLGetData()

and

SQLBindParameter()

calls.

This

length

SQLProcedureColumns

Chapter

1.

DB2

CLI

functions

251

|
|
|
|

|
|
|

|
|
|

|

excludes

any

null-terminator.

For

exact

numeric

data

types,

the

length

accounts

for

the

decimal

and

the

sign.

See

the

table

of

data

type

length.

Column

10

DECIMAL_DIGITS

(SMALLINT)

The

scale

of

the

parameter.

NULL

is

returned

for

data

types

where

scale

is

not

applicable.

See

the

table

of

data

type

scale.

Column

11

NUM_PREC_RADIX

(SMALLINT)

Either

10

or

2

or

NULL.

If

DATA_TYPE

is

an

approximate

numeric

data

type,

this

column

contains

the

value

2,

then

the

COLUMN_SIZE

column

contains

the

number

of

bits

allowed

in

the

parameter.

If

DATA_TYPE

is

an

exact

numeric

data

type,

this

column

contains

the

value

10

and

the

COLUMN_SIZE

and

DECIMAL_DIGITS

columns

contain

the

number

of

decimal

digits

allowed

for

the

parameter.

For

numeric

data

types,

the

DBMS

can

return

a

NUM_PREC_RADIX

of

either

10

or

2.

NULL

is

returned

for

data

types

where

radix

is

not

applicable.

Column

12

NULLABLE

(SMALLINT

not

NULL)

SQL_NO_NULLS

if

the

parameter

does

not

accept

NULL

values.

SQL_NULLABLE

if

the

parameter

accepts

NULL

values.

Column

13

REMARKS

(VARCHAR(254))

May

contain

descriptive

information

about

the

parameter.

Column

14

COLUMN_DEF

(VARCHAR)

The

default

value

of

the

column.

If

NULL

was

specified

as

the

default

value,

then

this

column

is

the

word

NULL,

not

enclosed

in

quotation

marks.

If

the

default

value

cannot

be

represented

without

truncation,

then

this

column

contains

TRUNCATED,

with

no

enclosing

single

quotation

marks.

If

no

default

value

was

specified,

then

this

column

is

NULL.

The

value

of

COLUMN_DEF

can

be

used

in

generating

a

new

column

definition,

except

when

it

contains

the

value

TRUNCATED.

Column

15

SQL_DATA_TYPE

(SMALLINT

not

NULL)

The

value

of

the

SQL

data

type

as

it

appears

in

the

SQL_DESC_TYPE

field

of

the

descriptor.

This

column

is

the

same

as

the

DATA_TYPE

column

except

for

datetime

data

types

(DB2

CLI

does

not

support

interval

data

types).

For

datetime

data

types,

the

SQL_DATA_TYPE

field

in

the

result

set

will

be

SQL_DATETIME,

and

the

SQL_DATETIME_SUB

field

will

return

the

subcode

for

the

specific

datetime

data

type

(SQL_CODE_DATE,

SQL_CODE_TIME

or

SQL_CODE_TIMESTAMP).

Column

16

SQL_DATETIME_SUB

(SMALLINT)

The

subtype

code

for

datetime

data

types.

For

all

other

data

types

this

column

returns

a

NULL

(including

interval

data

types

which

DB2

CLI

does

not

support).

Column

17

CHAR_OCTET_LENGTH

(INTEGER)

The

maximum

length

in

bytes

of

a

character

data

type

column.

For

all

other

data

types,

this

column

returns

a

NULL.

SQLProcedureColumns

252

CLI

Guide

and

Reference,

Volume

2

Column

18

ORDINAL_POSITION

(INTEGER

NOT

NULL)

Contains

the

ordinal

position

of

the

parameter

given

by

COLUMN_NAME

in

this

result

set.

This

is

the

ordinal

position

of

the

argument

to

be

provided

on

the

CALL

statement.

The

leftmost

argument

has

an

ordinal

position

of

1.

Column

19

IS_NULLABLE

(Varchar)

v

“NO”

if

the

column

does

not

include

NULLs.

v

“YES”

if

the

column

can

include

NULLs.

v

zero-length

string

if

nullability

is

unknown.

ISO

rules

are

followed

to

determine

nullability.

An

ISO

SQL-compliant

DBMS

cannot

return

an

empty

string.

The

value

returned

for

this

column

is

different

than

the

value

returned

for

the

NULLABLE

column.

(See

the

description

of

the

NULLABLE

column.)

Note:

The

column

names

used

by

DB2

CLI

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLProcedureColumns()

result

set

in

ODBC.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

118.

SQLProcedureColumns

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

42601

PARMLIST

syntax

error.

The

PARMLIST

value

in

the

stored

procedures

catalog

table

contains

a

syntax

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

SQLProcedureColumns

Chapter

1.

DB2

CLI

functions

253

Table

118.

SQLProcedureColumns

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

SQL_NTS.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

SQLProcedureColumns()

does

not

return

information

about

the

attributes

of

result

sets

that

may

be

returned

from

stored

procedures.

If

an

application

is

connected

to

a

DB2

server

that

does

not

provide

support

for

a

stored

procedure

catalog,

or

does

not

provide

support

for

stored

procedures,

SQLProcedureColumns()

will

return

an

empty

result

set.

Example:

/*

get

input/output

parameter

information

for

a

procedure

*/

sqlrc

=

SQLProcedureColumns(hstmt,

NULL,

0,

/*

catalog

name

not

used

*/

(unsigned

char

*)colSchemaNamePattern,

SQL_NTS,

/*

schema

name

not

currently

used

*/

(unsigned

char

*)procname,

SQL_NTS,

colNamePattern,

SQL_NTS);

/*

all

columns

*/

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Data

types

and

data

conversion

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

SQLProcedureColumns

254

CLI

Guide

and

Reference,

Volume

2

v

“SQLProcedures

function

(CLI)

-

Get

list

of

procedure

names”

on

page

255

v

“Connection

attributes

(CLI)

list”

on

page

321

v

“Data

type

precision

(CLI)

table”

on

page

373

v

“Data

type

scale

(CLI)

table”

on

page

374

v

“Data

type

length

(CLI)

table”

on

page

375

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“spcall.c

--

Call

individual

stored

procedures”

SQLProcedures

function

(CLI)

-

Get

list

of

procedure

names

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLProcedures()

returns

a

list

of

stored

procedure

names

that

have

been

registered

at

the

server,

and

which

match

the

specified

search

pattern.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLProceduresW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLProcedures

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CatalogName,

/*

szProcCatalog

*/

SQLSMALLINT

NameLength1,

/*

cbProcCatalog

*/

SQLCHAR

*SchemaName,

/*

szProcSchema

*/

SQLSMALLINT

NameLength2,

/*

cbProcSchema

*/

SQLCHAR

*ProcName,

/*

szProcName

*/

SQLSMALLINT

NameLength3);

/*

cbProcName

*/

Function

arguments:

Table

119.

SQLProcedures

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLCHAR

*

CatalogName

Input

Catalog

qualifier

of

a

3-part

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Unix

and

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CatalogName,

or

SQL_NTS

if

CatalogName

is

null-terminated.

SQLProcedureColumns

Chapter

1.

DB2

CLI

functions

255

|
|
|
|

Table

119.

SQLProcedures

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

SchemaName

Input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

schema

name.

For

DB2

for

MVS/ESA

V

4.1

and

above,

all

the

stored

procedures

are

in

one

schema;

the

only

acceptable

value

for

the

SchemaName

argument

is

a

null

pointer.

If

a

value

is

specified,

an

empty

result

set

and

SQL_SUCCESS

are

returned.

For

DB2

Universal

Database,

SchemaName

can

contain

a

valid

pattern

value.

For

more

information

about

valid

search

patterns,

refer

to

the

catalog

functions

input

arguments.

SQLSMALLINT

NameLength2

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

SchemaName,

or

SQL_NTS

if

SchemaName

is

null-terminated.

SQLCHAR

*

ProcName

Input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

table

name.

SQLSMALLINT

NameLength3

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

ProcName,

or

SQL_NTS

if

ProcName

is

null-terminated.

Usage:

The

result

set

returned

by

SQLProcedures()

contains

the

columns

listed

in

“Columns

returned

by

SQLProcedures”

on

page

257

in

the

order

given.

The

rows

are

ordered

by

PROCEDURE_CAT,

PROCEDURE_SCHEMA,

and

PROCEDURE_NAME.

Since

calls

to

SQLProcedures()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

room

for

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN,

SQL_MAX_TABLE_NAME_LEN,

and

SQL_MAX_COLUMN_NAME_LEN

to

determine

respectively

the

actual

lengths

of

the

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

COLUMN_NAME

columns

supported

by

the

connected

DBMS.

If

the

SQL_ATTR_LONGDATA_COMPAT

connection

attribute

is

set,

LOB

column

types

will

be

reported

as

LONG

VARCHAR,

LONG

VARBINARY,

or

LONG

VARGRAPHIC

types.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

If

the

stored

procedure

is

at

a

DB2

for

MVS/ESA

V4.1

up

to

V6

server,

the

name

of

the

stored

procedures

must

be

registered

in

the

server’s

SYSIBM.SYSPROCEDURES

SQLProcedures

256

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

catalog

table.

For

V7

and

later

servers,

the

stored

procedure

must

be

registered

in

the

server’s

SYSIBM.SYSROUTINES

and

SYSIBM.SYSPARAMS

catalog

tables.

For

other

versions

of

DB2

servers

that

do

not

provide

facilities

for

a

stored

procedure

catalog,

an

empty

result

set

will

be

returned.

Columns

returned

by

SQLProcedures

Column

1

PROCEDURE_CAT

(VARCHAR(128))

Procedure

catalog

name.

The

value

is

NULL

if

this

procedure

does

not

have

catalogs.

Column

2

PROCEDURE_SCHEM

(VARCHAR(128))

The

name

of

the

schema

containing

PROCEDURE_NAME.

Column

3

PROCEDURE_NAME

(VARCHAR(128)

NOT

NULL)

The

name

of

the

procedure.

Column

4

NUM_INPUT_PARAMS

(INTEGER

not

NULL)

Number

of

input

parameters.

INOUT

parameters

are

not

counted

as

part

of

this

number.

To

determine

information

regarding

INOUT

parameters,

examine

the

COLUMN_TYPE

column

returned

by

SQLProcedureColumns().

Column

5

NUM_OUTPUT_PARAMS

(INTEGER

not

NULL)

Number

of

output

parameters.

INOUT

parameters

are

not

counted

as

part

of

this

number.

To

determine

information

regarding

INOUT

parameters,

examine

the

COLUMN_TYPE

column

returned

by

SQLProcedureColumns().

Column

6

NUM_RESULT_SETS

(INTEGER

not

NULL)

Number

of

result

sets

returned

by

the

procedure.

This

column

should

not

be

used,

it

is

reserved

for

future

use

by

ODBC.

Column

7

REMARKS

(VARCHAR(254))

Contains

the

descriptive

information

about

the

procedure.

Column

8

PROCEDURE_TYPE

(SMALLINT)

Defines

the

procedure

type:

v

SQL_PT_UNKNOWN:

It

cannot

be

determined

whether

the

procedure

returns

a

value.

v

SQL_PT_PROCEDURE:

The

returned

object

is

a

procedure;

that

is,

it

does

not

have

a

return

value.

v

SQL_PT_FUNCTION:

The

returned

object

is

a

function;

that

is,

it

has

a

return

value.

DB2

CLI

always

returns

SQL_PT_PROCEDURE.

Note:

The

column

names

used

by

DB2

CLI

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLProcedures()

result

set

in

ODBC.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLProcedures

Chapter

1.

DB2

CLI

functions

257

Diagnostics:

Table

120.

SQLProcedures

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

If

an

application

is

connected

to

a

DB2

server

that

does

not

provide

support

for

a

stored

procedure

catalog,

or

does

not

provide

support

for

stored

procedures,

SQLProcedureColumns()

will

return

an

empty

result

set.

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Data

types

and

data

conversion

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

SQLProcedures

258

CLI

Guide

and

Reference,

Volume

2

v

“SQLProcedureColumns

function

(CLI)

-

Get

input/output

parameter

information

for

a

procedure”

on

page

248

v

“Connection

attributes

(CLI)

list”

on

page

321

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

ISO

CLI

SQLPutData()

is

called

following

an

SQLParamData()

call

returning

SQL_NEED_DATA

to

supply

parameter

data

values.

This

function

can

be

used

to

send

large

parameter

values

in

pieces.

Syntax:

SQLRETURN

SQLPutData

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLPOINTER

DataPtr,

/*

rgbValue

*/

SQLINTEGER

StrLen_or_Ind);

/*

cbValue

*/

Function

arguments:

Table

121.

SQLPutData

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLPOINTER

DataPtr

Input

Pointer

to

the

actual

data,

or

portion

of

data,

for

a

parameter.

The

data

must

be

in

the

form

specified

in

the

SQLBindParameter()

call

that

the

application

used

when

specifying

the

parameter.

SQLINTEGER

StrLen_or_Ind

Input

The

length

of

DataPtr.

Specifies

the

amount

of

data

sent

in

a

call

to

SQLPutData()

.

The

amount

of

data

can

vary

with

each

call

for

a

given

parameter.

The

application

can

also

specify

SQL_NTS

or

SQL_NULL_DATA

for

StrLen_or_Ind.

StrLen_or_Ind

is

ignored

for

all

fixed

length

C

buffer

types,

such

as

date,

time,

timestamp,

and

all

numeric

C

buffer

types.

For

cases

where

the

C

buffer

type

is

SQL_C_CHAR

or

SQL_C_BINARY,

or

if

SQL_C_DEFAULT

is

specified

as

the

C

buffer

type

and

the

C

buffer

type

default

is

SQL_C_CHAR

or

SQL_C_BINARY,

this

is

the

number

of

bytes

of

data

in

the

DataPtr

buffer.

Usage:

The

application

calls

SQLPutData()

after

calling

SQLParamData()

on

a

statement

in

the

SQL_NEED_DATA

state

to

supply

the

data

values

for

an

SQL_DATA_AT_EXEC

parameter.

Long

data

can

be

sent

in

pieces

via

repeated

calls

to

SQLPutData().

DB2

CLI

generates

a

temporary

file

for

each

SQL_DATA_AT_EXEC

parameter

to

which

each

piece

of

data

is

appended

when

SQLPutData()

is

called.

The

path

in

which

DB2

CLI

creates

its

temporary

files

may

SQLProcedures

Chapter

1.

DB2

CLI

functions

259

be

set

using

the

TEMPDIR

keyword

in

the

db2cli.ini

file.

If

this

keyword

is

not

set,

DB2

CLI

attempts

to

write

to

the

path

specified

by

the

environment

variables

TEMP

or

TMP.

After

all

the

pieces

of

data

for

the

parameter

have

been

sent,

the

application

calls

SQLParamData()

again

to

proceed

to

the

next

SQL_DATA_AT_EXEC

parameter,

or,

if

all

parameters

have

data

values,

to

execute

the

statement.

SQLPutData()

cannot

be

called

more

than

once

for

a

fixed

length

C

buffer

type,

such

as

SQL_C_LONG.

After

an

SQLPutData()

call,

the

only

legal

function

calls

are

SQLParamData(),

SQLCancel(),

or

another

SQLPutData()

if

the

input

data

is

character

or

binary

data.

As

with

SQLParamData(),

all

other

function

calls

using

this

statement

handle

will

fail.

In

addition,

all

function

calls

referencing

the

parent

connection

handle

of

StatementHandle

will

fail

if

they

involve

changing

any

attribute

or

state

of

that

connection;

that

is,

the

following

function

calls

on

the

parent

connection

handle

are

also

not

permitted:

v

SQLSetConnectAttr()

v

SQLEndTran()

Should

they

be

invoked

during

an

SQL_NEED_DATA

sequence,

these

functions

will

return

SQL_ERROR

with

SQLSTATE

of

HY010

and

the

processing

of

the

SQL_DATA_AT_EXEC

parameters

will

not

be

affected.

If

one

or

more

calls

to

SQLPutData()

for

a

single

parameter

results

in

SQL_SUCCESS,

attempting

to

call

SQLPutData()

with

StrLen_or_Ind

set

to

SQL_NULL_DATA

for

the

same

parameter

results

in

an

error

with

SQLSTATE

of

22005.

This

error

does

not

result

in

a

change

of

state;

the

statement

handle

is

still

in

a

Need

Data

state

and

the

application

can

continue

sending

parameter

data.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Some

of

the

following

diagnostics

conditions

may

also

be

reported

on

the

final

SQLParamData()

call

rather

than

at

the

time

the

SQLPutData()

is

called.

Table

122.

SQLPutData

SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data

truncated.

The

data

sent

for

a

numeric

parameter

was

truncated

without

the

loss

of

significant

digits.

Timestamp

data

sent

for

a

date

or

time

column

was

truncated.

Function

returns

with

SQL_SUCCESS_WITH_INFO.

22001

String

data

right

truncation.

More

data

was

sent

for

a

binary

or

char

data

than

the

data

source

can

support

for

that

column.

SQLPutData

260

CLI

Guide

and

Reference,

Volume

2

Table

122.

SQLPutData

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

22003

Numeric

value

out

of

range.

The

data

sent

for

a

numeric

parameter

caused

the

whole

part

of

the

number

to

be

truncated

when

assigned

to

the

associated

column.

SQLPutData()

was

called

more

than

once

for

a

fixed

length

parameter.

22005

Error

in

assignment.

The

data

sent

for

a

parameter

was

incompatible

with

the

data

type

of

the

associated

table

column.

22007

Invalid

datetime

format.

The

data

value

sent

for

a

date,

time,

or

timestamp

parameters

was

invalid.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY009

Invalid

argument

value.

The

argument

DataPtr

was

a

NULL

pointer,

and

the

argument

StrLen_or_Ind

was

neither

0

nor

SQL_NULL_DATA.

HY010

Function

sequence

error.

The

statement

handle

StatementHandle

must

be

in

a

need

data

state

and

must

have

been

positioned

on

an

SQL_DATA_AT_EXEC

parameter

via

a

previous

SQLParamData()

call.

HY090

Invalid

string

or

buffer

length.

The

argument

DataPtr

was

not

a

NULL

pointer,

and

the

argument

StrLen_or_Ind

was

less

than

0,

but

not

equal

to

SQL_NTS

or

SQL_NULL_DATA.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

A

additional

value

for

StrLen_or_Ind,

SQL_DEFAULT_PARAM,

was

introduced

in

ODBC

2.0,

to

indicate

that

the

procedure

is

to

use

the

default

value

of

a

parameter,

rather

than

a

value

sent

from

the

application.

Since

DB2

stored

procedure

arguments

do

not

support

default

values,

specification

of

this

value

for

StrLen_or_Ind

argument

will

result

in

an

error

when

the

CALL

statement

is

executed

since

the

SQL_DEFAULT_PARAM

value

will

be

considered

an

invalid

length.

ODBC

2.0

also

introduced

the

SQL_LEN_DATA_AT_EXEC(length)

macro

to

be

used

with

the

StrLen_or_Ind

argument.

The

macro

is

used

to

specify

the

sum

total

length

of

the

entire

data

that

would

be

sent

for

character

or

binary

C

data

via

the

subsequent

SQLPutData()

calls.

Since

the

DB2

ODBC

driver

does

not

need

this

information,

the

macro

is

not

needed.

An

ODBC

application

calls

SQLGetInfo()

SQLPutData

Chapter

1.

DB2

CLI

functions

261

with

the

SQL_NEED_LONG_DATA_LEN

option

to

check

if

the

driver

needs

this

information.

The

DB2

ODBC

driver

will

return

’N’

to

indicate

that

this

information

is

not

needed

by

SQLPutData().

Example:

SQLCHAR

buffer[BUFSIZ];

size_t

n

=

BUFSIZ;

/*

...

*/

/*

passing

data

value

for

a

parameter

*/

cliRC

=

SQLPutData(hstmt,

buffer,

n);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Long

data

for

bulk

inserts

and

updates

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

on

page

49

v

“SQLNativeSql

function

(CLI)

-

Get

native

SQL

text”

on

page

229

v

“SQLParamData

function

(CLI)

-

Get

next

parameter

for

which

a

data

value

is

needed”

on

page

237

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

SQLRowCount

function

(CLI)

-

Get

row

count

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLRowCount()

returns

the

number

of

rows

in

a

table

that

were

affected

by

an

UPDATE,

INSERT,

DELETE,

or

MERGE

statement

executed

against

the

table,

or

a

view

based

on

the

table.

SQLExecute()

or

SQLExecDirect()

must

be

called

before

calling

this

function.

Syntax:

SQLRETURN

SQLRowCount

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLINTEGER

*RowCountPtr);

/*

pcrow

*/

Function

arguments:

Table

123.

SQLRowCount

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLPutData

262

CLI

Guide

and

Reference,

Volume

2

|
|
|

Table

123.

SQLRowCount

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

*

RowCountPtr

output

Pointer

to

location

where

the

number

of

rows

affected

is

stored.

Usage:

If

the

last

executed

statement

referenced

by

the

input

statement

handle

was

not

an

UPDATE,

INSERT,

DELETE,

or

MERGE

statement,

or

if

it

did

not

execute

successfully,

then

the

function

sets

the

contents

of

RowCountPtr

to

-1.

Any

rows

in

other

tables

that

may

have

been

affected

by

the

statement

(for

example,

cascading

deletes)

are

not

included

in

the

count.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

124.

SQLRowCount

SQLSTATEs

SQLSTATE

Description

Explanation

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

The

function

was

called

prior

to

calling

SQLExecute()

or

SQLExecDirect()

for

the

StatementHandle.

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

Authorization:

None.

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

on

page

100

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

on

page

105

v

“INSERT

scalar

function”

in

the

SQL

Reference,

Volume

1

v

“DELETE

statement”

in

the

SQL

Reference,

Volume

2

v

“UPDATE

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLRowCount

Chapter

1.

DB2

CLI

functions

263

|
|
|

SQLSetColAttributes

function

(CLI)

-

Set

column

attributes

Deprecated:

Note:

In

ODBC

3.0,

SQLSetColAttributes()

has

been

deprecated,

and

DB2

CLI

no

longer

supports

this

function.

Now

that

DB2

CLI

uses

deferred

prepare

by

default,

there

is

no

need

for

the

functionality

of

SQLSetColAttributes().

Related

concepts:

v

“Deferred

prepare

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“CLI

and

ODBC

function

summary”

on

page

1

SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLSetConnectAttr()

sets

attributes

that

govern

aspects

of

connections.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLSetConnectAttrW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLSetConnectAttr

(

SQLHDBC

ConnectionHandle,

/*

hdbc

*/

SQLINTEGER

Attribute,

/*

fOption

*/

SQLPOINTER

ValuePtr,

/*

pvParam

*/

SQLINTEGER

StringLength);

/*

fStrLen

*/

Function

arguments:

Table

125.

SQLSetConnectAttr

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection

handle.

SQLINTEGER

Attribute

input

Attribute

to

set,

listed

in

the

connection

attributes

list.

SQLPOINTER

ValuePtr

input

Pointer

to

the

value

to

be

associated

with

Attribute.

Depending

on

the

value

of

Attribute,

ValuePtr

will

be

a

32-bit

unsigned

integer

value

or

pointer

to

a

null-terminated

character

string.

Note

that

if

the

Attribute

argument

is

a

driver-specific

value,

the

value

in

*ValuePtr

may

be

a

signed

integer.

Refer

to

the

connection

attributes

list

for

details.

SQLSetColAttributes

264

CLI

Guide

and

Reference,

Volume

2

|
|

Table

125.

SQLSetConnectAttr

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

StringLength

input

If

Attribute

is

an

ODBC-defined

attribute

and

ValuePtr

points

to

a

character

string

or

a

binary

buffer,

this

argument

should

be

the

length

of

*ValuePtr.

For

character

string

data,

StringLength

should

contain

the

number

of

bytes

in

the

string.

If

Attribute

is

an

ODBC-defined

attribute

and

ValuePtr

is

an

integer,

StringLength

is

ignored.

If

Attribute

is

a

DB2

CLI

attribute,

the

application

indicates

the

nature

of

the

attribute

by

setting

the

StringLength

argument.

StringLength

can

have

the

following

values:

v

If

ValuePtr

is

a

pointer

to

a

character

string,

then

StringLength

is

the

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

stored

the

string

or

SQL_NTS.

v

If

ValuePtr

is

a

pointer

to

a

binary

buffer,

then

the

application

places

the

result

of

the

SQL_LEN_BINARY_ATTR(length)

macro

in

StringLength.

This

places

a

negative

value

in

StringLength.

v

If

ValuePtr

is

a

pointer

to

a

value

other

than

a

character

string

or

a

binary

string,

then

StringLength

should

have

the

value

SQL_IS_POINTER.

v

If

ValuePtr

contains

a

fixed-length

value,

then

StringLength

is

either

SQL_IS_INTEGER

or

SQL_IS_UINTEGER,

as

appropriate.

Usage:

Setting

statement

attributes

using

SQLSetConnectAttr()

no

longer

supported

The

ability

to

set

statement

attributes

using

SQLSetConnectAttr()

is

no

longer

supported.

To

support

applications

written

before

version

5,

some

statement

attributes

can

be

set

using

SQLSetConnectAttr()

in

this

release

of

DB2

CLI.

All

applications

that

rely

on

this

behavior,

however,

should

be

updated

to

use

SQLSetStmtAttr()

instead.

If

SQLSetConnectAttr()

is

called

to

set

a

statement

attribute

that

sets

the

header

field

of

a

descriptor,

the

descriptor

field

is

set

for

the

application

descriptors

currently

associated

with

all

statements

on

the

connection.

However,

the

attribute

setting

does

not

affect

any

descriptors

that

may

be

associated

with

the

statements

on

that

connection

in

the

future.

Connection

Attributes

At

any

time

between

allocating

and

freeing

a

connection,

an

application

can

call

SQLSetConnectAttr().

All

connection

and

statement

attributes

successfully

set

by

the

application

for

the

connection

persist

until

SQLFreeHandle()

is

called

on

the

connection.

SQLSetConnectAttr

Chapter

1.

DB2

CLI

functions

265

|
|
|
|
|

Some

connection

attributes

can

be

set

only

before

a

connection

has

been

made;

others

can

be

set

only

after

a

connection

has

been

made,

while

some

cannot

be

set

once

a

statement

is

allocated.

Refer

to

the

connection

attributes

list

for

details

on

when

each

attribute

can

be

set.

Some

connection

attributes

support

substitution

of

a

similar

value

if

the

data

source

does

not

support

the

value

specified

in

ValuePtr.

In

such

cases,

DB2

CLI

returns

SQL_SUCCESS_WITH_INFO

and

SQLSTATE

01S02

(Option

value

changed.).

To

determine

the

substituted

value,

an

application

calls

SQLGetConnectAttr().

The

format

of

information

set

through

ValuePtr

depends

on

the

specified

Attribute.

SQLSetConnectAttr()

will

accept

attribute

information

in

one

of

two

different

formats:

a

null-terminated

character

string

or

a

32-bit

integer

value.

The

format

of

each

is

noted

in

the

attribute’s

description.

Character

strings

pointed

to

by

the

ValuePtr

argument

of

SQLSetConnectAttr()

have

a

length

of

StringLength

bytes.

The

StringLength

argument

is

ignored

if

the

length

is

defined

by

the

attribute.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

DB2

CLI

can

return

SQL_SUCCESS_WITH_INFO

to

provide

information

about

the

result

of

setting

an

option.

When

Attribute

is

a

statement

attribute,

SQLSetConnectAttr()

can

return

any

SQLSTATEs

returned

by

SQLSetStmtAttr().

Table

126.

SQLSetConnectAttr

SQLSTATEs

SQLSTATE

Description

Explanation

01000

General

error.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01S02

Option

value

changed.

DB2

CLI

did

not

support

the

value

specified

in

*ValuePtr

and

substituted

a

similar

value.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08002

Connection

in

use.

The

argument

Attribute

was

SQL_ATTR_ODBC_CURSORS

and

DB2

CLI

was

already

connected

to

the

data

source.

08003

Connection

is

closed.

An

Attribute

value

was

specified

that

required

an

open

connection,

but

the

ConnectionHandle

was

not

in

a

connected

state.

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

connected

failed

before

the

function

completed

processing.

24000

Invalid

cursor

state.

The

argument

Attribute

was

SQL_ATTR_CURRENT_QUALIFIER

and

a

result

set

was

pending.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE

and

for

which

no

implementation-specific

SQLSTATE

was

defined.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

SQLSetConnectAttr

266

CLI

Guide

and

Reference,

Volume

2

Table

126.

SQLSetConnectAttr

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY009

Invalid

argument

value.

A

null

pointer

was

passed

for

ValuePtr

and

the

value

in

*ValuePtr

was

a

string

value.

HY010

Function

sequence

error.

An

asynchronously

executing

function

was

called

for

a

StatementHandle

associated

with

the

ConnectionHandle

and

was

still

executing

when

SQLSetConnectAttr()

was

called.

SQLExecute()

or

SQLExecDirect()

was

called

for

a

StatementHandle

associated

with

the

ConnectionHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

SQLBrowseConnect()

was

called

for

the

ConnectionHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

SQLBrowseConnect()

returned

SQL_SUCCESS_WITH_INFO

or

SQL_SUCCESS.

HY011

Operation

invalid

at

this

time.

The

argument

Attribute

was

SQL_ATTR_TXN_ISOLATION

and

a

transaction

was

open.

HY024

Invalid

attribute

value.

Given

the

specified

Attribute

value,

an

invalid

value

was

specified

in

*ValuePtr.

(DB2

CLI

returns

this

SQLSTATE

only

for

connection

and

statement

attributes

that

accept

a

discrete

set

of

values,

such

as

SQL_ATTR_ACCESS_MODE.

For

all

other

connection

and

statement

attributes,

DB2

CLI

must

verify

the

value

specified

in

ValuePtr.)

The

Attribute

argument

was

SQL_ATTR_TRACEFILE

or

SQL_ATTR_TRANSLATE_LIB,

and

*ValuePtr

was

an

empty

string.

HY090

Invalid

string

or

buffer

length.

The

StringLength

argument

was

less

than

0,

but

was

not

SQL_NTS.

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

was

not

valid

for

this

version

of

DB2

CLI.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

Attribute

was

a

valid

connection

or

statement

attribute

for

the

version

of

the

DB2

CLI

driver,

but

was

not

supported

by

the

data

source.

Restrictions:

None.

Example:

/*

set

AUTOCOMMIT

on

*/

cliRC

=

SQLSetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,

(SQLPOINTER)SQL_AUTOCOMMIT_ON,

SQL_NTS);

/*

...

*/

/*

set

AUTOCOMMIT

OFF

*/

SQLSetConnectAttr

Chapter

1.

DB2

CLI

functions

267

cliRC

=

SQLSetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,

(SQLPOINTER)SQL_AUTOCOMMIT_OFF,

SQL_NTS);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

v

“SQLGetConnectAttr

function

(CLI)

-

Get

current

attribute

setting”

on

page

145

v

“SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute”

on

page

215

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

v

“Connection

attributes

(CLI)

list”

on

page

321

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“tbread.c

--

How

to

read

data

from

tables”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

SQLSetConnection

function

(CLI)

-

Set

connection

handle

Purpose:

Specification:

DB2

CLI

2.1

This

function

is

needed

if

the

application

needs

to

deterministically

switch

to

a

particular

connection

before

continuing

execution.

It

should

only

be

used

when

the

application

is

mixing

DB2

CLI

function

calls

with

embedded

SQL

function

calls

and

where

multiple

connections

are

used.

Syntax:

SQLRETURN

SQLSetConnection

(SQLHDBC

ConnectionHandle);

/*

hdbc

*/

Function

arguments:

Table

127.

SQLSetConnection

arguments

Data

type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

The

connection

handle

associated

with

the

connection

that

the

application

wishes

to

switch

to.

Usage:

In

DB2

CLI

version

1

it

was

possible

to

mix

DB2

CLI

calls

with

calls

to

routines

containing

embedded

SQL

as

long

as

the

connect

request

was

issued

via

the

DB2

CLI

connect

function.

The

embedded

SQL

routine

would

simply

use

the

existing

DB2

CLI

connection.

SQLSetConnectAttr

268

CLI

Guide

and

Reference,

Volume

2

Although

this

is

still

true,

there

is

a

potential

complication:

DB2

CLI

allows

multiple

concurrent

connections.

This

means

that

it

is

no

longer

clear

which

connection

an

embedded

SQL

routine

would

use

upon

being

invoked.

In

practice,

the

embedded

routine

would

use

the

connection

associated

with

the

most

recent

network

activity.

However,

from

the

application’s

perspective,

this

is

not

always

deterministic

and

it

is

difficult

to

keep

track

of

this

information.

SQLSetConnection()

is

used

to

allow

the

application

to

explicitly

specify

which

connection

is

active.

The

application

can

then

call

the

embedded

SQL

routine.

SQLSetConnection()

is

not

needed

if

the

application

makes

use

of

DB2

CLI

exclusively.

Under

those

conditions,

each

statement

handle

is

implicitly

associated

with

a

connection

handle

and

there

is

never

any

confusion

as

to

which

connection

a

particular

DB2

CLI

function

applies.

Return

codes:

v

SQL_SUCCESS

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

128.

SQLSetConnection

SQLSTATEs

SQLSTATE

Description

Explanation

08003

Connection

is

closed.

The

connection

handle

provided

is

not

currently

associated

with

an

open

connection

to

a

database

server.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE

and

for

which

no

implementation-specific

SQLSTATE

was

defined.

The

error

message

returned

by

SQLGetDiagRec()

in

the

argument

MessageText

describes

the

error

and

its

cause.

Restrictions:

None.

Example:

/*

perform

statements

on

the

first

connection

*/

cliRC

=

SQLSetConnection(hdbc1);

/*

...

*/

/*

perform

statements

on

the

second

connection

*/

cliRC

=

SQLSetConnection(hdbc2);

Related

concepts:

v

“Considerations

for

mixing

embedded

SQL

and

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Multisite

updates

(two

phase

commit)

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLConnect

function

(CLI)

-

Connect

to

a

data

source”

on

page

73

SQLSetConnection

Chapter

1.

DB2

CLI

functions

269

v

“SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source”

on

page

90

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbmconx.c

--

How

to

use

multiple

databases

with

embedded

SQL.”

SQLSetConnectOption

function

(CLI)

-

Set

connection

option

Deprecated:

Note:

In

ODBC

3.0,

SQLSetConnectOption()

has

been

deprecated

and

replaced

with

SQLSetConnectAttr().

Although

this

version

of

DB2

CLI

continues

to

support

SQLSetConnectOption(),

we

recommend

that

you

use

SQLSetConnectAttr()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

This

deprecated

function

cannot

be

used

in

a

64-bit

environment.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLSetConnectOptionW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Migrating

to

the

new

function

The

statement:

SQLSetConnectOption(

hdbc,

SQL_AUTOCOMMIT,

SQL_AUTOCOMMIT_OFF);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLSetConnectAttr(

hdbc,

SQL_ATTR_AUTOCOMMIT,

SQL_AUTOCOMMIT_OFF,

0);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

SQLSetCursorName

function

(CLI)

-

Set

cursor

name

Purpose:

Specification:

DB2

CLI

1.1

ODBC

1.0

ISO

CLI

SQLSetConnection

270

CLI

Guide

and

Reference,

Volume

2

SQLSetCursorName()

associates

a

cursor

name

with

the

statement

handle.

This

function

is

optional

because

DB2

CLI

implicitly

generates

a

cursor

name.

The

implicit

cursor

name

is

available

after

the

dynamic

SQL

has

been

prepared

on

the

statement

handle.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLSetCursorNameW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLSetCursorName

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CursorName,

/*

szCursor

*/

SQLSMALLINT

NameLength);

/*

cbCursor

*/

Function

arguments:

Table

129.

SQLSetCursorName

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle

SQLCHAR

*

CursorName

input

Cursor

name

SQLSMALLINT

NameLength

input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

CursorName

argument.

Usage:

DB2

CLI

always

generates

and

uses

an

internally

generated

cursor

name

when

a

query

is

prepared

or

executed

directly.

SQLSetCursorName()

allows

an

application-defined

cursor

name

to

be

used

in

an

SQL

statement

(a

positioned

UPDATE

or

DELETE).

DB2

CLI

maps

this

name

to

the

internal

name.

The

name

will

remain

associated

with

the

statement

handle,

until

the

handle

is

dropped,

or

another

SQLSetCursorName()

is

called

on

this

statement

handle.

Although

SQLGetCursorName()

will

return

the

name

set

by

the

application

(if

one

was

set),

error

messages

associated

with

positioned

UPDATE

and

DELETE

statements

will

refer

to

the

internal

name.

For

this

reason,

we

recommend

that

you

do

not

use

SQLSetCursorName()

for

positioned

UPDATEs

and

DELETEs,

but

instead

use

the

internal

name

which

can

be

obtained

by

calling

SQLGetCursorName().

Cursor

names

must

follow

these

rules:

v

All

cursor

names

within

the

connection

must

be

unique.

v

Each

cursor

name

must

be

less

than

or

equal

to

18

bytes

in

length.

Any

attempt

to

set

a

cursor

name

longer

than

18

bytes

results

in

truncation

of

that

cursor

name

to

18

bytes.

(No

warning

is

generated.)

v

Since

internally

generated

names

begin

with

SQLCUR

or

SQL_CUR,

the

application

must

not

input

a

cursor

name

starting

with

either

SQLCUR

or

SQL_CUR

in

order

to

avoid

conflicts

with

internal

names.

v

Since

a

cursor

name

is

considered

an

identifier

in

SQL,

it

must

begin

with

an

English

letter

(a-z,

A-Z)

followed

by

any

combination

of

digits

(0-9),

English

letters

or

the

underscore

character

(_).

SQLSetCursorName

Chapter

1.

DB2

CLI

functions

271

|
|
|

v

To

permit

cursor

names

containing

characters

other

than

those

listed

above

(such

as

National

Language

Set

or

Double

Bytes

Character

Set

characters),

the

application

must

enclose

the

cursor

name

in

double

quotes

(″).

v

Unless

the

input

cursor

name

is

enclosed

in

double

quotes,

all

leading

and

trailing

blanks

from

the

input

cursor

name

string

will

be

removed.

For

efficient

processing,

applications

should

not

include

any

leading

or

trailing

spaces

in

the

CursorName

buffer.

If

the

CursorName

buffer

contains

a

delimited

identifier,

applications

should

position

the

first

double

quote

as

the

first

character

in

the

CursorName

buffer.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

130.

SQLSetCursorName

SQLSTATEs

SQLSTATE

Description

Explanation

34000

Invalid

cursor

name.

The

cursor

name

specified

by

the

argument

CursorName

was

invalid.

The

cursor

name

either

begins

with

″SQLCUR″

or

″SQL_CUR″

or

violates

the

cursor

naming

rules

(Must

begin

with

a-z

or

A-Z

followed

by

any

combination

of

English

letters,

digits,

or

the

’_’

character.

The

cursor

name

specified

by

the

argument

CursorName

already

exists.

The

cursor

name

length

is

greater

than

the

value

returned

by

SQLGetInfo()

with

the

SQL_MAX_CURSOR_NAME_LEN

argument.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

58004

Unexpected

system

failure.

Unrecoverable

system

error.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY009

Invalid

argument

value.

CursorName

was

a

null

pointer.

HY010

Function

sequence

error.

There

is

an

open

or

positioned

cursor

on

the

statement

handle.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

SQLSetCursorName

272

CLI

Guide

and

Reference,

Volume

2

Table

130.

SQLSetCursorName

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY090

Invalid

string

or

buffer

length.

The

argument

NameLength

was

less

than

0,

but

not

equal

to

SQL_NTS.

Authorization:

None.

Example:

/*

set

the

name

of

the

cursor

*/

rc

=

SQLSetCursorName(hstmtSelect,

(SQLCHAR

*)"CURSNAME",

SQL_NTS);

Related

concepts:

v

“Handles

in

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“National

Language

Support

and

Application

Development

Considerations”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Updating

and

deleting

data

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetCursorName

function

(CLI)

-

Get

cursor

name”

on

page

148

v

“DBCS

Character

Sets”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbmod.c

--

How

to

modify

table

data”

SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLSetDescField()

sets

the

value

of

a

single

field

of

a

descriptor

record.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLSetDescFieldW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

SQLSetCursorName

Chapter

1.

DB2

CLI

functions

273

Syntax:

SQLRETURN

SQLSetDescField

(SQLHDESC

DescriptorHandle,

SQLSMALLINT

RecNumber,

SQLSMALLINT

FieldIdentifier,

SQLPOINTER

ValuePtr,

SQLINTEGER

BufferLength);

Function

arguments:

Table

131.

SQLSetDescField

arguments

Data

type

Argument

Use

Description

SQLHDESC

DescriptorHandle

input

Descriptor

handle.

SQLSMALLINT

RecNumber

input

Indicates

the

descriptor

record

containing

the

field

that

the

application

seeks

to

set.

Descriptor

records

are

numbered

from

0,

with

record

number

0

being

the

bookmark

record.

The

RecNumber

argument

is

ignored

for

header

fields.

SQLSMALLINT

FieldIdentifier

input

Indicates

the

field

of

the

descriptor

whose

value

is

to

be

set.

For

more

information,

refer

to

the

list

of

values

for

the

descriptor

FieldIdentifier

argument.

SQLPOINTER

ValuePtr

input

Pointer

to

a

buffer

containing

the

descriptor

information,

or

a

four-byte

value.

The

data

type

depends

on

the

value

of

FieldIdentifier.

If

ValuePtr

is

a

four-byte

value,

either

all

four

of

the

bytes

are

used,

or

just

two

of

the

four

are

used,

depending

on

the

value

of

the

FieldIdentifier

argument.

SQLINTEGER

BufferLength

input

If

FieldIdentifier

is

an

ODBC-defined

field

and

ValuePtr

points

to

a

character

string

or

a

binary

buffer,

this

argument

should

be

the

length

of

*ValuePtr.

For

character

string

data,

BufferLength

should

contain

the

number

of

bytes

in

the

string.

If

FieldIdentifier

is

an

ODBC-defined

field

and

ValuePtr

is

an

integer,

BufferLength

is

ignored.

If

FieldIdentifier

is

a

driver-defined

field,

the

application

indicates

the

nature

of

the

field

by

setting

the

BufferLength

argument.

BufferLength

can

have

the

following

values:

v

If

ValuePtr

is

a

pointer

to

a

character

string,

then

BufferLength

is

the

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

stored

the

string

or

SQL_NTS.

v

If

ValuePtr

is

a

pointer

to

a

binary

buffer,

then

the

application

places

the

result

of

the

SQL_LEN_BINARY_ATTR(length)

macro

in

BufferLength

This

places

a

negative

value

in

BufferLength.

v

If

ValuePtr

is

a

pointer

to

a

value

other

than

a

character

string

or

a

binary

string,

then

BufferLength

should

have

the

value

SQL_IS_POINTER.

v

If

ValuePtr

contains

a

fixed-length

value,

then

BufferLength

is

either

SQL_IS_INTEGER,

SQL_IS_UINTEGER,

SQL_IS_SMALLINT,

or

SQL_IS_USMALLINT,

as

appropriate.

SQLSetDescField

274

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|

Usage:

An

application

can

call

SQLSetDescField()

to

set

any

descriptor

field

one

at

a

time.

One

call

to

SQLSetDescField()

sets

a

single

field

in

a

single

descriptor.

This

function

can

be

called

to

set

any

field

in

any

descriptor

type,

provided

the

field

can

be

set.

See

the

descriptor

header

and

record

field

initialization

values

for

more

information.

Note:

If

a

call

to

SQLSetDescField()

fails,

the

contents

of

the

descriptor

record

identified

by

the

RecNumber

argument

are

undefined.

Other

functions

can

be

called

to

set

multiple

descriptor

fields

with

a

single

call

of

the

function.

The

SQLSetDescRec()

function

sets

a

variety

of

fields

that

affect

the

data

type

and

buffer

bound

to

a

column

or

parameter

(the

SQL_DESC_TYPE,

SQL_DESC_DATETIME_INTERVAL_CODE,

SQL_DESC_OCTET_LENGTH,

SQL_DESC_PRECISION,

SQL_DESC_SCALE,

SQL_DESC_DATA_PTR,

SQL_DESC_OCTET_LENGTH_PTR,

and

SQL_DESC_INDICATOR_PTR

fields).

SQLBindCol()

or

SQLBindParameter()

can

be

used

to

make

a

complete

specification

for

the

binding

of

a

column

or

parameter.

These

functions

each

set

a

specific

group

of

descriptor

fields

with

one

function

call.

SQLSetDescField()

can

be

called

to

change

the

binding

buffers

by

adding

an

offset

to

the

binding

pointers

(SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR,

or

SQL_DESC_OCTET_LENGTH_PTR).

This

changes

the

binding

buffers

without

calling

SQLBindCol()

or

SQLBindParameter().

This

allows

an

application

to

quickly

change

SQL_DESC_DATA_PTR

without

concern

for

changing

other

fields,

for

instance

SQL_DESC_DATA_TYPE.

Descriptor

header

fields

are

set

by

calling

SQLSetDescField()

with

a

RecNumber

of

0,

and

the

appropriate

FieldIdentifier.

Many

header

fields

contain

statement

attributes,

so

may

also

be

set

by

a

call

to

SQLSetStmtAttr().

This

allows

applications

to

set

a

statement

attribute

without

first

obtaining

a

descriptor

handle.

A

RecNumber

of

0

is

also

used

to

set

bookmark

fields.

Note:

The

statement

attribute

SQL_ATTR_USE_BOOKMARKS

should

always

be

set

before

calling

SQLSetDescField()

to

set

bookmark

fields.

While

this

is

not

mandatory,

it

is

strongly

recommended.

Sequence

of

setting

descriptor

fields

When

setting

descriptor

fields

by

calling

SQLSetDescField(),

the

application

must

follow

a

specific

sequence:

v

The

application

must

first

set

the

SQL_DESC_TYPE,

SQL_DESC_CONCISE_TYPE,

or

SQL_DESC_DATETIME_INTERVAL_CODE

field.

Note:

SQL_DESC_DATETIME_INTERVAL_CODE

is

defined

by

ODBC

but

not

supported

by

DB2

CLI.

v

After

one

of

these

fields

has

been

set,

the

application

can

set

an

attribute

of

a

data

type,

and

the

driver

sets

data

type

attribute

fields

to

the

appropriate

default

values

for

the

data

type.

Automatic

defaulting

of

type

attribute

fields

ensures

that

the

descriptor

is

always

ready

to

use

once

the

application

has

specified

a

data

type.

If

the

application

explicitly

sets

a

data

type

attribute,

it

is

overriding

the

default

attribute.

v

After

one

of

the

fields

listed

in

Step

1

has

been

set,

and

data

type

attributes

have

been

set,

the

application

can

set

SQL_DESC_DATA_PTR.

This

prompts

a

consistency

check

of

descriptor

fields.

If

the

application

changes

the

data

type

or

SQLSetDescField

Chapter

1.

DB2

CLI

functions

275

attributes

after

setting

the

SQL_DESC_DATA_PTR

field,

then

the

driver

sets

SQL_DESC_DATA_PTR

to

a

null

pointer,

unbinding

the

record.

This

forces

the

application

to

complete

the

proper

steps

in

sequence,

before

the

descriptor

record

is

usable.

Initialization

of

descriptor

fields

When

a

descriptor

is

allocated,

the

fields

in

the

descriptor

can

be

initialized

to

a

default

value,

be

initialized

without

a

default

value,

or

be

undefined

for

the

type

of

descriptor.

Refer

to

the

list

of

descriptor

header

and

record

field

initialization

values

for

details.

The

fields

of

an

IRD

have

a

default

value

only

after

the

statement

has

been

prepared

or

executed

and

the

IRD

has

been

populated,

not

when

the

statement

handle

or

descriptor

has

been

allocated.

Until

the

IRD

has

been

populated,

any

attempt

to

gain

access

to

a

field

of

an

IRD

will

return

an

error.

Some

descriptor

fields

are

defined

for

one

or

more,

but

not

all,

of

the

descriptor

types

(ARDs

and

IRDs,

and

APDs

and

IPDs).

When

a

field

is

undefined

for

a

type

of

descriptor,

it

is

not

needed

by

any

of

the

functions

that

use

that

descriptor.

Because

a

descriptor

is

a

logical

view

of

data,

rather

than

an

actual

data

structure,

these

extra

fields

have

no

effect

on

the

defined

fields.

The

fields

that

can

be

accessed

by

SQLGetDescField()

are

not

necessarily

set

by

SQLSetDescField().

Fields

that

can

be

set

by

SQLSetDescField()

are

described

in

the

descriptor

header

and

record

field

initialization

values

list.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

132.

SQLSetDescField

SQLSTATEs

SQLSTATE

Description

Explanation

01000

General

warning

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01S02

Option

value

changed.

DB2

CLI

did

not

support

the

value

specified

in

*ValuePtr

(if

ValuePtr

was

a

pointer)

or

the

value

in

ValuePtr

(if

ValuePtr

was

a

four-byte

value),

or

*ValuePtr

was

invalid

because

of

SQL

constraints

or

requirements,

so

DB2

CLI

substituted

a

similar

value.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07009

Invalid

descriptor

index.

The

FieldIdentifier

argument

was

a

header

field,

and

the

RecNumber

argument

was

not

0.

The

RecNumber

argument

was

0

and

the

DescriptorHandle

was

an

IPD.

The

RecNumber

argument

was

less

than

0.

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

connected

failed

before

the

function

completed

processing.

SQLSetDescField

276

CLI

Guide

and

Reference,

Volume

2

Table

132.

SQLSetDescField

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

The

DescriptorHandle

was

associated

with

a

StatementHandle

for

which

an

asynchronously

executing

function

(not

this

one)

was

called

and

was

still

executing

when

this

function

was

called.

SQLExecute()

or

SQLExecDirect()

was

called

for

the

StatementHandle

with

which

the

DescriptorHandle

was

associated

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY016

Cannot

modify

an

implementation

row

descriptor.

The

DescriptorHandle

argument

was

associated

with

an

IRD,

and

the

FieldIdentifier

argument

was

not

SQL_DESC_ARRAY_STATUS_PTR.

HY021

Inconsistent

descriptor

information.

The

TYPE

field,

or

any

other

field

associated

with

the

TYPE

field

in

the

descriptor,

was

not

valid

or

consistent.

The

TYPE

field

was

not

a

valid

DB2

CLI

C

type.

Descriptor

information

checked

during

a

consistency

check

was

not

consistent.

HY091

Invalid

descriptor

field

identifier.

The

value

specified

for

the

FieldIdentifier

argument

was

not

a

DB2

CLI

defined

field

and

was

not

a

defined

value.

The

value

specified

for

the

RecNumber

argument

was

greater

than

the

value

in

the

SQL_DESC_COUNT

field.

The

FieldIdentifier

argument

was

SQL_DESC_ALLOC_TYPE.

HY092

Option

type

out

of

range.

The

value

specified

for

the

Attribute

argument

was

not

valid.

HY105

Invalid

parameter

type.

The

value

specified

for

the

SQL_DESC_PARAMETER_TYPE

field

was

invalid.

(For

more

information,

see

the

InputOutputType

Argument

section

in

SQLBindParameter().)

Restrictions:

None.

Example:

/*

set

a

single

field

of

a

descriptor

record

*/

rc

=

SQLSetDescField(hARD,

1,

SQL_DESC_TYPE,

(SQLPOINTER)SQL_SMALLINT,

SQL_IS_SMALLINT);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLSetDescField

Chapter

1.

DB2

CLI

functions

277

|

v

“Consistency

checks

for

descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

on

page

159

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

on

page

163

v

“SQLSetDescRec

function

(CLI)

-

Set

multiple

descriptor

fields

for

a

column

or

parameter

data”

on

page

278

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

on

page

362

v

“Descriptor

FieldIdentifier

argument

values

(CLI)”

on

page

351

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

SQLSetDescRec

function

(CLI)

-

Set

multiple

descriptor

fields

for

a

column

or

parameter

data

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

The

SQLSetDescRec()

function

sets

multiple

descriptor

fields

that

affect

the

data

type

and

buffer

bound

to

a

column

or

parameter

data.

Syntax:

SQLRETURN

SQLSetDescRec

(SQLHDESC

DescriptorHandle,

SQLSMALLINT

RecNumber,

SQLSMALLINT

Type,

SQLSMALLINT

SubType,

SQLINTEGER

Length,

SQLSMALLINT

Precision,

SQLSMALLINT

Scale,

SQLPOINTER

DataPtr,

SQLINTEGER

*StringLengthPtr,

SQLINTEGER

*IndicatorPtr);

Function

arguments:

Table

133.

SQLSetDescRec

arguments

Data

type

Argument

Use

Description

SQLHDESC

DescriptorHandle

input

Descriptor

handle.

This

must

not

be

an

IRD

handle.

SQLSetDescField

278

CLI

Guide

and

Reference,

Volume

2

Table

133.

SQLSetDescRec

arguments

(continued)

Data

type

Argument

Use

Description

SQLSMALLINT

RecNumber

input

Indicates

the

descriptor

record

that

contains

the

fields

to

be

set.

Descriptor

records

are

numbered

from

0,

with

record

number

0

being

the

bookmark

record.

This

argument

must

be

equal

to

or

greater

than

0.

If

RecNumber

is

greater

than

the

value

of

SQL_DESC_COUNT,

SQL_DESC_COUNT

is

changed

to

the

value

of

RecNumber.

SQLSMALLINT

Type

input

The

value

to

which

to

set

the

SQL_DESC_TYPE

field

for

the

descriptor

record.

SQLSMALLINT

SubType

input

For

records

whose

type

is

SQL_DATETIME,

this

is

the

value

to

which

to

set

the

SQL_DESC_DATETIME_INTERVAL_CODE

field.

SQLINTEGER

Length

input

The

value

to

which

to

set

the

SQL_DESC_OCTET_LENGTH

field

for

the

descriptor

record.

SQLSMALLINT

Precision

input

The

value

to

which

to

set

the

SQL_DESC_PRECISION

field

for

the

descriptor

record.

SQLSMALLINT

Scale

input

The

value

to

which

to

set

the

SQL_DESC_SCALE

field

for

the

descriptor

record.

SQLPOINTER

DataPtr

Deferred

Input

or

Output

The

value

to

which

to

set

the

SQL_DESC_DATA_PTR

field

for

the

descriptor

record.

DataPtr

can

be

set

to

a

null

pointer

to

set

the

SQL_DESC_DATA_PTR

field

to

a

null

pointer.

SQLINTEGER

*

StringLengthPtr

Deferred

Input

or

Output

The

value

to

which

to

set

the

SQL_DESC_OCTET_LENGTH_PTR

field

for

the

descriptor

record.

StringLengthPtr

can

be

set

to

a

null

pointer

to

set

the

SQL_DESC_OCTET_LENGTH_PTR

field

to

a

null

pointer.

SQLINTEGER

*

IndicatorPtr

Deferred

Input

or

Output

The

value

to

which

to

set

the

SQL_DESC_INDICATOR_PTR

field

for

the

descriptor

record.

IndicatorPtr

can

be

set

to

a

null

pointer

to

set

the

SQL_DESC_INDICATOR_PTR

field

to

a

null

pointer.

Usage:

An

application

can

call

SQLSetDescRec()

to

set

the

following

fields

for

a

single

column

or

parameter:

v

SQL_DESC_TYPE

v

SQL_DESC_OCTET_LENGTH

v

SQL_DESC_PRECISION

v

SQL_DESC_SCALE

v

SQL_DESC_DATA_PTR

v

SQL_DESC_OCTET_LENGTH_PTR

v

SQL_DESC_INDICATOR_PTR

SQL_DESC_DATETIME_INTERVAL_CODE

can

only

be

updated

if

SQL_DESC_TYPE

indicates

SQL_DATETIME.

Note:

If

a

call

to

SQLSetDescRec()

fails,

the

contents

of

the

descriptor

record

identified

by

the

RecNumber

argument

are

undefined.

SQLSetDescRec

Chapter

1.

DB2

CLI

functions

279

When

binding

a

column

or

parameter,

SQLSetDescRec()

allows

you

to

change

multiple

fields

affecting

the

binding

without

calling

SQLBindCol()

or

SQLBindParameter(),

or

making

multiple

calls

to

SQLSetDescField().

SQLSetDescRec()

can

set

fields

on

a

descriptor

not

currently

associated

with

a

statement.

Note

that

SQLBindParameter()

sets

more

fields

than

SQLSetDescRec(),

can

set

fields

on

both

an

APD

and

an

IPD

in

one

call,

and

does

not

require

a

descriptor

handle.

The

statement

attribute

SQL_ATTR_USE_BOOKMARKS

should

always

be

set

before

calling

SQLSetDescRec()

with

a

RecNumber

argument

of

0

to

set

bookmark

fields.

While

this

is

not

mandatory,

it

is

strongly

recommended.

Return

Codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

134.

SQLSetDescRec

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

07009

Invalid

descriptor

index.

The

RecNumber

argument

was

set

to

0,

and

the

DescriptorHandle

was

an

IPD

handle.

The

RecNumber

argument

was

less

than

0.

The

RecNumber

argument

was

greater

than

the

maximum

number

of

columns

or

parameters

that

the

data

source

can

support,

and

the

DescriptorHandle

argument

was

an

APD,

IPD,

or

ARD.

The

RecNumber

argument

was

equal

to

0,

and

the

DescriptorHandle

argument

referred

to

an

implicitly

allocated

APD.

(This

error

does

not

occur

with

an

explicitly

allocated

application

descriptor,

because

it

is

not

known

whether

an

explicitly

allocated

application

descriptor

is

an

APD

or

ARD

until

execute

time.)

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

connected

failed

before

the

function

completed

processing.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY010

Function

sequence

error.

The

DescriptorHandle

was

associated

with

a

StatementHandle

for

which

an

asynchronously

executing

function

(not

this

one)

was

called

and

was

still

executing

when

this

function

was

called.

SQLExecute()

or

SQLExecDirect()

was

called

for

the

StatementHandle

with

which

the

DescriptorHandle

was

associated

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters.

SQLSetDescRec

280

CLI

Guide

and

Reference,

Volume

2

Table

134.

SQLSetDescRec

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY013

Unexpected

memory

handling

error.

DB2

CLI

was

unable

to

access

memory

required

to

support

execution

or

completion

of

the

function.

HY016

Cannot

modify

an

implementation

row

descriptor.

The

DescriptorHandle

argument

was

associated

with

an

IRD.

HY021

Inconsistent

descriptor

information.

The

Type

field,

or

any

other

field

associated

with

the

TYPE

field

in

the

descriptor,

was

not

valid

or

consistent.

Descriptor

information

checked

during

a

consistency

check

was

not

consistent.

Restrictions:

None.

Example:

SQLSMALLINT

type;

SQLINTEGER

length,

datalen;

SQLSMALLINT

id_no;

/*

...

*/

/*

set

multiple

descriptor

fields

for

a

column

or

parameter

data

*/

rc

=

SQLSetDescRec(hARD,

1,

type,

0,

length,

0,

0,

&id_no,

&datalen,

NULL);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Consistency

checks

for

descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

on

page

9

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

on

page

159

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

on

page

163

v

“SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record”

on

page

273

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute

Purpose:

Specification:

DB2

CLI

2.1

ISO

CLI

SQLSetDescRec

Chapter

1.

DB2

CLI

functions

281

SQLSetEnvAttr()

sets

an

environment

attribute

for

the

current

environment.

Syntax:

SQLRETURN

SQLSetEnvAttr

(SQLHENV

EnvironmentHandle,

/*

henv

*/

SQLINTEGER

Attribute,

SQLPOINTER

ValuePtr,

/*

Value

*/

SQLINTEGER

StringLength);

Function

arguments:

Table

135.

SQLSetEnvAttr

arguments

Data

type

Argument

Use

Description

SQLHENV

EnvironmentHandle

Input

Environment

handle.

SQLINTEGER

Attribute

Input

Environment

attribute

to

set;

refer

to

the

list

of

CLI

environment

attributes

for

descriptions.

SQLPOINTER

ValuePtr

Input

The

desired

value

for

Attribute.

SQLINTEGER

StringLength

Input

Length

of

ValuePtr

in

bytes

if

the

attribute

value

is

a

character

string;

if

Attribute

does

not

denote

a

string,

then

DB2

CLI

ignores

StringLength.

Usage:

Once

set,

the

attribute’s

value

affects

all

connections

under

this

environment.

The

application

can

obtain

the

current

attribute

value

by

calling

SQLGetEnvAttr().

Refer

to

the

list

of

CLI

environment

attributes

for

the

attributes

that

can

be

set

with

SQLSetEnvAttr().

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

136.

SQLSetEnvAttr

SQLSTATEs

SQLSTATE

Description

Explanation

HY011

Operation

invalid

at

this

time.

Applications

cannot

set

environment

attributes

while

connection

handles

are

allocated

on

the

environment

handle.

HY024

Invalid

attribute

value

Given

the

specified

Attribute

value,

an

invalid

value

was

specified

in

*ValuePtr.

HY090

Invalid

string

or

buffer

length

The

StringLength

argument

was

less

than

0,

but

was

not

SQL_NTS.

HY092

Option

type

out

of

range.

An

invalid

Attribute

value

was

specified.

HYC00

Driver

not

capable.

The

specified

Attribute

is

not

supported

by

DB2

CLI.

Given

specified

Attribute

value,

the

value

specified

for

the

argument

ValuePtr

is

not

supported.

SQLSetEnvAttr

282

CLI

Guide

and

Reference,

Volume

2

Restrictions:

None.

Example:

/*

set

environment

attribute

*/

cliRC

=

SQLSetEnvAttr(henv,

SQL_ATTR_OUTPUT_NTS,

(SQLPOINTER)

SQL_TRUE,

0);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetEnvAttr

function

(CLI)

-

Retrieve

current

environment

attribute

value”

on

page

175

v

“Environment

attributes

(CLI)

list”

on

page

317

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“cli_info.c

--

How

to

get

and

set

environment

attributes

at

the

client

level”

v

“spcall.c

--

Call

individual

stored

procedures”

SQLSetParam

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator

Deprecated:

Note:

In

ODBC

2.0

and

above,

SQLSetParam()

is

deprecated

and

replaced

with

SQLBindParameter().

Although

this

version

of

DB2

CLI

continues

to

support

SQLSetParam(),

we

recommend

that

you

use

SQLBindParameter()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Equivalent

function:

SQLBindParameter()

The

CLI

function

SQLBindParameter()

is

functionally

the

same

as

the

SQLSetParam()

function.

Both

take

a

similar

number

and

type

of

arguments,

behave

the

same,

and

return

the

same

return

codes.

The

difference

is

that

SQLSetParam()

does

not

have

the

InputOutputType

or

BufferLength

arguments

to

specify

the

parameter

type

and

maximum

buffer

length.

Calling

SQLSetParam()

is

functionally

equivalent

to

calling

SQLBindParameter()

with

the

InputOutputType

argument

set

to

SQL_PARAM_INPUT

and

the

BufferLength

argument

set

to

SQL_SETPARAM_VALUE_MAX.

Migrating

to

the

new

function

The

statement:

SQLSetParam(hstmt,

1,

SQL_C_SHORT,

SQL_SMALLINT,

0,

0,

¶meter1,

NULL);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLSetEnvAttr

Chapter

1.

DB2

CLI

functions

283

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_SHORT,

SQL_SMALLINT,

0,

0,

¶meter1,

SQL_SETPARAM_VALUE_MAX,

NULL);

Related

reference:

v

“CLI

and

ODBC

function

summary”

on

page

1

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

on

page

23

SQLSetPos

function

(CLI)

-

Set

the

cursor

position

in

a

rowset

Purpose:

Specification:

DB2

CLI

5.0

ODBC

1

SQLSetPos()

sets

the

cursor

position

in

a

rowset.

Syntax:

SQLRETURN

SQLSetPos

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

RowNumber,

/*

irow

*/

SQLUSMALLINT

Operation,

/*

fOption

*/

SQLUSMALLINT

LockType);

/*

fLock

*/

Function

arguments:

Table

137.

SQLSetPos

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLUSMALLINT

RowNumber

input

Position

of

the

row

in

the

rowset

on

which

to

perform

the

operation

specified

with

the

Operation

argument.

If

RowNumber

is

0,

the

operation

applies

to

every

row

in

the

rowset.

For

additional

information,

see

“RowNumber

argument”

on

page

285.

SQLUSMALLINT

Operation

input

Operation

to

perform:

v

SQL_POSITION

v

SQL_REFRESH

v

SQL_UPDATE

v

SQL_DELETE

v

SQL_ADD

ODBC

also

specifies

the

following

operations

for

backwards

compatibility

only,

which

DB2

CLI

also

supports:

v

SQL_ADD

While

DB2

CLI

does

support

SQL_ADD

in

SQLSetPos()

calls,

it

is

suggested

that

you

use

SQLBulkOperations()

with

the

Operation

argument

set

to

SQL_ADD.

SQLSetParam

284

CLI

Guide

and

Reference,

Volume

2

Table

137.

SQLSetPos

arguments

(continued)

Data

type

Argument

Use

Description

SQLUSMALLINT

LockType

input

Specifies

how

to

lock

the

row

after

performing

the

operation

specified

in

the

Operation

argument.

v

SQL_LOCK_NO_CHANGE

ODBC

also

specifies

the

following

operations

which

DB2

CLI

does

not

support:

v

SQL_LOCK_EXCLUSIVE

v

SQL_LOCK_UNLOCK

For

additional

information,

see

“LockType

argument”

on

page

287.

Usage:

RowNumber

argument

The

RowNumber

argument

specifies

the

number

of

the

row

in

the

rowset

on

which

to

perform

the

operation

specified

by

the

Operation

argument.

If

RowNumber

is

0,

the

operation

applies

to

every

row

in

the

rowset.

RowNumber

must

be

a

value

from

0

to

the

number

of

rows

in

the

rowset.

Note

In

the

C

language,

arrays

are

0-based,

while

the

RowNumber

argument

is

1-based.

For

example,

to

update

the

fifth

row

of

the

rowset,

an

application

modifies

the

rowset

buffers

at

array

index

4,

but

specifies

a

RowNumber

of

5.

All

operations

position

the

cursor

on

the

row

specified

by

RowNumber.

The

following

operations

require

a

cursor

position:

v

Positioned

update

and

delete

statements.

v

Calls

to

SQLGetData().

v

Calls

to

SQLSetPos()

with

the

SQL_DELETE,

SQL_REFRESH,

and

SQL_UPDATE

options.

An

application

can

specify

a

cursor

position

when

it

calls

SQLSetPos().

Generally,

it

calls

SQLSetPos()

with

the

SQL_POSITION

or

SQL_REFRESH

operation

to

position

the

cursor

before

executing

a

positioned

update

or

delete

statement

or

calling

SQLGetData().

Operation

argument

To

determine

which

options

are

supported

by

a

data

source,

an

application

calls

SQLGetInfo()

with

one

of

the

following

information

types,

depending

on

the

type

of

cursor:

v

SQL_DYNAMIC_CURSOR_ATTRIBUTES1

v

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

v

SQL_KEYSET_CURSOR_ATTRIBUTES1

v

SQL_STATIC_CURSOR_ATTRIBUTES1

SQL_POSITION

DB2

CLI

positions

the

cursor

on

the

row

specified

by

RowNumber.

The

contents

of

the

row

status

array

pointed

to

by

the

SQL_ATTR_ROW_OPERATION_PTR

statement

attribute

are

ignored

for

the

SQL_POSITION

Operation.

SQLSetPos

Chapter

1.

DB2

CLI

functions

285

SQL_REFRESH

DB2

CLI

positions

the

cursor

on

the

row

specified

by

RowNumber

and

refreshes

data

in

the

rowset

buffers

for

that

row.

For

more

information

about

how

DB2

CLI

returns

data

in

the

rowset

buffers,

see

the

descriptions

of

row-wise

and

column-wise

binding.

SQLSetPos()

with

an

Operation

of

SQL_REFRESH

simply

updates

the

status

and

content

of

the

rows

within

the

current

fetched

rowset.

This

includes

refreshing

the

bookmarks.

The

data

in

the

buffers

is

refreshed,

but

not

refetched,

so

the

membership

in

the

rowset

is

fixed.

A

successful

refresh

with

SQLSetPos()

will

not

change

a

row

status

of

SQL_ROW_DELETED.

Deleted

rows

within

the

rowset

will

continue

to

be

marked

as

deleted

until

the

next

fetch.

The

rows

will

disappear

at

the

next

fetch

if

the

cursor

supports

packing

(in

which

case

a

subsequent

SQLFetch()

or

SQLFetchScroll()

does

not

return

deleted

rows).

A

successful

refresh

with

SQLSetPos()

will

change

a

row

status

of

SQL_ROW_ADDED

to

SQL_ROW_SUCCESS

(if

the

row

status

array

exists).

A

refresh

with

SQLSetPos()

will

change

a

row

status

of

SQL_ROW_UPDATED

to

the

row’s

new

status

(if

the

row

status

array

exists).

If

an

error

occurs

in

a

SQLSetPos()

operation

on

a

row,

the

row

status

is

set

to

SQL_ROW_ERROR

(if

the

row

status

array

exists).

For

a

cursor

opened

with

a

SQL_ATTR_CONCURRENCY

statement

attribute

of

SQL_CONCUR_ROWVER

or

SQL_CONCUR_VALUES,

a

refresh

with

SQLSetPos()

will

update

the

optimistic

concurrency

values

used

by

the

data

source

to

detect

that

the

row

has

changed.

This

occurs

for

each

row

that

is

refreshed.

The

contents

of

the

row

status

array

are

ignored

for

the

SQL_REFRESH

Operation.

SQL_UPDATE

DB2

CLI

positions

the

cursor

on

the

row

specified

by

RowNumber

and

updates

the

underlying

row

of

data

with

the

values

in

the

rowset

buffers

(the

TargetValuePtr

argument

in

SQLBindCol()).

It

retrieves

the

lengths

of

the

data

from

the

length/indicator

buffers

(the

StrLen_or_IndPtr

argument

in

SQLBindCol()).

If

the

length

of

any

column

is

SQL_COLUMN_IGNORE,

the

column

is

not

updated.

After

updating

the

row,

the

corresponding

element

of

the

row

status

array

is

updated

to

SQL_ROW_UPDATED

or

SQL_ROW_SUCCESS_WITH_INFO

(if

the

row

status

array

exists).

The

row

operation

array

pointed

to

by

the

SQL_ATTR_ROW_OPERATION_PTR

statement

attribute

can

be

used

to

indicate

that

a

row

in

the

current

rowset

should

be

ignored

during

a

bulk

update.

For

more

information,

see

“Status

and

operation

arrays”

on

page

287.

SQL_DELETE

DB2

CLI

positions

the

cursor

on

the

row

specified

by

RowNumber

and

deletes

the

underlying

row

of

data.

It

changes

the

corresponding

element

of

the

row

status

array

to

SQL_ROW_DELETED.

After

the

row

has

been

deleted,

the

following

are

not

valid

for

the

row:

v

positioned

update

and

delete

statements

SQLSetPos

286

CLI

Guide

and

Reference,

Volume

2

v

calls

to

SQLGetData()

v

calls

to

SQLSetPos()

with

Operation

set

to

anything

except

SQL_POSITION.

Deleted

rows

remain

visible

to

static

and

keyset-driven

cursors;

however,

the

entry

in

the

implementation

row

status

array

(pointed

to

by

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute)

for

the

deleted

row

is

changed

to

SQL_ROW_DELETED.

The

row

operation

array

pointed

to

by

the

SQL_ATTR_ROW_OPERATION_PTR

statement

attribute

can

be

used

to

indicate

that

a

row

in

the

current

rowset

should

be

ignored

during

a

bulk

delete.

For

more

information,

see

“Status

and

operation

arrays.”

SQL_ADD

ODBC

also

specifies

the

SQL_ADD

Operation

for

backwards

compatibility

only,

which

DB2

CLI

also

supports.

It

is

suggested,

however,

that

you

use

SQLBulkOperations()

with

the

Operation

argument

set

to

SQL_ADD.

LockType

argument

The

LockType

argument

provides

a

way

for

applications

to

control

concurrency.

Generally,

data

sources

that

support

concurrency

levels

and

transactions

will

only

support

the

SQL_LOCK_NO_CHANGE

value

of

the

LockType

argument.

Although

the

LockType

argument

is

specified

for

a

single

statement,

the

lock

accords

the

same

privileges

to

all

statements

on

the

connection.

In

particular,

a

lock

that

is

acquired

by

one

statement

on

a

connection

can

be

unlocked

by

a

different

statement

on

the

same

connection.

ODBC

defines

the

following

LockType

arguments.

DB2

CLI

supports

SQL_LOCK_NO_CHANGE.

To

determine

which

locks

are

supported

by

a

data

source,

an

application

calls

SQLGetInfo()

with

the

SQL_LOCK_TYPES

information

type.

Table

138.

Operation

values

LockType

argument

Lock

type

SQL_LOCK_NO_CHANGE

Ensures

that

the

row

is

in

the

same

locked

or

unlocked

state

as

it

was

before

SQLSetPos()

was

called.

This

value

of

LockType

allows

data

sources

that

do

not

support

explicit

row-level

locking

to

use

whatever

locking

is

required

by

the

current

concurrency

and

transaction

isolation

levels.

SQL_LOCK_EXCLUSIVE

Not

supported

by

DB2

CLI.

Locks

the

row

exclusively.

SQL_LOCK_UNLOCK

Not

supported

by

DB2

CLI.

Unlocks

the

row.

Status

and

operation

arrays

The

following

status

and

operation

arrays

are

used

when

calling

SQLSetPos():

v

The

row

status

array

(as

pointed

to

by

the

SQL_DESC_ARRAY_STATUS_PTR

field

in

the

IRD

and

the

SQL_ATTR_ROW_STATUS_ARRAY

statement

attribute)

contains

status

values

for

each

row

of

data

in

the

rowset.

The

status

values

are

set

in

this

array

after

a

call

to

SQLFetch(),

SQLFetchScroll(),

or

SQLSetPos().

This

array

is

pointed

to

by

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute.

SQLSetPos

Chapter

1.

DB2

CLI

functions

287

v

The

row

operation

array

(as

pointed

to

by

the

SQL_DESC_ARRAY_STATUS_PTR

field

in

the

ARD

and

the

SQL_ATTR_ROW_OPERATION_ARRAY

statement

attribute)

contains

a

value

for

each

row

in

the

rowset

that

indicates

whether

a

call

to

SQLSetPos()

for

a

bulk

operation

is

ignored

or

performed.

Each

element

in

the

array

is

set

to

either

SQL_ROW_PROCEED

(the

default)

or

SQL_ROW_IGNORE.

This

array

is

pointed

to

by

the

SQL_ATTR_ROW_OPERATION_PTR

statement

attribute.

The

number

of

elements

in

the

status

and

operation

arrays

must

equal

the

number

of

rows

in

the

rowset

(as

defined

by

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute).

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_NEED_DATA

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

139.

SQLSetPos

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01004

Data

truncated.

The

Operation

argument

was

SQL_REFRESH,

and

string

or

binary

data

returned

for

a

column

or

columns

with

a

data

type

of

SQL_C_CHAR

or

SQL_C_BINARY

resulted

in

the

truncation

of

non-blank

character

or

non-NULL

binary

data

01S01

Error

in

row.

The

RowNumber

argument

was

0

and

an

error

occurred

in

one

or

more

rows

while

performing

the

operation

specified

with

the

Operation

argument.

(SQL_SUCCESS_WITH_INFO

is

returned

if

an

error

occurs

on

one

or

more,

but

not

all,

rows

of

a

multirow

operation,

and

SQL_ERROR

is

returned

if

an

error

occurs

on

a

single-row

operation.)

01S07

Fractional

truncation.

The

Operation

argument

was

SQL_REFRESH,

the

data

type

of

the

application

buffer

was

not

SQL_C_CHAR

or

SQL_C_BINARY,

and

the

data

returned

to

application

buffers

for

one

or

more

columns

was

truncated.

For

numeric

data

types,

the

fractional

part

of

the

number

was

truncated.

For

time

and

timestamp

data

types,

the

fractional

portion

of

the

time

was

truncated.

07006

Invalid

conversion.

The

data

value

of

a

column

in

the

result

set

could

not

be

converted

to

the

data

type

specified

by

TargetType

in

the

call

to

SQLBindCol().

07009

Invalid

descriptor

index.

The

argument

Operation

was

SQL_REFRESH

or

SQL_UPDATE

and

a

column

was

bound

with

a

column

number

greater

than

the

number

of

columns

in

the

result

set

or

a

column

number

less

than

0.

21S02

Degrees

of

derived

table

does

not

match

column

list.

The

argument

Operation

was

SQL_UPDATE

and

no

columns

were

updateable

because

all

columns

were

either

unbound,

read-only,

or

the

value

in

the

bound

length/indicator

buffer

was

SQL_COLUMN_IGNORE.

SQLSetPos

288

CLI

Guide

and

Reference,

Volume

2

Table

139.

SQLSetPos

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

22001

String

data

right

truncation.

The

assignment

of

a

character

or

binary

value

to

a

column

resulted

in

the

truncation

of

non-blank

(for

characters)

or

non-null

(for

binary)

characters

or

bytes.

22003

Numeric

value

out

of

range.

The

argument

Operation

was

SQL_UPDATE

and

the

assignment

of

a

numeric

value

to

a

column

in

the

result

set

caused

the

whole

(as

opposed

to

fractional)

part

of

the

number

to

be

truncated.

The

argument

Operation

was

SQL_REFRESH,

and

returning

the

numeric

value

for

one

or

more

bound

columns

would

have

caused

a

loss

of

significant

digits.

22007

Invalid

datetime

format.

The

argument

Operation

was

SQL_UPDATE,

and

the

assignment

of

a

date

or

timestamp

value

to

a

column

in

the

result

set

caused

the

year,

month,

or

day

field

to

be

out

of

range.

The

argument

Operation

was

SQL_REFRESH,

and

returning

the

date

or

timestamp

value

for

one

or

more

bound

columns

would

have

caused

the

year,

month,

or

day

field

to

be

out

of

range.

22008

Datetime

field

overflow.

The

Operation

argument

was

SQL_UPDATE,

and

the

performance

of

datetime

arithmetic

on

data

being

sent

to

a

column

in

the

result

set

resulted

in

a

datetime

field

(the

year,

month,

day,

hour,

minute,

or

second

field)

of

the

result

being

outside

the

permissible

range

of

values

for

the

field,

or

being

invalid

based

on

the

natural

rules

for

datetimes

based

on

the

Gregorian

calendar.

The

Operation

argument

was

SQL_REFRESH,

and

the

performance

of

datetime

arithmetic

on

data

being

retrieved

from

the

result

set

resulted

in

a

datetime

field

(the

year,

month,

day,

hour,

minute,

or

second

field)

of

the

result

being

outside

the

permissible

range

of

values

for

the

field,

or

being

invalid

based

on

the

natural

rules

for

datetimes

based

on

the

Gregorian

calendar.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

SQLSetPos

Chapter

1.

DB2

CLI

functions

289

Table

139.

SQLSetPos

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

specified

StatementHandle

was

not

in

an

executed

state.

The

function

was

called

without

first

calling

SQLExecDirect(),

SQLExecute(),

or

a

catalog

function.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

SQLExecute(),

SQLExecDirect(),

or

SQLSetPos()

was

called

for

the

StatementHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

An

ODBC

2.0

application

called

SQLSetPos()

for

a

StatementHandle

before

SQLFetchScroll()

was

called

or

after

SQLFetch()

was

called,

and

before

SQLFreeStmt()

was

called

with

the

SQL_CLOSE

option.

HY011

Operation

invalid

at

this

time.

An

ODBC

2.0

application

set

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute;

then

SQLSetPos()

was

called

before

SQLFetch(),

SQLFetchScroll(),

or

SQLExtendedFetch()

was

called.

HY090

Invalid

string

or

buffer

length.

The

Operation

argument

was

SQL_ADD,

SQL_UPDATE,

or

SQL_UPDATE_BY_BOOKMARK,

a

data

value

was

a

null

pointer,

and

the

column

length

value

was

not

0,

SQL_DATA_AT_EXEC,

SQL_COLUMN_IGNORE,

SQL_NULL_DATA,

or

less

than

or

equal

to

SQL_LEN_DATA_AT_EXEC_OFFSET.

The

Operation

argument

was

SQL_ADD,

SQL_UPDATE,

or

SQL_UPDATE_BY_BOOKMARK,

a

data

value

was

not

a

null

pointer,

and

the

column

length

value

was

less

than

0,

but

not

equal

to

SQL_DATA_AT_EXEC,

SQL_COLUMN_IGNORE,

SQL_NTS,

or

SQL_NULL_DATA,

or

less

than

or

equal

to

SQL_LEN_DATA_AT_EXEC_OFFSET.

A

value

in

a

length/indicator

buffer

was

SQL_DATA_AT_EXEC;

the

SQL

type

was

either

SQL_LONGVARCHAR,

SQL_LONGVARBINARY,

or

a

other,

data-source-specific

data

type;

and

the

SQL_NEED_LONG_DATA_LEN

information

type

in

SQLGetInfo()

was

“Y”.

HY092

Option

type

out

of

range.

The

Operation

argument

was

SQL_UPDATE_BY_BOOKMARK,

SQL_DELETE_BY_BOOKMARK,

or

SQL_REFRESH_BY_BOOKMARK,

and

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

was

set

to

SQL_UB_OFF.

HY107

Row

value

out

of

range.

The

value

specified

for

the

argument

RowNumber

was

greater

than

the

number

of

rows

in

the

rowset.

HY109

Invalid

cursor

position.

The

cursor

associated

with

the

StatementHandle

was

defined

as

forward

only,

so

the

cursor

could

not

be

positioned

within

the

rowset.

See

the

description

for

the

SQL_ATTR_CURSOR_TYPE

attribute

in

SQLSetStmtAttr().

The

Operation

argument

was

SQL_UPDATE,

SQL_DELETE,

or

SQL_REFRESH,

and

the

row

identified

by

the

RowNumber

argument

had

been

deleted

or

had

not

be

fetched.

The

RowNumber

argument

was

0

and

the

Operation

argument

was

SQL_POSITION.

SQLSetPos

290

CLI

Guide

and

Reference,

Volume

2

Table

139.

SQLSetPos

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HYC00

Driver

not

capable.

DB2

CLI

or

the

data

source

does

not

support

the

operation

requested

in

the

Operation

argument

or

the

LockType

argument.

HYT00

Timeout

expired

The

query

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

is

set

through

SQLSetStmtAttr()

with

an

Attribute

of

SQL_ATTR_QUERY_TIMEOUT.

Restrictions:

None.

Example:

/*

set

the

cursor

position

in

a

rowset

*/

cliRC

=

SQLSetPos(hstmt,

3,

SQL_POSITION,

SQL_LOCK_NO_CHANGE);

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Result

set

terminology

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Retrieving

array

data

in

CLI

applications

using

column-wise

binding”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Retrieving

array

data

in

CLI

applications

using

row-wise

binding”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

on

page

117

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

v

“SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows”

on

page

43

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement

Purpose:

Specification:

DB2

CLI

5.0

ODBC

3.0

ISO

CLI

SQLSetStmtAttr()

sets

options

related

to

a

statement.

To

set

an

option

for

all

statements

associated

with

a

specific

connection,

an

application

can

call

SQLSetConnectAttr().

Refer

to

the

CLI

statement

attributes

list

for

all

available

statement

attributes.

SQLSetPos

Chapter

1.

DB2

CLI

functions

291

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLSetStmtAttrW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLSetStmtAttr

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLINTEGER

Attribute,

/*

fOption

*/

SQLPOINTER

ValuePtr,

/*

pvParam

*/

SQLINTEGER

StringLength);

/*

fStrLen

*/

Function

arguments:

Table

140.

SQLSetStmtAttr

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Statement

handle.

SQLINTEGER

Attribute

input

Option

to

set,

described

in

the

CLI

statement

attributes

list.

SQLPOINTER

ValuePtr

input

Pointer

to

the

value

to

be

associated

with

Attribute.

If

Attribute

is

an

ODBC-defined

attribute,

the

application

may

need

to

qualify

the

attribute

value

in

ValuePtr

by

setting

the

StringLength

attribute

as

described

in

the

StringLength

description.

If

Attribute

is

a

DB2

CLI

attribute,

the

application

should

always

qualify

the

attribute

value

in

ValuePtr

by

setting

the

StringLength

attribute

as

described

in

the

StringLength

description.

Note:

If

Attribute

is

an

ODBC

attribute,

ValuePtr

may,

depending

on

the

attribute,

be

set

to

an

unsigned

integer.

If

Attribute

is

a

DB2

CLI

attribute,

ValuePtr

may,

depending

on

the

attribute,

be

set

to

a

signed

integer.

If

ValuePtr

is

set

to

a

signed

negative

integer

and

an

unsigned

integer

is

expected,

ValuePtr

may

be

treated

as

a

large

unsigned

integer

by

DB2

CLI

without

warning.

Alternatively,

DB2

CLI

may

return

an

error

(SQLSTATE

HY024).

SQLSetStmtAttr

292

CLI

Guide

and

Reference,

Volume

2

||

Table

140.

SQLSetStmtAttr

arguments

(continued)

Data

type

Argument

Use

Description

SQLINTEGER

StringLength

input

If

Attribute

is

an

ODBC

attribute,

the

application

may

need

to

qualify

the

attribute

by

setting

StringLength

to

the

following

values:

v

If

ValuePtr

points

to

a

character

string

or

a

binary

buffer,

StringLength

should

be

the

length

of

*ValuePtr.

For

character

string

data,

StringLength

should

contain

the

number

of

bytes

in

the

string.

v

If

ValuePtr

is

a

pointer,

but

not

to

a

string

or

binary

buffer,

then

StringLength

should

have

the

value

SQL_IS_POINTER.

v

If

ValuePtr

points

to

an

unsigned

integer,

the

StringLength

attribute

is

ignored.

If

Attribute

is

a

DB2

CLI

attribute,

the

application

must

qualify

the

attribute

by

setting

StringLength

to

the

following

values:

v

If

ValuePtr

is

a

pointer

to

a

character

string,

then

StringLength

is

the

number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

the

string

or

SQL_NTS.

v

If

ValuePtr

is

a

pointer

to

a

binary

buffer,

then

the

application

should

place

the

result

of

the

SQL_LEN_BINARY_ATTR

(length)

macro

in

StringLength.

This

places

a

negative

value

in

StringLength.

v

If

ValuePtr

contains

a

fixed-length

value,

then

StringLength

is

either

SQL_IS_INTEGER

or

SQL_IS_UINTEGER,

as

appropriate.

v

If

ValuePtr

is

a

pointer

to

a

value

other

than

a

character

string,

a

binary

string,

or

a

fixed-length

value,

then

StringLength

should

have

the

value

SQL_IS_POINTER.

Usage:

Statement

attributes

for

a

statement

remain

in

effect

until

they

are

changed

by

another

call

to

SQLSetStmtAttr()

or

the

statement

is

dropped

by

calling

SQLFreeHandle().

Calling

SQLFreeStmt()

with

the

SQL_CLOSE,

SQL_UNBIND,

or

SQL_RESET_PARAMS

options

does

not

reset

statement

attributes.

Some

statement

attributes

support

substitution

of

a

similar

value

if

the

data

source

does

not

support

the

value

specified

in

*ValuePtr.

In

such

cases,

DB2

CLI

returns

SQL_SUCCESS_WITH_INFO

and

SQLSTATE

01S02

(Option

value

changed).

For

example,

DB2

CLI

supports

a

pure

keyset

cursor.

As

a

result,

DB2

CLI

does

not

allow

applications

to

change

the

default

value

of

the

SQL_ATTR_KEYSET_SIZE

attribute.

Instead,

DB2

CLI

substitutes

SQL_KEYSET_SIZE_DEFAULT

for

all

other

values

that

may

be

supplied

in

the

*ValuePtr

argument

and

returns

SQL_SUCCESS_WITH_INFO.

To

determine

the

substituted

value,

an

application

calls

SQLGetStmtAttr().

The

format

of

information

set

with

ValuePtr

depends

on

the

specified

Attribute.

SQLSetStmtAttr()

accepts

attribute

information

in

one

of

two

different

formats:

a

null-terminated

character

string

or

a

32-bit

integer

value.

The

format

of

information

returned

in

SQLGetStmtAttr()

reflects

what

was

specified

in

SQLSetStmtAttr

Chapter

1.

DB2

CLI

functions

293

|
|
|
|
|

SQLSetStmtAttr().

For

example,

character

strings

pointed

to

by

the

ValuePtr

argument

of

SQLSetStmtAttr()

have

a

length

of

StringLength,

and

this

is

the

value

that

would

be

returned

by

SQLGetStmtAttr().

Setting

statement

attributes

by

setting

descriptors

Many

statement

attributes

also

corresponding

to

a

header

field

of

one

or

more

descriptors.

These

attributes

may

be

set

not

only

by

a

call

to

SQLSetStmtAttr(),

but

also

by

a

call

to

SQLSetDescField().

Setting

these

options

by

a

call

to

SQLSetStmtAttr(),

rather

than

SQLSetDescField(),

has

the

advantage

that

a

descriptor

handle

does

not

have

to

be

fetched.

Note:

Calling

SQLSetStmtAttr()

for

one

statement

can

affect

other

statements.

This

occurs

when

the

application

parameter

descriptor

(APD)

or

application

row

descriptor

(ARD)

associated

with

the

statement

is

explicitly

allocated

and

is

also

associated

with

other

statements.

Because

SQLSetStmtAttr()

modifies

the

APD

or

ARD,

the

modifications

apply

to

all

statements

with

which

this

descriptor

is

associated.

If

this

is

not

the

desired

behavior,

the

application

should

dissociate

this

descriptor

from

the

other

statement

(by

calling

SQLSetStmtAttr()

to

set

the

SQL_ATTR_APP_ROW_DESC

or

SQL_ATTR_APP_PARAM_DESC

field

to

a

different

descriptor

handle)

before

calling

SQLSetStmtAttr()

again.

When

a

statement

attribute

that

is

also

a

descriptor

field

is

set

by

a

call

to

SQLSetStmtAttr(),

the

corresponding

field

in

the

descriptor

that

is

associated

with

the

statement

is

also

set.

The

field

is

set

only

for

the

applicable

descriptors

that

are

currently

associated

with

the

statement

identified

by

the

StatementHandle

argument,

and

the

attribute

setting

does

not

affect

any

descriptors

that

may

be

associated

with

that

statement

in

the

future.

When

a

descriptor

field

that

is

also

a

statement

attribute

is

set

by

a

call

to

SQLSetDescField(),

the

corresponding

statement

attribute

is

also

set.

Statement

attributes

determine

which

descriptors

a

statement

handle

is

associated

with.

When

a

statement

is

allocated

(see

SQLAllocHandle()),

four

descriptor

handles

are

automatically

allocated

and

associated

with

the

statement.

Explicitly

allocated

descriptor

handles

can

be

associated

with

the

statement

by

calling

SQLAllocHandle()

with

a

HandleType

of

SQL_HANDLE_DESC

to

allocate

a

descriptor

handle,

then

calling

SQLSetStmtAttr()

to

associate

the

descriptor

handle

with

the

statement.

The

following

statement

attributes

correspond

to

descriptor

header

fields:

Table

141.

Statement

attributes

Statement

attribute

Header

field

Descriptor

SQL_ATTR_PARAM_BIND_OFFSET_PTR

SQL_DESC_BIND_OFFSET_PTR

APD

SQL_ATTR_PARAM_BIND_TYPE

SQL_DESC_BIND_TYPE

APD

SQL_ATTR_PARAM_OPERATION_PTR

SQL_DESC_ARRAY_STATUS_PTR

APD

SQL_ATTR_PARAM_STATUS_PTR

SQL_DESC_ARRAY_STATUS_PTR

IPD

SQL_ATTR_PARAMS_PROCESSED_PTR

SQL_DESC_ROWS_PROCESSED_PTR

IPD

SQL_ATTR_PARAMSET_SIZE

SQL_DESC_ARRAY_SIZE

APD

SQL_ATTR_ROW_ARRAY_SIZE

SQL_DESC_ARRAY_SIZE

APD

SQL_ATTR_ROW_BIND_OFFSET_PTR

SQL_DESC_BIND_OFFSET_PTR

ARD

SQL_ATTR_ROW_BIND_TYPE

SQL_DESC_BIND_TYPE

ARD

SQL_ATTR_ROW_OPERATION_PTR

SQL_DESC_ARRAY_STATUS_PTR

APD

SQL_ATTR_ROW_STATUS_PTR

SQL_DESC_ARRAY_STATUS_PTR

IRD

SQL_ATTR_ROWS_FETCHED_PTR

SQL_DESC_ROWS_PROCESSED_PTR

IRD

SQLSetStmtAttr

294

CLI

Guide

and

Reference,

Volume

2

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

142.

SQLSetStmtAttr

SQLSTATEs

SQLSTATE

Description

Explanation

01000

Warning.

Informational

message.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

01S02

Option

value

changed.

DB2

CLI

did

not

support

the

value

specified

in

*ValuePtr,

or

the

value

specified

in

*ValuePtr

was

invalid

because

of

SQL

constraints

or

requirements,

so

DB2

CLI

substituted

a

similar

value.

(Function

returns

SQL_SUCCESS_WITH_INFO.)

08S01

Communication

link

failure.

The

communication

link

between

DB2

CLI

and

the

data

source

to

which

it

was

connected

failed

before

the

function

completed

processing.

24000

Invalid

cursor

state.

The

Attribute

was

SQL_ATTR_CONCURRENCY,

SQL_ATTR_CURSOR_TYPE,

SQL_ATTR_SIMULATE_CURSOR,

or

SQL_ATTR_USE_BOOKMARKS

and

the

cursor

was

open.

HY000

General

error.

An

error

occurred

for

which

there

was

no

specific

SQLSTATE.

The

error

message

returned

by

SQLGetDiagRec()

in

the

*MessageText

buffer

describes

the

error

and

its

cause.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY009

Invalid

argument

value.

A

null

pointer

was

passed

for

ValuePtr

and

the

value

in

*ValuePtr

was

a

string

attribute.

HY010

Function

sequence

error.

An

asynchronously

executing

function

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

SQLExecute()

or

SQLExecDirect()

was

called

for

the

StatementHandle

and

returned

SQL_NEED_DATA.

This

function

was

called

before

data

was

sent

for

all

data-at-execution

parameters

or

columns.

HY011

Operation

invalid

at

this

time.

The

Attribute

was

SQL_ATTR_CONCURRENCY,

SQL_

ATTR_CURSOR_TYPE,

SQL_ATTR_SIMULATE_CURSOR,

or

SQL_ATTR_USE_BOOKMARKS

and

the

statement

was

prepared.

HY017

Invalid

use

of

an

automatically

allocated

descriptor

handle.

The

Attribute

argument

was

SQL_ATTR_IMP_ROW_DESC

or

SQL_ATTR_IMP_PARAM_DESC.

The

Attribute

argument

was

SQL_ATTR_APP_ROW_DESC

or

SQL_ATTR_APP_PARAM_DESC,

and

the

value

in

*ValuePtr

was

an

implicitly

allocated

descriptor

handle.

HY024

Invalid

attribute

value.

Given

the

specified

Attribute

value,

an

invalid

value

was

specified

in

*ValuePtr.

(DB2

CLI

returns

this

SQLSTATE

only

for

connection

and

statement

attributes

that

accept

a

discrete

set

of

values,

such

as

SQL_ATTR_ACCESS_MODE.)

HY090

Invalid

string

or

buffer

length.

The

StringLength

argument

was

less

than

0,

but

was

not

SQL_NTS.

SQLSetStmtAttr

Chapter

1.

DB2

CLI

functions

295

Table

142.

SQLSetStmtAttr

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY092

Option

type

out

of

range.

The

value

specified

for

the

argument

Attribute

was

not

valid

for

this

version

of

DB2

CLI.

HYC00

Driver

not

capable.

The

value

specified

for

the

argument

Attribute

was

a

valid

connection

or

statement

attribute

for

the

version

of

the

DB2

CLI

driver,

but

was

not

supported

by

the

data

source.

Restrictions:

None.

Example:

/*

set

the

required

statement

attributes

*/

cliRC

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,

(SQLPOINTER)ROWSET_SIZE,

0);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

/*

set

the

required

statement

attributes

*/

cliRC

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_BIND_TYPE,

SQL_BIND_BY_COLUMN,

0);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

/*

set

the

required

statement

attributes

*/

cliRC

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWS_FETCHED_PTR,

&rowsFetchedNb,

0);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

Related

concepts:

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

on

page

6

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

on

page

49

v

“SQLFreeStmt

function

(CLI)

-

Free

(or

reset)

a

statement

handle”

on

page

142

v

“SQLGetConnectAttr

function

(CLI)

-

Get

current

attribute

setting”

on

page

145

v

“SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute”

on

page

215

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

v

“SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record”

on

page

273

v

“Statement

attributes

(CLI)

list”

on

page

334

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

SQLSetStmtAttr

296

CLI

Guide

and

Reference,

Volume

2

v

“tbread.c

--

How

to

read

data

from

tables”

SQLSetStmtOption

function

(CLI)

-

Set

statement

option

Deprecated:

Note:

In

ODBC

3.0,

SQLSetStmtOption()

has

been

deprecated

and

replaced

with

SQLSetStmtAttr().

Although

this

version

of

DB2

CLI

continues

to

support

SQLSetStmtOption(),

we

recommend

that

you

use

SQLSetStmtAttr()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Note:

This

deprecated

function

cannot

be

used

in

a

64-bit

environment.

Migrating

to

the

new

function

The

statement:

SQLSetStmtOption(

hstmt,

SQL_ROWSET_SIZE,

RowSetSize);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLSetStmtAttr(

hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,

(SQLPOINTER)

RowSetSize,

0);

Related

reference:

v

“CLI

and

ODBC

function

summary”

on

page

1

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

SQLSpecialColumns

function

(CLI)

-

Get

special

(row

identifier)

columns

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLSpecialColumns()

returns

unique

row

identifier

information

(primary

key

or

unique

index)

for

a

table.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLSpecialColumnsW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLSetStmtAttr

Chapter

1.

DB2

CLI

functions

297

SQLRETURN

SQLSpecialColumns(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLUSMALLINT

IdentifierType,

/*

fColType

*/

SQLCHAR

*CatalogName,

/*

szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

*SchemaName,

/*

szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

*TableName,

/*

szTableName

*/

SQLSMALLINT

NameLength3,

/*

cbTableName

*/

SQLUSMALLINT

Scope,

/*

fScope

*/

SQLUSMALLINT

Nullable);

/*

fNullable

*/

Function

arguments:

Table

143.

SQLSpecialColumns

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle

SQLUSMALLINT

IdentifierType

Input

Type

of

unique

row

identifier

to

return.

Only

the

following

type

is

supported:

v

SQL_BEST_ROWID

Returns

the

optimal

set

of

column(s)

which

can

uniquely

identify

any

row

in

the

specified

table.

Note:

For

compatibility

with

ODBC

applications,

SQL_ROWVER

is

also

recognized,

but

not

supported;

therefore,

if

SQL_ROWVER

is

specified,

an

empty

result

will

be

returned.

SQLCHAR

*

CatalogName

Input

Catalog

qualifier

of

a

3-part

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Unix

and

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CatalogName,

or

SQL_NTS

if

CatalogName

is

null-terminated.

SQLCHAR

*

SchemaName

Input

Schema

qualifier

of

the

specified

table.

SQLSMALLINT

NameLength2

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

SchemaName,

or

SQL_NTS

if

SchemaName

is

null-terminated.

SQLCHAR

*

TableName

Input

Table

name.

SQLSMALLINT

NameLength3

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

TableName,

or

SQL_NTS

if

TableName

is

null-terminated.

SQLSpecialColumns

298

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|
|
|

|
|
|
|

Table

143.

SQLSpecialColumns

arguments

(continued)

Data

type

Argument

Use

Description

SQLUSMALLINT

Scope

Input

Minimum

required

duration

for

which

the

unique

row

identifier

will

be

valid.

Scope

must

be

one

of

the

following:

v

SQL_SCOPE_CURROW:

The

row

identifier

is

guaranteed

to

be

valid

only

while

positioned

on

that

row.

A

later

re-select

using

the

same

row

identifier

values

may

not

return

a

row

if

the

row

was

updated

or

deleted

by

another

transaction.

v

SQL_SCOPE_TRANSACTION:

The

row

identifier

is

guaranteed

to

be

valid

for

the

duration

of

the

current

transaction.

v

SQL_SCOPE_SESSION:

The

row

identifier

is

guaranteed

to

be

valid

for

the

duration

of

the

connection.

The

duration

over

which

a

row

identifier

value

is

guaranteed

to

be

valid

depends

on

the

current

transaction

isolation

level.

SQLUSMALLINT

Nullable

Input

Determines

whether

to

return

special

columns

that

can

have

a

NULL

value.

Must

be

one

of

the

following:

v

SQL_NO_NULLS

-

The

row

identifier

column

set

returned

cannot

have

any

NULL

values.

v

SQL_NULLABLE

-

The

row

identifier

column

set

returned

may

include

columns

where

NULL

values

are

permitted.

Usage:

If

multiple

ways

exist

to

uniquely

identify

any

row

in

a

table

(i.e.

if

there

are

multiple

unique

indexes

on

the

specified

table),

then

DB2

CLI

will

return

the

best

set

of

row

identifier

column

set

based

on

its

internal

criterion.

If

the

schema

qualifier

argument

associated

with

a

table

name

is

not

specified,

then

the

schema

name

defaults

to

the

one

currently

in

effect

for

the

current

connection.

If

there

is

no

column

set

which

allows

any

row

in

the

table

to

be

uniquely

identified,

an

empty

result

set

is

returned.

The

unique

row

identifier

information

is

returned

in

the

form

of

a

result

set

where

each

column

of

the

row

identifier

is

represented

by

one

row

in

the

result

set.

“Columns

returned

by

SQLSpecialColumns”

on

page

300

shows

the

order

of

the

columns

in

the

result

set

returned

by

SQLSpecialColumns(),

sorted

by

SCOPE.

Since

calls

to

SQLSpecialColumns()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

room

for

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_COLUMN_NAME_LEN

to

determine

the

actual

length

of

the

COLUMN_NAME

column

supported

by

the

connected

DBMS.

SQLSpecialColumns

Chapter

1.

DB2

CLI

functions

299

|
|
|
|
|
|

Although

new

columns

may

be

added

and

the

names

of

the

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

Columns

returned

by

SQLSpecialColumns

Column

1

SCOPE

(SMALLINT)

The

duration

for

which

the

name

in

COLUMN_NAME

is

guaranteed

to

point

to

the

same

row.

Valid

values

are

the

same

as

for

the

Scope

argument:

Actual

scope

of

the

row

identifier.

Contains

one

of

the

following

values:

v

SQL_SCOPE_CURROW

v

SQL_SCOPE_TRANSACTION

v

SQL_SCOPE_SESSION

Refer

to

Scope

in

Table

143

on

page

298

for

a

description

of

each

value.

Column

2

COLUMN_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

column

that

is

(or

is

part

of)

the

table’s

primary

key.

Column

3

DATA_TYPE

(SMALLINT

not

NULL)

SQL

data

type

of

the

column.

Column

4

TYPE_NAME

(VARCHAR(128)

not

NULL)

DBMS

character

string

representation

of

the

name

associated

with

DATA_TYPE

column

value.

Column

5

COLUMN_SIZE

(INTEGER)

If

the

DATA_TYPE

column

value

denotes

a

character

or

binary

string,

then

this

column

contains

the

maximum

length

in

bytes;

if

it

is

a

graphic

(DBCS)

string,

this

is

the

number

of

double

byte

characters

for

the

parameter.

For

date,

time,

timestamp

data

types,

this

is

the

total

number

of

SQLCHAR

or

SQLWCHAR

elements

required

to

display

the

value

when

converted

to

character.

For

numeric

data

types,

this

is

either

the

total

number

of

digits,

or

the

total

number

of

bits

allowed

in

the

column,

depending

on

the

value

in

the

NUM_PREC_RADIX

column

in

the

result

set.

Refer

to

the

table

of

data

type

precision.

Column

6

BUFFER_LENGTH

(INTEGER)

The

maximum

number

of

bytes

for

the

associated

C

buffer

to

store

data

from

this

column

if

SQL_C_DEFAULT

were

specified

on

the

SQLBindCol(),

SQLGetData()

and

SQLBindParameter()

calls.

This

length

does

not

include

any

null-terminator.

For

exact

numeric

data

types,

the

length

accounts

for

the

decimal

and

the

sign.

Refer

to

the

table

of

data

type

length.

Column

7

DECIMAL_DIGITS

(SMALLINT)

The

scale

of

the

column.

NULL

is

returned

for

data

types

where

scale

is

not

applicable.

Refer

to

the

table

of

data

type

scale.

Column

8

PSEUDO_COLUMN

(SMALLINT)

Indicates

whether

or

not

the

column

is

a

pseudo-column

DB2

Call

Level

Interface

will

only

return:

v

SQL_PC_NOT_PSEUDO

DB2

DBMSs

do

not

support

pseudo

columns.

ODBC

applications

may

receive

the

following

values

from

other

non-IBM

RDBMS

servers:

v

SQL_PC_UNKNOWN

v

SQL_PC_PSEUDO

SQLSpecialColumns

300

CLI

Guide

and

Reference,

Volume

2

|
|
|

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

144.

SQLSpecialColumns

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY009

Invalid

argument

value.

TableName

is

null.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

The

value

of

one

of

the

length

arguments

exceeded

the

maximum

length

supported

by

the

DBMS

for

that

qualifier

or

name.

HY097

Column

type

out

of

range.

An

invalid

IdentifierType

value

was

specified.

HY098

Scope

type

out

of

range.

An

invalid

Scope

value

was

specified.

HY099

Nullable

type

out

of

range.

An

invalid

Nullable

values

was

specified.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

SQLSpecialColumns

Chapter

1.

DB2

CLI

functions

301

None.

Example:

/*

get

special

columns

*/

cliRC

=

SQLSpecialColumns(hstmt,

SQL_BEST_ROWID,

NULL,

0,

tbSchema,

SQL_NTS,

tbName,

SQL_NTS,

SQL_SCOPE_CURROW,

SQL_NULLABLE);

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Data

types

and

data

conversion

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLColumns

function

(CLI)

-

Get

column

information

for

a

table”

on

page

66

v

“SQLStatistics

function

(CLI)

-

Get

index

and

statistics

information

for

a

base

table”

on

page

302

v

“SQLTables

function

(CLI)

-

Get

table

information”

on

page

312

v

“Data

type

precision

(CLI)

table”

on

page

373

v

“Data

type

scale

(CLI)

table”

on

page

374

v

“Data

type

length

(CLI)

table”

on

page

375

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbconstr.c

--

How

to

work

with

constraints

associated

with

tables”

SQLStatistics

function

(CLI)

-

Get

index

and

statistics

information

for

a

base

table

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLStatistics()

retrieves

index

information

for

a

given

table.

It

also

returns

the

cardinality

and

the

number

of

pages

associated

with

the

table

and

the

indexes

on

the

table.

The

information

is

returned

in

a

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

SQLSpecialColumns

302

CLI

Guide

and

Reference,

Volume

2

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLStatisticsW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLStatistics

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CatalogName,

/*

szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

*SchemaName,

/*

szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

*TableName,

/*

szTableName

*/

SQLSMALLINT

NameLength3,

/*

cbTableName

*/

SQLUSMALLINT

Unique,

/*

fUnique

*/

SQLUSMALLINT

Reserved);

/*

fAccuracy

*/

Function

arguments:

Table

145.

SQLStatistics

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLCHAR

*

CatalogName

Input

Catalog

qualifier

of

a

3-part

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Unix

and

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CatalogName,

or

SQL_NTS

if

CatalogName

is

null-terminated.

SQLCHAR

*

SchemaName

Input

Schema

qualifier

of

the

specified

table.

SQLSMALLINT

NameLength2

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

SchemaName,

or

SQL_NTS

if

SchemaName

is

null-terminated.

SQLCHAR

*

TableName

Input

Table

name.

SQLSMALLINT

NameLength3

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

TableName,

or

SQL_NTS

if

TableName

is

null-terminated.

SQLUSMALLINT

Unique

Input

Type

of

index

information

to

return:

v

SQL_INDEX_UNIQUE

Only

unique

indexes

will

be

returned.

v

SQL_INDEX_ALL

All

indexes

will

be

returned.

SQLStatistics

Chapter

1.

DB2

CLI

functions

303

|
|
|
|

|
|
|
|

|
|
|
|

Table

145.

SQLStatistics

arguments

(continued)

Data

type

Argument

Use

Description

SQLUSMALLINT

Reserved

Input

Indicate

whether

the

CARDINALITY

and

PAGES

columns

in

the

result

set

contain

the

most

current

information:

v

SQL_ENSURE

:

This

value

is

reserved

for

future

use,

when

the

application

requests

the

most

up

to

date

statistics

information.

New

applications

should

not

use

this

value.

Existing

applications

specifying

this

value

will

receive

the

same

results

as

SQL_QUICK.

v

SQL_QUICK

:

Statistics

which

are

readily

available

at

the

server

are

returned.

The

values

may

not

be

current,

and

no

attempt

is

made

to

ensure

that

they

be

up

to

date.

Usage:

SQLStatistics()

returns

two

types

of

information:

v

Statistics

information

for

the

table

(if

it

is

available):

–

when

the

TYPE

column

of

the

result

set

described

below

is

set

to

SQL_TABLE_STAT,

the

number

of

rows

in

the

table

and

the

number

of

pages

used

to

store

the

table.

–

when

the

TYPE

column

of

the

result

set

indicates

an

index,

the

number

of

unique

values

in

the

index,

and

the

number

of

pages

used

to

store

the

indexes.
v

Information

about

each

index,

where

each

index

column

is

represented

by

one

row

of

the

result

set.

The

result

set

columns

are

given

in

“Columns

returned

by

SQLStatistics”

in

the

order

shown;

the

rows

in

the

result

set

are

ordered

by

NON_UNIQUE,

TYPE,

INDEX_QUALIFIER,

INDEX_NAME

and

KEY_SEQ.

Since

calls

to

SQLStatistics()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

If

the

schema

qualifier

argument

associated

with

a

table

name

is

not

specified,

then

the

schema

name

defaults

to

the

one

currently

in

effect

for

the

current

connection.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

room

for

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_OWNER_SCHEMA_LEN,

SQL_MAX_TABLE_NAME_LEN,

and

SQL_MAX_COLUMN_NAME_LEN

to

determine

respectively

the

actual

lengths

of

the

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

COLUMN_NAME

columns

supported

by

the

connected

DBMS.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

Columns

returned

by

SQLStatistics

Column

1

TABLE_CAT

(VARCHAR(128))

Catalog

name

of

the

table

for

which

the

index

applies.

The

value

is

NULL

if

this

table

does

not

have

catalogs.

SQLStatistics

304

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|
|
|
|
|

Column

2

TABLE_SCHEM

(VARCHAR(128))

Name

of

the

schema

containing

TABLE_NAME.

Column

3

TABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

table.

Column

4

NON_UNIQUE

(SMALLINT)

Indicates

whether

the

index

prohibits

duplicate

values:

v

SQL_TRUE

if

the

index

allows

duplicate

values.

v

SQL_FALSE

if

the

index

values

must

be

unique.

v

NULL

is

returned

if

the

TYPE

column

indicates

that

this

row

is

SQL_TABLE_STAT

(statistics

information

on

the

table

itself).

Column

5

INDEX_QUALIFIER

(VARCHAR(128))

The

string

that

would

be

used

to

qualify

the

index

name

in

the

DROP

INDEX

statement.

Appending

a

period

(.)

plus

the

INDEX_NAME

results

in

a

full

specification

of

the

index.

Column

6

INDEX_NAME

(VARCHAR(128))

The

name

of

the

index.

If

the

TYPE

column

has

the

value

SQL_TABLE_STAT,

this

column

has

the

value

NULL.

Column

7

TYPE

(SMALLINT

not

NULL)

Indicates

the

type

of

information

contained

in

this

row

of

the

result

set:

v

SQL_TABLE_STAT

-

Indicates

this

row

contains

statistics

information

on

the

table

itself.

v

SQL_INDEX_CLUSTERED

-

Indicates

this

row

contains

information

on

an

index,

and

the

index

type

is

a

clustered

index.

v

SQL_INDEX_HASHED

-

Indicates

this

row

contains

information

on

an

index,

and

the

index

type

is

a

hashed

index.

v

SQL_INDEX_OTHER

-

Indicates

this

row

contains

information

on

an

index,

and

the

index

type

is

other

than

clustered

or

hashed.

Column

8

ORDINAL_POSITION

(SMALLINT)

Ordinal

position

of

the

column

within

the

index

whose

name

is

given

in

the

INDEX_NAME

column.

A

NULL

value

is

returned

for

this

column

if

the

TYPE

column

has

the

value

of

SQL_TABLE_STAT.

Column

9

COLUMN_NAME

(VARCHAR(128))

Name

of

the

column

in

the

index.

A

NULL

value

is

returned

for

this

column

if

the

TYPE

column

has

the

value

of

SQL_TABLE_STAT.

Column

10

ASC_OR_DESC

(CHAR(1))

Sort

sequence

for

the

column;

″A″

for

ascending,

″D″

for

descending.

NULL

value

is

returned

if

the

value

in

the

TYPE

column

is

SQL_TABLE_STAT.

Column

11

CARDINALITY

(INTEGER)

v

If

the

TYPE

column

contains

the

value

SQL_TABLE_STAT,

this

column

contains

the

number

of

rows

in

the

table.

v

If

the

TYPE

column

value

is

not

SQL_TABLE_STAT,

this

column

contains

the

number

of

unique

values

in

the

index.

v

A

NULL

value

is

returned

if

information

is

not

available

from

the

DBMS.

Column

12

PAGES

(INTEGER)

v

If

the

TYPE

column

contains

the

value

SQL_TABLE_STAT,

this

column

contains

the

number

of

pages

used

to

store

the

table.

v

If

the

TYPE

column

value

is

not

SQL_TABLE_STAT,

this

column

contains

the

number

of

pages

used

to

store

the

indexes.

SQLStatistics

Chapter

1.

DB2

CLI

functions

305

v

A

NULL

value

is

returned

if

information

is

not

available

from

the

DBMS.

Column

13

FILTER_CONDITION

(VARCHAR(128))

If

the

index

is

a

filtered

index,

this

is

the

filter

condition.

Since

DB2

servers

do

not

support

filtered

indexes,

NULL

is

always

returned.

NULL

is

also

returned

if

TYPE

is

SQL_TABLE_STAT.

For

the

row

in

the

result

set

that

contains

table

statistics

(TYPE

is

set

to

SQL_TABLE_STAT),

the

columns

values

of

NON_UNIQUE,

INDEX_QUALIFIER,

INDEX_NAME,

ORDINAL_POSITION,

COLUMN_NAME,

and

ASC_OR_DESC

are

set

to

NULL.

If

the

CARDINALITY

or

PAGES

information

cannot

be

determined,

then

NULL

is

returned

for

those

columns.

Note:

An

application

may

check

the

SQLERRD(3)

and

SQLERRD(4)

fields

of

the

SQLCA

to

gather

some

statistics

on

a

table.

However,

the

accuracy

of

the

information

returned

in

those

fields

depends

on

many

factors,

such

as

the

use

of

parameter

markers

and

expressions

within

the

statement.

The

main

factor

which

can

be

controlled

is

the

accuracy

of

the

database

statistics.

That

is,

when

the

statistics

were

last

updated,

(for

example,

for

DB2

Universal

Database,

the

last

time

the

RUNSTATS

command

was

run).

Therefore,

the

statistics

information

returned

by

SQLStatistics()

is

often

more

consistent

and

reliable

than

the

statistics

information

contained

in

the

SQLCA

fields

discussed

above.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

146.

SQLStatistics

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY009

Invalid

argument

value.

TableName

is

null.

SQLStatistics

306

CLI

Guide

and

Reference,

Volume

2

Table

146.

SQLStatistics

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

The

valid

of

one

of

the

name

length

arguments

exceeded

the

maximum

value

supported

for

that

data

source.

The

maximum

supported

value

can

be

obtained

by

calling

the

SQLGetInfo()

function.

HY100

Uniqueness

option

type

out

of

range.

An

invalid

Unique

value

was

specified.

HY101

Accuracy

option

type

out

of

range.

An

invalid

Reserved

value

was

specified.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

/*

get

index

and

statistics

information

for

a

base

table

*/

cliRC

=

SQLStatistics(hstmt,

NULL,

0,

tbSchema,

SQL_NTS,

tbName,

SQL_NTS,

SQL_INDEX_UNIQUE,

SQL_QUICK);

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLStatistics

Chapter

1.

DB2

CLI

functions

307

Related

reference:

v

“SQLColumns

function

(CLI)

-

Get

column

information

for

a

table”

on

page

66

v

“SQLSpecialColumns

function

(CLI)

-

Get

special

(row

identifier)

columns”

on

page

297

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbconstr.c

--

How

to

work

with

constraints

associated

with

tables”

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

SQLTablePrivileges

function

(CLI)

-

Get

privileges

associated

with

a

table

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLTablePrivileges()

returns

a

list

of

tables

and

associated

privileges

for

each

table.

The

information

is

returned

in

an

SQL

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLTablePrivilegesW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLTablePrivileges

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CatalogName,

/*

*szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

*SchemaName,

/*

*szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

*TableName,

/*

*szTableName

*/

SQLSMALLINT

NameLength3);

/*

cbTableName

*/

Function

arguments:

Table

147.

SQLTablePrivileges

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLCHAR

*

CatalogName

Input

Catalog

qualifier

of

a

3-part

table

name.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Unix

and

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CatalogName,

or

SQL_NTS

if

CatalogName

is

null-terminated.

SQLStatistics

308

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

Table

147.

SQLTablePrivileges

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

SchemaName

Input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

schema

name.

SQLSMALLINT

NameLength2

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

SchemaName,

or

SQL_NTS

if

SchemaName

is

null-terminated.

SQLCHAR

*

TableName

Input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

table

name.

SQLSMALLINT

NameLength3

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

TableName,

or

SQL_NTS

if

TableName

is

null-terminated.

Note

that

the

SchemaName

and

TableName

input

arguments

accept

search

patterns.

Usage:

The

results

are

returned

as

a

standard

result

set

containing

the

columns

listed

in

the

following

table.

The

result

set

is

ordered

by

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

PRIVILEGE.

If

multiple

privileges

are

associated

with

any

given

table,

each

privilege

is

returned

as

a

separate

row.

The

granularity

of

each

privilege

reported

here

may

or

may

not

apply

at

the

column

level;

for

example,

for

some

data

sources,

if

a

table

can

be

updated,

every

column

in

that

table

can

also

be

updated.

For

other

data

sources,

the

application

must

call

SQLColumnPrivileges()

to

discover

if

the

individual

columns

have

the

same

table

privileges.

Since

calls

to

SQLTablePrivileges()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

room

for

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_OWNER_SCHEMA_LEN,

SQL_MAX_TABLE_NAME_LEN,

and

SQL_MAX_COLUMN_NAME_LEN

to

determine

respectively

the

actual

lengths

of

the

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

COLUMN_NAME

columns

supported

by

the

connected

DBMS.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

Columns

returned

by

SQLTablePrivileges

Column

1

TABLE_CAT

(VARCHAR(128))

Catalog

table

name.

The

value

is

NULL

if

this

table

does

not

have

catalogs.

Column

2

TABLE_SCHEM

(VARCHAR(128))

Name

of

the

schema

contain

TABLE_NAME.

SQLTablePrivileges

Chapter

1.

DB2

CLI

functions

309

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

Column

3

TABLE_NAME

(VARCHAR(128)

not

NULL)

Name

of

the

table.

Column

4

GRANTOR

(VARCHAR(128))

Authorization

ID

of

the

user

who

granted

the

privilege.

Column

5

GRANTEE

(VARCHAR(128))

Authorization

ID

of

the

user

to

whom

the

privilege

is

granted.

Column

6

PRIVILEGE

(VARCHAR(128))

Table

privilege.

This

may

be

one

of

the

following

strings:

v

ALTER

v

CONTROL

v

INDEX

v

DELETE

v

INSERT

v

REFERENCES

v

SELECT

v

UPDATE

Column

7

IS_GRANTABLE

(VARCHAR(3))

Indicates

whether

the

grantee

is

permitted

to

grant

the

privilege

to

other

users.

This

can

be

″YES″,

″NO″

or

NULL.

Note:

The

column

names

used

by

DB2

CLI

follow

the

X/Open

CLI

CAE

specification

style.

The

column

types,

contents

and

order

are

identical

to

those

defined

for

the

SQLProcedures()

result

set

in

ODBC.

Return

codes:

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

148.

SQLTablePrivileges

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

SQLTablePrivileges

310

CLI

Guide

and

Reference,

Volume

2

Table

148.

SQLTablePrivileges

SQLSTATEs

(continued)

SQLSTATE

Description

Explanation

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

The

valid

of

one

of

the

name

length

arguments

exceeded

the

maximum

value

supported

for

that

data

source.

The

maximum

supported

value

can

be

obtained

by

calling

the

SQLGetInfo()

function.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

/*

get

privileges

associated

with

a

table

*/

cliRC

=

SQLTablePrivileges(hstmt,

NULL,

0,

tbSchemaPattern,

SQL_NTS,

tbNamePattern,

SQL_NTS);

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLProcedures

function

(CLI)

-

Get

list

of

procedure

names”

on

page

255

v

“SQLTables

function

(CLI)

-

Get

table

information”

on

page

312

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

SQLTablePrivileges

Chapter

1.

DB2

CLI

functions

311

Related

samples:

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

SQLTables

function

(CLI)

-

Get

table

information

Purpose:

Specification:

DB2

CLI

2.1

ODBC

1.0

SQLTables()

returns

a

list

of

table

names

and

associated

information

stored

in

the

system

catalog

of

the

connected

data

source.

The

list

of

table

names

is

returned

as

a

result

set,

which

can

be

retrieved

using

the

same

functions

that

are

used

to

process

a

result

set

generated

by

a

query.

Unicode

equivalent:

This

function

can

also

be

used

with

the

Unicode

character

set.

The

corresponding

Unicode

function

is

SQLTablesW().

Refer

to

Unicode

functions

(CLI)

for

information

on

ANSI

to

Unicode

function

mappings.

Syntax:

SQLRETURN

SQLTables

(

SQLHSTMT

StatementHandle,

/*

hstmt

*/

SQLCHAR

*CatalogName,

/*

szCatalogName

*/

SQLSMALLINT

NameLength1,

/*

cbCatalogName

*/

SQLCHAR

*SchemaName,

/*

szSchemaName

*/

SQLSMALLINT

NameLength2,

/*

cbSchemaName

*/

SQLCHAR

*TableName,

/*

szTableName

*/

SQLSMALLINT

NameLength3,

/*

cbTableName

*/

SQLCHAR

*TableType,

/*

szTableType

*/

SQLSMALLINT

NameLength4);

/*

cbTableType

*/

Function

arguments:

Table

149.

SQLTables

arguments

Data

type

Argument

Use

Description

SQLHSTMT

StatementHandle

Input

Statement

handle.

SQLCHAR

*

CatalogName

Input

Catalog

qualifier

of

a

3-part

table

name

that

may

contain

a

pattern

value.

If

the

target

DBMS

does

not

support

3-part

naming

(such

as

DB2

UDB

Version

8

for

Linux,

UNIX

and

Windows)

and

a

non-empty

string

is

specified,

or

if

NameLength1

is

not

0,

then

an

empty

result

set

and

SQL_SUCCESS

will

be

returned.

Otherwise,

this

is

a

valid

filter

for

DBMSs

that

support

3-part

naming,

such

as

DB2

UDB

for

z/OS

and

OS/390.

SQLSMALLINT

NameLength1

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

CatalogName,

or

SQL_NTS

if

CatalogName

is

null-terminated.

SQLCHAR

*

SchemaName

Input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

schema

name.

SQLSMALLINT

NameLength2

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

SchemaName,

or

SQL_NTS

if

SchemaName

is

null-terminated.

SQLTablePrivileges

312

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

Table

149.

SQLTables

arguments

(continued)

Data

type

Argument

Use

Description

SQLCHAR

*

TableName

Input

Buffer

that

may

contain

a

pattern

value

to

qualify

the

result

set

by

table

name.

SQLSMALLINT

NameLength3

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

TableName,

or

SQL_NTS

if

TableName

is

null-terminated.

SQLCHAR

*

TableType

Input

Buffer

that

may

contain

a

value

list

to

qualify

the

result

set

by

table

type.

The

value

list

is

a

list

of

upper-case

comma-separated

single

values

for

the

table

types

of

interest.

Valid

table

type

identifiers

may

include:

ALIAS,

HIERARCHY

TABLE,

INOPERATIVE

VIEW,

NICKNAME,

MATERIALIZED

QUERY

TABLE,

SYSTEM

TABLE,

TABLE,

TYPED

TABLE,

TYPED

VIEW,

or

VIEW.

If

TableType

argument

is

a

NULL

pointer

or

a

zero

length

string,

then

this

is

equivalent

to

specifying

all

of

the

possibilities

for

the

table

type

identifier.

If

SYSTEM

TABLE

is

specified,

then

both

system

tables

and

system

views

(if

there

are

any)

are

returned.

SQLSMALLINT

NameLength4

Input

Number

of

SQLCHAR

elements

(or

SQLWCHAR

elements

for

the

Unicode

variant

of

this

function)

needed

to

store

TableType,

or

SQL_NTS

if

TableType

is

null-terminated.

Note

that

the

CatalogName,

SchemaName,

and

TableName

input

arguments

accept

search

patterns.

Usage:

Table

information

is

returned

in

a

result

set

where

each

table

is

represented

by

one

row

of

the

result

set.

To

determine

the

type

of

access

permitted

on

any

given

table

in

the

list,

the

application

can

call

SQLTablePrivileges().

The

application

must

be

able

to

handle

a

situation

where

the

user

selects

a

table

for

which

SELECT

privileges

are

not

granted.

To

support

obtaining

just

a

list

of

schemas,

the

following

special

semantics

for

the

SchemaName

argument

can

be

applied:

if

SchemaName

is

a

string

containing

a

single

percent

(%)

character,

and

CatalogName

and

TableName

are

empty

strings,

then

the

result

set

contains

a

list

of

valid

schemas

in

the

data

source.

If

TableType

is

a

single

percent

character

(%)

and

CatalogName,

SchemaName,

and

TableName

are

empty

strings,

then

the

result

set

contains

a

list

of

valid

table

types

for

the

data

source.

(All

columns

except

the

TABLE_TYPE

column

contain

NULLs.)

If

TableType

is

not

an

empty

string,

it

must

contain

a

list

of

upper-case,

comma-separated

values

for

the

types

of

interest;

each

value

may

be

enclosed

in

single

quotes

or

unquoted.

For

example,

″’TABLE’,’VIEW’″

or

″TABLE,VIEW″.

If

the

data

source

does

not

support

or

does

not

recognize

a

specified

table

type,

nothing

is

returned

for

that

type.

SQLTables

Chapter

1.

DB2

CLI

functions

313

|
|
|
|

|
|
|
|

|
|

Sometimes,

an

application

calls

SQLTables()

with

null

pointers

for

some

or

all

of

the

SchemaName,

TableName,

and

TableType

arguments

so

that

no

attempt

is

made

to

restrict

the

result

set

returned.

For

some

data

sources

that

contain

a

large

quantity

of

tables,

views,

aliases,

etc.,

this

scenario

maps

to

an

extremely

large

result

set

and

very

long

retrieval

times.

Three

mechanisms

are

introduced

to

help

the

end

user

reduce

the

long

retrieval

times:

three

configuration

keywords

(SCHEMALIST,

SYSCHEMA,

TABLETYPE)

can

be

specified

in

the

CLI

initialization

file

to

help

restrict

the

result

set

when

the

application

has

supplied

null

pointers

for

either

or

both

of

SchemaName

and

TableType.

If

the

application

specifies

a

SchemaName

string,

the

SCHEMALIST

keyword

is

still

used

to

restrict

the

output.

Therefore,

if

the

schema

name

supplied

is

not

in

the

SCHEMALIST

string,

then

the

result

will

be

an

empty

result

set.

The

result

set

returned

by

SQLTables()

contains

the

columns

listed

in

“Columns

returned

by

SQLTables”

in

the

order

given.

The

rows

are

ordered

by

TABLE_TYPE,

TABLE_CAT,

TABLE_SCHEM,

and

TABLE_NAME.

Since

calls

to

SQLTables()

in

many

cases

map

to

a

complex

and

thus

expensive

query

against

the

system

catalog,

they

should

be

used

sparingly,

and

the

results

saved

rather

than

repeating

calls.

The

VARCHAR

columns

of

the

catalog

functions

result

set

have

been

declared

with

a

maximum

length

attribute

of

128

to

be

consistent

with

SQL92

limits.

Since

DB2

names

are

less

than

128,

the

application

can

choose

to

always

set

aside

room

for

128

characters

(plus

the

null-terminator)

for

the

output

buffer,

or

alternatively,

call

SQLGetInfo()

with

the

SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_OWNER_SCHEMA_LEN,

SQL_MAX_TABLE_NAME_LEN,

and

SQL_MAX_COLUMN_NAME_LEN

to

determine

respectively

the

actual

lengths

of

the

TABLE_CAT,

TABLE_SCHEM,

TABLE_NAME,

and

COLUMN_NAME

columns

supported

by

the

connected

DBMS.

Although

new

columns

may

be

added

and

the

names

of

the

existing

columns

changed

in

future

releases,

the

position

of

the

current

columns

will

not

change.

Columns

returned

by

SQLTables

Column

1

TABLE_CAT

(VARCHAR(128))

Name

of

the

catalog

containing

TABLE_SCHEM.

The

value

is

NULL

if

this

table

does

not

have

catalogs.

Column

2

TABLE_SCHEM

(VARCHAR(128))

Name

of

the

schema

containing

TABLE_NAME.

Column

3

TABLE_NAME

(VARCHAR(128))

Name

of

the

table,

view,

alias

or

synonym.

Column

4

TABLE_TYPE

(VARCHAR(128))

Identifies

the

type

given

by

the

name

in

the

TABLE_NAME

column.

It

can

have

the

string

values

’ALIAS’,

’HIERARCHY

TABLE’,

’INOPERATIVE

VIEW’,

’NICKNAME’,

’MATERIALIZED

QUERY

TABLE’,

’SYSTEM

TABLE’,

’TABLE’,

’TYPED

TABLE’,

’TYPED

VIEW’,

or

’VIEW’.

Column

5

REMARKS

(VARCHAR(254))

Descriptive

information

about

the

table.

Column

Return

codes:

v

SQL_SUCCESS

SQLTables

314

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|
|
|
|
|

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_ERROR

v

SQL_INVALID_HANDLE

Diagnostics:

Table

150.

SQLTables

SQLSTATEs

SQLSTATE

Description

Explanation

24000

Invalid

cursor

state.

A

cursor

was

already

opened

on

the

statement

handle.

40003

08S01

Communication

link

failure.

The

communication

link

between

the

application

and

data

source

failed

before

the

function

completed.

HY001

Memory

allocation

failure.

DB2

CLI

is

unable

to

allocate

memory

required

to

support

execution

or

completion

of

the

function.

It

is

likely

that

process-level

memory

has

been

exhausted

for

the

application

process.

Consult

the

operating

system

configuration

for

information

on

process-level

memory

limitations.

HY008

Operation

was

cancelled.

Asynchronous

processing

was

enabled

for

StatementHandle.

The

function

was

called

and

before

it

completed

execution,

SQLCancel()

was

called

on

StatementHandle

from

a

different

thread

in

a

multithreaded

application.

Then

the

function

was

called

again

on

StatementHandle.

HY009

Invalid

argument

value.

TableName

is

null.

HY010

Function

sequence

error.

The

function

was

called

while

in

a

data-at-execute

(SQLParamData(),

SQLPutData())

operation.

The

function

was

called

while

within

a

BEGIN

COMPOUND

and

END

COMPOUND

SQL

operation.

An

asynchronously

executing

function

(not

this

one)

was

called

for

the

StatementHandle

and

was

still

executing

when

this

function

was

called.

The

function

was

called

before

a

statement

was

prepared

on

the

statement

handle.

HY014

No

more

handles.

DB2

CLI

was

unable

to

allocate

a

handle

due

to

resource

limitations.

HY090

Invalid

string

or

buffer

length.

The

value

of

one

of

the

name

length

arguments

was

less

than

0,

but

not

equal

to

SQL_NTS.

The

valid

of

one

of

the

name

length

arguments

exceeded

the

maximum

value

supported

for

that

data

source.

The

maximum

supported

value

can

be

obtained

by

calling

the

SQLGetInfo()

function.

HYT00

Timeout

expired.

The

timeout

period

expired

before

the

data

source

returned

the

result

set.

The

timeout

period

can

be

set

using

the

SQL_ATTR_QUERY_TIMEOUT

attribute

for

SQLSetStmtAttr().

Restrictions:

None.

Example:

SQLTables

Chapter

1.

DB2

CLI

functions

315

/*

get

table

information

*/

cliRC

=

SQLTables(hstmt,

NULL,

0,

tbSchemaPattern,

SQL_NTS,

tbNamePattern,

SQL_NTS,

NULL,

0);

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLSTATES

for

DB2

CLI”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLColumns

function

(CLI)

-

Get

column

information

for

a

table”

on

page

66

v

“SQLTablePrivileges

function

(CLI)

-

Get

privileges

associated

with

a

table”

on

page

308

v

“CLI

function

return

codes”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

samples:

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

v

“tbread.c

--

How

to

read

data

from

tables”

SQLTransact

function

(CLI)

-

Transaction

management

Deprecated:

Note:

In

ODBC

3.0,

SQLTransact()

has

been

deprecated

and

replaced

with

SQLEndTran().

Although

this

version

of

DB2

CLI

continues

to

support

SQLTransact(),

we

recommend

that

you

use

SQLEndTran()

in

your

DB2

CLI

programs

so

that

they

conform

to

the

latest

standards.

Migrating

to

the

new

function

The

statement:

SQLTransact(henv,

hdbc,

SQL_COMMIT);

for

example,

would

be

rewritten

using

the

new

function

as:

SQLEndTran(SQL_HANDLE_DBC,

hdbc,

SQL_COMMIT);

Related

reference:

v

“CLI

and

ODBC

function

summary”

on

page

1

v

“SQLEndTran

function

(CLI)

-

End

transactions

of

a

connection

or

an

Environment”

on

page

96

SQLTables

316

CLI

Guide

and

Reference,

Volume

2

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

Environment

attributes

(CLI)

list

.

.

.

.

.

.

. 317

Connection

attributes

(CLI)

list

.

.

.

.

.

.

. 321

Statement

attributes

(CLI)

list

.

.

.

.

.

.

.

. 334

Environments,

connections,

and

statements

each

have

a

defined

set

of

attributes

that

affect

how

DB2

CLI

behaves.

These

attributes

have

default

values,

however,

you

can

modify

the

default

DB2

CLI

behavior

by

setting

these

attributes

to

different

values.

This

chapter

lists

the

environment,

connection,

and

statement

attributes

that

you

can

set

to

customize

DB2

CLI

behavior.

Environment

attributes

(CLI)

list

Note:

ODBC

does

not

support

setting

driver-specific

environment

attributes

using

SQLSetEnvAttr().

Only

CLI

applications

can

set

the

DB2

CLI-specific

environment

attributes

using

this

function.

SQL_ATTR_CONNECTION_POOLING

32-bit

integer

value

that

enables

or

disables

CLI

connection

pooling

at

the

environment

level.

If

an

ODBC

application

sets

this

value,

connection

pooling

at

the

ODBC

Driver

Manager

will

be

enabled,

not

at

the

CLI

level.

Only

applications

written

to

access

CLI

directly

can

set

this

environment

attribute

to

control

CLI

connection

pooling.

The

following

values

are

used:

v

SQL_CP_OFF

=

Connection

pooling

is

turned

off.

This

is

the

default.

v

SQL_CP_ONE_PER_DRIVER

=

A

single,

global

connection

pool

is

supported

for

each

DB2

CLI

application.

Every

connection

in

a

pool

is

associated

with

the

application.

v

SQL_CP_ONE_PER_HENV

=

A

single

connection

pool

is

supported

for

each

environment.

Every

connection

in

a

pool

is

associated

with

one

environment.

Connection

pooling

is

enabled

by

calling

SQLSetEnvAttr()

to

set

the

SQL_ATTR_CONNECTION_POOLING

attribute

to

SQL_CP_ONE_PER_DRIVER

or

SQL_CP_ONE_PER_HENV.

The

environment

handle

in

the

call

to

SQLSetEnvAttr()

is

set

to

null,

which

makes

SQL_ATTR_CONNECTION_POOLING

a

process-level

attribute.

After

connection

pooling

is

enabled,

the

application

then

allocates

an

implicit

shared

environment

by

calling

SQLAllocHandle()

with

the

InputHandle

argument

set

to

SQL_HANDLE_ENV.

After

connection

pooling

has

been

enabled

and

a

shared

environment

has

been

selected

for

an

application,

SQL_ATTR_CONNECTION_POOLING

cannot

be

reset

for

that

environment,

since

SQLSetEnvAttr()

is

called

with

a

null

environment

handle

when

setting

this

attribute.

If

this

attribute

is

set

while

connection

pooling

is

already

enabled

on

a

shared

environment,

the

attribute

only

affects

shared

environments

that

are

allocated

subsequently.

SQL_ATTR_CONNECTTYPE

Note:

This

attribute

replaces

SQL_CONNECTTYPE.

A

32-bit

integer

value

that

specifies

whether

this

application

is

to

operate

in

a

coordinated

or

uncoordinated

distributed

environment.

If

the

©

Copyright

IBM

Corp.

1993

-

2004

317

processing

needs

to

be

coordinated,

then

this

option

must

be

considered

in

conjunction

with

the

SQL_ATTR_SYNC_POINT

connection

option.

The

possible

values

are:

v

SQL_CONCURRENT_TRANS:

The

application

can

have

concurrent

multiple

connections

to

any

one

database

or

to

multiple

databases.

Each

connection

has

its

own

commit

scope.

No

effort

is

made

to

enforce

coordination

of

transaction.

If

an

application

issues

a

commit

using

the

environment

handle

on

SQLEndTran()

and

not

all

of

the

connections

commit

successfully,

the

application

is

responsible

for

recovery.

The

current

setting

of

the

SQL_ATTR_SYNC_POINT

attribute

is

ignored.

This

is

the

default.

v

SQL_COORDINATED_TRANS:

The

application

wishes

to

have

commit

and

rollbacks

coordinated

among

multiple

database

connections.

This

option

setting

corresponds

to

the

specification

of

the

Type

2

CONNECT

in

embedded

SQL

and

must

be

considered

in

conjunction

with

the

SQL_ATTR_SYNC_POINT

connection

option.

In

contrast

to

the

SQL_CONCURRENT_TRANS

setting

described

above,

the

application

is

permitted

only

one

open

connection

per

database.

This

attribute

must

be

set

before

allocating

any

connection

handles,

otherwise,

the

SQLSetEnvAttr()

call

will

be

rejected.

All

the

connections

within

an

application

must

have

the

same

SQL_ATTR_CONNECTTYPE

and

SQL_ATTR_SYNC_POINT

values.

This

attribute

can

also

be

set

using

the

SQLSetConnectAttr()

function.

It

is

recommended

that

the

application

set

the

SQL_ATTR_CONNECTTYPE

attribute

at

the

environment

level

rather

than

on

a

per

connection

basis.

ODBC

applications

written

to

take

advantage

of

coordinated

DB2

transactions

must

set

these

attributes

at

the

connection

level

for

each

connection

using

SQLSetConnectAttr()

as

calling

SQLSetEnvAttr()

to

set

driver-specific

environment

attributes

is

not

supported

in

ODBC.

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_CP_MATCH

A

32-bit

value

that

determines

how

a

connection

is

chosen

from

a

connection

pool.

When

SQLConnect()

or

SQLDriverConnect()

is

called,

DB2

CLI

(or

the

ODBC

Driver

Manager

when

used)

determines

which

connection

is

reused

from

the

pool.

DB2

CLI

(or

the

ODBC

Driver

Manager)

attempts

to

match

the

connection

options

in

the

call

and

the

connection

attributes

set

by

the

application

to

the

keywords

and

connection

attributes

of

the

connections

in

the

pool.

The

value

of

this

attribute

determines

the

level

of

precision

of

the

matching

criteria.

The

following

values

are

used

to

set

the

value

of

this

attribute:

v

SQL_CP_STRICT_MATCH

=

Only

connections

that

exactly

match

the

connection

options

in

the

call

and

the

connection

attributes

set

by

the

application

are

reused.

This

is

the

default.

v

SQL_CP_RELAXED_MATCH

=

Connections

with

matching

connection

string

keywords

can

be

used.

Keywords

must

match,

but

not

all

connection

attributes

must

match.

SQL_ATTR_MAXCONN

This

attribute

has

been

deprecated

in

DB2

Version

8.

318

CLI

Guide

and

Reference,

Volume

2

|
|

SQL_ATTR_ODBC_VERSION

A

32-bit

integer

that

determines

whether

certain

functionality

exhibits

ODBC

2.x

(DB2

CLI

v2)

behavior

or

ODBC

3.0

(DB2

CLI

v5)

behavior.

It

is

recommended

that

all

DB2

CLI

applications

set

this

environment

attribute.

ODBC

applications

must

set

this

environment

attribute

before

calling

any

function

that

has

an

SQLHENV

argument,

or

the

call

will

return

SQLSTATE

HY010

(Function

sequence

error.).

The

following

values

are

used

to

set

the

value

of

this

attribute:

v

SQL_OV_ODBC3:

Causes

the

following

ODBC

3.0

(DB2

CLI

v5)

behavior:

–

DB2

CLI

returns

and

expects

ODBC

3.0

(DB2

CLI

v5)

codes

for

date,

time,

and

timestamp.

–

DB2

CLI

returns

ODBC

3.0

(DB2

CLI

v5)

SQLSTATE

codes

when

SQLError(),

SQLGetDiagField(),

or

SQLGetDiagRec()

are

called.

–

The

CatalogName

argument

in

a

call

to

SQLTables()

accepts

a

search

pattern.
v

SQL_OV_ODBC2

Causes

the

following

ODBC

2.x

(DB2

CLI

v2)

behavior:

–

DB2

CLI

returns

and

expects

ODBC

2.x

(DB2

CLI

v2)

codes

for

date,

time,

and

timestamp.

–

DB2

CLI

returns

ODBC

2.0

(DB2

CLI

v2)

SQLSTATE

codes

when

SQLError(),

SQLGetDiagField(),

or

SQLGetDiagRec()

are

called.

–

The

CatalogName

argument

in

a

call

to

SQLTables()

does

not

accept

a

search

pattern.

SQL_ATTR_OUTPUT_NTS

A

32-bit

integer

value

which

controls

the

use

of

null-termination

in

output

arguments.

The

possible

values

are:

v

SQL_TRUE:

DB2

CLI

uses

null

termination

to

indicate

the

length

of

output

character

strings

(default).

This

is

the

default.

v

SQL_FALSE:

DB2

CLI

does

not

use

null

termination

in

output

character

strings.

The

CLI

functions

affected

by

this

attribute

are

all

functions

called

for

the

environment

(and

for

any

connections

and

statements

allocated

under

the

environment)

that

have

character

string

parameters.

This

attribute

can

only

be

set

when

there

are

no

connection

handles

allocated

under

this

environment.

SQL_ATTR_PROCESSCTL

A

32-bit

mask

that

sets

process

level

attributes

which

affect

all

environments

and

connections

for

the

process.

This

attribute

must

be

set

before

the

environment

handle

is

allocated.

The

call

to

SQLSetEnvAttr()

must

have

the

EnvironmentHandle

argument

set

to

SQL_NULL_HANDLE.

The

settings

remain

in

effect

for

the

life

of

the

process.

Generally

this

attribute

is

only

used

for

performance

sensitive

applications,

where

large

numbers

of

CLI

function

calls

are

being

made.

Before

setting

any

of

these

bits,

ensure

that

the

application,

and

any

other

libraries

that

the

application

calls,

comply

with

the

restrictions

listed.

The

following

values

may

be

combined

to

form

a

bitmask:

v

SQL_PROCESSCTL_NOTHREAD

-

This

bit

indicates

that

the

application

does

not

use

multiple

threads,

or

if

it

does

use

multiple

threads,

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

319

guarantees

that

all

DB2

calls

will

be

serialized

by

the

application.

If

set,

DB2

CLI

does

not

make

any

system

calls

to

serialize

calls

to

CLI,

and

sets

the

DB2

context

type

to

SQL_CTX_ORIGINAL.

v

SQL_PROCESSCTL_NOFORK

-

This

bit

indicates

that

the

application

will

never

fork

a

child

process.

If

set,

DB2

CLI

does

not

need

to

check

the

current

process

id

for

each

function

call.

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_SYNC_POINT

Note:

This

attribute

replaces

SQL_SYNC_POINT.

A

32-bit

integer

value

that

allows

the

application

to

choose

between

one-phase

coordinated

transactions

and

two-phase

coordinated

transactions.

The

possible

value

is:

v

SQL_TWOPHASE:

Two-phase

commit

is

used

to

commit

the

work

done

by

each

database

in

a

multiple

database

transaction.

This

requires

the

use

of

a

Transaction

Manager

to

coordinate

two

phase

commits

amongst

the

databases

that

support

this

protocol.

Multiple

readers

and

multiple

updaters

are

allowed

within

a

transaction.

Note:

The

SQL_ONEPHASE

option

is

no

longer

supported.

Setting

SQL_ONEPHASE

will

yield

the

two

phase

behavior

of

the

SQL_TWOPHASE

option.

All

the

connections

within

an

application

must

have

the

same

SQL_ATTR_CONNECTTYPE

and

SQL_ATTR_SYNC_POINT

values.

This

attribute

can

also

be

set

using

the

SQLSetConnectAttr()

function.

We

recommend

that

the

application

set

these

two

attributes

at

the

environment

level

rather

than

on

a

per

connection

basis.

ODBC

applications

written

to

take

advantage

of

coordinated

DB2

transactions

must

set

these

attributes

at

the

connection

level

for

each

connection

using

SQLSetConnectAttr()

as

calling

SQLSetEnvAttr()

to

set

driver-specific

environment

attributes

is

not

supported

in

ODBC.

Note:

This

is

an

IBM

defined

extension.

In

embedded

SQL,

there

is

an

additional

sync

point

setting

called

SYNCPOINT

NONE.

This

is

more

restrictive

than

the

SQL_CONCURRENT_TRANS

setting

of

the

SQL_ATTR_CONNECTTYPE

attribute

because

SYNCPOINT

NONE

does

not

allow

for

multiple

connections

to

the

same

database.

As

a

result,

it

is

not

necessary

for

DB2

CLI

to

support

SYNCPOINT

NONE.

SQL_ATTR_USE_2BYTES_OCTET_LENGTH

This

attribute

has

been

deprecated

in

DB2

Version

8.

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA

A

32-bit

integer

value

that

specifies

whether

the

column

name

is

sent

over

the

network

and

returned

on

calls

to

SQLDescribeCol(),

SQLColAttribute(),

and

SQLGetDescField().

The

possible

values

are:

v

SQL_TRUE:

Column

name

is

not

included

in

the

network

flow.

Only

the

column

number

is

returned.

v

SQL_FALSE:

Column

name

is

included

in

the

network

flow

(default).

Note:

This

is

an

IBM

defined

extension.

320

CLI

Guide

and

Reference,

Volume

2

|
|
|

SQL_CONNECTTYPE

This

Attribute

has

been

replaced

with

“SQL_ATTR_CONNECTTYPE”

on

page

317.

SQL_MAXCONN

This

Attribute

has

been

replaced

with

“SQL_ATTR_MAXCONN”

on

page

318.

SQL_SYNC_POINT

This

Attribute

has

been

replaced

with

“SQL_ATTR_SYNC_POINT”

on

page

320.

Related

reference:

v

“SQLColAttribute

function

(CLI)

-

Return

a

column

attribute”

on

page

53

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

on

page

82

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

on

page

151

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

on

page

159

v

“SQLGetEnvAttr

function

(CLI)

-

Retrieve

current

environment

attribute

value”

on

page

175

v

“CLI/ODBC

configuration

keywords

listing

by

category”

in

the

CLI

Guide

and

Reference,

Volume

1

Connection

attributes

(CLI)

list

The

following

table

indicates

when

each

of

the

CLI

connection

attributes

can

be

set.

A

″Yes″

in

the

″After

statements

allocated″

column

means

that

the

connection

attribute

can

be

set

both

before

and

after

the

statements

are

allocated.

Table

151.

When

connection

attributes

can

be

set

Attribute

Before

connection

After

connection

After

statements

allocated

SQL_ATTR_ACCESS_MODE

Yes

Yes

Yes

a

SQL_ATTR_ANSI_APP

Yes

No

No

SQL_ATTR_AUTO_IPD

(read-only)

No

Yes

Yes

SQL_ATTR_AUTOCOMMIT

Yes

Yes

Yes

b

SQL_ATTR_CLISCHEMA

Yes

Yes

Yes

SQL_ATTR_CONN_CONTEXT

Yes

No

No

SQL_ATTR_CONNECT_NODE

Yes

No

No

SQL_ATTR_CONNECTTYPE

Yes

No

No

SQL_ATTR_CURRENT_CATALOG

(read-only)

No

No

No

SQL_ATTR_CURRENT_PACKAGE_PATH

Yes

Yes

Yes

SQL_ATTR_CURRENT_PACKAGE_SET

Yes

Yes

a

No

*

SQL_ATTR_CURRENT_SCHEMA

Yes

Yes

Yes

SQL_ATTR_DB2_SQLERRP

(read-only)

No

Yes

Yes

SQL_ATTR_DB2ESTIMATE

No

Yes

Yes

SQL_ATTR_DB2EXPLAIN

No

Yes

Yes

SQL_ATTR_ENLIST_IN_DTC

No

Yes

Yes

SQL_ATTR_INFO_ACCTSTR

No

Yes

Yes

SQL_ATTR_INFO_APPLNAME

No

Yes

Yes

SQL_ATTR_INFO_PROGRAMID

No

Yes

Yes

a

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

321

|

|
|
|||

||||
||||

||||

Table

151.

When

connection

attributes

can

be

set

(continued)

Attribute

Before

connection

After

connection

After

statements

allocated

SQL_ATTR_INFO_PROGRAMNAME

Yes

No

No

SQL_ATTR_INFO_USERID

No

Yes

Yes

SQL_ATTR_INFO_WRKSTNNAME

No

Yes

Yes

SQL_ATTR_KEEP_DYNAMIC

No

Yes

Yes

SQL_ATTR_LOGIN_TIMEOUT

Yes

No

No

SQL_ATTR_LONGDATA_COMPAT

Yes

Yes

Yes

SQL_ATTR_QUIET_MODE

Yes

Yes

Yes

SQL_ATTR_SYNC_POINT

Yes

No

No

SQL_ATTR_TXN_ISOLATION

No

Yes

b

Yes

a

SQL_ATTR_WCHARTYPE

Yes

Yes

b

Yes

b

a

Will

only

affect

subsequently

allocated

statements.

b

Attribute

can

be

set

only

if

there

are

no

open

transactions

on

the

connection.

*

Setting

this

attribute

after

statements

have

been

allocated

will

not

result

in

an

error,

however,

determining

which

packages

are

used

by

which

statements

is

ambiguous

and

unexpected

behavior

may

occur.

It

is

not

recommended

that

you

set

this

attribute

after

statements

have

been

allocated.

Attribute

ValuePtr

contents

SQL_ATTR_ACCESS_MODE

(DB2

CLI

v2)

A

32-bit

integer

value

which

can

be

either:

v

SQL_MODE_READ_ONLY:

the

application

is

indicating

that

it

will

not

be

performing

any

updates

on

data

from

this

point

on.

Therefore,

a

less

restrictive

isolation

level

and

locking

can

be

used

on

transactions:

uncommitted

read

(SQL_TXN_READ_UNCOMMITTED).

DB2

CLI

does

not

ensure

that

requests

to

the

database

are

read-only.

If

an

update

request

is

issued,

DB2

CLI

will

process

it

using

the

transaction

isolation

level

it

has

selected

as

a

result

of

the

SQL_MODE_READ_ONLY

setting.

v

SQL_MODE_READ_WRITE:

the

application

is

indicating

that

it

will

be

making

updates

on

data

from

this

point

on.

DB2

CLI

will

go

back

to

using

the

default

transaction

isolation

level

for

this

connection.

SQL_MODE_READ_WRITE

is

the

default.

There

must

not

be

any

outstanding

transactions

on

this

connection.

SQL_ATTR_ANSI_APP

(DB2

CLI

v7)

A

32-bit

unsigned

integer

that

identifies

an

application

as

an

ANSI

or

Unicode

application.

This

attribute

has

either

of

the

following

values:

v

SQL_AA_TRUE:

the

application

is

an

ANSI

application.

All

character

data

is

passed

to

and

from

the

application

in

the

native

application

(client)

codepage

using

the

ANSI

version

of

the

CLI/ODBC

functions.

v

SQL_AA_FALSE:

the

application

is

a

Unicode

application.

All

character

data

is

passed

to

and

from

the

application

in

Unicode

when

the

Unicode

(W)

versions

of

the

CLI/ODBC

functions

are

called.

SQL_ATTR_AUTO_IPD

(DB2

CLI

v5)

A

read-only

32-bit

unsigned

integer

value

that

specifies

whether

automatic

population

of

the

IPD

after

a

call

to

SQLPrepare()

is

supported:

322

CLI

Guide

and

Reference,

Volume

2

||||

||||

|
||

|

||
|
|
|

v

SQL_TRUE

=

Automatic

population

of

the

IPD

after

a

call

to

SQLPrepare()

is

supported

by

the

server.

v

SQL_FALSE

=

Automatic

population

of

the

IPD

after

a

call

to

SQLPrepare()

is

not

supported

by

the

server.

Servers

that

do

not

support

prepared

statements

will

not

be

able

to

populate

the

IPD

automatically.

If

SQL_TRUE

is

returned

for

the

SQL_ATTR_AUTO_IPD

connection

attribute,

the

statement

attribute

SQL_ATTR_ENABLE_AUTO_IPD

can

be

set

to

turn

automatic

population

of

the

IPD

on

or

off.

If

SQL_ATTR_AUTO_IPD

is

SQL_FALSE,

SQL_ATTR_ENABLE_AUTO_IPD

cannot

be

set

to

SQL_TRUE.

The

default

value

of

SQL_ATTR_ENABLE_AUTO_IPD

is

equal

to

the

value

of

SQL_ATTR_AUTO_IPD.

This

connection

attribute

can

be

returned

by

SQLGetConnectAttr(),

but

cannot

be

set

by

SQLSetConnectAttr().

SQL_ATTR_AUTOCOMMIT

(DB2

CLI

v2)

A

32-bit

unsigned

integer

value

that

specifies

whether

to

use

auto-commit

or

manual

commit

mode:

v

SQL_AUTOCOMMIT_OFF:

the

application

must

manually,

explicitly

commit

or

rollback

transactions

with

SQLEndTran()

calls.

v

SQL_AUTOCOMMIT_ON:

DB2

CLI

operates

in

auto-commit

mode

by

default.

Each

statement

is

implicitly

committed.

Each

statement

that

is

not

a

query

is

committed

immediately

after

it

has

been

executed

or

rolled

back

if

failure

occurred.

Each

query

is

committed

immediately

after

the

associated

cursor

is

closed.

SQL_AUTOCOMMIT_ON

is

the

default.

Note:

If

this

is

a

coordinated

distributed

unit

of

work

connection,

then

the

default

is

SQL_AUTOCOMMIT_OFF

Since

in

many

DB2

environments,

the

execution

of

the

SQL

statements

and

the

commit

may

be

flowed

separately

to

the

database

server,

autocommit

can

be

expensive.

It

is

recommended

that

the

application

developer

take

this

into

consideration

when

selecting

the

auto-commit

mode.

Note:

Changing

from

manual

commit

to

auto-commit

mode

will

commit

any

open

transaction

on

the

connection.

SQL_ATTR_CLISCHEMA

(DB2

CLI

v6)

A

pointer

to

a

null-terminated

character

string

containing

the

name

of

the

DB2

ODBC

catalog

view

stored

on

the

host

DBMS

to

use.

The

DB2

ODBC

catalog

is

designed

to

improve

the

performance

of

schema

calls

for

lists

of

tables

in

ODBC

applications

that

connect

to

host

DBMSs

through

DB2

Connect.

The

DB2

ODBC

catalog,

created

and

maintained

on

the

host

DBMS,

contains

rows

representing

objects

defined

in

the

real

DB2

catalog,

but

these

rows

include

only

the

columns

necessary

to

support

ODBC

operations.

The

tables

in

the

DB2

ODBC

catalog

are

pre-joined

and

specifically

indexed

to

support

fast

catalog

access

for

ODBC

applications.

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

323

|
|
|
|
|

|

|
|

System

administrators

can

create

multiple

DB2

ODBC

catalog

views,

each

containing

only

the

rows

that

are

needed

by

a

particular

user

group.

Each

end

user

can

then

select

the

DB2

ODBC

catalog

view

they

wish

to

use

(by

setting

this

attribute).

The

DB2

CLI/ODBC

Driver

configuration

keyword

CLISCHEMA

can

be

used

to

provide

a

default

value

for

this

attribute.

SQL_ATTR_CONN_CONTEXT

(DB2

CLI

v5)

Indicates

which

context

the

connection

should

use.

An

SQLPOINTER

to

either:

v

a

valid

context

(allocated

by

the

sqleBeginCtx()

DB2

API)

to

set

the

context

v

a

NULL

pointer

to

reset

the

context

This

attribute

can

only

be

used

when

the

application

is

using

the

DB2

context

APIs

to

manage

multi-threaded

applications.

By

default,

DB2

CLI

manages

contexts

by

allocating

one

context

per

connection

handle,

and

ensuring

that

any

executing

thread

is

attached

to

the

correct

context.

For

more

information

about

contexts,

refer

to

the

sqleBeginCtx()

API.

SQL_ATTR_CONNECT_NODE

(DB2

CLI

v6)

A

32-bit

integer

that

specifies

the

target

logical

node

of

a

DB2

Enterprise

Server

Edition

database

partition

server

that

you

want

to

connect

to.

This

setting

overrides

the

value

of

the

environment

variable

DB2NODE.

It

can

be

set

to:

v

an

integer

between

0

and

999

v

SQL_CONN_CATALOG_NODE

If

this

variable

is

not

set,

the

target

logical

node

defaults

to

the

logical

node

which

is

defined

with

port

0

on

the

machine.

There

is

also

a

corresponding

DB2

CLI/ODBC

configuration

keyword

ConnectNode.

SQL_ATTR_CONNECTION_DEAD

(DB2

CLI

v6)

A

READ

ONLY

32-bit

integer

value

that

indicates

whether

or

not

the

connection

is

still

active.

DB2

CLI

will

return

one

of

the

following

values:

v

SQL_CD_FALSE

-

the

connection

is

still

active.

v

SQL_CD_TRUE

-

an

error

has

already

happened

and

caused

the

connection

to

the

server

to

be

terminated.

The

application

should

still

perform

a

disconnect

to

clean

up

any

DB2

CLI

resources.

This

attribute

is

used

mainly

by

the

Microsoft

ODBC

Driver

Manager

3.5x

before

pooling

the

connection.

SQL_ATTR_CONNECTION_TIMEOUT

(DB2

CLI

v5)

This

connection

attribute

is

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI.

Any

attempt

to

set

or

get

this

attribute

will

result

in

an

SQLSTATE

of

HYC00

(Driver

not

capable).

A

32-bit

integer

value

corresponding

to

the

number

of

seconds

to

wait

for

any

request

on

the

connection

to

complete

before

returning

to

the

application.

DB2

CLI

always

behaves

as

if

ValuePtr

was

set

to

0

(the

default);

there

is

no

time

out.

324

CLI

Guide

and

Reference,

Volume

2

SQL_ATTR_CONNECTTYPE

(DB2

CLI

v2)

A

32-bit

integer

value

that

specifies

whether

this

application

is

to

operate

in

a

coordinated

or

uncoordinated

distributed

environment.

If

the

processing

needs

to

be

coordinated,

then

this

option

must

be

considered

in

conjunction

with

the

SQL_ATTR_SYNC_POINT

connection

option.

The

possible

values

are:

v

SQL_CONCURRENT_TRANS:

The

application

can

have

concurrent

multiple

connections

to

any

one

database

or

to

multiple

databases.

Each

connection

has

its

own

commit

scope.

No

effort

is

made

to

enforce

coordination

of

transactions.

If

an

application

issues

a

commit

using

the

environment

handle

on

SQLEndTran()

and

not

all

of

the

connections

commit

successfully,

the

application

is

responsible

for

recovery.

The

current

setting

of

the

SQL_ATTR_SYNC_POINT

option

is

ignored.

This

is

the

default.

v

SQL_COORDINATED_TRANS:

The

application

wishes

to

have

commit

and

rollbacks

coordinated

among

multiple

database

connections.

This

option

setting

corresponds

to

the

specification

of

the

Type

2

CONNECT

in

embedded

SQL

and

must

be

considered

in

conjunction

with

the

SQL_ATTR_SYNC_POINT

connection

option.

In

contrast

to

the

SQL_CONCURRENT_TRANS

setting

described

above,

the

application

is

permitted

only

one

open

connection

per

database.

Note:

This

connection

type

results

in

the

default

for

SQL_ATTR_AUTOCOMMIT

connection

option

to

be

SQL_AUTOCOMMIT_OFF.

This

option

must

be

set

before

making

a

connect

request;

otherwise,

the

SQLSetConnectAttr()

call

will

be

rejected.

All

the

connections

within

an

application

must

have

the

same

SQL_ATTR_CONNECTTYPE

and

SQL_ATTR_SYNC_POINT

values.

The

first

connection

determines

the

acceptable

attributes

for

the

subsequent

connections.

We

recommend

that

the

application

set

the

SQL_ATTR_CONNECTTYPE

attribute

at

the

environment

level

rather

than

on

a

per

connection

basis.

ODBC

applications

written

to

take

advantage

of

coordinated

DB2

transactions

must

set

these

attributes

at

the

connection

level

for

each

connection

as

calling

SQLSetEnvAttr()

to

set

driver-specific

environment

attributes

is

not

supported

in

ODBC.

The

default

connect

type

can

also

be

set

using

the

CONNECTTYPE

DB2

CLI/ODBC

configuration

keyword.

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_CURRENT_CATALOG

(DB2

CLI

v8.2)

A

null-terminated

character

string

containing

the

name

of

the

catalog

used

by

the

data

source.

The

catalog

name

is

typically

the

same

as

the

database

name.

This

connection

attribute

can

be

returned

by

SQLGetConnectAttr(),

but

cannot

be

set

by

SQLSetConnectAttr().

Any

attempt

to

set

this

attribute

will

result

in

an

SQLSTATE

of

HYC00

(Driver

not

capable).

SQL_ATTR_CURRENT_PACKAGE_PATH

A

null-terminated

character

string

of

package

qualifiers

that

the

DB2

database

server

uses

to

try

to

resolve

the

package

when

multiple

packages

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

325

|

|
|
|

|
|
|

|
|
|

have

been

configured.

Setting

this

attribute

causes

the

″SET

CURRENT

PACKAGE

PATH

=

schema1,

schema2,

...″

statement

to

be

issued

after

every

connection

to

the

database

server.

This

attribute

is

best

suited

for

use

with

ODBC

static

processing

applications,

rather

than

CLI

applications.

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_CURRENT_PACKAGE_SET

(DB2

CLI

v5)

A

null-terminated

character

string

that

indicates

the

schema

name

(collection

identifier)

that

will

be

used

to

select

the

package

for

subsequent

SQL

statements.

Setting

this

attribute

causes

the

″SET

CURRENT

PACKAGESET″

SQL

statement

to

be

issued.

If

this

attribute

is

set

before

a

connection,

the

″SET

CURRENT

PACKAGESET″

SQL

statement

will

be

issued

at

connection

time.

CLI/ODBC

applications

issue

dynamic

SQL

statements.

Using

this

connection

attribute,

you

can

control

the

privileges

used

to

run

these

statements:

v

Choose

a

schema

to

use

when

running

SQL

statements

from

CLI/ODBC

applications.

v

Ensure

the

objects

in

the

schema

have

the

desired

privileges

and

then

rebind

accordingly.

This

typically

means

binding

the

CLI

packages

(sqllib/bnd/db2cli.lst)

using

the

COLLECTION

<collid>

option.

Refer

to

the

BIND

command

for

further

details.

v

Set

the

CURRENTPACKAGESET

option

to

this

schema.

The

SQL

statements

from

the

CLI/ODBC

applications

will

now

run

under

the

specified

schema

and

use

the

privileges

defined

there.

Setting

the

CLI/ODBC

configuration

keyword

CURRENTPACKAGESET

is

an

alternative

method

of

specifying

the

schema

name.

SQL_ATTR_CURRENT_SCHEMA

(DB2

CLI

v2)

Note:

This

is

an

IBM

defined

extension.

A

null-terminated

character

string

containing

the

name

of

the

schema

to

be

used

by

DB2

CLI

for

the

SQLColumns()

call

if

the

szSchemaName

pointer

is

set

to

null.

To

reset

this

option,

specify

this

option

with

a

zero

length

string

or

a

null

pointer

for

the

ValuePtr

argument.

This

option

is

useful

when

the

application

developer

has

coded

a

generic

call

to

SQLColumns()

that

does

not

restrict

the

result

set

by

schema

name,

but

needs

to

constrain

the

result

set

at

isolated

places

in

the

code.

This

option

can

be

set

at

any

time

and

will

be

effective

on

the

next

SQLColumns()

call

where

the

szSchemaName

pointer

is

null.

SQL_ATTR_DB2_SQLERRP

(DB2

CLI

v6)

An

sqlpointer

to

a

null-terminated

string

containing

the

sqlerrp

field

of

the

sqlca.

Begins

with

a

three-letter

identifier

indicating

the

product,

followed

by

five

digits

indicating

the

version,

release,

and

modification

level

of

the

product.

For

example,

SQL08010

means

DB2

Universal

Database

Version

8

Release

1

Modification

level

0.

326

CLI

Guide

and

Reference,

Volume

2

|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|

|
|

If

SQLCODE

indicates

an

error

condition,

then

this

field

identifies

the

module

that

returned

the

error.

This

field

is

also

used

when

a

successful

connection

is

completed.

SQL_ATTR_DB2ESTIMATE

(DB2

CLI

v2)

A

32-bit

integer

that

specifies

whether

DB2

CLI

will

display

a

dialog

window

to

report

estimates

returned

by

the

optimizer

at

the

end

of

SQL

query

preparation.

v

0

:

Estimates

are

not

returned.

This

is

the

default.

v

very

large

positive

integer:

The

threshold

above

which

DB2

CLI

will

pop

up

a

window

to

report

estimates.

This

positive

integer

value

is

compared

against

the

SQLERRD(4)

field

in

the

SQLCA

associated

with

the

PREPARE.

If

the

value

in

the

SQLERRD(4)

field

is

greater

than

the

positive

integer

that

was

set,

the

estimates

window

will

appear.

The

graphical

window

will

display

optimizer

estimates,

along

with

push

buttons

to

allow

the

user

to

choose

whether

they

wish

to

continue

with

subsequent

execution

of

this

query

or

to

cancel

it.

The

recommended

value

for

this

option

is

60000.

This

option

is

used

in

conjunction

with

SQL_ATTR_QUIET_MODE

and

is

applicable

only

to

applications

with

graphical

user

interfaces.

The

application

can

implement

this

feature

directly

without

using

this

option

by

calling

SQLGetSQLCA()

after

an

SQLPrepare()

for

a

query

and

then

displaying

the

appropriate

information,

thus

allowing

a

more

integrated

overall

interface.

The

SQL_ATTR_DB2ESTIMATE

setting

is

effective

on

the

next

statement

preparation

for

this

connection.

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_DB2EXPLAIN

(DB2

CLI

v2)

A

32-bit

integer

that

specifies

whether

Explain

snapshot

and/or

Explain

mode

information

should

be

generated

by

the

server.

Permitted

values

are:

v

SQL_DB2EXPLAIN_OFF:

Both

the

Explain

Snapshot

and

the

Explain

table

option

facilities

are

disabled

(a

SET

CURRENT

EXPLAIN

SNAPSHOT=NO

and

a

SET

CURRENT

EXPLAIN

MODE=NO

are

sent

to

the

server).

v

SQL_DB2EXPLAIN_SNAPSHOT_ON:

The

Explain

Snapshot

facility

is

enabled,

and

the

Explain

table

option

facility

is

disabled

(a

SET

CURRENT

EXPLAIN

SNAPSHOT=YES

and

a

SET

CURRENT

EXPLAIN

MODE=NO

are

sent

to

the

server).

v

SQL_DB2EXPLAIN_MODE_ON:

The

Explain

Snapshot

facility

is

disabled,

and

the

Explain

table

option

facility

is

enabled

(a

SET

CURRENT

EXPLAIN

SNAPSHOT=NO

and

a

SET

CURRENT

EXPLAIN

MODE=YES

are

sent

to

the

server).

v

SQL_DB2EXPLAIN_SNAPSHOT_MODE_ON:

Both

the

Explain

Snapshot

and

the

Explain

table

option

facilities

are

enabled

(a

SET

CURRENT

EXPLAIN

SNAPSHOT=YES

and

a

SET

CURRENT

EXPLAIN

MODE=YES

are

sent

to

the

server).

Before

the

explain

information

can

be

generated,

the

explain

tables

must

be

created.

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

327

|
|
|
|
|

|
|
|

|

This

statement

is

not

under

transaction

control

and

is

not

affected

by

a

ROLLBACK.

The

new

SQL_ATTR_DB2EXPLAIN

setting

is

effective

on

the

next

statement

preparation

for

this

connection.

The

current

authorization

ID

must

have

INSERT

privilege

for

the

Explain

tables.

The

default

value

can

also

be

set

using

the

DB2EXPLAIN

DB2

CLI/ODBC

configuration

keyword.

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_ENLIST_IN_DTC

(DB2

CLI

v5.2)

An

SQLPOINTER

which

can

be

either

of

the

following:

v

non-null

transaction

pointer:

The

application

is

asking

the

DB2

CLI/ODBC

driver

to

change

the

state

of

the

connection

from

non-distributed

transaction

state

to

distributed

state.

The

connection

will

be

enlisted

with

the

Distributed

Transaction

Coordinator

(DTC).

v

null:

The

application

is

asking

the

DB2

CLI/ODBC

driver

to

change

the

state

of

the

connection

from

distributed

transaction

state

to

a

non-distributed

transaction

state.

This

attribute

is

only

used

in

a

Microsoft

Transaction

Server

(MTS)

environment

to

enlist

or

un-enlist

a

connection

with

MTS.

Each

time

this

attribute

is

used

with

a

non-null

transaction

pointer,

the

previous

transaction

is

assumed

to

be

ended

and

a

new

transaction

is

initiated.

The

application

must

call

the

ITransaction

member

function

Endtransaction

before

calling

this

API

with

a

non-null

pointer.

Otherwise

the

previous

transaction

will

be

aborted.

The

application

can

enlist

multiple

connections

with

the

same

transaction

pointer.

Note:

This

connection

attribute

is

specified

by

MTS

automatically

for

each

transaction

and

is

not

coded

by

the

user

application.

It

is

imperative

for

CLI/ODBC

applications

that

there

will

be

no

concurrent

SQL

statements

executing

on

2

different

connections

into

the

same

database

that

are

enlisted

in

the

same

transaction.

SQL_ATTR_INFO_ACCTSTR

(DB2

CLI

v6)

A

pointer

to

a

null-terminated

character

string

used

to

identify

the

client

accounting

string

sent

to

the

host

database

server

when

using

DB2

Connect.

Please

note:

v

When

the

value

is

being

set,

some

servers

may

not

handle

the

entire

length

provided

and

may

truncate

the

value.

v

DB2

for

z/OS

and

OS/390

servers

support

up

to

a

length

of

200

characters.

v

To

ensure

that

the

data

is

converted

correctly

when

transmitted

to

a

host

system,

use

only

the

characters

A

to

Z,

0

to

9,

and

the

underscore

(_)

or

period

(.).

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_INFO_APPLNAME

(DB2

CLI

v6)

328

CLI

Guide

and

Reference,

Volume

2

A

pointer

to

a

null-terminated

character

string

used

to

identify

the

client

application

name

sent

to

the

host

database

server

when

using

DB2

Connect.

Please

note:

v

When

the

value

is

being

set,

some

servers

may

not

handle

the

entire

length

provided

and

may

truncate

the

value.

v

DB2

for

z/OS

and

OS/390

servers

support

up

to

a

length

of

32

characters.

v

To

ensure

that

the

data

is

converted

correctly

when

transmitted

to

a

host

system,

use

only

the

characters

A

to

Z,

0

to

9,

and

the

underscore

(_)

or

period

(.).

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_INFO_PROGRAMID

(DB2

CLI

v8)

A

user-defined

character

string,

with

a

maximum

length

of

80

bytes,

that

associates

an

application

with

a

connection.

Once

this

attribute

is

set,

DB2

UDB

for

z/OS

Version

8

associates

this

identifier

with

any

statements

inserted

into

the

dynamic

SQL

statement

cache.

This

attribute

is

only

supported

for

CLI

applications

accessing

DB2

UDB

for

z/OS

Version

8.

SQL_ATTR_INFO_USERID

(DB2

CLI

v6)

A

pointer

to

a

null-terminated

character

string

used

to

identify

the

client

user

ID

sent

to

the

host

database

server

when

using

DB2

Connect.

Please

note:

v

When

the

value

is

being

set,

some

servers

may

not

handle

the

entire

length

provided

and

may

truncate

the

value.

v

DB2

for

z/OS

and

OS/390

servers

support

up

to

a

length

of

16

characters.

v

This

user-id

is

not

to

be

confused

with

the

authentication

user-id.

This

user-id

is

for

identification

purposes

only

and

is

not

used

for

any

authorization.

v

To

ensure

that

the

data

is

converted

correctly

when

transmitted

to

a

host

system,

use

only

the

characters

A

to

Z,

0

to

9,

and

the

underscore

(_)

or

period

(.).

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_INFO_WRKSTNNAME

(DB2

CLI

v6)

A

pointer

to

a

null-terminated

character

string

used

to

identify

the

client

workstation

name

sent

to

the

host

database

server

when

using

DB2

Connect.

Please

note:

v

When

the

value

is

being

set,

some

servers

may

not

handle

the

entire

length

provided

and

may

truncate

the

value.

v

DB2

for

z/OS

and

OS/390

servers

support

up

to

a

length

of

18

characters.

v

To

ensure

that

the

data

is

converted

correctly

when

transmitted

to

a

host

system,

use

only

the

characters

A

to

Z,

0

to

9,

and

the

underscore

(_)

or

period

(.).

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_KEEP_DYNAMIC

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

329

|
|
|
|
|

|
|

|
|

A

32-bit

unsigned

integer

value

which

specifies

whether

the

KEEPDYNAMIC

option

has

been

enabled.

If

enabled,

the

server

will

keep

dynamically

prepared

statements

in

a

prepared

state

across

transaction

boundaries.

v

0

-

KEEPDYNAMIC

functionality

is

not

available;

CLI

packages

were

bound

with

the

KEEPDYNAMIC

NO

option

v

1

-

KEEPDYNAMIC

functionality

is

available;

CLI

packages

were

bound

with

the

KEEPDYNAMIC

YES

option

It

is

recommended

that

when

this

attribute

is

set,

the

SQL_ATTR_CURRENT_PACKAGE_SET

attribute

also

be

set.

SQL_ATTR_LOGIN_TIMEOUT

(DB2

CLI

v2)

This

connection

attribute

is

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI.

Any

attempt

to

set

this

attribute

with

a

value

different

from

the

default

will

result

in

an

SQLSTATE

of

01S02

(Option

value

changed).

A

32-bit

integer

value

corresponding

to

the

number

of

seconds

to

wait

for

a

login

request

to

complete

before

returning

to

the

application.

The

only

permitted

value

for

the

ValuePtr

argument

is

0,

which

means

the

connection

attempt

will

wait

until

either

a

connection

is

established

or

the

underlying

communication

layer

times

out.

SQL_ATTR_LONGDATA_COMPAT

(DB2

CLI

v2)

A

32-bit

integer

value

indicating

whether

the

character,

double

byte

character

and

binary

large

object

data

types

should

be

reported

respectively

as

SQL_LONGVARCHAR,

SQL_LONGVARGRAPHIC

or

SQL_LONGBINARY,

enabling

existing

applications

to

access

large

object

data

types

seamlessly.

The

option

values

are:

v

SQL_LD_COMPAT_NO:

The

large

object

data

types

are

reported

as

their

respective

IBM-defined

types

(SQL_BLOB,

SQL_CLOB,

SQL_DBCLOB).

This

is

the

default.

v

SQL_LD_COMPAT_YES:

The

IBM

large

object

data

types

(SQL_BLOB,

SQL_CLOB

and

SQL_DBCLOB)

are

mapped

to

SQL_LONGVARBINARY,

SQL_LONGVARCHAR

and

SQL_LONGVARGRAPHIC;

SQLGetTypeInfo()

returns

one

entry

each

for

SQL_LONGVARBINARY

SQL_LONGVARCHAR,

and

SQL_LONGVARGRAPHIC.

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_METADATA_ID

(ODBC

3.0)

This

connection

attribute

is

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI.

Any

attempt

to

set

or

get

this

attribute

will

result

in

an

SQLSTATE

of

HYC00

(Driver

not

capable).

An

SQLUINTEGER

value

that

determines

how

the

string

arguments

of

catalog

functions

are

treated.

SQL_ATTR_ODBC_CURSORS

(ODBC

2.0)

This

connection

attribute

is

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI.

Any

attempt

to

set

or

get

this

attribute

will

result

in

an

SQLSTATE

of

HYC00

(Driver

not

capable).

A

32-bit

option

specifying

how

the

Driver

Manager

uses

the

ODBC

cursor

library.

SQL_ATTR_PACKET_SIZE

(ODBC

2.0)

330

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|

|
|

|
|

This

connection

attribute

is

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI.

Any

attempt

to

set

or

get

this

attribute

will

result

in

an

SQLSTATE

of

HYC00

(Driver

not

capable).

A

32-bit

integer

value

specifying

the

network

packet

size

in

bytes.

SQL_ATTR_INFO_PROGRAMNAME

A

null-terminated

user-defined

character

string,

up

to

20

bytes

in

length,

used

to

specify

the

name

of

the

application

running

on

the

client.

When

this

attribute

is

set

before

the

connection

to

the

server

is

established,

the

value

specified

overrides

the

actual

client

application

name

and

will

be

the

value

that

is

displayed

in

the

appl_name

monitor

element.

When

connecting

to

a

DB2

UDB

for

z/OS

server,

the

first

12

characters

of

this

setting

are

used

as

the

CORRELATION

IDENTIFIER

of

the

associated

DB2

UDB

for

z/OS

thread.

SQL_ATTR_QUIET_MODE

(DB2

CLI

v2)

A

32-bit

platform

specific

window

handle.

If

the

application

has

never

made

a

call

to

SQLSetConnectAttr()

with

this

option,

then

DB2

CLI

would

return

a

null

parent

window

handle

on

SQLGetConnectAttr()

for

this

option

and

use

a

null

parent

window

handle

to

display

dialogue

boxes.

For

example,

if

the

end

user

has

asked

for

(via

an

entry

in

the

DB2

CLI

initialization

file)

optimizer

information

to

be

displayed,

DB2

CLI

would

display

the

dialogue

box

containing

this

information

using

a

null

window

handle.

(For

some

platforms,

this

means

the

dialogue

box

would

be

centered

in

the

middle

of

the

screen.)

If

ValuePtr

is

set

to

null

,

then

DB2

CLI

does

not

display

any

dialogue

boxes.

In

the

above

example

where

the

end

user

has

asked

for

the

optimizer

estimates

to

be

displayed,

DB2

CLI

would

not

display

these

estimates

because

the

application

explicitly

wants

to

suppress

all

such

dialogue

boxes.

If

ValuePtr

is

not

null

,

then

it

should

be

the

parent

window

handle

of

the

application.

DB2

CLI

uses

this

handle

to

display

dialogue

boxes.

(For

some

platforms,

this

means

the

dialogue

box

would

be

centered

with

respect

to

the

active

window

of

the

application.)

Note:

This

connection

option

cannot

be

used

to

suppress

the

SQLDriverConnect()

dialogue

box

(which

can

be

suppressed

by

setting

the

fDriverCompletion

argument

to

SQL_DRIVER_NOPROMPT).

SQL_ATTR_SYNC_POINT

(DB2

CLI

v2)

A

32-bit

integer

value

that

allows

the

application

to

choose

between

one-phase

coordinated

transactions

and

two-phase

coordinated

transactions.

The

possible

value

is:

v

SQL_TWOPHASE:

Two-phase

commit

is

used

to

commit

the

work

done

by

each

database

in

a

multiple

database

transaction.

This

requires

the

use

of

a

Transaction

Manager

to

coordinate

two

phase

commits

amongst

the

databases

that

support

this

protocol.

Multiple

readers

and

multiple

updaters

are

allowed

within

a

transaction.

Note:

The

SQL_ONEPHASE

option

is

no

longer

supported.

Setting

SQL_ONEPHASE

will

yield

the

two

phase

behavior

of

the

SQL_TWOPHASE

option.

All

the

connections

within

an

application

must

have

the

same

SQL_ATTR_CONNECTTYPE

and

SQL_ATTR_SYNCPOINT

values.

The

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

331

|
|
|
|
|
|
|
|
|

|
|
|

first

connection

determines

the

acceptable

attributes

for

the

subsequent

connections.

We

recommend

that

the

application

set

the

SQL_ATTR_CONNECTTYPE

attribute

at

the

environment

level

rather

than

on

a

per

connection

basis.

ODBC

applications

written

to

take

advantage

of

coordinated

DB2

transactions

must

set

these

attributes

at

the

connection

level

as

calling

SQLSetEnvAttr()

to

set

driver-specific

environment

attributes

is

not

supported

in

ODBC.

Note:

This

is

an

IBM

extension.

In

embedded

SQL,

there

is

an

additional

sync

point

setting

called

SYNCPOINT

NONE.

This

is

more

restrictive

than

the

SQL_CONCURRENT_TRANS

setting

of

the

SQL_ATTR_CONNECTTYPE

option

because

SYNCPOINT

NONE

does

not

allow

for

multiple

connections

to

the

same

database.

As

a

result,

it

is

not

necessary

for

DB2

CLI

to

support

SYNCPOINT

NONE.

SQL_ATTR_TRACE

(ODBC

1.0)

This

connection

attribute

is

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI.

Any

attempt

to

set

or

get

this

attribute

will

result

in

an

SQLSTATE

of

HYC00

(Driver

not

capable).

A

32-bit

integer

value

telling

DB2

CLI

whether

to

perform

tracing.

Instead

of

using

this

attribute,

the

DB2

CLI

trace

facility

can

be

set

using

the

TRACE

DB2

CLI/ODBC

configuration

keyword.

SQL_ATTR_TRACEFILE

(ODBC

1.0)

This

connection

attribute

is

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI.

Any

attempt

to

set

or

get

this

attribute

will

result

in

an

SQLSTATE

of

HYC00

(Driver

not

capable).

A

null-terminated

character

string

containing

the

name

of

the

trace

file.

Instead

of

using

this

attribute,

the

DB2

CLI

trace

file

name

is

set

using

the

TRACEFILENAME

DB2

CLI/ODBC

configuration

keyword.

SQL_ATTR_TRANSLATE_LIB

(DB2

CLI

v5)

This

connection

attribute

is

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI.

Any

attempt

to

set

or

get

this

attribute

on

other

platforms

will

result

in

an

SQLSTATE

of

HYC00

(Driver

not

capable).

This

is

a

32-bit

flag

value

that

is

passed

to

the

translation

.DLL.

Indicate

the

directory

where

the

DB2

Client

Application

Enabler

for

Windows

or

the

Application

Development

Client

for

Windows

has

been

installed.

DB2TRANS.DLL

is

the

DLL

that

contains

codepage

mapping

tables.

SQL_ATTR_TRANSLATE_OPTION

(ODBC

1.0)

This

connection

attribute

is

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI.

Any

attempt

to

set

or

get

this

attribute

on

other

platforms

will

result

in

an

SQLSTATE

of

HYC00

(Driver

not

capable).

SQL_ATTR_TXN_ISOLATION

(DB2

CLI

v2)

A

32-bit

bitmask

that

sets

the

transaction

isolation

level

for

the

current

connection

referenced

by

ConnectionHandle.

The

valid

values

for

ValuePtr

can

be

determined

at

runtime

by

calling

SQLGetInfo()

with

fInfoType

set

to

332

CLI

Guide

and

Reference,

Volume

2

SQL_TXN_ISOLATION_OPTIONS.

The

following

values

are

accepted

by

DB2

CLI,

but

each

server

may

only

support

a

subset

of

these

isolation

levels:

v

SQL_TXN_READ_UNCOMMITTED

-

Dirty

reads,

non-repeatable

reads,

and

phantom

reads

are

possible.

v

SQL_TXN_READ_COMMITTED

-

Dirty

reads

are

not

possible.

Non-repeatable

reads

and

phantom

reads

are

possible.

This

is

the

default.

v

SQL_TXN_REPEATABLE_READ

-

Dirty

reads

and

reads

that

cannot

be

repeated

are

not

possible.

Phantoms

are

possible.

v

SQL_TXN_SERIALIZABLE

-

Transactions

can

be

serialized.

Dirty

reads,

non-repeatable

reads,

and

phantoms

are

not

possible.

v

SQL_TXN_NOCOMMIT

-

Any

changes

are

effectively

committed

at

the

end

of

a

successful

operation;

no

explicit

commit

or

rollback

is

allowed.

This

is

analogous

to

autocommit.

This

is

not

an

SQL92

isolation

level,

but

an

IBM

defined

extension,

supported

only

by

DB2

UDB

for

AS/400.

In

IBM

terminology,

v

SQL_TXN_READ_UNCOMMITTED

is

Uncommitted

Read;

v

SQL_TXN_READ_COMMITTED

is

Cursor

Stability;

v

SQL_TXN_REPEATABLE_READ

is

Read

Stability;

v

SQL_TXN_SERIALIZABLE

is

Repeatable

Read.

This

option

cannot

be

specified

while

there

is

an

open

cursor

on

any

statement

handle,

or

an

outstanding

transaction

for

this

connection;

otherwise,

SQL_ERROR

is

returned

on

the

function

call

(SQLSTATE

S1011).

This

attribute

(or

corresponding

keyword)

is

only

applicable

if

the

default

isolation

level

is

used.

If

the

application

has

specifically

set

the

isolation

level

then

this

attribute

will

have

no

effect.

Note:

There

is

an

IBM

extension

that

permits

the

setting

of

transaction

isolation

levels

on

a

per

statement

handle

basis.

See

the

SQL_ATTR_STMTTXN_ISOLATION

statement

attribute.

SQL_ATTR_WCHARTYPE

(DB2

CLI

v2)

A

32-bit

integer

that

specifies,

in

a

double-byte

environment,

which

wchar_t

(SQLDBCHAR)

character

format

you

want

to

use

in

your

application.

This

option

provides

you

the

flexibility

to

choose

between

having

your

wchar_t

data

in

multi-byte

format

or

in

wide-character

format.

There

two

possible

values

for

this

option:

v

SQL_WCHARTYPE_CONVERT:

character

codes

are

converted

between

the

graphic

SQL

data

in

the

database

and

the

application

variable.

This

allows

your

application

to

fully

exploit

the

ANSI

C

mechanisms

for

dealing

with

wide

character

strings

(L-literals,

’wc’

string

functions,

etc.)

without

having

to

explicitly

convert

the

data

to

multi-byte

format

before

communicating

with

the

database.

The

disadvantage

is

that

the

implicit

conversions

may

have

an

impact

on

the

runtime

performance

of

your

application,

and

may

increase

memory

requirements.

If

you

want

WCHARTYPE

CONVERT

behavior

then

define

the

C

preprocessor

macro

SQL_WCHART_CONVERT

at

compile

time.

This

ensures

that

certain

definitions

in

the

DB2

header

files

use

the

data

type

wchar_t

instead

of

sqldbchar.

v

SQL_WCHARTYPE_NOCONVERT:

no

implicit

character

code

conversion

occurs

between

the

application

and

the

database.

Data

in

the

application

variable

is

sent

to

and

received

from

the

database

as

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

333

unaltered

DBCS

characters.

This

allows

the

application

to

have

improved

performance,

but

the

disadvantage

is

that

the

application

must

either

refrain

from

using

wide-character

data

in

wchar_t

(SQLDBCHAR)

application

variables,

or

it

must

explicitly

call

the

wcstombs()

and

mbstowcs()

ANSI

C

functions

to

convert

the

data

to

and

from

multi-byte

format

when

exchanging

data

with

the

database.

This

is

the

default.

Note:

This

is

an

IBM

defined

extension.

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

v

“Unicode

functions

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Multithreaded

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Unicode

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetConnectAttr

function

(CLI)

-

Get

current

attribute

setting”

on

page

145

v

“SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute”

on

page

215

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

on

page

264

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

v

“BIND

Command”

in

the

Command

Reference

v

“SQLCA

(SQL

communications

area)”

in

the

SQL

Reference,

Volume

1

v

“sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context”

in

the

Administrative

API

Reference

v

“DBCS

Character

Sets”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“CLI/ODBC

configuration

keywords

listing

by

category”

in

the

CLI

Guide

and

Reference,

Volume

1

Statement

attributes

(CLI)

list

The

currently

defined

attributes

and

the

version

of

DB2

CLI

or

ODBC

in

which

they

were

introduced

are

shown

below;

it

is

expected

that

more

will

be

defined

to

take

advantage

of

different

data

sources.

SQL_ATTR_APP_PARAM_DESC

(DB2

CLI

v5)

The

handle

to

the

APD

for

subsequent

calls

to

SQLExecute()

and

SQLExecDirect()

on

the

statement

handle.

The

initial

value

of

this

attribute

is

the

descriptor

implicitly

allocated

when

the

statement

was

initially

allocated.

If

this

attribute

is

set

to

SQL_NULL_DESC,

an

explicitly

allocated

APD

handle

that

was

previously

associated

with

the

statement

handle

is

dissociated

from

it,

and

the

statement

handle

reverts

to

the

implicitly

allocated

APD

handle.

This

attribute

cannot

be

set

to

a

descriptor

handle

that

was

implicitly

allocated

for

another

statement

or

to

another

descriptor

handle

that

was

implicitly

set

on

the

same

statement;

implicitly

allocated

descriptor

handles

cannot

be

associated

with

more

than

one

statement

or

descriptor

handle.

This

attribute

cannot

be

set

at

the

connection

level.

334

CLI

Guide

and

Reference,

Volume

2

SQL_ATTR_APP_ROW_DESC

(DB2

CLI

v5)

The

handle

to

the

ARD

for

subsequent

fetches

on

the

statement

handle.

The

initial

value

of

this

attribute

is

the

descriptor

implicitly

allocated

when

the

statement

was

initially

allocated.

If

this

attribute

is

set

to

SQL_NULL_DESC,

an

explicitly

allocated

ARD

handle

that

was

previously

associated

with

the

statement

handle

is

dissociated

from

it,

and

the

statement

handle

reverts

to

the

implicitly

allocated

ARD

handle.

This

attribute

cannot

be

set

to

a

descriptor

handle

that

was

implicitly

allocated

for

another

statement

or

to

another

descriptor

handle

that

was

implicitly

set

on

the

same

statement;

implicitly

allocated

descriptor

handles

cannot

be

associated

with

more

than

one

statement

or

descriptor

handle.

This

attribute

cannot

be

set

at

the

connection

level.

SQL_ATTR_BLOCK_FOR_NROWS

(DB2

CLI

v8)

A

32-bit

integer

that

specifies

the

desired

block

size,

in

rows,

to

be

returned

by

the

server

when

fetching

a

result

set.

For

large

read-only

result

sets

consisting

of

one

or

more

data

blocks,

a

large

block

size

can

improve

performance

by

reducing

the

number

of

synchronous

server

block

requests

made

by

the

client.

The

default

value

is

0

which

means

the

default

block

size

will

be

returned

by

the

server.

SQL_ATTR_BLOCK_LOBS

(DB2

CLI

v8)

A

Boolean

attribute

that

specifies

if

LOB

blocking

fetch

is

enabled.

By

default,

this

attribute

is

set

to

0

(false),

however,

when

set

to

1

(true)

and

when

accessing

a

server

that

supports

LOB

blocking,

all

of

the

LOB

data

associated

with

rows

that

fit

completely

within

a

single

query

block

are

returned

in

a

single

fetch

request.

SQL_ATTR_CALL_RETURN

(DB2

CLI

v8)

A

read-only

attribute

to

be

retrieved

after

executing

a

stored

procedure.

The

value

returned

from

this

attribute

is

-1

if

the

stored

procedure

failed

to

execute

(for

example,

if

the

library

containing

the

stored

procedure

executable

cannot

be

found).

If

the

stored

procedure

executed

successfully

but

has

a

negative

return

code

(for

example,

if

data

truncation

occurred

when

inserting

data

into

a

table),

then

SQL_ATTR_CALL_RETURN

will

return

the

value

that

was

set

in

the

sqlerrd(1)

field

of

the

SQLCA

when

the

stored

procedure

was

executed.

SQL_ATTR_CHAINING_BEGIN

(DB2

CLI

v8)

A

32-bit

integer

which

specifies

that

DB2

will

chain

together

SQLExecute()

requests

for

a

single

prepared

statement

before

sending

the

requests

to

the

server;

this

feature

is

referred

to

as

CLI

array

input

chaining.

All

SQLExecute()

requests

associated

with

a

prepared

statement

will

not

be

sent

to

the

server

until

either

the

SQL_ATTR_CHAINING_END

statement

attribute

is

set,

or

the

available

buffer

space

is

consumed

by

rows

that

have

been

chained.

The

size

of

this

buffer

is

defined

by

the

ASLHEAPSZ

database

manager

configuration

parameter

for

local

client

applications,

or

the

RQRIOBLK

database

manager

configuration

parameter

for

client/server

configurations.

This

attribute

can

be

used

with

the

CLI/ODBC

configuration

keyword

ArrayInputChain

to

effect

array

input

without

needing

to

specify

the

array

size.

Refer

to

the

documentation

for

ArrayInputChain

for

more

information.

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

335

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

Note:

The

specific

32-bit

integer

value

that

is

set

with

this

attribute

is

not

significant

to

DB2

CLI.

Simply

setting

this

attribute

to

any

32-bit

integer

value

will

enable

the

CLI

array

input

chaining

feature.

SQL_ATTR_CHAINING_END

(DB2

CLI

v8)

A

32-bit

integer

which

specifies

that

the

CLI

array

input

chaining

behavior

enabled

earlier,

with

the

setting

of

the

SQL_ATTR_CHAINING_BEGIN

statement

attribute,

ends.

Setting

SQL_ATTR_CHAINING_END

causes

all

chained

SQLExecute()

requests

to

be

sent

to

the

server.

After

this

attribute

is

set,

SQLRowCount()

can

be

called

to

determine

the

total

row

count

for

all

SQLExecute()

statements

that

were

chained

between

the

SQL_ATTR_CHAINING_BEGIN

and

SQL_ATTR_CHAINING_END

pair.

Error

diagnostic

information

for

the

chained

statements

becomes

available

after

the

SQL_ATTR_CHAINING_END

attribute

is

set.

This

attribute

can

be

used

with

the

CLI/ODBC

configuration

keyword

ArrayInputChain

to

effect

array

input

without

needing

to

specify

the

array

size.

Refer

to

the

documentation

for

ArrayInputChain

for

more

information.

Note:

The

specific

32-bit

integer

value

that

is

set

with

this

attribute

is

not

significant

to

DB2

CLI.

Simply

setting

this

attribute

to

any

32-bit

integer

value

will

disable

the

CLI

array

input

chaining

feature

that

was

enabled

when

SQL_ATTR_CHAINING_BEGIN

was

set.

SQL_ATTR_CLIENT_LOB_BUFFERING

(DB2

CLI

v8)

Specifies

whether

LOB

locators

or

the

underlying

LOB

data

is

returned

in

a

result

set

for

LOB

columns

that

are

not

bound.

By

default,

locators

are

returned.

If

an

application

usually

fetches

unbound

LOBs

and

then

must

retrieve

the

underlying

LOB

data,

the

application’s

performance

can

be

improved

by

retrieving

the

LOB

data

from

the

outset;

this

reduces

the

number

of

synchronous

waits

and

network

flows.

The

possible

values

are

for

this

attribute

are:

v

SQL_CLIENTLOB_USE_LOCATORS

-

LOB

locators

are

returned

v

SQL_CLIENTLOB_BUFFER_UNBOUND_LOBS

-

actual

LOB

data

is

returned

SQL_ATTR_CLOSE_BEHAVIOR

(DB2

CLI

v6)

A

32-bit

integer

that

specifies

whether

the

DB2

server

should

attempt

to

release

read

locks

acquired

during

a

cursor’s

operation

when

the

cursor

is

closed.

It

can

be

set

to

either:

v

SQL_CC_NO_RELEASE

-

read

locks

are

not

released.

This

is

the

default.

v

SQL_CC_RELEASE

-

read

locks

are

released.

For

cursors

opened

with

isolation

UR

or

CS,

read

locks

are

not

held

after

a

cursor

moves

off

a

row.

For

cursors

opened

with

isolation

RS

or

RR,

SQL_ATTR_CLOSE_BEHAVIOR

modifies

some

of

those

isolation

levels,

and

an

RR

cursor

may

experience

nonrepeatable

reads

or

phantom

reads.

If

a

cursor

that

is

originally

RR

or

RS

is

reopened

after

being

closed

with

SQL_ATTR_CLOSE_BEHAVIOR

then

new

read

locks

will

be

acquired.

This

attribute

can

also

be

set

at

the

connection

level,

however

when

set

at

the

connection

level,

it

only

affects

cursor

behavior

for

statement

handles

that

are

opened

after

this

attribute

is

set.

336

CLI

Guide

and

Reference,

Volume

2

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|

Refer

to

the

SQLCloseCursor()

function

for

more

information.

SQL_ATTR_CLOSEOPEN

(DB2

CLI

v6)

To

reduce

the

time

it

takes

to

open

and

close

cursors,

DB2

will

automatically

close

an

open

cursor

if

a

second

cursor

is

opened

using

the

same

handle.

Network

flow

is

therefore

reduced

when

the

close

request

is

chained

with

the

open

request

and

the

two

statements

are

combined

into

one

network

request

(instead

of

two).

v

0

=

DB2

acts

as

a

regular

ODBC

data

source:

Do

not

chain

the

close

and

open

statements,

return

an

error

if

there

is

an

open

cursor.

This

is

the

default.

v

1

=

Chain

the

close

and

open

statements.

Previous

CLI

applications

will

not

benefit

from

this

default

because

they

are

designed

to

explicitly

close

the

cursor.

New

applications,

however,

can

take

advantage

of

this

behavior

by

not

closing

the

cursors

explicitly,

but

by

allowing

CLI

to

close

the

cursor

on

subsequent

open

requests.

SQL_ATTR_CONCURRENCY

(DB2

CLI

v2)

A

32-bit

integer

value

that

specifies

the

cursor

concurrency:

v

SQL_CONCUR_READ_ONLY

=

Cursor

is

read-only.

No

updates

are

allowed.

Supported

by

forward-only,

static

and

keyset

cursors.

v

SQL_CONCUR_LOCK

=

Cursor

uses

the

lowest

level

of

locking

sufficient

to

ensure

that

the

row

can

be

updated.

Supported

by

forward-only

and

keyset

cursors.

v

SQL_CONCUR_VALUES

=

Cursor

uses

optimistic

concurrency

control,

comparing

values.

The

default

value

for

SQL_ATTR_CONCURRENCY

is

SQL_CONCUR_READ_ONLY

for

static

and

forward-only

cursors.

The

default

for

a

keyset

cursor

is

SQL_CONCUR_VALUES.

This

attribute

cannot

be

specified

for

an

open

cursor.

If

the

SQL_ATTR_CURSOR_TYPE

Attribute

is

changed

to

a

type

that

does

not

support

the

current

value

of

SQL_ATTR_CONCURRENCY,

the

value

of

SQL_ATTR_CONCURRENCY

will

be

changed

at

execution

time,

and

a

warning

issued

when

SQLExecDirect()

or

SQLPrepare()

is

called.

If

a

SELECT

FOR

UPDATE

statement

is

executed

while

the

value

of

SQL_ATTR_CONCURRENCY

is

set

to

SQL_CONCUR_READ_ONLY,

an

error

will

be

returned.

If

the

value

of

SQL_ATTR_CONCURRENCY

is

changed

to

a

value

that

is

supported

for

some

value

of

SQL_ATTR_CURSOR_TYPE,

but

not

for

the

current

value

of

SQL_ATTR_CURSOR_TYPE,

the

value

of

SQL_ATTR_CURSOR_TYPE

will

be

changed

at

execution

time,

and

SQLSTATE

01S02

(Option

value

changed)

is

issued

when

SQLExecDirect()

or

SQLPrepare()

is

called.

If

the

specified

concurrency

is

not

supported

by

the

data

source,

then

DB2

CLI

substitutes

a

different

concurrency

and

returns

SQLSTATE

01S02

(Option

value

changed).

The

order

of

substitution

depends

on

the

cursor

type:

v

Forward-Only:

SQL_CONCUR_LOCK

is

substituted

for

SQL_CONCUR_ROWVER

and

SQL_CONCUR_VALUES

v

Static:

only

SQL_CONCUR_READ_ONLY

is

valid

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

337

v

Keyset:

SQL_CONCUR_VALUES

is

substituted

for

SQL_CONCUR_ROWVER

Note:

The

following

value

has

also

been

defined

by

ODBC,

but

is

not

supported

by

DB2

CLI

v

SQL_CONCUR_ROWVER

=

Cursor

uses

optimistic

concurrency

control.

SQL_ATTR_CURSOR_HOLD

(DB2

CLI

v2)

A

32-bit

integer

which

specifies

whether

the

cursor

associated

with

this

StatementHandle

is

preserved

in

the

same

position

as

before

the

COMMIT

operation,

and

whether

the

application

can

fetch

without

executing

the

statement

again.

v

SQL_CURSOR_HOLD_ON

(this

is

the

default)

v

SQL_CURSOR_HOLD_OFF

The

default

value

when

an

StatementHandle

is

first

allocated

is

SQL_CURSOR_HOLD_ON.

This

option

cannot

be

specified

while

there

is

an

open

cursor

on

this

StatementHandle.

The

default

cursor

hold

mode

can

also

be

set

using

the

CURSORHOLD

DB2

CLI/ODBC

configuration

keyword.

Note:

This

option

is

an

IBM

extension.

SQL_ATTR_CURSOR_SCROLLABLE

(DB2

CLI

v6)

A

32-bit

integer

that

specifies

the

level

of

support

that

the

application

requires.

Setting

this

attribute

affects

subsequent

calls

to

SQLExecDirect()

and

SQLExecute().

The

supported

values

are:

v

SQL_NONSCROLLABLE

=

Scrollable

cursors

are

not

required

on

the

statement

handle.

If

the

application

calls

SQLFetchScroll()

on

this

handle,

the

only

valid

value

of

FetchOrientation()

is

SQL_FETCH_NEXT.

This

is

the

default.

v

SQL_SCROLLABLE

=

Scrollable

cursors

are

required

on

the

statement

handle.

When

calling

SQLFetchScroll(),

the

application

may

specify

any

valid

value

of

FetchOrientation,

achieving

cursor

positioning

in

modes

other

than

the

sequential

mode.

SQL_ATTR_CURSOR_SENSITIVITY

(DB2

CLI

v6)

A

32-bit

integer

that

specifies

whether

cursors

on

the

statement

handle

make

visible

the

changes

made

to

a

result

set

by

another

cursor.

Setting

this

attribute

affects

subsequent

calls

to

SQLExecDirect()

and

SQLExecute().

The

supported

values

are:

v

SQL_UNSPECIFIED

=

It

is

unspecified

what

the

cursor

type

is

and

whether

cursors

on

the

statement

handle

make

visible

the

changes

made

to

a

result

set

by

another

cursor.

Cursors

on

the

statement

handle

may

make

visible

none,

some

or

all

such

changes.

This

is

the

default.

v

SQL_INSENSITIVE

=

All

cursors

on

the

statement

handle

show

the

result

set

without

reflecting

any

changes

made

to

it

by

any

other

cursor.

Insensitive

cursors

are

read-only.

This

corresponds

to

a

static

cursor

which

has

a

concurrency

that

is

read-only.

v

SQL_SENSITIVE

=

All

cursors

on

the

statement

handle

make

visible

all

changes

made

to

a

result

by

another

cursor.

338

CLI

Guide

and

Reference,

Volume

2

SQL_ATTR_CURSOR_TYPE

(DB2

CLI

v2)

A

32-bit

integer

value

that

specifies

the

cursor

type.

The

supported

values

are:

v

SQL_CURSOR_FORWARD_ONLY

=

The

cursor

only

scrolls

forward.

This

is

the

default.

v

SQL_CURSOR_STATIC

=

The

data

in

the

result

set

is

static.

v

SQL_CURSOR_KEYSET_DRIVEN

=

DB2

CLI

supports

a

pure

keyset

cursor.

The

SQL_KEYSET_SIZE

statement

attribute

is

ignored.

To

limit

the

size

of

the

keyset

the

application

must

limit

the

size

of

the

result

set

by

setting

the

SQL_ATTR_MAX_ROWS

attribute

to

a

value

other

than

0.

v

SQL_CURSOR_DYNAMIC

=

A

dynamic

scrollable

cursor

detects

all

changes

(inserts,

deletes

and

updates)

to

the

result

set,

and

make

insertions,

deletions

and

updates

to

the

result

set.

Dynamic

cursors

are

only

supported

when

accessing

servers

which

are

DB2

UDB

for

z/OS

Version

8.1

and

later.

This

option

cannot

be

specified

for

an

open

cursor.

If

the

specified

cursor

type

is

not

supported

by

the

data

source,

CLI

substitutes

a

different

cursor

type

and

returns

SQLSTATE

01S02

(Option

value

changed).

For

a

mixed

or

dynamic

cursor,

CLI

substitutes,

in

order,

a

keyset-driven

or

static

cursor.

SQL_ATTR_DB2_NOBINDOUT

(DB2

CLI

v8)

A

Boolean

attribute

that

specifies

when

and

where

the

client

performs

data

conversion

and

related

tasks

during

a

fetch

operation.

The

default

value

of

this

attribute

is

0

(false)

and

should

only

be

set

to

1

(true)

when

connected

to

a

federated

database.

SQL_ATTR_DEFERRED_PREPARE

(DB2

CLI

v5)

Specifies

whether

the

PREPARE

request

is

deferred

until

the

corresponding

execute

request

is

issued.

v

SQL_DEFERRED_PREPARE_OFF

=

Disable

deferred

prepare.

The

PREPARE

request

will

be

executed

the

moment

it

is

issued.

v

SQL_DEFERRED_PREPARE_ON

(default)

=

Enable

deferred

prepare.

Defer

the

execution

of

the

PREPARE

request

until

the

corresponding

execute

request

is

issued.

The

two

requests

are

then

combined

into

one

command/reply

flow

(instead

of

two)

to

minimize

network

flow

and

to

improve

performance.

If

the

target

DB2

database

or

the

DDCS

gateway

does

not

support

deferred

prepare,

the

client

disables

deferred

prepare

for

that

connection.

Note:

When

deferred

prepare

is

enabled,

the

row

and

cost

estimates

normally

returned

in

the

SQLERRD(3)

and

SQLERRD(4)

of

the

SQLCA

of

a

PREPARE

statement

may

become

zeros.

This

may

be

of

concern

to

users

who

want

to

use

these

values

to

decide

whether

or

not

to

continue

the

SQL

statement.

The

default

deferred

prepare

mode

can

also

be

set

using

the

DEFERREDPREPARE

DB2

CLI/ODBC

configuration

keyword.

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_EARLYCLOSE

(DB2

CLI

v5)

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

339

|
|
|
|
|

|

|
|
|
|

Specifies

whether

or

not

the

temporary

cursor

on

the

server

can

be

automatically

closed,

without

closing

the

cursor

on

the

client,

when

the

last

record

is

sent

to

the

client.

v

SQL_EARLYCLOSE_OFF

=

Do

not

close

the

temporary

cursor

on

the

server

early.

v

SQL_EARLYCLOSE_ON

=

Close

the

temporary

cursor

on

the

server

early

(default).

This

saves

the

CLI/ODBC

driver

a

network

request

by

not

issuing

the

statement

to

explicitly

close

the

cursor

because

it

knows

that

it

has

already

been

closed.

Having

this

option

on

will

speed

up

applications

that

make

use

of

many

small

result

sets.

The

EARLYCLOSE

feature

is

not

used

if

either:

–

The

statement

is

disqualified

for

blocking.

–

The

cursor

type

is

anything

other

than

SQL_CURSOR_FORWARD_ONLY.

Note:

This

is

an

IBM

defined

extension.

SQL_ATTR_ENABLE_AUTO_IPD

(DB2

CLI

v5)

A

32-bit

integer

value

that

specifies

whether

automatic

population

of

the

IPD

is

performed:

v

SQL_TRUE

=

Turns

on

automatic

population

of

the

IPD

after

a

call

to

SQLPrepare().

v

SQL_FALSE

=

Turns

off

automatic

population

of

the

IPD

after

a

call

to

SQLPrepare().

The

default

value

of

the

statement

attribute

SQL_ATTR_ENABLE_AUTO_IPD

is

equal

to

the

value

of

the

connection

attribute

SQL_ATTR_AUTO_IPD.

If

the

connection

attribute

SQL_ATTR_

AUTO_IPD

is

SQL_FALSE,

the

statement

attribute

SQL_ATTR_ENABLE_AUTO_IPD

cannot

be

set

to

SQL_TRUE.

SQL_ATTR_FETCH_BOOKMARK_PTR

(DB2

CLI

v5)

A

pointer

that

points

to

a

binary

bookmark

value.

When

SQLFetchScroll()

is

called

with

fFetchOrientation

equal

to

SQL_FETCH_BOOKMARK,

DB2

CLI

picks

up

the

bookmark

value

from

this

field.

This

field

defaults

to

a

null

pointer.

SQL_ATTR_IMP_PARAM_DESC

(DB2

CLI

v5)

The

handle

to

the

IPD.

The

value

of

this

attribute

is

the

descriptor

allocated

when

the

statement

was

initially

allocated.

The

application

cannot

set

this

attribute.

This

attribute

can

be

retrieved

by

a

call

to

SQLGetStmtAttr(),

but

not

set

by

a

call

to

SQLSetStmtAttr().

SQL_ATTR_IMP_ROW_DESC

(DB2

CLI

v5)

The

handle

to

the

IRD.

The

value

of

this

attribute

is

the

descriptor

allocated

when

the

statement

was

initially

allocated.

The

application

cannot

set

this

attribute.

This

attribute

can

be

retrieved

by

a

call

to

SQLGetStmtAttr(),

but

not

set

by

a

call

to

SQLSetStmtAttr().

340

CLI

Guide

and

Reference,

Volume

2

SQL_ATTR_INFO_PROGRAMID

(DB2

CLI

v8)

A

user-defined

character

string,

with

a

maximum

length

of

80

bytes,

that

associates

an

application

with

a

connection.

Once

this

attribute

is

set,

DB2

UDB

for

z/OS

Version

8

associates

this

identifier

with

any

statements

inserted

into

the

dynamic

SQL

statement

cache.

This

attribute

is

only

supported

for

CLI

applications

accessing

DB2

UDB

for

z/OS

Version

8.

SQL_ATTR_INSERT_BUFFERING

(DB2

CLI

v8)

This

attribute

enables

buffering

insert

optimization

of

partitioned

database

environments.

The

possible

values

are:

SQL_ATTR_INSERT_BUFFERING_OFF

(default),

SQL_ATTR_INSERT_BUFFERING_ON,

and

SQL_ATTR_INSERT_BUFFERING_IGD

(duplicates

are

ignored).

SQL_ATTR_KEYSET_SIZE

(DB2

CLI

v5)

DB2

CLI

supports

a

pure

keyset

cursor,

therefore

the

SQL_KEYSET_SIZE

statement

attribute

is

ignored.

To

limit

the

size

of

the

keyset

the

application

must

limit

the

size

of

the

result

set

by

setting

the

SQL_ATTR_MAX_ROWS

attribute

to

a

value

other

than

0.

SQL_ATTR_LOAD_INFO

(DB2

CLI

v8)

A

pointer

to

a

structure

of

type

db2LoadStruct.

The

db2LoadStruct

structure

is

used

to

specify

all

applicable

LOAD

options

that

should

be

used

during

CLI

LOAD.

Note

that

this

pointer

and

all

of

its

embedded

pointers

should

be

valid

during

every

CLI

function

call

from

the

time

the

SQL_ATTR_USE_LOAD_API

statement

attribute

is

set

to

the

time

it

is

turned

off.

For

this

reason,

it

is

recommended

that

this

pointer

and

its

embedded

pointers

point

to

dynamically

allocated

memory

rather

than

locally

declared

structures.

SQL_ATTR_LOAD_ROWS_COMMITTED_PTR

(DB2

CLI

v8)

A

pointer

to

an

integer

that

represents

the

total

number

of

rows

processed.

This

value

equals

the

number

of

rows

successfully

loaded

and

committed

to

the

database,

plus

the

number

of

skipped

and

rejected

rows.

The

integer

is

32-bit

on

32-bit

platforms

and

64-bit

on

64-bit

platforms.

SQL_ATTR_LOAD_ROWS_DELETED_PTR

(DB2

CLI

v8)

A

pointer

to

an

integer

that

represents

the

number

of

duplicate

rows

deleted.

The

integer

is

32-bit

on

32-bit

platforms

and

64-bit

on

64-bit

platforms.

SQL_ATTR_LOAD_ROWS_LOADED_PTR

(DB2

CLI

v8)

A

pointer

to

an

integer

that

represents

the

number

of

rows

loaded

into

the

target

table.

The

integer

is

32-bit

on

32-bit

platforms

and

64-bit

on

64-bit

platforms.

SQL_ATTR_LOAD_ROWS_READ_PTR

(DB2

CLI

v8)

A

pointer

to

an

integer

that

represents

the

number

of

rows

read.

The

integer

is

32-bit

on

32-bit

platforms

and

64-bit

on

64-bit

platforms.

SQL_ATTR_LOAD_ROWS_REJECTED_PTR

(DB2

CLI

v8)

A

pointer

to

an

integer

that

represents

the

number

of

rows

that

could

not

be

loaded.

The

integer

is

32-bit

on

32-bit

platforms

and

64-bit

on

64-bit

platforms.

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

341

|
|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

SQL_ATTR_LOAD_ROWS_SKIPPED_PTR

(DB2

CLI

v8)

A

pointer

to

an

integer

that

represents

the

number

of

rows

skipped

before

the

CLI

LOAD

operation

began.

The

integer

is

32-bit

on

32-bit

platforms

and

64-bit

on

64-bit

platforms.

SQL_ATTR_MAX_LENGTH

(DB2

CLI

v2)

A

32-bit

integer

value

corresponding

to

the

maximum

amount

of

data

that

can

be

retrieved

from

a

single

character

or

binary

column.

Note:

SQL_ATTR_MAX_LENGTH

should

not

be

used

to

truncate

data.

The

BufferLength

argument

of

SQLBindCol()

or

SQLGetData()

should

be

used

instead

for

truncating

data.

If

data

is

truncated

because

the

value

specified

for

SQL_ATTR_MAX_LENGTH

is

less

than

the

amount

of

data

available,

a

SQLGetData()

call

or

fetch

will

return

SQL_SUCCESS

instead

of

returning

SQL_SUCCESS_WITH_INFO

and

SQLSTATE

01004

(Data

Truncated).

The

default

value

for

SQL_ATTR_MAX_LENGTH

is

0;

0

means

that

DB2

CLI

will

attempt

to

return

all

available

data

for

character

or

binary

type

data.

SQL_ATTR_MAX_ROWS

(DB2

CLI

v2)

A

32-bit

integer

value

corresponding

to

the

maximum

number

of

rows

to

return

to

the

application

from

a

query.

The

default

value

for

SQL_ATTR_MAX_ROWS

is

0;

0

means

all

rows

are

returned.

SQL_ATTR_METADATA_ID

(DB2

CLI

v5)

A

32-bit

integer

value

that

determines

how

the

string

arguments

of

catalog

functions

are

treated.

v

SQL_TRUE,

the

string

argument

of

catalog

functions

are

treated

as

identifiers.

The

case

is

not

significant.

For

non-delimited

strings,

DB2

CLI

removes

any

trailing

spaces,

and

the

string

is

folded

to

upper

case.

For

delimited

strings,

DB2

CLI

removes

any

leading

or

trailing

spaces,

and

takes

whatever

is

between

the

delimiters

literally.

If

one

of

these

arguments

is

set

to

a

null

pointer,

the

function

returns

SQL_ERROR

and

SQLSTATE

HY009

(Invalid

use

of

null

pointer).

v

SQL_FALSE,

the

string

arguments

of

catalog

functions

are

not

treated

as

identifiers.

The

case

is

significant.

They

can

either

contain

a

string

search

pattern

or

not,

depending

on

the

argument.

This

is

the

default

value.

The

TableType

argument

of

SQLTables(),

which

takes

a

list

of

values,

is

not

affected

by

this

attribute.

SQL_ATTR_NOSCAN

(DB2

CLI

v2)

A

32-bit

integer

value

that

specifies

whether

DB2

CLI

will

scan

SQL

strings

for

escape

clauses.

The

two

permitted

values

are:

v

SQL_NOSCAN_OFF

-

SQL

strings

are

scanned

for

escape

clause

sequences.

This

is

the

default.

v

SQL_NOSCAN_ON

-

SQL

strings

are

not

scanned

for

escape

clauses.

Everything

is

sent

directly

to

the

server

for

processing.

This

application

can

choose

to

turn

off

the

scanning

if

it

never

uses

vendor

escape

sequences

in

the

SQL

strings

that

it

sends.

This

will

eliminate

some

of

the

overhead

processing

associated

with

scanning.

SQL_ATTR_OPTIMIZE_FOR_NROWS

(DB2

CLI

v6)

342

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

A

32-bit

integer

value.

If

it

is

set

to

an

integer

larger

than

0,

″OPTIMIZE

FOR

n

ROWS″

clause

will

be

appended

to

every

select

statement

If

set

to

0

(the

default)

this

clause

will

not

be

appended.

The

default

value

can

also

be

set

using

the

OPTIMIZEFORNROWS

DB2

CLI/ODBC

configuration

keyword.

SQL_ATTR_OPTIMIZE_SQLCOLUMNS

(DB2

CLI

v6)

A

32-bit

integer.

v

If

set

to

1,

then

all

calls

to

SQLColumns()

will

be

optimized

if

an

explicit

(no

wildcard

specified)

Schema

Name,

explicit

Table

Name,

and

%

(ALL

columns)

for

Column

Name

are

specified.

The

DB2

CLI/ODBC

Driver

will

optimize

this

call

so

that

the

system

tables

will

not

be

scanned.

If

the

call

is

optimized

then

the

COLUMN_DEF

information

from

SQLColumns()

(which

contains

the

default

string

for

the

columns)

is

not

returned,

and

the

datatype

of

the

AS/400

NUMERIC

column

will

be

returned

as

SQL_DECIMAL.

v

If

set

to

0

(the

default),

information

will

be

returned

as

usual.

Use

this

setting

if

the

application

needs

the

COLUMN_DEF

information.

The

default

value

can

also

be

set

using

the

OPTIMIZESQLCOLUMNS

DB2

CLI/ODBC

configuration

keyword.

SQL_ATTR_PARAM_BIND_OFFSET_PTR

(DB2

CLI

v5)

A

32-bit

integer

*

value

that

points

to

an

offset

added

to

pointers

to

change

binding

of

dynamic

parameters.

If

this

field

is

non-null,

DB2

CLI

dereferences

the

pointer,

adds

the

dereferenced

value

to

each

of

the

deferred

fields

in

the

descriptor

record

(SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR,

and

SQL_DESC_OCTET_LENGTH_PTR),

and

uses

the

resulting

pointer

values

at

execute

time.

It

is

set

to

null

by

default.

The

bind

offset

is

always

added

directly

to

the

SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR,

and

SQL_DESC_OCTET_LENGTH_PTR

fields.

If

the

offset

is

changed

to

a

different

value,

the

new

value

is

added

directly

to

the

value

in

the

descriptor

field.

The

new

offset

is

not

added

to

the

field

value

plus

any

earlier

offsets.

Setting

this

statement

attribute

sets

the

SQL_DESC_BIND_OFFSET_PTR

field

in

the

APD

header.

SQL_ATTR_PARAM_BIND_TYPE

(DB2

CLI

v5)

A

32-bit

integer

value

that

indicates

the

binding

orientation

to

be

used

for

dynamic

parameters.

This

field

is

set

to

SQL_PARAMETER_BIND_BY_COLUMN

(the

default)

to

select

column-wise

binding.

To

select

row-wise

binding,

this

field

is

set

to

the

length

of

the

structure

or

an

instance

of

a

buffer

that

will

be

bound

to

a

set

of

dynamic

parameters.

This

length

must

include

space

for

all

of

the

bound

parameters

and

any

padding

of

the

structure

or

buffer

to

ensure

that

when

the

address

of

a

bound

parameter

is

incremented

with

the

specified

length,

the

result

will

point

to

the

beginning

of

the

same

parameter

in

the

next

set

of

parameters.

When

using

the

sizeof

operator

in

ANSI

C,

this

behavior

is

guaranteed.

Setting

this

statement

attribute

sets

the

SQL_DESC_

BIND_TYPE

field

in

the

APD

header.

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

343

SQL_ATTR_PARAM_OPERATION_PTR

(DB2

CLI

v5)

A

16-bit

unsigned

integer

*

value

that

points

to

an

array

of

16-bit

unsigned

integer

values

used

to

specify

whether

or

not

a

parameter

should

be

ignored

during

execution

of

an

SQL

statement.

Each

value

is

set

to

either

SQL_PARAM_PROCEED

(for

the

parameter

to

be

executed)

or

SQL_PARAM_IGNORE

(for

the

parameter

to

be

ignored).

A

set

of

parameters

can

be

ignored

during

processing

by

setting

the

status

value

in

the

array

pointed

to

by

SQL_DESC_ARRAY_STATUS_PTR

in

the

APD

to

SQL_PARAM_IGNORE.

A

set

of

parameters

is

processed

if

its

status

value

is

set

to

SQL_PARAM_PROCEED,

or

if

no

elements

in

the

array

are

set.

This

statement

attribute

can

be

set

to

a

null

pointer,

in

which

case

DB2

CLI

does

not

return

parameter

status

values.

This

attribute

can

be

set

at

any

time,

but

the

new

value

is

not

used

until

the

next

time

SQLExecDirect()

or

SQLExecute()

is

called.

Setting

this

statement

attribute

sets

the

SQL_DESC_ARRAY_STATUS_PTR

field

in

the

APD.

SQL_ATTR_PARAM_STATUS_PTR

(DB2

CLI

v5)

A

16-bit

unsigned

integer

*

value

that

points

to

an

array

of

UWORD

values

containing

status

information

for

each

row

of

parameter

values

after

a

call

to

SQLExecute()

or

SQLExecDirect().

This

field

is

used

only

if

SQL_ATTR_PARAMSET_SIZE

is

greater

than

1.

The

status

values

can

contain

the

following

values:

v

SQL_PARAM_SUCCESS:

The

SQL

statement

was

successfully

executed

for

this

set

of

parameters.

v

SQL_PARAM_SUCCESS_WITH_INFO:

The

SQL

statement

was

successfully

executed

for

this

set

of

parameters;

however,

warning

information

is

available

in

the

diagnostics

data

structure.

v

SQL_PARAM_ERROR:

There

was

an

error

in

processing

this

set

of

parameters.

Additional

error

information

is

available

in

the

diagnostics

data

structure.

v

SQL_PARAM_UNUSED:

This

parameter

set

was

unused,

possibly

due

to

the

fact

that

some

previous

parameter

set

caused

an

error

that

aborted

further

processing.

v

SQL_PARAM_DIAG_UNAVAILABLE:

DB2

CLI

treats

arrays

of

parameters

as

a

monolithic

unit

and

so

does

not

generate

this

level

of

error

information.

This

statement

attribute

can

be

set

to

a

null

pointer,

in

which

case

DB2

CLI

does

not

return

parameter

status

values.

This

attribute

can

be

set

at

any

time,

but

the

new

value

is

not

used

until

the

next

time

SQLFetch(),

SQLFetchScroll(),

or

SQLSetPos()

is

called.

Setting

this

statement

attribute

sets

the

SQL_DESC_ARRAY_STATUS_PTR

field

in

the

IPD

header.

SQL_ATTR_PARAMOPT_ATOMIC

(DB2

CLI

v2)

This

is

a

32-bit

integer

value

which

determines,

when

SQLParamOptions()

has

been

used

to

specify

multiple

values

for

parameter

markers,

whether

the

underlying

processing

should

be

done

via

ATOMIC

or

NOT-ATOMIC

Compound

SQL.

The

possible

values

are:

344

CLI

Guide

and

Reference,

Volume

2

v

SQL_ATOMIC_YES

-

The

underlying

processing

makes

use

of

ATOMIC

Compound

SQL.

This

is

the

default

if

the

target

database

supports

ATOMIC

compound

SQL.

v

SQL_ATOMIC_NO

-

The

underlying

processing

makes

use

of

NON-ATOMIC

Compound

SQL.

Specifying

SQL_ATOMIC_YES

when

connected

to

a

server

that

does

not

support

ATOMIC

compound

SQL

results

in

an

error

(SQLSTATE

is

S1C00).

SQL_ATTR_PARAMS_PROCESSED_PTR

(DB2

CLI

v5)

A

32-bit

unsigned

integer

*

record

field

that

points

to

a

buffer

in

which

to

return

the

current

row

number.

As

each

row

of

parameters

is

processed,

this

is

set

to

the

number

of

that

row.

No

row

number

will

be

returned

if

this

is

a

null

pointer.

Setting

this

statement

attribute

sets

the

SQL_DESC_ROWS_PROCESSED_PTR

field

in

the

IPD

header.

If

the

call

to

SQLExecDirect()

or

SQLExecute()

that

fills

in

the

buffer

pointed

to

by

this

attribute

does

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

the

contents

of

the

buffer

are

undefined.

SQL_ATTR_PARAMSET_SIZE

(DB2

CLI

v5)

A

32-bit

unsigned

integer

value

that

specifies

the

number

of

values

for

each

parameter.

If

SQL_ATTR_PARAMSET_SIZE

is

greater

than

1,

SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR,

and

SQL_DESC_OCTET_LENGTH_PTR

of

the

APD

point

to

arrays.

The

cardinality

of

each

array

is

equal

to

the

value

of

this

field.

Setting

this

statement

attribute

sets

the

SQL_DESC_ARRAY_SIZE

field

in

the

APD

header.

SQL_ATTR_PREFETCH

(DB2

CLI

v6)

This

is

a

32-bit

value

which

determines

if

the

server

will

prefetch

the

next

block

of

data

immediately

after

sending

the

current

block

(if

supported

by

the

server).

This

allows

the

server

to

get

the

next

block

of

data

while

the

application

is

receiving

the

current

block.

This

has

no

effect

if

the

entire

result

set

fits

in

the

first

block

of

data,

or

if

the

cursor

is

a

non-blocking

cursor

(if

it

is

a

FOR

UPDATE

cursor,

or

if

the

result

contains

lob

data,

for

example).

The

possible

values

are:

v

SQL_PREFETCH_ON

-

Prefetch

will

occur

if

supported

by

the

server

v

SQL_PREFETCH_OFF

-

Prefetch

will

not

occur.

This

is

the

default.

SQL_ATTR_QUERY_OPTIMIZATION_LEVEL

(DB2

CLI

v6)

A

32-bit

integer

value

that

sets

the

query

optimization

level

to

be

used

on

the

next

call

to

SQLPrepare(),

SQLExtendedPrepare(),

or

SQLExecDirect().

Supported

values

to

use

are:

-1

(default),

0,

1,

2,

3,

5,

7,

and

9.

SQL_ATTR_QUERY_TIMEOUT

(DB2

CLI

v2)

A

32-bit

integer

value

that

is

the

number

of

seconds

to

wait

for

an

SQL

statement

to

execute

before

aborting

the

execution

and

returning

to

the

application.

This

option

can

be

set

and

used

to

terminate

long

running

queries.

The

default

value

of

0

means

DB2

CLI

will

wait

indefinitely

for

the

server

to

complete

execution

of

the

SQL

statement.

DB2

CLI

supports

non-zero

values

for

all

platforms

that

support

multithreading.

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

345

SQL_ATTR_RETRIEVE_DATA

(DB2

CLI

v2)

A

32-bit

integer

value:

v

SQL_RD_ON

=

SQLFetchScroll()

and

in

DB2

CLI

v5

and

later,

SQLFetch(),

retrieve

data

after

it

positions

the

cursor

to

the

specified

location.

This

is

the

default.

v

SQL_RD_OFF

=

SQLFetchScroll()

and

in

DB2

CLI

v5

and

later,

SQLFetch(),

do

not

retrieve

data

after

it

positions

the

cursor.

By

setting

SQL_RETRIEVE_DATA

to

SQL_RD_OFF,

an

application

can

verify

if

a

row

exists

or

retrieve

a

bookmark

for

the

row

without

incurring

the

overhead

of

retrieving

rows.

SQL_ATTR_RETURN_USER_DEFINED_TYPES

(DB2

CLI

v8)

A

Boolean

attribute

that

specifies

whether

user-defined

type

columns

are

reported

as

the

user-defined

type

or

the

underlying

base

type

when

queried

by

functions

such

as

SQLDescribeCol().

The

default

value

is

0

(false),

where

columns

are

reported

as

the

underlying

base

type.

SQL_ATTR_ROW_ARRAY_SIZE

(DB2

CLI

v5)

A

32-bit

integer

value

that

specifies

the

number

of

rows

in

the

rowset.

This

is

the

number

of

rows

returned

by

each

call

to

SQLFetch()

or

SQLFetchScroll().

The

default

value

is

1.

If

the

specified

rowset

size

exceeds

the

maximum

rowset

size

supported

by

the

data

source,

DB2

CLI

substitutes

that

value

and

returns

SQLSTATE

01S02

(Option

value

changed).

This

option

can

be

specified

for

an

open

cursor.

Setting

this

statement

attribute

sets

the

SQL_DESC_ARRAY_SIZE

field

in

the

ARD

header.

SQL_ATTR_ROW_BIND_OFFSET_PTR

(DB2

CLI

v5)

A

32-bit

integer

*

value

that

points

to

an

offset

added

to

pointers

to

change

binding

of

column

data.

If

this

field

is

non-null,

DB2

CLI

dereferences

the

pointer,

adds

the

dereferenced

value

to

each

of

the

deferred

fields

in

the

descriptor

record

(SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR,

and

SQL_DESC_OCTET_LENGTH_PTR),

and

uses

the

new

pointer

values

when

binding.

It

is

set

to

null

by

default.

Setting

this

statement

attribute

sets

the

SQL_DESC_BIND_OFFSET_PTR

field

in

the

ARD

header.

SQL_ATTR_ROW_BIND_TYPE

(DB2

CLI

v5)

A

32-bit

integer

value

that

sets

the

binding

orientation

to

be

used

when

SQLFetch()

or

SQLFetchScroll()

is

called

on

the

associated

statement.

Column-wise

binding

is

selected

by

supplying

the

defined

constant

SQL_BIND_BY_COLUMN

in

*ValuePtr.

Row-wise

binding

is

selected

by

supplying

a

value

in

*ValuePtr

specifying

the

length

of

a

structure

or

an

instance

of

a

buffer

into

which

result

columns

will

be

bound.

The

length

specified

in

*ValuePtr

must

include

space

for

all

of

the

bound

columns

and

any

padding

of

the

structure

or

buffer

to

ensure

that

when

the

address

of

a

bound

column

is

incremented

with

the

specified

length,

the

result

will

point

to

the

beginning

of

the

same

column

in

the

next

row.

When

using

the

sizeof

operator

with

structures

or

unions

in

ANSI

C,

this

behavior

is

guaranteed.

346

CLI

Guide

and

Reference,

Volume

2

|

|
|
|
|

Column-wise

binding

is

the

default

binding

orientation

for

SQLFetch()

and

SQLFetchScroll().

Setting

this

statement

attribute

sets

the

SQL_DESC_BIND_TYPE

field

in

the

ARD

header.

SQL_ATTR_ROW_NUMBER

(DB2

CLI

v5)

A

32-bit

integer

value

that

is

the

number

of

the

current

row

in

the

entire

result

set.

If

the

number

of

the

current

row

cannot

be

determined

or

there

is

no

current

row,

DB2

CLI

returns

0.

This

attribute

can

be

retrieved

by

a

call

to

SQLGetStmtAttr(),

but

not

set

by

a

call

to

SQLSetStmtAttr().

SQL_ATTR_ROW_OPERATION_PTR

(DB2

CLI

v5)

A

16-bit

unsigned

integer

*

value

that

points

to

an

array

of

UDWORD

values

used

to

ignore

a

row

during

a

bulk

operation

using

SQLSetPos().

Each

value

is

set

to

either

SQL_ROW_PROCEED

(for

the

row

to

be

included

in

the

bulk

operation)

or

SQL_ROW_IGNORE

(for

the

row

to

be

excluded

from

the

bulk

operation).

This

statement

attribute

can

be

set

to

a

null

pointer,

in

which

case

DB2

CLI

does

not

return

row

status

values.

This

attribute

can

be

set

at

any

time,

but

the

new

value

is

not

used

until

the

next

time

SQLFetch(),

SQLFetchScroll(),

or

SQLSetPos()

is

called.

Setting

this

statement

attribute

sets

the

SQL_DESC_ARRAY_STATUS_PTR

field

in

the

ARD.

SQL_ATTR_ROW_STATUS_PTR

(DB2

CLI

v5)

A

16-bit

unsigned

integer

*

value

that

points

to

an

array

of

UWORD

values

containing

row

status

values

after

a

call

to

SQLFetch()

or

SQLFetchScroll().

The

array

has

as

many

elements

as

there

are

rows

in

the

rowset.

This

statement

attribute

can

be

set

to

a

null

pointer,

in

which

case

DB2

CLI

does

not

return

row

status

values.

This

attribute

can

be

set

at

any

time,

but

the

new

value

is

not

used

until

the

next

time

SQLFetch(),

SQLFetchScroll(),

or

SQLSetPos()

is

called.

Setting

this

statement

attribute

sets

the

SQL_DESC_ARRAY_STATUS_PTR

field

in

the

IRD

header.

SQL_ATTR_ROWS_FETCHED_PTR

(DB2

CLI

v5)

A

32-bit

unsigned

integer

*

value

that

points

to

a

buffer

in

which

to

return

the

number

of

rows

fetched

after

a

call

to

SQLFetch()

or

SQLFetchScroll().

Setting

this

statement

attribute

sets

the

SQL_DESC_ROWS_PROCESSED_PTR

field

in

the

IRD

header.

This

attribute

is

mapped

by

DB2

CLI

to

the

RowCountPtr

array

in

a

call

to

SQLExtendedFetch().

SQL_ROWSET_SIZE

(DB2

CLI

v2)

DB2

CLI

applications

should

now

use

SQLFetchScroll()

rather

than

SQLExtendedFetch().

Applications

should

also

use

the

statement

attribute

SQL_ATTR_ROW_ARRAY_SIZE

to

set

the

number

of

rows

in

the

rowset.

A

32-bit

integer

value

that

specifies

the

number

of

rows

in

the

rowset.

A

rowset

is

the

array

of

rows

returned

by

each

call

to

SQLExtendedFetch().

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

347

|

The

default

value

is

1,

which

is

equivalent

to

making

a

single

SQLFetch()

call.

This

option

can

be

specified

even

when

the

cursor

is

open

and

becomes

effective

on

the

next

SQLExtendedFetch()

call.

SQL_ATTR_SIMULATE_CURSOR

(DB2

CLI

v5)

This

statement

attribute

is

not

supported

by

DB2

CLI

but

is

defined

by

ODBC.

A

32-bit

integer

value

that

specifies

whether

simulated

positioned

UPDATE

and

DELETE

statements

guarantee

that

such

statements

affect

only

one

single

row.

DB2

CLI

will

always

return

a

value

of

SQL_SC_UNIQUE.

Any

attempt

to

change

this

value

will

result

in

a

warning

indicating

01S02

(Option

value

changed).

SQL_ATTR_STMTTXN_ISOLATION

(DB2

CLI

v2)

See

SQL_ATTR_TXN_ISOLATION

below.

SQL_ATTR_TXN_ISOLATION

(DB2

CLI

v2)

A

32-bit

integer

value

that

sets

the

transaction

isolation

level

for

the

current

StatementHandle.

This

option

cannot

be

set

if

there

is

an

open

cursor

on

this

statement

handle

(SQLSTATE

24000).

The

value

SQL_ATTR_STMTTXN_ISOLATION

is

synonymous

with

SQL_ATTR_TXN_ISOLATION.

However,

since

the

ODBC

Driver

Manager

will

reject

the

setting

of

SQL_ATTR_TXN_ISOLATION

as

a

statement

option,

ODBC

applications

that

need

to

set

translation

isolation

level

on

a

per

statement

basis

must

use

the

manifest

constant

SQL_ATTR_STMTTXN_ISOLATION

instead

on

the

SQLSetStmtAttr()

call.

The

default

transaction

isolation

level

can

also

be

set

using

the

TXNISOLATION

DB2

CLI/ODBC

configuration

keyword.

This

attribute

(or

corresponding

keyword)

is

only

applicable

if

the

default

isolation

level

is

used

for

the

statement

handle.

If

the

application

has

specifically

set

the

isolation

level

for

the

statement

handle,

then

this

attribute

will

have

no

effect.

Note:

It

is

an

IBM

extension

to

allow

setting

this

option

at

the

statement

level.

SQL_ATTR_USE_BOOKMARKS

(DB2

CLI

v5)

A

32-bit

integer

value

that

specifies

whether

an

application

will

use

bookmarks

with

a

cursor:

v

SQL_UB_OFF

=

Off

(the

default)

v

SQL_UB_VARIABLE

=

An

application

will

use

bookmarks

with

a

cursor,

and

DB2

CLI

will

provide

variable-length

bookmarks

if

they

are

supported.

To

use

bookmarks

with

a

cursor,

the

application

must

specify

this

option

with

the

SQL_UB_VARIABLE

value

before

opening

the

cursor.

SQL_ATTR_USE_LOAD_API

(DB2

CLI

v8)

A

32-bit

integer

that

indicates

if

the

LOAD

utility

will

replace

the

regular

CLI

array

insert

for

inserting

data.

The

possible

values

are:

SQL_USE_LOAD_OFF

(Default)

Use

regular

CLI

array

insert

to

insert

data.

348

CLI

Guide

and

Reference,

Volume

2

SQL_USE_LOAD_INSERT

Use

the

LOAD

utility

to

append

to

existing

data

in

the

table.

SQL_USE_LOAD_REPLACE

Use

the

LOAD

utility

to

replace

existing

data

in

the

table.

SQL_USE_LOAD_RESTART

Resume

a

previously

failed

CLI

LOAD

operation.

If

the

previous

CLI

LOAD

operation

failed

while

rows

were

being

inserted

(that

is,

before

the

SQL_ATTR_USE_LOAD_API

statement

attribute

was

set

to

SQL_USE_LOAD_OFF),

the

CLI

LOAD

feature

will

remain

active,

and

subsequent

rows

will

be

inserted

by

the

CLI

LOAD

utility.

Otherwise,

if

the

operation

failed

while

CLI

LOAD

was

being

turned

off,

regular

CLI

array

inserts

will

resume

after

the

restarted

load

completes.

SQL_USE_LOAD_TERMINATE

Clean

up

and

undo

a

previously

failed

CLI

LOAD

operation.

After

setting

the

statement

attribute

to

this

value,

regular

CLI

array

inserts

will

resume.

Related

concepts:

v

“Buffered

Inserts

in

Partitioned

Database

Environments”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Cursors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“LOB

locators

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Multithreaded

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“User-defined

type

(UDT)

usage

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Specifying

the

rowset

returned

from

the

result

set”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“aslheapsz

-

Application

support

layer

heap

size

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“rqrioblk

-

Client

I/O

block

size

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“SQLCloseCursor

function

(CLI)

-

Close

cursor

and

discard

pending

results”

on

page

51

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

on

page

82

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

on

page

105

v

“SQLRowCount

function

(CLI)

-

Get

row

count”

on

page

262

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

on

page

291

v

“appl_name

-

Application

Name

monitor

element”

in

the

System

Monitor

Guide

and

Reference

v

“SQLCA

(SQL

communications

area)”

in

the

SQL

Reference,

Volume

1

v

“CLI/ODBC

configuration

keywords

listing

by

category”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“db2Load

-

Load”

in

the

Administrative

API

Reference

v

“ArrayInputChain

CLI/ODBC

configuration

keyword”

in

the

CLI

Guide

and

Reference,

Volume

1

Chapter

2.

CLI

attributes

-

environment,

connection,

and

statement

349

350

CLI

Guide

and

Reference,

Volume

2

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

Descriptor

FieldIdentifier

argument

values

(CLI)

351

Descriptor

header

and

record

field

initialization

values

(CLI)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

This

chapter

provides

a

description

of

descriptor

fields

and

lists

the

values

that

descriptor

header

and

record

fields

are

initialized

to.

Descriptor

FieldIdentifier

argument

values

(CLI)

The

FieldIdentifier

argument

indicates

the

descriptor

field

to

be

set.

A

descriptor

contains

the

descriptor

header,

consisting

of

the

header

fields

described

in

the

next

section,

and

zero

or

more

descriptor

records,

consisting

of

the

record

fields

described

in

the

following

section.

Header

fields:

Each

descriptor

has

a

header

consisting

of

the

following

fields.

SQL_DESC_ALLOC_TYPE

[All]

This

read-only

SQLSMALLINT

header

field

specifies

whether

the

descriptor

was

allocated

automatically

by

DB2

CLI

or

explicitly

by

the

application.

The

application

can

obtain,

but

not

modify,

this

field.

The

field

is

set

to

SQL_DESC_ALLOC_AUTO

if

the

descriptor

was

automatically

allocated.

It

is

set

to

SQL_DESC_ALLOC_USER

if

the

descriptor

was

explicitly

allocated

by

the

application.

SQL_DESC_ARRAY_SIZE

[Application

descriptors]

In

ARDs,

this

SQLUINTEGER

header

field

specifies

the

number

of

rows

in

the

rowset.

This

is

the

number

of

rows

to

be

returned

by

a

call

to

SQLFetch(),

SQLFetchScroll(),

or

SQLSetPos().

The

default

value

is

1.

This

field

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_ROW_ARRAY_SIZE

attribute.

In

APDs,

this

SQLUINTEGER

header

field

specifies

the

number

of

values

for

each

parameter.

The

default

value

of

this

field

is

1.

If

SQL_DESC_ARRAY_SIZE

is

greater

than

1,

SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR,

and

SQL_DESC_OCTET_LENGTH_PTR

of

the

APD

or

ARD

point

to

arrays.

The

cardinality

of

each

array

is

equal

to

the

value

of

this

field.

This

field

in

the

ARD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ROWSET_SIZE

attribute.

This

field

in

the

APD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_PARAMSET_SIZE

attribute.

SQL_DESC_ARRAY_STATUS_PTR

[All]

For

each

descriptor

type,

this

SQLUSMALLINT

*

header

field

points

to

an

array

of

SQLUSMALLINT

values.

This

array

is

referred

to

as:

v

row

status

array

(IRD)

v

parameter

status

array

(IPD)

v

row

operation

array

(ARD)

v

parameter

operation

array

(APD)

©

Copyright

IBM

Corp.

1993

-

2004

351

In

the

IRD,

this

header

field

points

to

a

row

status

array

containing

status

values

after

a

call

to

SQLFetch(),

SQLFetchScroll(),

or

SQLSetPos().

The

array

has

as

many

elements

as

there

are

rows

in

the

rowset.

The

application

must

allocate

an

array

of

SQLUSMALLINTs

and

set

this

field

to

point

to

the

array.

The

field

is

set

to

a

null

pointer

by

default.

DB2

CLI

will

populate

the

array,

unless

the

SQL_DESC_ARRAY_STATUS_PTR

field

is

set

to

a

null

pointer,

in

which

case

no

status

values

are

generated

and

the

array

is

not

populated.

Note:

Behavior

is

undefined

if

the

application

sets

the

elements

of

the

row

status

array

pointed

to

by

the

SQL_DESC_ARRAY_STATUS_PTR

field

of

the

IRD.

The

array

is

initially

populated

by

a

call

to

SQLFetch(),

SQLFetchScroll(),

or

SQLSetPos().

If

the

call

did

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

the

contents

of

the

array

pointed

to

by

this

field

are

undefined.

The

elements

in

the

array

can

contain

the

following

values:

v

SQL_ROW_SUCCESS:

The

row

was

successfully

fetched

and

has

not

changed

since

it

was

last

fetched.

v

SQL_ROW_SUCCESS_WITH_INFO:

The

row

was

successfully

fetched

and

has

not

changed

since

it

was

last

fetched.

However,

a

warning

was

returned

about

the

row.

v

SQL_ROW_ERROR:

An

error

occurred

while

fetching

the

row.

v

SQL_ROW_UPDATED:

The

row

was

successfully

fetched

and

has

been

updated

since

it

was

last

fetched.

If

the

row

is

fetched

again,

its

status

is

SQL_ROW_SUCCESS.

v

SQL_ROW_DELETED:

The

row

has

been

deleted

since

it

was

last

fetched.

v

SQL_ROW_ADDED:

The

row

was

inserted

by

SQLSetPos().

If

the

row

is

fetched

again,

its

status

is

SQL_ROW_SUCCESS.

v

SQL_ROW_NOROW:

The

rowset

overlapped

the

end

of

the

result

set

and

no

row

was

returned

that

corresponded

to

this

element

of

the

row

status

array.

This

field

in

the

ARD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_ROW_STATUS_PTR

attribute.

In

the

IPD,

this

header

field

points

to

a

parameter

status

array

containing

status

information

for

each

set

of

parameter

values

after

a

call

to

SQLExecute()

or

SQLExecDirect().

If

the

call

to

SQLExecute()

or

SQLExecDirect()

did

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

the

contents

of

the

array

pointed

to

by

this

field

are

undefined.

The

application

must

allocate

an

array

of

SQLUSMALLINTs

and

set

this

field

to

point

to

the

array.

The

driver

will

populate

the

array,

unless

the

SQL_DESC_ARRAY_STATUS_PTR

field

is

set

to

a

null

pointer,

in

which

case

no

status

values

are

generated

and

the

array

is

not

populated.

The

elements

in

the

array

can

contain

the

following

values:

v

SQL_PARAM_SUCCESS:

The

SQL

statement

was

successfully

executed

for

this

set

of

parameters.

v

SQL_PARAM_SUCCESS_WITH_INFO:

The

SQL

statement

was

successfully

executed

for

this

set

of

parameters;

however,

warning

information

is

available

in

the

diagnostics

data

structure.

v

SQL_PARAM_ERROR:

An

error

occurred

in

processing

this

set

of

parameters.

Additional

error

information

is

available

in

the

diagnostics

data

structure.

352

CLI

Guide

and

Reference,

Volume

2

v

SQL_PARAM_UNUSED:

This

parameter

set

was

unused,

possibly

due

to

the

fact

that

some

previous

parameter

set

caused

an

error

that

aborted

further

processing.

v

SQL_PARAM_DIAG_UNAVAILABLE:

Diagnostic

information

is

not

available.

An

example

of

this

is

when

DB2

CLI

treats

arrays

of

parameters

as

a

monolithic

unit

and

so

does

not

generate

this

level

of

error

information.

This

field

in

the

APD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_PARAM_STATUS_PTR

attribute.

In

the

ARD,

this

header

field

points

to

a

row

operation

array

of

values

that

can

be

set

by

the

application

to

indicate

whether

this

row

is

to

be

ignored

for

SQLSetPos()

operations.

The

elements

in

the

array

can

contain

the

following

values:

v

SQL_ROW_PROCEED:

The

row

is

included

in

the

bulk

operation

using

SQLSetPos().

(This

setting

does

not

guarantee

that

the

operation

will

occur

on

the

row.

If

the

row

has

the

status

SQL_ROW_ERROR

in

the

IRD

row

status

array,

DB2

CLI

may

not

be

able

to

perform

the

operation

in

the

row.)

v

SQL_ROW_IGNORE:

The

row

is

excluded

from

the

bulk

operation

using

SQLSetPos().

If

no

elements

of

the

array

are

set,

all

rows

are

included

in

the

bulk

operation.

If

the

value

in

the

SQL_DESC_ARRAY_STATUS_PTR

field

of

the

ARD

is

a

null

pointer,

all

rows

are

included

in

the

bulk

operation;

the

interpretation

is

the

same

as

if

the

pointer

pointed

to

a

valid

array

and

all

elements

of

the

array

were

SQL_ROW_PROCEED.

If

an

element

in

the

array

is

set

to

SQL_ROW_IGNORE,

the

value

in

the

row

status

array

for

the

ignored

row

is

not

changed.

This

field

in

the

ARD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_ROW_OPERATION_PTR

attribute.

In

the

APD,

this

header

field

points

to

a

parameter

operation

array

of

values

that

can

be

set

by

the

application

to

indicate

whether

this

set

of

parameters

is

to

be

ignored

when

SQLExecute()

or

SQLExecDirect()

is

called.

The

elements

in

the

array

can

contain

the

following

values:

v

SQL_PARAM_PROCEED:

The

set

of

parameters

is

included

in

the

SQLExecute()

or

SQLExecDirect()

call.

v

SQL_PARAM_IGNORE:

The

set

of

parameters

is

excluded

from

the

SQLExecute()

or

SQLExecDirect()

call.

If

no

elements

of

the

array

are

set,

all

sets

of

parameters

in

the

array

are

used

in

the

SQLExecute()

or

SQLExecDirect()

calls.

If

the

value

in

the

SQL_DESC_ARRAY_STATUS_PTR

field

of

the

APD

is

a

null

pointer,

all

sets

of

parameters

are

used;

the

interpretation

is

the

same

as

if

the

pointer

pointed

to

a

valid

array

and

all

elements

of

the

array

were

SQL_PARAM_PROCEED.

This

field

in

the

APD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_PARAM_OPERATION_PTR

attribute.

SQL_DESC_BIND_OFFSET_PTR

[Application

descriptors]

This

SQLINTEGER

*

header

field

points

to

the

bind

offset.

It

is

set

to

a

null

pointer

by

default.

If

this

field

is

not

a

null

pointer,

DB2

CLI

dereferences

the

pointer

and

adds

the

dereferenced

value

to

each

of

the

deferred

fields

that

has

a

non-null

value

in

the

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

353

descriptor

record

(SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR,

and

SQL_DESC_OCTET_LENGTH_PTR)

at

fetch

time,

and

uses

the

new

pointer

values

when

binding.

The

bind

offset

is

always

added

directly

to

the

values

in

the

SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR,

and

SQL_DESC_OCTET_LENGTH_PTR

fields.

If

the

offset

is

changed

to

a

different

value,

the

new

value

is

still

added

directly

to

the

value

in

each

descriptor

field.

The

new

offset

is

not

added

to

the

field

value

plus

any

earlier

offset.

This

field

is

a

deferred

field:

it

is

not

used

at

the

time

it

is

set,

but

is

used

at

a

later

time

by

DB2

CLI

to

retrieve

data.

This

field

in

the

ARD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_ROW_BIND_OFFSET_PTR

attribute.

This

field

in

the

ARD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_PARAM_BIND_OFFSET_PTR

attribute.

SQL_DESC_BIND_TYPE

[Application

descriptors]

This

SQLINTEGER

header

field

sets

the

binding

orientation

to

be

used

for

either

binding

columns

or

parameters.

In

ARDs,

this

field

specifies

the

binding

orientation

when

SQLFetchScroll()

is

called

on

the

associated

statement

handle.

To

select

column-wise

binding

for

columns,

this

field

is

set

to

SQL_BIND_BY_COLUMN

(the

default).

This

field

in

the

ARD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

SQL_ATTR_ROW_BIND_TYPE

Attribute.

In

APDs,

this

field

specifies

the

binding

orientation

to

be

used

for

dynamic

parameters.

To

select

column-wise

binding

for

parameters,

this

field

is

set

to

SQL_BIND_BY_COLUMN

(the

default).

This

field

in

the

APD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

SQL_ATTR_PARAM_BIND_TYPE

Attribute.

SQL_DESC_COUNT

[All]

This

SQLSMALLINT

header

field

specifies

the

one-based

index

of

the

highest-numbered

record

that

contains

data.

When

DB2

CLI

sets

the

data

structure

for

the

descriptor,

it

must

also

set

the

COUNT

field

to

show

how

many

records

are

significant.

When

an

application

allocates

an

instance

of

this

data

structure,

it

does

not

have

to

specify

how

many

records

to

reserve

room

for.

As

the

application

specifies

the

contents

of

the

records,

DB2

CLI

takes

any

required

action

to

ensure

that

the

descriptor

handle

refers

to

a

data

structure

of

adequate

size.

SQL_DESC_COUNT

is

not

a

count

of

all

data

columns

that

are

bound

(if

the

field

is

in

an

ARD),

or

all

parameters

that

are

bound

(in

an

APD),

but

the

number

of

the

highest-numbered

record.

If

a

column

or

a

parameter

with

a

number

that

is

less

than

the

number

of

the

highest-numbered

column

is

unbound

(by

calling

SQLBindCol()

with

the

Target

ValuePtr

argument

set

to

a

null

pointer,

or

SQLBindParameter()

with

the

Parameter

ValuePtr

argument

set

to

a

null

pointer),

SQL_DESC_COUNT

is

not

changed.

If

additional

columns

or

parameters

are

354

CLI

Guide

and

Reference,

Volume

2

bound

with

numbers

greater

than

the

highest-numbered

record

that

contains

data,

DB2

CLI

automatically

increases

the

value

in

the

SQL_DESC_COUNT

field.

If

all

columns

or

parameters

are

unbound

by

calling

SQLFreeStmt()

with

the

SQL_UNBIND

option,

SQL_DESC_COUNT

is

set

to

0.

The

value

in

SQL_DESC_COUNT

can

be

set

explicitly

by

an

application

by

calling

SQLSetDescField().

If

the

value

in

SQL_DESC_COUNT

is

explicitly

decreased,

all

records

with

numbers

greater

than

the

new

value

in

SQL_DESC_COUNT

are

removed,

unbinding

the

columns.

If

the

value

in

SQL_DESC_COUNT

is

explicitly

set

to

0,

and

the

field

is

in

an

APD,

all

parameters

are

unbound.

If

the

value

in

SQL_DESC_COUNT

is

explicitly

set

to

0,

and

the

field

is

in

an

ARD,

all

data

buffers

except

a

bound

bookmark

column

are

released.

The

record

count

in

this

field

of

an

ARD

does

not

include

a

bound

bookmark

column.

SQL_DESC_ROWS_PROCESSED_PTR

[Implementation

descriptors]

In

an

IRD,

this

SQLUINTEGER

*

header

field

points

to

a

buffer

containing

the

number

of

rows

fetched

after

a

call

to

SQLFetch()

or

SQLFetchScroll(),

or

the

number

of

rows

affected

in

a

bulk

operation

performed

by

a

call

to

SQLSetPos().

In

an

IPD,

this

SQLUINTEGER

*

header

field

points

to

a

buffer

containing

the

number

of

the

row

as

each

row

of

parameters

is

processed.

No

row

number

will

be

returned

if

this

is

a

null

pointer.

SQL_DESC_ROWS_PROCESSED_PTR

is

valid

only

after

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO

has

been

returned

after

a

call

to

SQLFetch()

or

SQLFetchScroll()

(for

an

IRD

field)

or

SQLExecute()

or

SQLExecDirect()

(for

an

IPD

field).

If

the

return

code

is

not

one

of

the

above,

the

location

pointed

to

by

SQL_DESC_ROWS_PROCESSED_PTR

is

undefined.

If

the

call

that

fills

in

the

buffer

pointed

to

by

this

field

did

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

the

contents

of

the

buffer

are

undefined,

unless

it

returns

SQL_NO_DATA,

in

which

case

the

value

in

the

buffer

is

set

to

0.

This

field

in

the

ARD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_ROWS_FETCHED_PTR

attribute.

This

field

in

the

ARD

can

also

be

set

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_PARAMS_PROCESSED_PTR

attribute.

The

buffer

pointed

to

by

this

field

is

allocated

by

the

application.

It

is

a

deferred

output

buffer

that

is

set

by

DB2

CLI.

It

is

set

to

a

null

pointer

by

default.

Record

fields:

Each

descriptor

contains

one

or

more

records

consisting

of

fields

that

define

either

column

data

or

dynamic

parameters,

depending

on

the

type

of

descriptor.

Each

record

is

a

complete

definition

of

a

single

column

or

parameter.

SQL_DESC_AUTO_UNIQUE_VALUE

[IRDs]

This

read-only

SQLINTEGER

record

field

contains

SQL_TRUE

if

the

column

is

an

auto-incrementing

column,

or

SQL_FALSE

if

the

column

is

not

an

auto-incrementing

column.

This

field

is

read-only,

but

the

underlying

auto-incrementing

column

is

not

necessarily

read-only.

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

355

SQL_DESC_BASE_COLUMN_NAME

[IRDs]

This

read-only

SQLCHAR

record

field

contains

the

base

column

name

for

the

result

set

column.

If

a

base

column

name

does

not

exist

(as

in

the

case

of

columns

that

are

expressions),

then

this

variable

contains

an

empty

string.

SQL_DESC_BASE_TABLE_NAME

[IRDs]

This

read-only

SQLCHAR

record

field

contains

the

base

table

name

for

the

result

set

column.

If

a

base

table

name

cannot

be

defined

or

is

not

applicable,

then

this

variable

contains

an

empty

string.

SQL_DESC_CASE_SENSITIVE

[Implementation

descriptors]

This

read-only

SQLINTEGER

record

field

contains

SQL_TRUE

if

the

column

or

parameter

is

treated

as

case-sensitive

for

collations

and

comparisons,

or

SQL_FALSE

if

the

column

is

not

treated

as

case-sensitive

for

collations

and

comparisons,

or

if

it

is

a

non-character

column.

SQL_DESC_CATALOG_NAME

[IRDs]

This

read-only

SQLCHAR

record

field

contains

the

catalog

or

qualifier

name

for

the

base

table

that

contains

the

column.

The

return

value

is

driver-dependent

if

the

column

is

an

expression

or

if

the

column

is

part

of

a

view.

If

the

data

source

does

not

support

catalogs

(or

qualifiers)

or

the

catalog

or

qualifier

name

cannot

be

determined,

this

variable

contains

an

empty

string.

SQL_DESC_CONCISE_TYPE

[All]

This

SQLSMALLINT

header

field

specifies

the

concise

data

type

for

all

data

types.

The

values

in

the

SQL_DESC_CONCISE_TYPE

and

SQL_DESC_TYPE

fields

are

interdependent.

Each

time

one

of

the

fields

is

set,

the

other

must

also

be

set.

SQL_DESC_CONCISE_TYPE

can

be

set

by

a

call

to

SQLBindCol()

or

SQLBindParameter(),

or

SQLSetDescField().

SQL_DESC_TYPE

can

be

set

by

a

call

to

SQLSetDescField()

or

SQLSetDescRec().

If

SQL_DESC_CONCISE_TYPE

is

set

to

a

concise

data

type,

SQL_DESC_TYPE

field

is

set

to

the

same

value,

and

the

SQL_DESC_DATETIME_INTERVAL_CODE

field

is

set

to

0.

SQL_DESC_DATA_PTR

[Application

descriptors

and

IPDs]

This

SQLPOINTER

record

field

points

to

a

variable

that

will

contain

the

parameter

value

(for

APDs)

or

the

column

value

(for

ARDs).

The

descriptor

record

(and

either

the

column

or

parameter

that

it

represents)

is

unbound

if

TargetValuePtr

in

a

call

to

either

SQLBindCol()

or

SQLBindParameter()

is

a

null

pointer,

or

the

SQL_DESC_DATA_PTR

field

in

a

call

to

SQLSetDescField()

or

SQLSetDescRec()

is

set

to

a

null

pointer.

Other

fields

are

not

affected

if

the

SQL_DESC_DATA_PTR

field

is

set

to

a

null

pointer.

If

the

call

to

SQLFetch()

or

SQLFetchScroll()

that

fills

in

the

buffer

pointed

to

by

this

field

did

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

the

contents

of

the

buffer

are

undefined.

This

field

is

a

deferred

field:

it

is

not

used

at

the

time

it

is

set,

but

is

used

at

a

later

time

by

DB2

CLI

to

retrieve

data.

Whenever

the

SQL_DESC_DATA_PTR

field

is

set,

DB2

CLI

checks

that

the

value

in

the

SQL_DESC_TYPE

field

contains

valid

DB2

CLI

or

ODBC

data

types,

and

that

all

other

fields

affecting

the

data

types

are

consistent.

Refer

to

the

consistency

checks

information

for

more

detail.

356

CLI

Guide

and

Reference,

Volume

2

SQL_DESC_DATETIME_INTERVAL_CODE

[All]

This

SQLSMALLINT

record

field

contains

the

subcode

for

the

specific

datetime

data

type

when

the

SQL_DESC_TYPE

field

is

SQL_DATETIME.

This

is

true

for

both

SQL

and

C

data

types.

This

field

can

be

set

to

the

following

for

datetime

data

types:

Table

152.

Datetime

subcodes

Datetime

types

DATETIME_INTERVAL_CODE

SQL_TYPE_DATE/SQL_C_TYPE_DATE

SQL_CODE_DATE

SQL_TYPE_TIME/SQL_C_TYPE_TIME

SQL_CODE_TIME

SQL_TYPE_TIMESTAMP/

SQL_C_TYPE_TIMESTAMP

SQL_CODE_TIMESTAMP

ODBC

3.0

defines

other

values

(not

listed

here)

for

interval

data

types,

which

DB2

CLI

does

not

support.

If

any

other

value

is

specified

in

a

SQLSetDescRec()

or

SQLSetDescField()

call,

an

error

will

be

generated

indicating

HY092

(Option

type

out

of

range).

SQL_DESC_DATETIME_INTERVAL_PRECISION

[All]

ODBC

3.0

defines

this

SQLINTEGER

record

field,

however,

DB2

CLI

does

not

support

interval

data

types.

The

fixed

value

returned

is

0.

Any

attempt

to

set

this

field

will

result

in

01S02

(Option

value

changed).

SQL_DESC_DISPLAY_SIZE

[IRDs]

This

read-only

SQLINTEGER

record

field

contains

the

maximum

number

of

characters

required

to

display

the

data

from

the

column.

The

value

in

this

field

is

not

the

same

as

the

descriptor

field

SQL_DESC_LENGTH

because

the

LENGTH

field

is

undefined

for

all

numeric

types.

SQL_DESC_FIXED_PREC_SCALE

[Implementation

descriptors]

This

read-only

SQLSMALLINT

record

field

is

set

to

SQL_TRUE

if

the

column

is

an

exact

numeric

column

and

has

a

fixed

precision

and

non-zero

scale,

or

SQL_FALSE

if

the

column

is

not

an

exact

numeric

column

with

a

fixed

precision

and

scale.

SQL_DESC_INDICATOR_PTR

[Application

descriptors]

In

ARDs,

this

SQLINTEGER

*

record

field

points

to

the

indicator

variable.

This

variable

contains

SQL_NULL_DATA

if

the

column

value

is

NULL.

For

APDs,

the

indicator

variable

is

set

to

SQL_NULL_DATA

to

specify

NULL

dynamic

arguments.

Otherwise,

the

variable

is

zero

(unless

the

values

in

SQL_DESC_INDICATOR_PTR

and

SQL_DESC_OCTET_LENGTH_PTR

are

the

same

pointer).

If

the

SQL_DESC_INDICATOR_PTR

field

in

an

ARD

is

a

null

pointer,

DB2

CLI

is

prevented

from

returning

information

about

whether

the

column

is

NULL

or

not.

If

the

column

is

NULL

and

INDICATOR_PTR

is

a

null

pointer,

SQLSTATE

22002,

“Indicator

variable

required

but

not

supplied,”

is

returned

when

DB2

CLI

attempts

to

populate

the

buffer

after

a

call

to

SQLFetch()

or

SQLFetchScroll().

If

the

call

to

SQLFetch()

or

SQLFetchScroll()

did

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

the

contents

of

the

buffer

are

undefined.

The

SQL_DESC_INDICATOR_PTR

field

determines

whether

the

field

pointed

to

by

SQL_DESC_OCTET_LENGTH_PTR

is

set.

If

the

data

value

for

a

column

is

NULL,

DB2

CLI

sets

the

indicator

variable

to

SQL_NULL_DATA.

The

field

pointed

to

by

SQL_DESC_OCTET_LENGTH_PTR

is

then

not

set.

If

a

NULL

value

is

not

encountered

during

the

fetch,

the

buffer

pointed

to

by

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

357

SQL_DESC_INDICATOR_PTR

is

set

to

zero,

and

the

buffer

pointed

to

by

SQL_DESC_OCTET_LENGTH_PTR

is

set

to

the

length

of

the

data.

If

the

INDICATOR_PTR

field

in

an

APD

is

a

null

pointer,

the

application

cannot

use

this

descriptor

record

to

specify

NULL

arguments.

This

field

is

a

deferred

field:

it

is

not

used

at

the

time

it

is

set,

but

is

used

at

a

later

time

by

DB2

CLI

to

store

data.

SQL_DESC_LABEL

[IRDs]

This

read-only

SQLCHAR

record

field

contains

the

column

label

or

title.

If

the

column

does

not

have

a

label,

this

variable

contains

the

column

name.

If

the

column

is

unnamed

and

unlabeled,

this

variable

contains

an

empty

string.

SQL_DESC_LENGTH

[All]

This

SQLUINTEGER

record

field

is

either

the

maximum

or

actual

character

length

of

a

character

string

or

a

binary

data

type.

It

is

the

maximum

character

length

for

a

fixed-length

data

type,

or

the

actual

character

length

for

a

variable-length

data

type.

Its

value

always

excludes

the

null

termination

character

that

ends

the

character

string.

Note

that

this

field

is

a

count

of

characters,

not

a

count

of

bytes.

SQL_DESC_LITERAL_PREFIX

[IRDs]

This

read-only

SQLCHAR

record

field

contains

the

character

or

characters

that

DB2

CLI

recognizes

as

a

prefix

for

a

literal

of

this

data

type.

This

variable

contains

an

empty

string

for

a

data

type

for

which

a

literal

prefix

is

not

applicable.

SQL_DESC_LITERAL_SUFFIX

[IRDs]

This

read-only

SQLCHAR

record

field

contains

the

character

or

characters

that

DB2

CLI

recognizes

as

a

suffix

for

a

literal

of

this

data

type.

This

variable

contains

an

empty

string

for

a

data

type

for

which

a

literal

suffix

is

not

applicable.

SQL_DESC_LOCAL_TYPE_NAME

[Implementation

descriptors]

This

read-only

SQLCHAR

record

field

contains

any

localized

(native

language)

name

for

the

data

type

that

may

be

different

from

the

regular

name

of

the

data

type.

If

there

is

no

localized

name,

then

an

empty

string

is

returned.

This

field

is

for

display

purposes

only.

SQL_DESC_NAME

[Implementation

descriptors]

This

SQLCHAR

record

field

in

a

row

descriptor

contains

the

column

alias,

if

it

applies.

If

the

column

alias

does

not

apply,

the

column

name

is

returned.

In

either

case,

the

UNNAMED

field

is

set

to

SQL_NAMED.

If

there

is

no

column

name

or

a

column

alias,

an

empty

string

is

returned

in

the

NAME

field

and

the

UNNAMED

field

is

set

to

SQL_UNNAMED.

An

application

can

set

the

SQL_DESC_NAME

field

of

an

IPD

to

a

parameter

name

or

alias

to

specify

stored

procedure

parameters

by

name.

The

SQL_DESC_NAME

field

of

an

IRD

is

a

read-only

field;

SQLSTATE

HY091

(Invalid

descriptor

field

identifier)

will

be

returned

if

an

application

attempts

to

set

it.

In

IPDs,

this

field

is

undefined

if

dynamic

parameters

are

not

supported.

If

named

parameters

are

supported

and

the

version

of

DB2

CLI

is

capable

of

describing

parameters,

then

the

parameter

name

is

returned

in

this

field.

The

column

name

value

can

be

affected

by

the

environment

attribute

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA

set

by

SQLSetEnvAttr().

358

CLI

Guide

and

Reference,

Volume

2

SQL_DESC_NULLABLE

[Implementation

descriptors]

In

IRDs,

this

read-only

SQLSMALLINT

record

field

is

SQL_NULLABLE

if

the

column

can

have

NULL

values;

SQL_NO_NULLS

if

the

column

cannot

have

NULL

values;

or

SQL_NULLABLE_UNKNOWN

if

it

is

not

known

whether

the

column

accepts

NULL

values.

This

field

pertains

to

the

result

set

column,

not

the

base

column.

In

IPDs,

this

field

is

always

set

to

SQL_NULLABLE,

since

dynamic

parameters

are

always

nullable,

and

cannot

be

set

by

an

application.

SQL_DESC_NUM_PREC_RADIX

[All]

This

SQLINTEGER

field

contains

a

value

of

2

if

the

data

type

in

the

SQL_DESC_TYPE

field

is

an

approximate

numeric

data

type,

because

the

SQL_DESC_PRECISION

field

contains

the

number

of

bits.

This

field

contains

a

value

of

10

if

the

data

type

in

the

SQL_DESC_TYPE

field

is

an

exact

numeric

data

type,

because

the

SQL_DESC_PRECISION

field

contains

the

number

of

decimal

digits.

This

field

is

set

to

0

for

all

non-numeric

data

types.

SQL_DESC_OCTET_LENGTH

[All]

This

SQLINTEGER

record

field

contains

the

length,

in

bytes,

of

a

character

string

or

binary

data

type.

For

fixed-length

character

types,

this

is

the

actual

length

in

bytes.

For

variable-length

character

or

binary

types,

this

is

the

maximum

length

in

bytes.

This

value

always

excludes

space

for

the

null

termination

character

for

implementation

descriptors

and

always

includes

space

for

the

null

termination

character

for

application

descriptors.

For

application

data,

this

field

contains

the

size

of

the

buffer.

For

APDs,

this

field

is

defined

only

for

output

or

input/output

parameters.

SQL_DESC_OCTET_LENGTH_PTR

[Application

descriptors]

This

SQLINTEGER

*

record

field

points

to

a

variable

that

will

contain

the

total

length

in

bytes

of

a

dynamic

argument

(for

parameter

descriptors)

or

of

a

bound

column

value

(for

row

descriptors).

For

an

APD,

this

value

is

ignored

for

all

arguments

except

character

string

and

binary;

if

this

field

points

to

SQL_NTS,

the

dynamic

argument

must

be

null-terminated.

To

indicate

that

a

bound

parameter

will

be

a

data-at-execute

parameter,

an

application

sets

this

field

in

the

appropriate

record

of

the

APD

to

a

variable

that,

at

execute

time,

will

contain

the

value

SQL_DATA_AT_EXEC.

If

there

is

more

than

one

such

field,

SQL_DESC_DATA_PTR

can

be

set

to

a

value

uniquely

identifying

the

parameter

to

help

the

application

determine

which

parameter

is

being

requested.

If

the

OCTET_LENGTH_PTR

field

of

an

ARD

is

a

null

pointer,

DB2

CLI

does

not

return

length

information

for

the

column.

If

the

SQL_DESC_OCTET_LENGTH_PTR

field

of

an

APD

is

a

null

pointer,

DB2

CLI

assumes

that

character

strings

and

binary

values

are

null

terminated.

(Binary

values

should

not

be

null

terminated,

but

should

be

given

a

length,

in

order

to

avoid

truncation.)

If

the

call

to

SQLFetch()

or

SQLFetchScroll()

that

fills

in

the

buffer

pointed

to

by

this

field

did

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

the

contents

of

the

buffer

are

undefined.

This

field

is

a

deferred

field:

it

is

not

used

at

the

time

it

is

set,

but

is

used

at

a

later

time

by

DB2

CLI

to

buffer

data.

By

default

this

is

a

pointer

to

a

4-byte

value.

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

359

SQL_DESC_PARAMETER_TYPE

[IPDs]

This

SQLSMALLINT

record

field

is

set

to

SQL_PARAM_INPUT

for

an

input

parameter,

SQL_PARAM_INPUT_OUTPUT

for

an

input/output

parameter,

or

SQL_PARAM_OUTPUT

for

an

output

parameter.

Set

to

SQL_PARAM_INPUT

by

default.

For

an

IPD,

the

field

is

set

to

SQL_PARAM_INPUT

by

default

if

the

IPD

is

not

automatically

populated

by

DB2

CLI

(the

SQL_ATTR_ENABLE_AUTO_IPD

statement

attribute

is

SQL_FALSE).

An

application

should

set

this

field

in

the

IPD

for

parameters

that

are

not

input

parameters.

SQL_DESC_PRECISION

[All]

This

SQLSMALLINT

record

field

contains

the

number

of

digits

for

an

exact

numeric

type,

the

number

of

bits

in

the

mantissa

(binary

precision)

for

an

approximate

numeric

type,

or

the

numbers

of

digits

in

the

fractional

seconds

component

for

the

SQL_TYPE_TIME

or

SQL_TYPE_TIMESTAMP

data

types.

This

field

is

undefined

for

all

other

data

types.

SQL_DESC_SCALE

[All]

This

SQLSMALLINT

record

field

contains

the

defined

scale

for

DECIMAL

and

NUMERIC

data

types.

The

field

is

undefined

for

all

other

data

types.

SQL_DESC_SCHEMA_NAME

[IRDs]

This

read-only

SQLCHAR

record

field

contains

the

schema

name

of

the

base

table

that

contains

the

column.

For

many

DBMS’s,

this

is

the

owner

name.

If

the

data

source

does

not

support

schemas

(or

owners)

or

the

schema

name

cannot

be

determined,

this

variable

contains

an

empty

string.

SQL_DESC_SEARCHABLE

[IRDs]

This

read-only

SQLSMALLINT

record

field

is

set

to

one

of

the

following

values:

v

SQL_PRED_NONE

if

the

column

cannot

be

used

in

a

WHERE

clause.

(This

is

the

same

as

the

SQL_UNSEARCHABLE

value

defined

in

ODBC

2.0.)

v

SQL_PRED_CHAR

if

the

column

can

be

used

in

a

WHERE

clause,

but

only

with

the

LIKE

predicate.

(This

is

the

same

as

the

SQL_LIKE_ONLY

value

defined

in

ODBC

2.0.)

v

SQL_PRED_BASIC

if

the

column

can

be

used

in

a

WHERE

clause

with

all

the

comparison

operators

except

LIKE.

(This

is

the

same

as

the

SQL_EXCEPT_LIKE

value

defined

in

ODBC

2.0.)

v

SQL_PRED_SEARCHABLE

if

the

column

can

be

used

in

a

WHERE

clause

with

any

comparison

operator.

SQL_DESC_TABLE_NAME

[IRDs]

This

read-only

SQLCHAR

record

field

contains

the

name

of

the

base

table

that

contains

this

column.

SQL_DESC_TYPE

[All]

This

SQLSMALLINT

record

field

specifies

the

concise

SQL

or

C

data

type

for

all

data

types.

Note:

ODBC

3.0

defines

the

SQL_INTERVAL

data

type

which

is

not

supported

by

DB2

CLI.

Any

behavior

associated

with

this

data

type

is

not

present

in

DB2

CLI.

The

values

in

the

SQL_DESC_TYPE

and

SQL_DESC_CONCISE_TYPE

fields

are

interdependent.

Each

time

one

of

the

fields

is

set,

the

other

must

also

be

set.

SQL_DESC_TYPE

can

be

set

by

a

call

to

SQLSetDescField()

or

SQLSetDescRec().

SQL_DESC_CONCISE_TYPE

can

be

set

by

a

call

to

SQLBindCol()

or

SQLBindParameter(),

or

SQLSetDescField().

360

CLI

Guide

and

Reference,

Volume

2

If

SQL_DESC_TYPE

is

set

to

a

concise

data

type,

the

SQL_DESC_CONCISE_TYPE

field

is

set

to

the

same

value,

and

the

SQL_DESC_DATETIME_INTERVAL_CODE

field

is

set

to

0.

When

the

SQL_DESC_TYPE

field

is

set

by

a

call

to

SQLSetDescField(),

the

following

fields

are

set

to

the

following

default

values.

The

values

of

the

remaining

fields

of

the

same

record

are

undefined:

Table

153.

Default

values

SQL_DESC_TYPE

Other

fields

Implicitly

Set

SQL_CHAR,

SQL_VARCHAR

SQL_DESC_LENGTH

is

set

to

1.

SQL_DESC_PRECISION

is

set

to

0.

SQL_DECIMAL,

SQL_NUMERIC

SQL_DESC_SCALE

is

set

to

0.

SQL_DESC_PRECISION

is

set

to

the

precision

for

the

respective

data

type.

SQL_FLOAT

SQL_DESC_PRECISION

is

set

to

the

default

precision

for

SQL_FLOAT.

SQL_DATETIME

SQL_DESC_CONCISE_TYPE

and/or

SQL_DESC_DATETIME_INTERVAL_CODE

may

be

set

implicitly

to

indicate

a

DATE

SQL

or

C

type.

SQL_INTERVAL

This

data

type

is

not

supported

by

DB2

CLI.

When

an

application

calls

SQLSetDescField()

to

set

fields

of

a

descriptor,

rather

than

calling

SQLSetDescRec(),

the

application

must

first

declare

the

data

type.

If

the

values

implicitly

set

are

unacceptable,

the

application

can

then

call

SQLSetDescField()

to

set

the

unacceptable

value

explicitly.

SQL_DESC_TYPE_NAME

[Implementation

descriptors]

This

read-only

SQLCHAR

record

field

contains

the

data-source-dependent

type

name

(for

example,

“CHAR”,

“VARCHAR”,

and

so

on).

If

the

data

type

name

is

unknown,

this

variable

contains

an

empty

string.

SQL_DESC_UNNAMED

[Implementation

descriptors]

This

SQLSMALLINT

record

field

in

a

row

descriptor

is

set

to

either

SQL_NAMED

or

SQL_UNNAMED.

If

the

NAME

field

contains

a

column

alias,

or

if

the

column

alias

does

not

apply,

the

UNNAMED

field

is

set

to

SQL_NAMED.

If

there

is

no

column

name

or

a

column

alias,

the

UNNAMED

field

is

set

to

SQL_UNNAMED.

An

application

can

set

the

SQL_DESC_UNNAMED

field

of

an

IPD

to

SQL_UNNAMED.

SQLSTATE

HY091

(Invalid

descriptor

field

identifier)

is

returned

if

an

application

attempts

to

set

the

SQL_DESC_UNNAMED

field

of

an

IPD

to

SQL_NAMED.

The

SQL_DESC_UNNAMED

field

of

an

IRD

is

read-only;

SQLSTATE

HY091

(Invalid

descriptor

field

identifier)

will

be

returned

if

an

application

attempts

to

set

it.

SQL_DESC_UNSIGNED

[Implementation

descriptors]

This

read-only

SQLSMALLINT

record

field

is

set

to

SQL_TRUE

if

the

column

type

is

unsigned

or

non-numeric,

or

SQL_FALSE

if

the

column

type

is

signed.

SQL_DESC_UPDATABLE

[IRDs]

This

read-only

SQLSMALLINT

record

field

is

set

to

one

of

the

following

values:

v

SQL_ATTR_READ_ONLY

if

the

result

set

column

is

read-only.

v

SQL_ATTR_WRITE

if

the

result

set

column

is

read-write.

v

SQL_ATTR_READWRITE_UNKNOWN

if

it

is

not

known

whether

the

result

set

column

is

updatable

or

not.

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

361

SQL_DESC_UPDATABLE

describes

the

updatability

of

the

column

in

the

result

set,

not

the

column

in

the

base

table.

The

updatability

of

the

column

in

the

base

table

on

which

this

result

set

column

is

based

may

be

different

than

the

value

in

this

field.

Whether

a

column

is

updatable

can

be

based

on

the

data

type,

user

privileges,

and

the

definition

of

the

result

set

itself.

If

it

is

unclear

whether

a

column

is

updatable,

SQL_UPDT_READWRITE_UNKNOWN

should

be

returned.

SQL_DESC_USER_DEFINED_TYPE_CODE

[IRDs]

This

read-only

SQLINTEGER

returns

information

that

describes

the

nature

of

a

column’s

data

type.

Four

values

may

be

returned:

v

SQL_TYPE_BASE:

the

column

data

type

is

a

base

data

type,

such

as

CHAR,

DATE,

or

DOUBLE).

v

SQL_TYPE_DISTINCT:

the

column

data

type

is

a

distinct

user-defined

type.

v

SQL_TYPE_REFERENCE:

the

column

data

type

is

a

reference

user-defined

type.

v

SQL_TYPE_STRUCTURED:

the

column

data

type

is

a

structured

user-defined

type.

Related

concepts:

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Consistency

checks

for

descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

on

page

159

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

on

page

163

v

“SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record”

on

page

273

v

“SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute”

on

page

281

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

on

page

362

v

“User-defined

types”

in

the

SQL

Reference,

Volume

1

Descriptor

header

and

record

field

initialization

values

(CLI)

The

following

tables

list

the

initialization

of

each

field

for

each

type

of

descriptor,

with

“D”

indicating

that

the

field

is

initialized

with

a

default,

and

“ND”

indicating

that

the

field

is

initialized

without

a

default.

If

a

number

is

shown,

the

default

value

of

the

field

is

that

number.

The

tables

also

indicate

whether

a

field

is

read/write

(R/W)

or

read-only

(R).

The

initialization

of

header

fields

is

as

follows:

Table

154.

Initialization

of

header

fields

SQL_DESC_ALLOC_TYPE

(SQLSMALLINT)

362

CLI

Guide

and

Reference,

Volume

2

Table

154.

Initialization

of

header

fields

(continued)

R/W:

ARD:

R

APD:

R

IRD:

R

IPD:

R

Default:

ARD:

SQL_DESC_ALLOC_AUTO

for

implicit

or

SQL_DESC_ALLOC_USER

for

explicit

APD:

SQL_DESC_ALLOC_AUTO

for

implicit

or

SQL_DESC_ALLOC_USER

for

explicit

IRD:

SQL_DESC_ALLOC_AUTO

IPD:

SQL_DESC_ALLOC_AUTO

SQL_DESC_ARRAY_SIZE

(SQLUINTEGER)

R/W:

ARD:

R/W

APD:

R/W

IRD:

Unused

IPD:

Unused

Default:

ARD:

a

APD:

a

IRD:

Unused

IPD:

Unused

SQL_DESC_ARRAY_STATUS_PTR

(SQLUSMALLINT

*)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R/W

IPD:

R/W

Default:

ARD:

Null

ptr

APD:

Null

ptr

IRD:

Null

ptr

IPD:

Null

ptr

SQL_DESC_BIND_OFFSET_PTR

(SQLINTEGER

*)

R/W:

ARD:

R/W

APD:

R/W

IRD:

Unused

IPD:

Unused

Default:

ARD:

Null

ptr

APD:

Null

ptr

IRD:

Unused

IPD:

Unused

SQL_DESC_BIND_TYPE

(SQLINTEGER)

R/W:

ARD:

R/W

APD:

R/W

IRD:

Unused

IPD:

Unused

Default:

ARD:

SQL_BIND_BY_COLUMN

APD:

SQL_BIND_BY_COLUMN

IRD:

Unused

IPD:

Unused

SQL_DESC_COUNT

(SQLSMALLINT)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

0

APD:

0

IRD:

D

IPD:

0

SQL_DESC_ROWS_PROCESSED_PTR

(SQLUINTEGER

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R/W

IPD:

R/W

Default:

ARD:

Unused

APD:

Unused

IRD:

Null

Ptr

IPD:

Null

Ptr

a

These

fields

are

defined

only

when

the

IPD

is

automatically

populated

by

DB2

CLI.

If

the

fields

are

not

automatically

populated

then

they

are

undefined.

If

an

application

attempts

to

set

these

fields,

SQLSTATE

HY091

(Invalid

descriptor

field

identifier.)

will

be

returned.

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

363

|

The

initialization

of

record

fields

is

as

follows:

Table

155.

Initialization

of

record

fields

SQL_DESC_AUTO_UNIQUE_VALUE

(SQLINTEGER)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_BASE_COLUMN_NAME

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_BASE_TABLE_NAME

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_CASE_SENSITIVE

(SQLINTEGER)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

R

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

D

a

SQL_DESC_CATALOG_NAME

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_CONCISE_TYPE

(SQLSMALLINT)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

SQL_C_DEFAULT

APD:

SQL_C_DEFAULT

IRD:

D

IPD:

ND

SQL_DESC_DATA_PTR

(SQLPOINTER)

R/W:

ARD:

R/W

APD:

R/W

IRD:

Unused

IPD:

Unused

Default:

ARD:

Null

ptr

APD:

Null

ptr

IRD:

Unused

IPD:

Unused

b

SQL_DESC_DATETIME_INTERVAL_CODE

(SQLSMALLINT)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

ND

APD:

ND

IRD:

D

IPD:

ND

SQL_DESC_DATETIME_INTERVAL_PRECISION

(SQLINTEGER)

364

CLI

Guide

and

Reference,

Volume

2

Table

155.

Initialization

of

record

fields

(continued)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

ND

APD:

ND

IRD:

D

IPD:

ND

SQL_DESC_DISPLAY_SIZE

(SQLINTEGER)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_FIXED_PREC_SCALE

(SQLSMALLINT)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

R

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

D

a

SQL_DESC_INDICATOR_PTR

(SQLINTEGER

*)

R/W:

ARD:

R/W

APD:

R/W

IRD:

Unused

IPD:

Unused

Default:

ARD:

Null

ptr

APD:

Null

ptr

IRD:

Unused

IPD:

Unused

SQL_DESC_LABEL

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_LENGTH

(SQLUINTEGER)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

ND

APD:

ND

IRD:

D

IPD:

ND

SQL_DESC_LITERAL_PREFIX

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_LITERAL_SUFFIX

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_LOCAL_TYPE_NAME

(SQLCHAR

*)

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

365

Table

155.

Initialization

of

record

fields

(continued)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

R

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

D

a

SQL_DESC_NAME

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

R/W

Default:

ARD:

ND

APD:

ND

IRD:

D

IPD:

ND

SQL_DESC_NULLABLE

(SQLSMALLINT)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

R

Default:

ARD:

ND

APD:

ND

IRD:

N

IPD:

ND

SQL_DESC_NUM_PREC_RADIX

(SQLINTEGER)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

ND

APD:

ND

IRD:

D

IPD:

ND

SQL_DESC_OCTET_LENGTH

(SQLINTEGER)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

ND

APD:

ND

IRD:

D

IPD:

ND

SQL_DESC_OCTET_LENGTH_PTR

(SQLINTEGER

*)

R/W:

ARD:

R/W

APD:

R/W

IRD:

Unused

IPD:

Unused

Default:

ARD:

Null

ptr

APD:

Null

ptr

IRD:

Unused

IPD:

Unused

SQL_DESC_PARAMETER_TYPE

(SQLSMALLINT)

R/W:

ARD:

Unused

APD:

Unused

IPD:

Unused

IRD:

R/W

Default:

ARD:

Unused

APD:

Unused

IPD:

Unused

IRD:

D=SQL_PARAM_INPUT

SQL_DESC_PRECISION

(SQLSMALLINT)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

ND

APD:

ND

IRD:

D

IPD:

ND

SQL_DESC_SCALE

(SQLSMALLINT)

366

CLI

Guide

and

Reference,

Volume

2

Table

155.

Initialization

of

record

fields

(continued)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

ND

APD:

ND

IRD:

D

IPD:

ND

SQL_DESC_SCHEMA_NAME

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_SEARCHABLE

(SQLSMALLINT)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_TABLE_NAME

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

SQL_DESC_TYPE

(SQLSMALLINT)

R/W:

ARD:

R/W

APD:

R/W

IRD:

R

IPD:

R/W

Default:

ARD:

SQL_C_DEFAULT

APD:

SQL_C_DEFAULT

IRD:

D

IPD:

ND

SQL_DESC_TYPE_NAME

(SQLCHAR

*)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

R

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

D

a

SQL_DESC_UNNAMED

(SQLSMALLINT)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

R/W

Default:

ARD:

ND

APD:

ND

IRD:

D

IPD:

ND

SQL_DESC_UNSIGNED

(SQLSMALLINT)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

R

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

D

a

SQL_DESC_UPDATABLE

(SQLSMALLINT)

Chapter

3.

Descriptor

FieldIdentifier

and

initialization

values

367

Table

155.

Initialization

of

record

fields

(continued)

R/W:

ARD:

Unused

APD:

Unused

IRD:

R

IPD:

Unused

Default:

ARD:

Unused

APD:

Unused

IRD:

D

IPD:

Unused

a

These

fields

are

defined

only

when

the

IPD

is

automatically

populated

by

DB2

CLI.

If

the

fields

are

not

automatically

populated

then

they

are

undefined.

If

an

application

attempts

to

set

these

fields,

SQLSTATE

HY091

(Invalid

descriptor

field

identifier.)

will

be

returned.

b

The

SQL_DESC_DATA_PTR

field

in

the

IPD

can

be

set

to

force

a

consistency

check.

In

a

subsequent

call

to

SQLGetDescField()

or

SQLGetDescRec(),

DB2

CLI

is

not

required

to

return

the

value

that

SQL_DESC_DATA_PTR

was

set

to.

Related

concepts:

v

“Descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Consistency

checks

for

descriptors

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“C

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

on

page

159

v

“SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record”

on

page

273

v

“Descriptor

FieldIdentifier

argument

values

(CLI)”

on

page

351

368

CLI

Guide

and

Reference,

Volume

2

|

Chapter

4.

DiagIdentifier

argument

values

The

DiagIdentifier

argument

indicates

the

field

of

the

diagnostic

data

structure

to

be

retrieved.

This

chapter

describes

the

possible

header

and

record

fields.

Header

and

record

fields

for

the

DiagIdentifier

argument

(CLI)

Header

fields

The

following

header

fields

can

be

included

in

the

DiagIdentifier

argument.

The

only

diagnostic

header

fields

that

are

defined

for

a

descriptor

field

are

SQL_DIAG_NUMBER

and

SQL_DIAG_RETURNCODE.

Table

156.

Header

fields

for

DiagIdentifier

arguments

SQL_DIAG_CURSOR_ROW_COUNT

(return

type

SQLINTEGER)

This

field

contains

the

count

of

rows

in

the

cursor.

Its

semantics

depend

upon

the

SQLGetInfo()

information

types:

v

SQL_DYNAMIC_CURSOR_ATTRIBUTES2

v

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2

v

SQL_KEYSET_CURSOR_ATTRIBUTES2

v

SQL_STATIC_CURSOR_ATTRIBUTES2

which

indicate

which

row

counts

are

available

for

each

cursor

type

(in

the

SQL_CA2_CRC_EXACT

and

SQL_CA2_CRC_APPROXIMATE

bits).

The

contents

of

this

field

are

defined

only

for

statement

handles

and

only

after

SQLExecute(),

SQLExecDirect(),

or

SQLMoreResults()

has

been

called.

Calling

SQLGetDiagField()

with

a

DiagIdentifier

of

SQL_DIAG_CURSOR_ROW_COUNT

on

a

handle

other

than

a

statement

handle

will

return

SQL_ERROR.

SQL_DIAG_DYNAMIC_FUNCTION

(return

type

CHAR

*)

This

is

a

string

that

describes

the

SQL

statement

that

the

underlying

function

executed

(see

“Dynamic

function

fields”

on

page

371

for

the

values

that

DB2

CLI

supports).

The

contents

of

this

field

are

defined

only

for

statement

handles,

and

only

after

a

call

to

SQLExecute()

or

SQLExecDirect().

The

value

of

this

field

is

undefined

before

a

call

to

SQLExecute()

or

SQLExecDirect().

SQL_DIAG_DYNAMIC_FUNCTION_CODE

(return

type

SQLINTEGER)

This

is

a

numeric

code

that

describes

the

SQL

statement

that

was

executed

by

the

underlying

function

(see

“Dynamic

function

fields”

on

page

371

for

the

values

that

DB2

CLI

supports).

The

contents

of

this

field

are

defined

only

for

statement

handles,

and

only

after

a

call

to

SQLExecute()

or

SQLExecDirect().

The

value

of

this

field

is

undefined

before

a

call

to

SQLExecute(),

SQLExecDirect(),

or

SQLMoreResults().

Calling

SQLGetDiagField()

with

a

DiagIdentifier

of

SQL_DIAG_DYNAMIC_FUNCTION_CODE

on

a

handle

other

than

a

statement

handle

will

return

SQL_ERROR.

The

value

of

this

field

is

undefined

before

a

call

to

SQLExecute()

or

SQLExecDirect().

SQL_DIAG_NUMBER

(return

type

SQLINTEGER)

The

number

of

status

records

that

are

available

for

the

specified

handle.

©

Copyright

IBM

Corp.

1993

-

2004

369

Table

156.

Header

fields

for

DiagIdentifier

arguments

(continued)

SQL_DIAG_RELATIVE_COST_ESTIMATE

(return

type

SQLINTEGER)

If

SQLPrepare()

is

invoked

and

successful,

contains

a

relative

cost

estimate

of

the

resources

required

to

process

the

statement.

If

deferred

prepare

is

enabled,

this

field

will

have

the

value

of

0

until

the

statement

is

executed.

SQL_DIAG_RETURNCODE

(return

type

RETCODE)

Return

code

returned

by

the

last

executed

function

associated

with

the

specified

handle.

If

no

function

has

yet

been

called

on

the

Handle,

SQL_SUCCESS

will

be

returned

for

SQL_DIAG_RETURNCODE.

SQL_DIAG_ROW_COUNT

(return

type

SQLINTEGER)

The

number

of

rows

affected

by

an

insert,

delete,

or

update

performed

by

SQLExecute(),

SQLExecDirect(),

or

SQLSetPos().

It

is

defined

after

a

cursor

specification

has

been

executed.

The

contents

of

this

field

are

defined

only

for

statement

handles.

The

data

in

this

field

is

returned

in

the

RowCountPtr

argument

of

SQLRowCount().

The

data

in

this

field

is

reset

after

every

function

call,

whereas

the

row

count

returned

by

SQLRowCount()

remains

the

same

until

the

statement

is

set

back

to

the

prepared

or

allocated

state.

Record

fields

The

following

record

fields

can

be

included

in

the

DiagIdentifier

argument:

Table

157.

Record

fields

for

DiagIdentifier

arguments

SQL_DIAG_CLASS_ORIGIN

(return

type

CHAR

*)

A

string

that

indicates

the

document

that

defines

the

class

and

subclass

portion

of

the

SQLSTATE

value

in

this

record.

DB2

CLI

always

returns

an

empty

string

for

SQL_DIAG_CLASS_ORIGIN.

SQL_DIAG_COLUMN_NUMBER

(return

type

SQLINTEGER)

If

the

SQL_DIAG_ROW_NUMBER

field

is

a

valid

row

number

in

a

rowset

or

set

of

parameters,

then

this

field

contains

the

value

that

represents

the

column

number

in

the

result

set.

Result

set

column

numbers

always

start

at

1;

if

this

status

record

pertains

to

a

bookmark

column,

then

the

field

can

be

zero.

It

has

the

value

SQL_NO_COLUMN_NUMBER

if

the

status

record

is

not

associated

with

a

column

number.

If

DB2

CLI

cannot

determine

the

column

number

that

this

record

is

associated

with,

this

field

has

the

value

SQL_COLUMN_NUMBER_UNKNOWN.

The

contents

of

this

field

are

defined

only

for

statement

handles.

SQL_DIAG_CONNECTION_NAME

(return

type

CHAR

*)

A

string

that

indicates

the

name

of

the

connection

that

the

diagnostic

record

relates

to.

DB2

CLI

always

returns

an

empty

string

for

SQL_DIAG_CONNECTION_NAME

SQL_DIAG_MESSAGE_TEXT

(return

type

CHAR

*)

An

informational

message

on

the

error

or

warning.

SQL_DIAG_NATIVE

(return

type

SQLINTEGER)

370

CLI

Guide

and

Reference,

Volume

2

|
||
|
|

|

Table

157.

Record

fields

for

DiagIdentifier

arguments

(continued)

A

driver/data-source-specific

native

error

code.

If

there

is

no

native

error

code,

the

driver

returns

0.

SQL_DIAG_ROW_NUMBER

(return

type

SQLINTEGER)

This

field

contains

the

row

number

in

the

rowset,

or

the

parameter

number

in

the

set

of

parameters,

with

which

the

status

record

is

associated.

This

field

has

the

value

SQL_NO_ROW_NUMBER

if

this

status

record

is

not

associated

with

a

row

number.

If

DB2

CLI

cannot

determine

the

row

number

that

this

record

is

associated

with,

this

field

has

the

value

SQL_ROW_NUMBER_UNKNOWN.

The

contents

of

this

field

are

defined

only

for

statement

handles.

SQL_DIAG_SERVER_NAME

(return

type

CHAR

*)

A

string

that

indicates

the

server

name

that

the

diagnostic

record

relates

to.

It

is

the

same

as

the

value

returned

for

a

call

to

SQLGetInfo()

with

the

SQL_DATA_SOURCE_NAME

InfoType.

For

diagnostic

data

structures

associated

with

the

environment

handle

and

for

diagnostics

that

do

not

relate

to

any

server,

this

field

is

a

zero-length

string.

SQL_DIAG_SQLSTATE

(return

type

CHAR

*)

A

five-character

SQLSTATE

diagnostic

code.

SQL_DIAG_SUBCLASS_ORIGIN

(return

type

CHAR

*)

A

string

with

the

same

format

and

valid

values

as

SQL_DIAG_CLASS_ORIGIN,

that

identifies

the

defining

portion

of

the

subclass

portion

of

the

SQLSTATE

code.

DB2

CLI

always

returns

an

empty

string

for

SQL_DIAG_SUBCLASS_ORIGIN.

Values

of

the

dynamic

function

fields

The

table

below

describes

the

values

of

SQL_DIAG_DYNAMIC_FUNCTION

and

SQL_DIAG_DYNAMIC_FUNCTION_CODE

that

apply

to

each

type

of

SQL

statement

executed

by

a

call

to

SQLExecute()

or

SQLExecDirect().

This

is

the

list

that

DB2

CLI

uses.

ODBC

also

specifies

other

values.

Table

158.

Values

of

dynamic

function

fields

SQL

statement

executed

Value

of

SQL_DIAG_

DYNAMIC_FUNCTION

Value

of

SQL_DIAG_DYNAMIC_

FUNCTION_CODE

alter-table-statement

“ALTER

TABLE”

SQL_DIAG_ALTER_TABLE

create-index-statement

“CREATE

INDEX”

SQL_DIAG_CREATE_INDEX

create-table-statement

“CREATE

TABLE”

SQL_DIAG_CREATE_TABLE

create-view-statement

“CREATE

VIEW”

SQL_DIAG_CREATE_VIEW

cursor-specification

“SELECT

CURSOR”

SQL_DIAG_SELECT_CURSOR

delete-statement-positioned

“DYNAMIC

DELETE

CURSOR”

SQL_DIAG_DYNAMIC_DELETE_

CURSOR

delete-statement-searched

“DELETE

WHERE”

SQL_DIAG_DELETE_WHERE

drop-index-statement

“DROP

INDEX”

SQL_DIAG_DROP_INDEX

drop-table-statement

“DROP

TABLE”

SQL_DIAG_DROP_TABLE

drop-view-statement

“DROP

VIEW”

SQL_DIAG_DROP_VIEW

Chapter

4.

DiagIdentifier

argument

values

371

Table

158.

Values

of

dynamic

function

fields

(continued)

SQL

statement

executed

Value

of

SQL_DIAG_

DYNAMIC_FUNCTION

Value

of

SQL_DIAG_DYNAMIC_

FUNCTION_CODE

grant-statement

“GRANT”

SQL_DIAG_GRANT

insert-statement

“INSERT”

SQL_DIAG_INSERT

ODBC-procedure-extension

“CALL”

SQL_DIAG_PROCEDURE_CALL

revoke-statement

“REVOKE”

SQL_DIAG_REVOKE

update-statement-positioned

“DYNAMIC

UPDATE

CURSOR”

SQL_DIAG_DYNAMIC_UPDATE_

CURSOR

update-statement-searched

“UPDATE

WHERE”

SQL_DIAG_UPDATE_WHERE

merge-statement

″MERGE″

SQL_DIAG_MERGE

Unknown

empty

string

SQL_DIAG_UNKNOWN_STATEMENT

Related

concepts:

v

“Deferred

prepare

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

on

page

167

372

CLI

Guide

and

Reference,

Volume

2

|||

Chapter

5.

Data

type

attributes

Data

type

precision

(CLI)

table

.

.

.

.

.

.

. 373

Data

type

scale

(CLI)

table

.

.

.

.

.

.

.

.

. 374

Data

type

length

(CLI)

table

.

.

.

.

.

.

.

. 375

Data

type

display

(CLI)

table

.

.

.

.

.

.

.

. 376

This

chapter

describes

the

following

attributes

for

SQL

data

types

supported

by

DB2

CLI:

v

precision

v

scale

v

length

v

display

size

Data

type

precision

(CLI)

table

The

precision

of

a

numeric

column

or

parameter

refers

to

the

maximum

number

of

digits

used

by

the

data

type

of

the

column

or

parameter.

The

precision

of

a

non-numeric

column

or

parameter

generally

refers

to

the

maximum

or

the

defined

number

of

characters

of

the

column

or

parameter.

The

following

table

defines

the

precision

for

each

SQL

data

type.

Table

159.

Precision

fSqlType

Precision

SQL_CHAR

SQL_VARCHAR

SQL_CLOB

The

defined

length

of

the

column

or

parameter.

For

example,

the

precision

of

a

column

defined

as

CHAR(10)

is

10.

SQL_LONGVARCHAR

The

maximum

length

of

the

column

or

parameter.

a

SQL_DECIMAL

SQL_NUMERIC

The

defined

maximum

number

of

digits.

For

example,

the

precision

of

a

column

defined

as

NUMERIC(10,3)

is

10.

SQL_SMALLINT

b

5

SQL_BIGINT

19

SQL_INTEGER

b

10

SQL_FLOAT

b

15

SQL_REAL

b

7

SQL_DOUBLE

b

15

SQL_BINARY

SQL_VARBINARY

SQL_BLOB

The

defined

length

of

the

column

or

parameter.

For

example,

the

precision

of

a

column

defined

as

CHAR(10)

FOR

BIT

DATA,

is

10.

SQL_LONGVARBINARY

The

maximum

length

of

the

column

or

parameter.

SQL_DATE

b

10

(the

number

of

characters

in

the

yyyy-mm-dd

format).

SQL_TIME

b

8

(the

number

of

characters

in

the

hh:mm:ss

format).

SQL_TIMESTAMP

The

number

of

characters

in

the

"yyy-mm-dd

hh:mm:ss[.fff[fff]]”

format

used

by

the

TIMESTAMP

data

type.

For

example,

if

a

timestamp

does

not

use

seconds

or

fractional

seconds,

the

precision

is

16

(the

number

of

characters

in

the

"yyyy-mm-dd

hh:mm”

format).

If

a

timestamp

uses

thousandths

of

a

second,

the

precision

is

23

(the

number

of

characters

in

the

"yyyy-mm-dd

hh:mm:ss.fff”

format).

©

Copyright

IBM

Corp.

1993

-

2004

373

Table

159.

Precision

(continued)

fSqlType

Precision

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_DBCLOB

The

defined

length

of

the

column

or

parameter.

For

example,

the

precision

of

a

column

defined

as

GRAPHIC(10)

is

10.

SQL_LONGVARGRAPHIC

The

maximum

length

of

the

column

or

parameter.

SQL_WCHAR

SQL_WVARCHAR

SQL_WLONGVARCHAR

The

defined

length

of

the

column

or

parameter.

For

example,

the

precision

of

a

column

defined

as

WCHAR(10)

is

10.

Note:

a

When

defining

the

precision

of

a

parameter

of

this

data

type

with

SQLBindParameter()

or

SQLSetParam(),

cbParamDef

should

be

set

to

the

total

length

of

the

data,

not

the

precision

as

defined

in

this

table.

b

The

cbParamDef

argument

of

SQLBindParameter()

or

SQLSetParam()

is

ignored

for

this

data

type.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Data

type

scale

(CLI)

table

The

scale

of

a

numeric

column

or

parameter

refers

to

the

maximum

number

of

digits

to

the

right

of

the

decimal

point.

Note

that,

for

approximate

floating

point

number

columns

or

parameters,

the

scale

is

undefined,

since

the

number

of

digits

to

the

right

of

the

decimal

place

is

not

fixed.

The

following

table

defines

the

scale

for

each

SQL

data

type.

Table

160.

Scale

fSqlType

Scale

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Not

applicable.

SQL_DECIMAL

SQL_NUMERIC

The

defined

number

of

digits

to

the

right

of

the

decimal

place.

For

example,

the

scale

of

a

column

defined

as

NUMERIC(10,

3)

is

3.

SQL_SMALLINT

SQL_INTEGER

SQL_BIGINT

0

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

Not

applicable.

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Not

applicable.

374

CLI

Guide

and

Reference,

Volume

2

Table

160.

Scale

(continued)

fSqlType

Scale

SQL_DATE

SQL_TIME

Not

applicable.

SQL_TIMESTAMP

The

number

of

digits

to

the

right

of

the

decimal

point

in

the

"yyyy-mm-dd

hh:mm:ss[fff[fff]]”

format.

For

example,

if

the

TIMESTAMP

data

type

uses

the

"yyyy-mm-dd

hh:mm:ss.fff”

format,

the

scale

is

3.

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_LONGVARGRAPHIC

SQL_DBCLOB

Not

applicable.

SQL_WCHAR

SQL_WVARCHAR

SQL_WLONGVARCHAR

Not

applicable.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Data

type

length

(CLI)

table

The

length

of

a

column

is

the

maximum

number

of

bytes

returned

to

the

application

when

data

is

transferred

to

its

default

C

data

type.

For

character

data,

the

length

does

not

include

the

null

termination

byte.

Note

that

the

length

of

a

column

may

be

different

than

the

number

of

bytes

required

to

store

the

data

on

the

data

source.

The

following

table

defines

the

length

for

each

SQL

data

type.

Table

161.

Length

fSqlType

Length

SQL_CHAR

SQL_VARCHAR

SQL_CLOB

The

defined

length

of

the

column.

For

example,

the

length

of

a

column

defined

as

CHAR(10)

is

10.

SQL_LONGVARCHAR

The

maximum

length

of

the

column.

SQL_DECIMAL

SQL_NUMERIC

The

maximum

number

of

digits

plus

two.

Since

these

data

types

are

returned

as

character

strings,

characters

are

needed

for

the

digits,

a

sign,

and

a

decimal

point.

For

example,

the

length

of

a

column

defined

as

NUMERIC(10,3)

is

12.

SQL_SMALLINT

2

(two

bytes).

SQL_INTEGER

4

(four

bytes).

SQL_BIGINT

8

(eight

bytes).

SQL_REAL

4

(four

bytes).

SQL_FLOAT

8

(eight

bytes).

Chapter

5.

Data

type

attributes

375

Table

161.

Length

(continued)

fSqlType

Length

SQL_DOUBLE

8

(eight

bytes).

SQL_BINARY

SQL_VARBINARY

SQL_BLOB

The

defined

length

of

the

column.

For

example,

the

length

of

a

column

defined

as

CHAR(10)

FOR

BIT

DATA

is

10.

SQL_LONGVARBINARY

The

maximum

length

of

the

column.

SQL_DATE

SQL_TIME

6

(the

size

of

the

DATE_STRUCT

or

TIME_STRUCT

structure).

SQL_TIMESTAMP

16

(the

size

of

the

TIMESTAMP_STRUCT

structure).

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_DBCLOB

The

defined

length

of

the

column

times

2.

For

example,

the

length

of

a

column

defined

as

GRAPHIC(10)

is

20.

SQL_LONGVARGRAPHIC

The

maximum

length

of

the

column

times

2.

SQL_WCHAR

SQL_WVARCHAR

SQL_WLONGVARCHAR

The

defined

length

of

the

column

times

2.

For

example,

the

length

of

a

column

defined

as

WCHAR(10)

is

20.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Data

type

display

(CLI)

table

The

display

size

of

a

column

is

the

maximum

number

of

bytes

needed

to

display

data

in

character

form.

The

following

table

defines

the

display

size

for

each

SQL

data

type.

Table

162.

Display

size

fSqlType

Display

size

SQL_CHAR

SQL_VARCHAR

SQL_CLOB

The

defined

length

of

the

column.

For

example,

the

display

size

of

a

column

defined

as

CHAR(10)

is

10.

SQL_LONGVARCHAR

The

maximum

length

of

the

column.

SQL_DECIMAL

SQL_NUMERIC

The

precision

of

the

column

plus

two

(a

sign,

precision

digits,

and

a

decimal

point).

For

example,

the

display

size

of

a

column

defined

as

NUMERIC(10,3)

is

12.

SQL_SMALLINT

6

(a

sign

and

5

digits).

SQL_INTEGER

11

(a

sign

and

10

digits).

SQL_BIGINT

20

(a

sign

and

19

digits).

SQL_REAL

13

(a

sign,

7

digits,

a

decimal

point,

the

letter

E,

a

sign,

and

2

digits).

SQL_FLOAT

SQL_DOUBLE

22

(a

sign,

15

digits,

a

decimal

point,

the

letter

E,

a

sign,

and

3

digits).

376

CLI

Guide

and

Reference,

Volume

2

Table

162.

Display

size

(continued)

fSqlType

Display

size

SQL_BINARY

SQL_VARBINARY

SQL_BLOB

The

defined

length

of

the

column

times

2

(each

binary

byte

is

represented

by

a

2

digit

hexadecimal

number).

For

example,

the

display

size

of

a

column

defined

as

CHAR(10)

FOR

BIT

DATA

is

20.

SQL_LONGVARBINARY

The

maximum

length

of

the

column

times

2.

SQL_DATE

10

(a

date

in

the

format

yyyy-mm-dd).

SQL_TIME

8

(a

time

in

the

format

hh:mm:ss).

SQL_TIMESTAMP

19

(if

the

scale

of

the

timestamp

is

0)

or

20

plus

the

scale

of

the

timestamp

(if

the

scale

is

greater

than

0).

This

is

the

number

of

characters

in

the

"yyyy-mm-dd

hh:mm:ss[fff[fff]]”

format.

For

example,

the

display

size

of

a

column

storing

thousandths

of

a

second

is

23

(the

number

of

characters

in

"yyyy-mm-dd

hh:mm:ss.fff”).

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_DBCLOB

Twice

the

defined

length

of

the

column

or

parameter.

For

example,

the

display

size

of

a

column

defined

as

GRAPHIC(10)

is

20.

SQL_LONGVARGRAPHIC

The

maximum

length

of

the

column

or

parameter.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

in

the

CLI

Guide

and

Reference,

Volume

1

Chapter

5.

Data

type

attributes

377

378

CLI

Guide

and

Reference,

Volume

2

Appendix

A.

DB2

Universal

Database

technical

information

DB2

documentation

and

help

DB2®

technical

information

is

available

through

the

following

tools

and

methods:

v

DB2

Information

Center

–

Topics

–

Help

for

DB2

tools

–

Sample

programs

–

Tutorials
v

Downloadable

PDF

files,

PDF

files

on

CD,

and

printed

books

–

Guides

–

Reference

manuals
v

Command

line

help

–

Command

help

–

Message

help

–

SQL

state

help
v

Installed

source

code

–

Sample

programs

You

can

access

additional

DB2

Universal

Database™

technical

information

such

as

technotes,

white

papers,

and

Redbooks™

online

at

ibm.com®.

Access

the

DB2

Information

Management

software

library

site

at

www.ibm.com/software/data/pubs/.

DB2

documentation

updates

IBM®

may

periodically

make

documentation

FixPaks

and

other

documentation

updates

to

the

DB2

Information

Center

available.

If

you

access

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/,

you

will

always

be

viewing

the

most

up-to-date

information.

If

you

have

installed

the

DB2

Information

Center

locally,

then

you

need

to

install

any

updates

manually

before

you

can

view

them.

Documentation

updates

allow

you

to

update

the

information

that

you

installed

from

the

DB2

Information

Center

CD

when

new

information

becomes

available.

The

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books.

To

get

the

most

current

DB2

technical

information,

install

the

documentation

updates

as

they

become

available

or

go

to

the

DB2

Information

Center

at

the

www.ibm.com

site.

Related

concepts:

v

“CLI

sample

programs”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Java

sample

programs”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“DB2

Information

Center”

on

page

380

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

397

©

Copyright

IBM

Corp.

1993

-

2004

379

|

|
|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/software/data/pubs/
http://publib.boulder.ibm.com/infocenter/db2help/

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

389

v

“Invoking

message

help

from

the

command

line

processor”

on

page

398

v

“Invoking

command

help

from

the

command

line

processor”

on

page

398

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

399

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

391

DB2

Information

Center

The

DB2®

Information

Center

gives

you

access

to

all

of

the

information

you

need

to

take

full

advantage

of

DB2

family

products,

including

DB2

Universal

Database™,

DB2

Connect™,

DB2

Information

Integrator

and

DB2

Query

Patroller™.

The

DB2

Information

Center

also

contains

information

for

major

DB2

features

and

components

including

replication,

data

warehousing,

and

the

DB2

extenders.

The

DB2

Information

Center

has

the

following

features

if

you

view

it

in

Mozilla

1.0

or

later

or

Microsoft®

Internet

Explorer

5.5

or

later.

Some

features

require

you

to

enable

support

for

JavaScript™:

Flexible

installation

options

You

can

choose

to

view

the

DB2

documentation

using

the

option

that

best

meets

your

needs:

v

To

effortlessly

ensure

that

your

documentation

is

always

up

to

date,

you

can

access

all

of

your

documentation

directly

from

the

DB2

Information

Center

hosted

on

the

IBM®

Web

site

at

http://publib.boulder.ibm.com/infocenter/db2help/

v

To

minimize

your

update

efforts

and

keep

your

network

traffic

within

your

intranet,

you

can

install

the

DB2

documentation

on

a

single

server

on

your

intranet

v

To

maximize

your

flexibility

and

reduce

your

dependence

on

network

connections,

you

can

install

the

DB2

documentation

on

your

own

computer

Search

You

can

search

all

of

the

topics

in

the

DB2

Information

Center

by

entering

a

search

term

in

the

Search

text

field.

You

can

retrieve

exact

matches

by

enclosing

terms

in

quotation

marks,

and

you

can

refine

your

search

with

wildcard

operators

(*,

?)

and

Boolean

operators

(AND,

NOT,

OR).

Task-oriented

table

of

contents

You

can

locate

topics

in

the

DB2

documentation

from

a

single

table

of

contents.

The

table

of

contents

is

organized

primarily

by

the

kind

of

tasks

you

may

want

to

perform,

but

also

includes

entries

for

product

overviews,

goals,

reference

information,

an

index,

and

a

glossary.

v

Product

overviews

describe

the

relationship

between

the

available

products

in

the

DB2

family,

the

features

offered

by

each

of

those

products,

and

up

to

date

release

information

for

each

of

these

products.

v

Goal

categories

such

as

installing,

administering,

and

developing

include

topics

that

enable

you

to

quickly

complete

tasks

and

develop

a

deeper

understanding

of

the

background

information

for

completing

those

tasks.

380

CLI

Guide

and

Reference,

Volume

2

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/

v

Reference

topics

provide

detailed

information

about

a

subject,

including

statement

and

command

syntax,

message

help,

and

configuration

parameters.

Show

current

topic

in

table

of

contents

You

can

show

where

the

current

topic

fits

into

the

table

of

contents

by

clicking

the

Refresh

/

Show

Current

Topic

button

in

the

table

of

contents

frame

or

by

clicking

the

Show

in

Table

of

Contents

button

in

the

content

frame.

This

feature

is

helpful

if

you

have

followed

several

links

to

related

topics

in

several

files

or

arrived

at

a

topic

from

search

results.

Index

You

can

access

all

of

the

documentation

from

the

index.

The

index

is

organized

in

alphabetical

order

by

index

term.

Glossary

You

can

use

the

glossary

to

look

up

definitions

of

terms

used

in

the

DB2

documentation.

The

glossary

is

organized

in

alphabetical

order

by

glossary

term.

Integrated

localized

information

The

DB2

Information

Center

displays

information

in

the

preferred

language

set

in

your

browser

preferences.

If

a

topic

is

not

available

in

your

preferred

language,

the

DB2

Information

Center

displays

the

English

version

of

that

topic.

For

iSeries™

technical

information,

refer

to

the

IBM

eServer™

iSeries

information

center

at

www.ibm.com/eserver/iseries/infocenter/.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

381

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

389

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

390

v

“Invoking

the

DB2

Information

Center”

on

page

388

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

384

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

386

DB2

Information

Center

installation

scenarios

Different

working

environments

can

pose

different

requirements

for

how

to

access

DB2®

information.

The

DB2

Information

Center

can

be

accessed

on

the

IBM®

Web

site,

on

a

server

on

your

organization’s

network,

or

on

a

version

installed

on

your

computer.

In

all

three

cases,

the

documentation

is

contained

in

the

DB2

Information

Center,

which

is

an

architected

web

of

topic-based

information

that

you

view

with

a

browser.

By

default,

DB2

products

access

the

DB2

Information

Center

on

the

IBM

Web

site.

However,

if

you

want

to

access

the

DB2

Information

Center

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

Information

Center

using

the

DB2

Information

Center

CD

found

in

your

product

Media

Pack.

Refer

to

the

summary

of

options

for

accessing

DB2

documentation

which

follows,

along

with

the

three

installation

scenarios,

to

help

determine

which

Appendix

A.

DB2

Universal

Database

technical

information

381

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/eserver/iseries/infocenter/

method

of

accessing

the

DB2

Information

Center

works

best

for

you

and

your

work

environment,

and

what

installation

issues

you

might

need

to

consider.

Summary

of

options

for

accessing

DB2

documentation:

The

following

table

provides

recommendations

on

which

options

are

possible

in

your

work

environment

for

accessing

the

DB2

product

documentation

in

the

DB2

Information

Center.

Internet

access

Intranet

access

Recommendation

Yes

Yes

Access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

access

the

DB2

Information

Center

installed

on

an

intranet

server.

Yes

No

Access

the

DB2

Information

Center

on

the

IBM

Web

site.

No

Yes

Access

the

DB2

Information

Center

installed

on

an

intranet

server.

No

No

Access

the

DB2

Information

Center

on

a

local

computer.

Scenario:

Accessing

the

DB2

Information

Center

on

your

computer:

Tsu-Chen

owns

a

factory

in

a

small

town

that

does

not

have

a

local

ISP

to

provide

him

with

Internet

access.

He

purchased

DB2

Universal

Database™

to

manage

his

inventory,

his

product

orders,

his

banking

account

information,

and

his

business

expenses.

Never

having

used

a

DB2

product

before,

Tsu-Chen

needs

to

learn

how

to

do

so

from

the

DB2

product

documentation.

After

installing

DB2

Universal

Database

on

his

computer

using

the

typical

installation

option,

Tsu-Chen

tries

to

access

the

DB2

documentation.

However,

his

browser

gives

him

an

error

message

that

the

page

he

tried

to

open

cannot

be

found.

Tsu-Chen

checks

the

installation

manual

for

his

DB2

product

and

discovers

that

he

has

to

install

the

DB2

Information

Center

if

he

wants

to

access

DB2

documentation

on

his

computer.

He

finds

the

DB2

Information

Center

CD

in

the

media

pack

and

installs

it.

From

the

application

launcher

for

his

operating

system,

Tsu-Chen

now

has

access

to

the

DB2

Information

Center

and

can

learn

how

to

use

his

DB2

product

to

increase

the

success

of

his

business.

Scenario:

Accessing

the

DB2

Information

Center

on

the

IBM

Web

site:

Colin

is

an

information

technology

consultant

with

a

training

firm.

He

specializes

in

database

technology

and

SQL

and

gives

seminars

on

these

subjects

to

businesses

all

over

North

America

using

DB2

Universal

Database.

Part

of

Colin’s

seminars

includes

using

DB2

documentation

as

a

teaching

tool.

For

example,

while

teaching

courses

on

SQL,

Colin

uses

the

DB2

documentation

on

SQL

as

a

way

to

teach

basic

and

advanced

syntax

for

database

queries.

Most

of

the

businesses

at

which

Colin

teaches

have

Internet

access.

This

situation

influenced

Colin’s

decision

to

configure

his

mobile

computer

to

access

the

DB2

Information

Center

on

the

IBM

Web

site

when

he

installed

the

latest

version

of

DB2

Universal

Database.

This

configuration

allows

Colin

to

have

online

access

to

the

latest

DB2

documentation

during

his

seminars.

382

CLI

Guide

and

Reference,

Volume

2

|
|

|

|
|
|

||||

|||
|
|

|||
|

|||
|

|||
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

However,

sometimes

while

travelling

Colin

does

not

have

Internet

access.

This

posed

a

problem

for

him,

especially

when

he

needed

to

access

to

DB2

documentation

to

prepare

for

seminars.

To

avoid

situations

like

this,

Colin

installed

a

copy

of

the

DB2

Information

Center

on

his

mobile

computer.

Colin

enjoys

the

flexibility

of

always

having

a

copy

of

DB2

documentation

at

his

disposal.

Using

the

db2set

command,

he

can

easily

configure

the

registry

variables

on

his

mobile

computer

to

access

the

DB2

Information

Center

on

either

the

IBM

Web

site,

or

his

mobile

computer,

depending

on

his

situation.

Scenario:

Accessing

the

DB2

Information

Center

on

an

intranet

server:

Eva

works

as

a

senior

database

administrator

for

a

life

insurance

company.

Her

administration

responsibilities

include

installing

and

configuring

the

latest

version

of

DB2

Universal

Database

on

the

company’s

UNIX®

database

servers.

Her

company

recently

informed

its

employees

that,

for

security

reasons,

it

would

not

provide

them

with

Internet

access

at

work.

Because

her

company

has

a

networked

environment,

Eva

decides

to

install

a

copy

of

the

DB2

Information

Center

on

an

intranet

server

so

that

all

employees

in

the

company

who

use

the

company’s

data

warehouse

on

a

regular

basis

(sales

representatives,

sales

managers,

and

business

analysts)

have

access

to

DB2

documentation.

Eva

instructs

her

database

team

to

install

the

latest

version

of

DB2

Universal

Database

on

all

of

the

employee’s

computers

using

a

response

file,

to

ensure

that

each

computer

is

configured

to

access

the

DB2

Information

Center

using

the

host

name

and

the

port

number

of

the

intranet

server.

However,

through

a

misunderstanding

Migual,

a

junior

database

administrator

on

Eva’s

team,

installs

a

copy

of

the

DB2

Information

Center

on

several

of

the

employee

computers,

rather

than

configuring

DB2

Universal

Database

to

access

the

DB2

Information

Center

on

the

intranet

server.

To

correct

this

situation

Eva

tells

Migual

to

use

the

db2set

command

to

change

the

DB2

Information

Center

registry

variables

(DB2_DOCHOST

for

the

host

name,

and

DB2_DOCPORT

for

the

port

number)

on

each

of

these

computers.

Now

all

of

the

appropriate

computers

on

the

network

have

access

to

the

DB2

Information

Center,

and

employees

can

find

answers

to

their

DB2

questions

in

the

DB2

documentation.

Related

concepts:

v

“DB2

Information

Center”

on

page

380

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

389

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

384

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

386

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

Appendix

A.

DB2

Universal

Database

technical

information

383

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|

|

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

UNIX

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

UNIX

computers.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

PowerPC

(AIX)

–

HP

9000

(HP-UX)

–

Intel

32–bit

(Linux)

–

Solaris

UltraSPARC

computers

(Solaris

Operating

Environment)
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

IBM

AIX

5.1

(on

PowerPC)

–

HP-UX

11i

(on

HP

9000)

–

Red

Hat

Linux

8.0

(on

Intel

32–bit)

–

SuSE

Linux

8.1

(on

Intel

32–bit)

–

Sun

Solaris

Version

8

(on

Solaris

Operating

Environment

UltraSPARC

computers)

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

UNIX

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

from

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browser

is

supported:

-

Mozilla

Version

1.0

or

greater
v

The

DB2

Setup

wizard

is

a

graphical

installer.

You

must

have

an

implementation

of

the

X

Window

System

software

capable

of

rendering

a

graphical

user

interface

for

the

DB2

Setup

wizard

to

run

on

your

computer.

Before

you

can

run

the

DB2

Setup

wizard

you

must

ensure

that

you

have

properly

exported

your

display.

For

example,

enter

the

following

command

at

the

command

prompt:

export

DISPLAY=9.26.163.144:0.

v

Communication

requirements

–

TCP/IP

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

384

CLI

Guide

and

Reference,

Volume

2

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|

1.

Log

on

to

the

system.

2.

Insert

and

mount

the

DB2

Information

Center

product

CD

on

your

system.

3.

Change

to

the

directory

where

the

CD

is

mounted

by

entering

the

following

command:

cd

/cd

where

/cd

represents

the

mount

point

of

the

CD.

4.

Enter

the

./db2setup

command

to

start

the

DB2

Setup

wizard.

5.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

6.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

7.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

8.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

9.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

10.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

11.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

12.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

also

install

the

DB2

Information

Center

using

a

response

file.

The

installation

logs

db2setup.his,

db2setup.log,

and

db2setup.err

are

located,

by

default,

in

the

/tmp

directory.

The

db2setup.log

file

captures

all

DB2

product

installation

information,

including

errors.

The

db2setup.his

file

records

all

DB2

product

installations

on

your

computer.

DB2

appends

the

db2setup.log

file

to

the

db2setup.his

file.

The

db2setup.err

file

captures

any

error

output

that

is

returned

by

Java,

for

example,

exceptions

and

trap

information.

When

the

installation

is

complete,

the

DB2

Information

Center

will

be

installed

in

one

of

the

following

directories,

depending

upon

your

UNIX

operating

system:

v

AIX:

/usr/opt/db2_08_01

v

HP-UX:

/opt/IBM/db2/V8.1

v

Linux:

/opt/IBM/db2/V8.1

v

Solaris

Operating

Environment:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

Information

Center”

on

page

380

v

“DB2

Information

Center

installation

scenarios”

on

page

381

Appendix

A.

DB2

Universal

Database

technical

information

385

|

|

|
|

|

|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

Related

tasks:

v

“Installing

DB2

using

a

response

file

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

389

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

390

v

“Invoking

the

DB2

Information

Center”

on

page

388

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

386

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

Windows

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

Windows.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

32-bit

computers:

a

Pentium

or

Pentium

compatible

CPU
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

Windows

2000

–

Windows

XP

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

Windows

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browsers

are

supported:

-

Mozilla

1.0

or

greater

-

Internet

Explorer

Version

5.5

or

6.0

(Version

6.0

for

Windows

XP)
v

Communication

requirements

–

TCP/IP

Restrictions:

v

You

require

an

account

with

administrative

privileges

to

install

the

DB2

Information

Center.

386

CLI

Guide

and

Reference,

Volume

2

|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

1.

Log

on

to

the

system

with

the

account

that

you

have

defined

for

the

DB2

Information

Center

installation.

2.

Insert

the

CD

into

the

drive.

If

enabled,

the

auto-run

feature

starts

the

IBM

DB2

Setup

Launchpad.

3.

The

DB2

Setup

wizard

determines

the

system

language

and

launches

the

setup

program

for

that

language.

If

you

want

to

run

the

setup

program

in

a

language

other

than

English,

or

the

setup

program

fails

to

auto-start,

you

can

start

the

DB2

Setup

wizard

manually.

To

start

the

DB2

Setup

wizard

manually:

a.

Click

Start

and

select

Run.

b.

In

the

Open

field,

type

the

following

command:

x:\setup.exe

/i

2-letter

language

identifier

where

x:

represents

your

CD

drive,

and

2-letter

language

identifier

represents

the

language

in

which

the

setup

program

will

be

run.

c.

Click

OK.

4.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

5.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

6.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

7.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

8.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

9.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

10.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

11.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

install

the

DB2

Information

Center

using

a

response

file.

You

can

also

use

the

db2rspgn

command

to

generate

a

response

file

based

on

an

existing

installation.

For

information

on

errors

encountered

during

installation,

see

the

db2.log

and

db2wi.log

files

located

in

the

’My

Documents’\DB2LOG\

directory.

The

location

of

the

’My

Documents’

directory

will

depend

on

the

settings

on

your

computer.

The

db2wi.log

file

captures

the

most

recent

DB2

installation

information.

The

db2.log

captures

the

history

of

DB2

product

installations.

Appendix

A.

DB2

Universal

Database

technical

information

387

|

|

|
|

|
|

|
|
|
|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

Related

concepts:

v

“DB2

Information

Center”

on

page

380

v

“DB2

Information

Center

installation

scenarios”

on

page

381

Related

tasks:

v

“Installing

a

DB2

product

using

a

response

file

(Windows)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

389

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

390

v

“Invoking

the

DB2

Information

Center”

on

page

388

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

384

Related

reference:

v

“db2rspgn

-

Response

File

Generator

Command

(Windows)”

in

the

Command

Reference

Invoking

the

DB2

Information

Center

The

DB2

Information

Center

gives

you

access

to

all

of

the

information

that

you

need

to

use

DB2

products

for

Linux,

UNIX,

and

Windows

operating

systems

such

as

DB2

Universal

Database,

DB2

Connect,

DB2

Information

Integrator,

and

DB2

Query

Patroller.

You

can

invoke

the

DB2

Information

Center

from

one

of

the

following

places:

v

Computers

on

which

a

DB2

UDB

client

or

server

is

installed

v

An

intranet

server

or

local

computer

on

which

the

DB2

Information

Center

installed

v

The

IBM

Web

site

Prerequisites:

Before

you

invoke

the

DB2

Information

Center:

v

Optional:

Configure

your

browser

to

display

topics

in

your

preferred

language

v

Optional:

Configure

your

DB2

client

to

use

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

Procedure:

To

invoke

the

DB2

Information

Center

on

a

computer

on

which

a

DB2

UDB

client

or

server

is

installed:

v

From

the

Start

Menu

(Windows

operating

system):

Click

Start

—�

Programs

—�

IBM

DB2

—�

Information

—�

Information

Center.

v

From

the

command

line

prompt:

–

For

Linux

and

UNIX

operating

systems,

issue

the

db2icdocs

command.

–

For

the

Windows

operating

system,

issue

the

db2icdocs.exe

command.

To

open

the

DB2

Information

Center

installed

on

an

intranet

server

or

local

computer

in

a

Web

browser:

388

CLI

Guide

and

Reference,

Volume

2

|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|
|
|

|

|
|

v

Open

the

Web

page

at

http://<host-name>:<port-number>/,

where

<host-name>

represents

the

host

name

and

<port-number>

represents

the

port

number

on

which

the

DB2

Information

Center

is

available.

To

open

the

DB2

Information

Center

on

the

IBM

Web

site

in

a

Web

browser:

v

Open

the

Web

page

at

publib.boulder.ibm.com/infocenter/db2help/.

Related

concepts:

v

“DB2

Information

Center”

on

page

380

Related

tasks:

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

390

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

397

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

389

v

“Invoking

message

help

from

the

command

line

processor”

on

page

398

v

“Invoking

command

help

from

the

command

line

processor”

on

page

398

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

399

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

The

DB2

Information

Center

available

from

http://publib.boulder.ibm.com/infocenter/db2help/

will

be

periodically

updated

with

new

or

changed

documentation.

IBM

may

also

make

DB2

Information

Center

updates

available

to

download

and

install

on

your

computer

or

intranet

server.

Updating

the

DB2

Information

Center

does

not

update

DB2

client

or

server

products.

Prerequisites:

You

must

have

access

to

a

computer

that

is

connected

to

the

Internet.

Procedure:

To

update

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server:

1.

Open

the

DB2

Information

Center

hosted

on

the

IBM

Web

site

at:

http://publib.boulder.ibm.com/infocenter/db2help/

2.

In

the

Downloads

section

of

the

welcome

page

under

the

Service

and

Support

heading,

click

the

DB2

Universal

Database

documentation

link.

3.

Determine

if

the

version

of

your

DB2

Information

Center

is

out

of

date

by

comparing

the

latest

refreshed

documentation

image

level

to

the

documentation

level

you

have

installed.

The

documentation

level

you

have

installed

is

listed

on

the

DB2

Information

Center

welcome

page.

4.

If

a

more

recent

version

of

the

DB2

Information

Center

is

available,

download

the

latest

refreshed

DB2

Information

Center

image

applicable

to

your

operating

system.

5.

To

install

the

refreshed

DB2

Information

Center

image,

follow

the

instructions

provided

on

the

Web

page.

Appendix

A.

DB2

Universal

Database

technical

information

389

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

381

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

388

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

384

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

386

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

The

DB2

Information

Center

attempts

to

display

topics

in

the

language

specified

in

your

browser

preferences.

If

a

topic

has

not

been

translated

into

your

preferred

language,

the

DB2

Information

Center

displays

the

topic

in

English.

Procedure:

To

display

topics

in

your

preferred

language

in

the

Internet

Explorer

browser:

1.

In

Internet

Explorer,

click

the

Tools

—>

Internet

Options

—>

Languages...

button.

The

Language

Preferences

window

opens.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button.

Note:

Adding

a

language

does

not

guarantee

that

the

computer

has

the

fonts

required

to

display

the

topics

in

the

preferred

language.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

To

display

topics

in

your

preferred

language

in

the

Mozilla

browser:

1.

In

Mozilla,

select

the

Edit

—>

Preferences

—>

Languages

button.

The

Languages

panel

is

displayed

in

the

Preferences

window.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button

to

select

a

language

from

the

Add

Languages

window.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

Related

concepts:

v

“DB2

Information

Center”

on

page

380

390

CLI

Guide

and

Reference,

Volume

2

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

DB2

PDF

and

printed

documentation

The

following

tables

provide

official

book

names,

form

numbers,

and

PDF

file

names.

To

order

hardcopy

books,

you

must

know

the

official

book

name.

To

print

a

PDF

file,

you

must

know

the

PDF

file

name.

The

DB2

documentation

is

categorized

by

the

following

headings:

v

Core

DB2

information

v

Administration

information

v

Application

development

information

v

Business

intelligence

information

v

DB2

Connect

information

v

Getting

started

information

v

Tutorial

information

v

Optional

component

information

v

Release

notes

The

following

tables

describe,

for

each

book

in

the

DB2

library,

the

information

needed

to

order

the

hard

copy,

or

to

print

or

view

the

PDF

for

that

book.

A

full

description

of

each

of

the

books

in

the

DB2

library

is

available

from

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

Core

DB2

information

The

information

in

these

books

is

fundamental

to

all

DB2

users;

you

will

find

this

information

useful

whether

you

are

a

programmer,

a

database

administrator,

or

someone

who

works

with

DB2

Connect,

DB2

Warehouse

Manager,

or

other

DB2

products.

Table

163.

Core

DB2

information

Name

Form

Number

PDF

File

Name

IBM

DB2

Universal

Database

Command

Reference

SC09-4828

db2n0x81

IBM

DB2

Universal

Database

Glossary

No

form

number

db2t0x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

1

GC09-4840,

not

available

in

hardcopy

db2m1x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

2

GC09-4841,

not

available

in

hardcopy

db2m2x81

IBM

DB2

Universal

Database

What’s

New

SC09-4848

db2q0x81

Administration

information

The

information

in

these

books

covers

those

topics

required

to

effectively

design,

implement,

and

maintain

DB2

databases,

data

warehouses,

and

federated

systems.

Table

164.

Administration

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Planning

SC09-4822

db2d1x81

Appendix

A.

DB2

Universal

Database

technical

information

391

|

|
|
|
|

||

|||

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|

|
|
||

|

|

http://www.ibm.com/shop/publications/order

Table

164.

Administration

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Implementation

SC09-4820

db2d2x81

IBM

DB2

Universal

Database

Administration

Guide:

Performance

SC09-4821

db2d3x81

IBM

DB2

Universal

Database

Administrative

API

Reference

SC09-4824

db2b0x81

IBM

DB2

Universal

Database

Data

Movement

Utilities

Guide

and

Reference

SC09-4830

db2dmx81

IBM

DB2

Universal

Database

Data

Recovery

and

High

Availability

Guide

and

Reference

SC09-4831

db2hax81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Administration

Guide

SC27-1123

db2ddx81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

1

SC09-4844

db2s1x81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

2

SC09-4845

db2s2x81

IBM

DB2

Universal

Database

System

Monitor

Guide

and

Reference

SC09-4847

db2f0x81

Application

development

information

The

information

in

these

books

is

of

special

interest

to

application

developers

or

programmers

working

with

DB2

Universal

Database

(DB2

UDB).

You

will

find

information

about

supported

languages

and

compilers,

as

well

as

the

documentation

required

to

access

DB2

UDB

using

the

various

supported

programming

interfaces,

such

as

embedded

SQL,

ODBC,

JDBC,

SQLJ,

and

CLI.

If

you

are

using

the

DB2

Information

Center,

you

can

also

access

HTML

versions

of

the

source

code

for

the

sample

programs.

Table

165.

Application

development

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications

SC09-4825

db2axx81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Client

Applications

SC09-4826

db2a1x81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Server

Applications

SC09-4827

db2a2x81

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

1

SC09-4849

db2l1x81

392

CLI

Guide

and

Reference,

Volume

2

Table

165.

Application

development

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

2

SC09-4850

db2l2x81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Application

Integration

Guide

SC27-1124

db2adx81

IBM

DB2

XML

Extender

Administration

and

Programming

SC27-1234

db2sxx81

Business

intelligence

information

The

information

in

these

books

describes

how

to

use

components

that

enhance

the

data

warehousing

and

analytical

capabilities

of

DB2

Universal

Database.

Table

166.

Business

intelligence

information

Name

Form

number

PDF

file

name

IBM

DB2

Warehouse

Manager

Standard

Edition

Information

Catalog

Center

Administration

Guide

SC27-1125

db2dix81

IBM

DB2

Warehouse

Manager

Standard

Edition

Installation

Guide

GC27-1122

db2idx81

IBM

DB2

Warehouse

Manager

Standard

Edition

Managing

ETI

Solution

Conversion

Programs

with

DB2

Warehouse

Manager

SC18-7727

iwhe1mstx80

DB2

Connect

information

The

information

in

this

category

describes

how

to

access

data

on

mainframe

and

midrange

servers

using

DB2

Connect

Enterprise

Edition

or

DB2

Connect

Personal

Edition.

Table

167.

DB2

Connect

information

Name

Form

number

PDF

file

name

IBM

Connectivity

Supplement

No

form

number

db2h1x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition

GC09-4833

db2c6x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition

GC09-4834

db2c1x81

IBM

DB2

Connect

User’s

Guide

SC09-4835

db2c0x81

Getting

started

information

The

information

in

this

category

is

useful

when

you

are

installing

and

configuring

servers,

clients,

and

other

DB2

products.

Appendix

A.

DB2

Universal

Database

technical

information

393

Table

168.

Getting

started

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Clients

GC09-4832,

not

available

in

hardcopy

db2itx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Servers

GC09-4836

db2isx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Personal

Edition

GC09-4838

db2i1x81

IBM

DB2

Universal

Database

Installation

and

Configuration

Supplement

GC09-4837,

not

available

in

hardcopy

db2iyx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Data

Links

Manager

GC09-4829

db2z6x81

Tutorial

information

Tutorial

information

introduces

DB2

features

and

teaches

how

to

perform

various

tasks.

Table

169.

Tutorial

information

Name

Form

number

PDF

file

name

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

No

form

number

db2tux81

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

No

form

number

db2tax81

Information

Catalog

Center

Tutorial

No

form

number

db2aix81

Video

Central

for

e-business

Tutorial

No

form

number

db2twx81

Visual

Explain

Tutorial

No

form

number

db2tvx81

Optional

component

information

The

information

in

this

category

describes

how

to

work

with

optional

DB2

components.

Table

170.

Optional

component

information

Name

Form

number

PDF

file

name

IBM

DB2

Cube

Views

Guide

and

Reference

SC18–7298

db2aax81

IBM

DB2

Query

Patroller

Guide:

Installation,

Administration

and

Usage

Guide

GC09–7658

db2dwx81

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SC27-1226

db2sbx81

394

CLI

Guide

and

Reference,

Volume

2

Table

170.

Optional

component

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Data

Links

Manager

Administration

Guide

and

Reference

SC27-1221

db2z0x82

DB2

Net

Search

Extender

Administration

and

User’s

Guide

Note:

HTML

for

this

document

is

not

installed

from

the

HTML

documentation

CD.

SH12-6740

N/A

Release

notes

The

release

notes

provide

additional

information

specific

to

your

product’s

release

and

FixPak

level.

The

release

notes

also

provide

summaries

of

the

documentation

updates

incorporated

in

each

release,

update,

and

FixPak.

Table

171.

Release

notes

Name

Form

number

PDF

file

name

DB2

Release

Notes

See

note.

See

note.

DB2

Installation

Notes

Available

on

product

CD-ROM

only.

Not

available.

Note:

The

Release

Notes

are

available

in:

v

XHTML

and

Text

format,

on

the

product

CDs

v

PDF

format,

on

the

PDF

Documentation

CD

In

addition

the

portions

of

the

Release

Notes

that

discuss

Known

Problems

and

Workarounds

and

Incompatibilities

Between

Releases

also

appear

in

the

DB2

Information

Center.

To

view

the

Release

Notes

in

text

format

on

UNIX-based

platforms,

see

the

Release.Notes

file.

This

file

is

located

in

the

DB2DIR/Readme/%L

directory,

where

%L

represents

the

locale

name

and

DB2DIR

represents:

v

For

AIX

operating

systems:

/usr/opt/db2_08_01

v

For

all

other

UNIX-based

operating

systems:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

documentation

and

help”

on

page

379

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

396

v

“Ordering

printed

DB2

books”

on

page

396

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

397

Appendix

A.

DB2

Universal

Database

technical

information

395

Printing

DB2

books

from

PDF

files

You

can

print

DB2

books

from

the

PDF

files

on

the

DB2

PDF

Documentation

CD.

Using

Adobe

Acrobat

Reader,

you

can

print

either

the

entire

book

or

a

specific

range

of

pages.

Prerequisites:

Ensure

that

you

have

Adobe

Acrobat

Reader

installed.

If

you

need

to

install

Adobe

Acrobat

Reader,

it

is

available

from

the

Adobe

Web

site

at

www.adobe.com

Procedure:

To

print

a

DB2

book

from

a

PDF

file:

1.

Insert

the

DB2

PDF

Documentation

CD.

On

UNIX

operating

systems,

mount

the

DB2

PDF

Documentation

CD.

Refer

to

your

Quick

Beginnings

book

for

details

on

how

to

mount

a

CD

on

UNIX

operating

systems.

2.

Open

index.htm.

The

file

opens

in

a

browser

window.

3.

Click

on

the

title

of

the

PDF

you

want

to

see.

The

PDF

will

open

in

Acrobat

Reader.

4.

Select

File

→

Print

to

print

any

portions

of

the

book

that

you

want.

Related

concepts:

v

“DB2

Information

Center”

on

page

380

Related

tasks:

v

“Mounting

the

CD-ROM

(AIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(HP-UX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(Linux)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Ordering

printed

DB2

books”

on

page

396

v

“Mounting

the

CD-ROM

(Solaris

Operating

Environment)”

in

the

Quick

Beginnings

for

DB2

Servers

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

391

Ordering

printed

DB2

books

If

you

prefer

to

use

hardcopy

books,

you

can

order

them

in

one

of

three

ways.

Procedure:

Printed

books

can

be

ordered

in

some

countries

or

regions.

Check

the

IBM

Publications

website

for

your

country

or

region

to

see

if

this

service

is

available

in

your

country

or

region.

When

the

publications

are

available

for

ordering,

you

can:

v

Contact

your

IBM

authorized

dealer

or

marketing

representative.

To

find

a

local

IBM

representative,

check

the

IBM

Worldwide

Directory

of

Contacts

at

www.ibm.com/planetwide

v

Phone

1-800-879-2755

in

the

United

States

or

1-800-IBM-4YOU

in

Canada.

396

CLI

Guide

and

Reference,

Volume

2

|
|
|

|
|
|

|

http://www.adobe.com/
http://www.ibm.com/planetwide

v

Visit

the

IBM

Publications

Center

at

http://www.ibm.com/shop/publications/order.

The

ability

to

order

books

from

the

IBM

Publications

Center

may

not

be

available

in

all

countries.

At

the

time

the

DB2

product

becomes

available,

the

printed

books

are

the

same

as

those

that

are

available

in

PDF

format

on

the

DB2

PDF

Documentation

CD.

Content

in

the

printed

books

that

appears

in

the

DB2

Information

Center

CD

is

also

the

same.

However,

there

is

some

additional

content

available

in

DB2

Information

Center

CD

that

does

not

appear

anywhere

in

the

PDF

books

(for

example,

SQL

Administration

routines

and

HTML

samples).

Not

all

books

available

on

the

DB2

PDF

Documentation

CD

are

available

for

ordering

in

hardcopy.

Note:

The

DB2

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books;

install

documentation

updates

as

they

become

available

or

refer

to

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/

to

get

the

most

current

information.

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

396

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

391

Invoking

contextual

help

from

a

DB2

tool

Contextual

help

provides

information

about

the

tasks

or

controls

that

are

associated

with

a

particular

window,

notebook,

wizard,

or

advisor.

Contextual

help

is

available

from

DB2

administration

and

development

tools

that

have

graphical

user

interfaces.

There

are

two

types

of

contextual

help:

v

Help

accessed

through

the

Help

button

that

is

located

on

each

window

or

notebook

v

Infopops,

which

are

pop-up

information

windows

displayed

when

the

mouse

cursor

is

placed

over

a

field

or

control,

or

when

a

field

or

control

is

selected

in

a

window,

notebook,

wizard,

or

advisor

and

F1

is

pressed.

The

Help

button

gives

you

access

to

overview,

prerequisite,

and

task

information.

The

infopops

describe

the

individual

fields

and

controls.

Procedure:

To

invoke

contextual

help:

v

For

window

and

notebook

help,

start

one

of

the

DB2

tools,

then

open

any

window

or

notebook.

Click

the

Help

button

at

the

bottom

right

corner

of

the

window

or

notebook

to

invoke

the

contextual

help.

You

can

also

access

the

contextual

help

from

the

Help

menu

item

at

the

top

of

each

of

the

DB2

tools

centers.

Within

wizards

and

advisors,

click

on

the

Task

Overview

link

on

the

first

page

to

view

contextual

help.

v

For

infopop

help

about

individual

controls

on

a

window

or

notebook,

click

the

control,

then

click

F1.

Pop-up

information

containing

details

about

the

control

is

displayed

in

a

yellow

window.

Appendix

A.

DB2

Universal

Database

technical

information

397

|
|
|

|
|
|
|

|
|

|
|
|

|
|

http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2help/

Note:

To

display

infopops

simply

by

holding

the

mouse

cursor

over

a

field

or

control,

select

the

Automatically

display

infopops

check

box

on

the

Documentation

page

of

the

Tool

Settings

notebook.

Similar

to

infopops,

diagnosis

pop-up

information

is

another

form

of

context-sensitive

help;

they

contain

data

entry

rules.

Diagnosis

pop-up

information

is

displayed

in

a

purple

window

that

appears

when

data

that

is

not

valid

or

that

is

insufficient

is

entered.

Diagnosis

pop-up

information

can

appear

for:

–

Compulsory

fields.

–

Fields

whose

data

follows

a

precise

format,

such

as

a

date

field.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

388

v

“Invoking

message

help

from

the

command

line

processor”

on

page

398

v

“Invoking

command

help

from

the

command

line

processor”

on

page

398

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

399

v

“How

to

use

the

DB2

UDB

help:

Common

GUI

help”

Invoking

message

help

from

the

command

line

processor

Message

help

describes

the

cause

of

a

message

and

describes

any

action

you

should

take

in

response

to

the

error.

Procedure:

To

invoke

message

help,

open

the

command

line

processor

and

enter:

?

XXXnnnnn

where

XXXnnnnn

represents

a

valid

message

identifier.

For

example,

?

SQL30081

displays

help

about

the

SQL30081

message.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

command

help

from

the

command

line

processor

Command

help

explains

the

syntax

of

commands

in

the

command

line

processor.

Procedure:

To

invoke

command

help,

open

the

command

line

processor

and

enter:

?

command

where

command

represents

a

keyword

or

the

entire

command.

For

example,

?

catalog

displays

help

for

all

of

the

CATALOG

commands,

while

?

catalog

database

displays

help

only

for

the

CATALOG

DATABASE

command.

398

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

397

v

“Invoking

the

DB2

Information

Center”

on

page

388

v

“Invoking

message

help

from

the

command

line

processor”

on

page

398

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

399

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

SQL

state

help

from

the

command

line

processor

DB2

Univerrsal

Database

returns

an

SQLSTATE

value

for

conditions

that

could

be

the

result

of

an

SQL

statement.

SQLSTATE

help

explains

the

meanings

of

SQL

states

and

SQL

state

class

codes.

Procedure:

To

invoke

SQL

state

help,

open

the

command

line

processor

and

enter:

?

sqlstate

or

?

class

code

where

sqlstate

represents

a

valid

five-digit

SQL

state

and

class

code

represents

the

first

two

digits

of

the

SQL

state.

For

example,

?

08003

displays

help

for

the

08003

SQL

state,

and

?

08

displays

help

for

the

08

class

code.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

388

v

“Invoking

message

help

from

the

command

line

processor”

on

page

398

v

“Invoking

command

help

from

the

command

line

processor”

on

page

398

DB2

tutorials

The

DB2®

tutorials

help

you

learn

about

various

aspects

of

DB2

Universal

Database.

The

tutorials

provide

lessons

with

step-by-step

instructions

in

the

areas

of

developing

applications,

tuning

SQL

query

performance,

working

with

data

warehouses,

managing

metadata,

and

developing

Web

services

using

DB2.

Before

you

begin:

You

can

view

the

XHTML

versions

of

the

tutorials

from

the

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some

tutorial

lessons

use

sample

data

or

code.

See

each

tutorial

for

a

description

of

any

prerequisites

for

its

specific

tasks.

DB2

Universal

Database

tutorials:

Click

on

a

tutorial

title

in

the

following

list

to

view

that

tutorial.

Appendix

A.

DB2

Universal

Database

technical

information

399

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/db2help/

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

Center

Perform

introductory

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

Perform

advanced

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Information

Catalog

Center

Tutorial

Create

and

manage

an

information

catalog

to

locate

and

use

metadata

using

the

Information

Catalog

Center.

Visual

Explain

Tutorial

Analyze,

optimize,

and

tune

SQL

statements

for

better

performance

using

Visual

Explain.

DB2

troubleshooting

information

A

wide

variety

of

troubleshooting

and

problem

determination

information

is

available

to

assist

you

in

using

DB2®

products.

DB2

documentation

Troubleshooting

information

can

be

found

throughout

the

DB2

Information

Center,

as

well

as

throughout

the

PDF

books

that

make

up

the

DB2

library.

You

can

refer

to

the

″Support

and

troubleshooting″

branch

of

the

DB2

Information

Center

navigation

tree

(in

the

left

pane

of

your

browser

window)

to

see

a

complete

listing

of

the

DB2

troubleshooting

documentation.

DB2

Technical

Support

Web

site

Refer

to

the

DB2

Technical

Support

Web

site

if

you

are

experiencing

problems

and

want

help

finding

possible

causes

and

solutions.

The

Technical

Support

site

has

links

to

the

latest

DB2

publications,

TechNotes,

Authorized

Program

Analysis

Reports

(APARs),

FixPaks

and

the

latest

listing

of

internal

DB2

error

codes,

and

other

resources.

You

can

search

through

this

knowledge

base

to

find

possible

solutions

to

your

problems.

Access

the

DB2

Technical

Support

Web

site

at

http://www.ibm.com/software/data/db2/udb/winos2unix/support

DB2

Problem

Determination

Tutorial

Series

Refer

to

the

DB2

Problem

Determination

Tutorial

Series

Web

site

to

find

information

on

how

to

quickly

identify

and

resolve

problems

you

might

encounter

while

working

with

DB2

products.

One

tutorial

introduces

you

to

the

DB2

problem

determination

facilities

and

tools

available,

and

helps

you

decide

when

to

use

them.

Other

tutorials

deal

with

related

topics,

such

as

″Database

Engine

Problem

Determination″,

″Performance

Problem

Determination″,

and

″Application

Problem

Determination″.

See

the

full

set

of

DB2

problem

determination

tutorials

on

the

DB2

Technical

Support

site

at

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Related

concepts:

v

“DB2

Information

Center”

on

page

380

v

“Introduction

to

problem

determination

-

DB2

Technical

Support

tutorial”

in

the

Troubleshooting

Guide

400

CLI

Guide

and

Reference,

Volume

2

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display.”

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

402.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

402.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Appendix

A.

DB2

Universal

Database

technical

information

401

|
|
|
|

|
|

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

on

page

402

Dotted

decimal

syntax

diagrams

Syntax

diagrams

are

provided

in

dotted

decimal

format

for

users

accessing

the

Information

Center

using

a

screen

reader.

In

dotted

decimal

format,

each

syntax

element

is

written

on

a

separate

line.

If

two

or

more

syntax

elements

are

always

present

together

(or

always

absent

together),

they

can

appear

on

the

same

line,

because

they

can

be

considered

as

a

single

compound

syntax

element.

Each

line

starts

with

a

dotted

decimal

number;

for

example,

3

or

3.1

or

3.1.1.

To

hear

these

numbers

correctly,

make

sure

that

your

screen

reader

is

set

to

read

out

punctuation.

All

the

syntax

elements

that

have

the

same

dotted

decimal

number

(for

example,

all

the

syntax

elements

that

have

the

number

3.1)

are

mutually

exclusive

alternatives.

If

you

hear

the

lines

3.1

USERID

and

3.1

SYSTEMID,

you

know

that

your

syntax

can

include

either

USERID

or

SYSTEMID,

but

not

both.

The

dotted

decimal

numbering

level

denotes

the

level

of

nesting.

For

example,

if

a

syntax

element

with

dotted

decimal

number

3

is

followed

by

a

series

of

syntax

elements

with

dotted

decimal

number

3.1,

all

the

syntax

elements

numbered

3.1

are

subordinate

to

the

syntax

element

numbered

3.

Certain

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers

to

add

information

about

the

syntax

elements.

Occasionally,

these

words

and

symbols

might

occur

at

the

beginning

of

the

element

itself.

For

ease

of

identification,

if

the

word

or

symbol

is

a

part

of

the

syntax

element,

it

is

preceded

by

the

backslash

(\)

character.

The

*

symbol

can

be

used

next

to

a

dotted

decimal

number

to

indicate

that

the

syntax

element

repeats.

For

example,

syntax

element

*FILE

with

dotted

decimal

number

3

is

given

the

format

3

*

FILE.

Format

3*

FILE

indicates

that

syntax

element

FILE

repeats.

Format

3*

*

FILE

indicates

that

syntax

element

*

FILE

repeats.

Characters

such

as

commas,

which

are

used

to

separate

a

string

of

syntax

elements,

are

shown

in

the

syntax

just

before

the

items

they

separate.

These

characters

can

appear

on

the

same

line

as

each

item,

or

on

a

separate

line

with

the

same

dotted

decimal

number

as

the

relevant

items.

The

line

can

also

show

another

symbol

giving

information

about

the

syntax

elements.

For

example,

the

lines

5.1*,

5.1

LASTRUN,

and

5.1

DELETE

mean

that

if

you

use

more

than

one

of

the

402

CLI

Guide

and

Reference,

Volume

2

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

LASTRUN

and

DELETE

syntax

elements,

the

elements

must

be

separated

by

a

comma.

If

no

separator

is

given,

assume

that

you

use

a

blank

to

separate

each

syntax

element.

If

a

syntax

element

is

preceded

by

the

%

symbol,

this

indicates

a

reference

that

is

defined

elsewhere.

The

string

following

the

%

symbol

is

the

name

of

a

syntax

fragment

rather

than

a

literal.

For

example,

the

line

2.1

%OP1

means

that

you

should

refer

to

separate

syntax

fragment

OP1.

The

following

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers:

v

?

means

an

optional

syntax

element.

A

dotted

decimal

number

followed

by

the

?

symbol

indicates

that

all

the

syntax

elements

with

a

corresponding

dotted

decimal

number,

and

any

subordinate

syntax

elements,

are

optional.

If

there

is

only

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

the

same

line

as

the

syntax

element,

(for

example

5?

NOTIFY).

If

there

is

more

than

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

a

line

by

itself,

followed

by

the

syntax

elements

that

are

optional.

For

example,

if

you

hear

the

lines

5

?,

5

NOTIFY,

and

5

UPDATE,

you

know

that

syntax

elements

NOTIFY

and

UPDATE

are

optional;

that

is,

you

can

choose

one

or

none

of

them.

The

?

symbol

is

equivalent

to

a

bypass

line

in

a

railroad

diagram.

v

!

means

a

default

syntax

element.

A

dotted

decimal

number

followed

by

the

!

symbol

and

a

syntax

element

indicates

that

the

syntax

element

is

the

default

option

for

all

syntax

elements

that

share

the

same

dotted

decimal

number.

Only

one

of

the

syntax

elements

that

share

the

same

dotted

decimal

number

can

specify

a

!

symbol.

For

example,

if

you

hear

the

lines

2?

FILE,

2.1!

(KEEP),

and

2.1

(DELETE),

you

know

that

(KEEP)

is

the

default

option

for

the

FILE

keyword.

In

this

example,

if

you

include

the

FILE

keyword

but

do

not

specify

an

option,

default

option

KEEP

will

be

applied.

A

default

option

also

applies

to

the

next

higher

dotted

decimal

number.

In

this

example,

if

the

FILE

keyword

is

omitted,

default

FILE(KEEP)

is

used.

However,

if

you

hear

the

lines

2?

FILE,

2.1,

2.1.1!

(KEEP),

and

2.1.1

(DELETE),

the

default

option

KEEP

only

applies

to

the

next

higher

dotted

decimal

number,

2.1

(which

does

not

have

an

associated

keyword),

and

does

not

apply

to

2?

FILE.

Nothing

is

used

if

the

keyword

FILE

is

omitted.

v

*

means

a

syntax

element

that

can

be

repeated

0

or

more

times.

A

dotted

decimal

number

followed

by

the

*

symbol

indicates

that

this

syntax

element

can

be

used

zero

or

more

times;

that

is,

it

is

optional

and

can

be

repeated.

For

example,

if

you

hear

the

line

5.1*

data

area,

you

know

that

you

can

include

one

data

area,

more

than

one

data

area,

or

no

data

area.

If

you

hear

the

lines

3*,

3

HOST,

and

3

STATE,

you

know

that

you

can

include

HOST,

STATE,

both

together,

or

nothing.

Notes:

1.

If

a

dotted

decimal

number

has

an

asterisk

(*)

next

to

it

and

there

is

only

one

item

with

that

dotted

decimal

number,

you

can

repeat

that

same

item

more

than

once.

2.

If

a

dotted

decimal

number

has

an

asterisk

next

to

it

and

several

items

have

that

dotted

decimal

number,

you

can

use

more

than

one

item

from

the

list,

but

you

cannot

use

the

items

more

than

once

each.

In

the

previous

example,

you

could

write

HOST

STATE,

but

you

could

not

write

HOST

HOST.

3.

The

*

symbol

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.
v

+

means

a

syntax

element

that

must

be

included

one

or

more

times.

A

dotted

decimal

number

followed

by

the

+

symbol

indicates

that

this

syntax

element

must

be

included

one

or

more

times;

that

is,

it

must

be

included

at

least

once

Appendix

A.

DB2

Universal

Database

technical

information

403

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

and

can

be

repeated.

For

example,

if

you

hear

the

line

6.1+

data

area,

you

must

include

at

least

one

data

area.

If

you

hear

the

lines

2+,

2

HOST,

and

2

STATE,

you

know

that

you

must

include

HOST,

STATE,

or

both.

Similar

to

the

*

symbol,

the

+

symbol

can

only

repeat

a

particular

item

if

it

is

the

only

item

with

that

dotted

decimal

number.

The

+

symbol,

like

the

*

symbol,

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.

Related

concepts:

v

“Accessibility”

on

page

401

Related

tasks:

v

“Contents

:

Common

help”

Related

reference:

v

“How

to

read

the

syntax

diagrams”

in

the

SQL

Reference,

Volume

2

Common

Criteria

certification

of

DB2

Universal

Database

products

DB2

Universal

Database

is

being

evaluated

for

certification

under

the

Common

Criteria

at

evaluation

assurance

level

4

(EAL4).

For

more

information

about

Common

Criteria,

see

the

Common

Criteria

web

site

at:

http://niap.nist.gov/cc-
scheme/.

404

CLI

Guide

and

Reference,

Volume

2

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

http://niap.nist.gov/cc-scheme/
http://niap.nist.gov/cc-scheme/

Appendix

B.

Notices

for

the

DB2

Call

Level

Interface

Guide

and

Reference

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1993

-

2004

405

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

406

CLI

Guide

and

Reference,

Volume

2

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

This

book

incorporates

text

which

is

copyright

The

X/Open

Company

Limited.

The

text

was

taken

by

permission

from:

X/Open

CAE

Specification,

March

1995,

Data

Management:

SQL

Call

Level

Interface

(CLI)

(ISBN:

1-85912-081-4,

C451).

X/Open

Preliminary

Specification,

March

1995,

Data

Management:

Structured

Query

Language

(SQL),

Version

2

(ISBN:

1-85912-093-8,

P446).

This

book

incorporates

text

which

is

copyright

1992,

1993,

1994,

1997

by

Microsoft

Corporation.

The

text

was

taken

by

permission

from

Microsoft’s

ODBC

2.0

Programmer’s

Reference

and

SDK

Guide

ISBN

1-55615-658-8,

and

from

Microsoft’s

ODBC

3.0

Software

Development

Kit

and

Programmer’s

Reference

ISBN

1-57231-516-4.

Appendix

B.

Notices

for

the

DB2

Call

Level

Interface

Guide

and

Reference

407

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

408

CLI

Guide

and

Reference,

Volume

2

Index

A
accessibility

dotted

decimal

syntax

diagrams

402

features

401

allocating

CLI

handles
function

6

B
BIGINT

SQL

data

type
display

size

376

length

375

precision

373

scale

374

BINARY

SQL

data

type
display

size

376

length

375

precision

373

scale

374

binding
application

variables
CLI

function

108

array

of

columns
CLI

function

108

columns
CLI

function

9

file

references

to

LOB

column

16

file

references

to

LOB

parameters

20

parameter

markers
CLI

function

23

BLOB

SQL

data

type
display

size

376

length

375

precision

373

scale

374

build

DATALINK

value

CLI

function

41

bulk

operations

CLI

function

43

C
cancel

statement

CLI

function

49

CHAR

SQL

data

type
display

size

376

length

375

precision

373

scale

374

CLI

(call

level

interface)
connection

pooling

317

functions
by

category

1

supported

177

CLOB

(character

large

object)
data

type
display

size

376

length

375

precision

373

scale

374

closing

cursor

CLI

function

51

columns
column

attribute

function,

CLI

53

command

help
invoking

398

connecting
to

data

source

CLI

function

73,

90

connection

handles
allocating

6

freeing

139

connections
attributes

getting

145

list

321

setting

264

switching

in

mixed

applications

268

copying

descriptors

CLI

function

76

cursor

name
getting,

CLI

function

148

setting,

CLI

function

270

cursors
CLI

(call

level

interface)
closing

51

positioning

rules

for

SQLFetchScroll

131

D
data

conversion
display

size,

SQL

data

types

376

length,

SQL

data

types

375

precision

of

SQL

data

types

373

scale,

SQL

data

types

374

data

sources
connecting

to
CLI

function

36,

73,

90

disconnecting

from
CLI

function

88

DATALINK

data

type
build

DATALINK

value

41

getting,

CLI

function

157

DATE

SQL

data

type
display

size

376

length

375

precision

373

scale

374

DB2

books
printing

PDF

files

396

DB2

CLI
functions

1

DB2

Information

Center

380

invoking

388

DB2

tutorials

399

DBCLOB

SQL

data

type
display

size

376

length

375

precision

373

scale

374

DECIMAL

data

type
display

size

376

length

375

precision

373

scale

374

deprecated

CLI

functions
SQLAllocConnect

5

SQLAllocEnv

6

SQLAllocStmt

9

SQLColAttributes

62

SQLError

99

SQLExtendedFetch

112

SQLFreeConnect

138

SQLFreeEnv

139

SQLGetConnectOption

148

SQLGetSQLCA

214

SQLGetStmtOption

218

SQLParamOptions

240

SQLSetColAttributes

264

SQLSetConnectOption

270

SQLSetParam

283

SQLSetStmtOption

297

SQLTransact

316

describing
column

attributes

CLI

function

82

descriptor

handles
allocating

6

freeing

139

descriptors
copying,

CLI

function

76

FieldIdentifier

argument

values

351

getting

multiple

fields,

CLI

function

163

getting

single

field,

CLI

function

159

header

field

values

351

header

fields
initialization

values

362

record

field

values

351

record

fields
initialization

values

362

setting

multiple

fields,

CLI

function

278

setting

single

field,

CLI

function

273

DiagIdentifier

argument
header

fields

369

record

fields

369

diagnostics
getting

diagnostic

data

field,

CLI

function

167

getting

multiple

fields,

CLI

function

172

disability

401

disconnecting

CLI

function

88

display

size

of

SQL

data

types

376

documentation
displaying

388

dotted

decimal

syntax

diagrams

402

DOUBLE

data

type
display

size

376

length

375

precision

373

scale

374

E
ending

transactions

CLI

function

96

©

Copyright

IBM

Corp.

1993

-

2004

409

environment

attributes
getting

current,

CLI

function

175

setting,

CLI

function

281

environment

handles
allocating

6

freeing

139

executing

statements

CLI

function

105

executing

statements

directly

CLI

function

100

F
fetching

next

row

CLI

function

117

rowset

CLI

function

125

FLOAT

SQL

data

type
display

size

376

length

375

precision

373

scale

374

foreign

keys
columns,

CLI

function

133

freeing

CLI

handles
CLI

function

139

statement

handles

142

G
getting

attribute

settings

CLI

function

145

column

information

CLI

function

66

column

privileges

CLI

function

63

connection

attributes

CLI

function

36

cursor

name

CLI

function

148

data

function

CLI

function

151

data

sources

CLI

function

79

data

type

information

CLI

function

222

DATALINK

data

type,

CLI

function

157

diagnostic

data

field

CLI

function

167

environment

attributes,

CLI

function

175

foreign

key

columns

CLI

function

133

index

and

statistics

CLI

function

302

information

CLI

function

178

LOB

value

length

CLI

function

209

multiple

descriptor

fields

CLI

function

163

multiple

diagnostic

fields

CLI

function

172

native

SQL

text

CLI

function

229

number

parameters

CLI

function

231

number

result

columns

CLI

function

235

parameter

data

CLI

function

237

parameter

marker

description

CLI

function

85

portion

of

LOB

value

CLI

function

219

primary

key

columns

CLI

function

245

procedure

name

list

CLI

function

255

getting

(continued)
procedure

parameters

CLI

function

248

row

count

CLI

function

262

single

descriptor

field

CLI

function

159

special

columns

CLI

function

297

statement

attributes

CLI

function

215

string

start

position

CLI

function

211

supported

functions,

CLI

function

177

table

information

CLI

function

312

GRAPHIC

SQL

data

type
display

size

376

length

375

precision

373

scale

374

H
handles

freeing

139

help
displaying

388,

390

for

commands
invoking

398

for

messages
invoking

398

for

SQL

statements
invoking

399

HTML

documentation
updating

389

I
indexes

getting

information,

CLI

function

302

Information

Center
installing

381,

384,

386

installing
Information

Center

381,

384,

386

INTEGER

SQL

data

type
display

size

376

length

375

precision

373

scale

374

invoking
command

help

398

message

help

398

SQL

statement

help

399

K
keyboard

shortcuts
support

for

401

L
length

SQL

data

types

375

LONGVARBINARY

data

type
display

size

376

length

375

precision

373

LONGVARBINARY

L

data

type
scale

374

LONGVARCHAR

data

type
display

size

376

length

375

precision

373

scale

374

LONGVARGRAPHIC

data

type
display

size

376

length

375

precision

373

scale

374

M
message

help
invoking

398

more

result

sets

CLI

function

227

N
native

SQL

text

CLI

function

229

NUMERIC

SQL

data

type
display

size

376

length

375

precision

373

scale

374

O
online

help,

accessing

397

ordering

DB2

books

396

P
parameter

markers
getting

description,

CLI

function

85

number

of,

CLI

function

231

parameters
getting

information,

CLI

function

248

putting

data

in,

CLI

function

259

precision
SQL

data

types

373

prepared

SQL

statements
in

CLI

applications
extended

112

syntax

240

primary

keys
columns,

getting,

CLI

function

245

printed

books,

ordering

396

printing
PDF

files

396

problem

determination
online

information

400

tutorials

400

procedure

name
getting,

CLI

function

255

putting

parameter

data

in,

CLI

function

259

R
REAL

SQL

data

type
display

size

376

410

CLI

Guide

and

Reference,

Volume

2

REAL

SQL

data

type

(continued)
length

375

precision

373

scale

374

result

columns
getting

number

of,

CLI

function

235

result

sets
associating

with

handle,

CLI

function

233

CLI

function

227

returning

column

attributes

53

row

identifier

columns
getting,

CLI

function

297

row

sets
fetching,

CLI

function

125

setting

cursor

position,

CLI

function

284

rows
getting

count,

CLI

function

262

S
scale

of

SQL

data

types

374

settings
connection

attributes

CLI

function

264

cursor

name

CLI

function

270

cursor

position

CLI

function

284

environment

attributes

CLI

function

281

multiple

descriptor

fields

CLI

function

278

single

descriptor

field

CLI

function

273

statement

attributes

CLI

function

112,

291

SMALLINT

data

type
display

size

376

length

375

precision

373

scale

374

SQL

data

types
display

size

376

length

375

precision

373

scale

374

SQL

statement

help
invoking

399

SQL_ATTR_
ACCESS_MODE

321

APP_PARAM_DESC

334

APP_ROW_DESC

334

AUTO_IPD

321

AUTOCOMMIT

321

BIND_TYPE

334

BLOCK_FOR_NROWS

334

BLOCK_LOBS

334

CALL_RETURN

334

CHAINING_BEGIN

334

CHAINING_END

334

CLIENT_LOB_BUFFERING

334

CLISCHEMA

321

CLOSE_BEHAVIOR

321

CLOSEOPEN

334

CONCURRENCY

334

CONN_CONTEXT

321

SQL_ATTR_

(continued)
CONNECT_NODE

321

CONNECTION_DEAD

321

CONNECTION_POOLING

317

CONNECTION_TIMEOUT

321

CONNECTTYPE

317,

321

CP_MATCH

317

CURRENT_CATALOG

321

CURRENT_PACKAGE_PATH

321

CURRENT_PACKAGE_SET

321

CURRENT_SCHEMA

321

CURSOR_HOLD

334

CURSOR_SCROLLABLE

334

CURSOR_SENSITIVITY

334

CURSOR_TYPE

334

DB2_NOBINDOUT

334

DB2_SQLERRP

321

DB2ESTIMATE

321

DB2EXPLAIN

321

DEFERRED_PREPARE

334

EARLYCLOSE

334

ENABLE_AUTO_IPD

334

ENLIST_IN_DTC

321

FETCH_BOOKMARK_PTR

334

IMP_PARAM_DESC

334

IMP_ROW_DESC

334

INFO_ACCTSTR

321

INFO_APPLNAME

321

INFO_PROGRAMID

321

INFO_PROGRAMNAME

321

INFO_USERID

321

INFO_WRKSTNNAME

321

INSERT_BUFFERING

334

KEEP_DYNAMIC

321

KEYSET_SIZE

334

LOAD_INFO

334

LOAD_ROWS_COMMITTED_PTR

334

LOAD_ROWS_DELETED_PTR

334

LOAD_ROWS_LOADED_PTR

334

LOAD_ROWS_READ_PTR

334

LOAD_ROWS_REJECTED_PTR

334

LOAD_ROWS_SKIPPED_PTR

334

LOGIN_TIMEOUT

321

LONGDATA_COMPAT

321

MAX_LENGTH

334

MAX_ROWS

334

MAXCONN

317,

321

METADATA_ID

321,

334

NODESCRIBE

334

NOSCAN

334

ODBC_CURSORS

321

ODBC_VERSION

317

OPTIMIZE_FOR_NROWS

334

OPTIMIZE_SQLCOLUMNS

334

OUTPUT_NTS

317

PACKET_SIZE

321

PARAM_BIND_OFFSET_PTR

334

PARAM_BIND_TYPE

334

PARAM_OPERATION_PTR

334

PARAM_STATUS_PTR

334

PARAMOPT_ATOMIC

334

PARAMS_PROCESSED_PTR

334

PARAMSET_SIZE

334

PREFETCH

334

PROCESSCTRL

317

QUERY_OPTIMIZATION_LEVEL

334

QUERY_TIMEOUT

334

SQL_ATTR_

(continued)
QUIET_MODE

321

RETRIEVE_DATA

334

RETURN_USER_DEFINED_TYPES

334

ROW_ARRAY_SIZE

334

ROW_BIND_OFFSET_PTR

334

ROW_BIND_TYPE

334

ROW_NUMBER

334

ROW_OPERATION_PTR

334

ROW_STATUS_PTR

334

ROWS_FETCHED_PTR

334

ROWSET_SIZE

334

SIMULATE_CURSOR

334

STMTTXN_ISOLATION

334

SYNC_POINT

317,

321

TRACE

321

TRACEFILE

321

TRANSLATE_LIB

321

TRANSLATE_OPTION

321

TXN_ISOLATION

321,

334

USE_2BYTES_OCTET_LENGTH

317

USE_BOOKMARKS

334

USE_LIGHT_OUTPUT_SQLDA

317

USE_LOAD_API

334

WCHARTYPE

321

SQL_DESC_
ALLOC_TYPE

351

initialization

value

362

ARRAY_SIZE

351

initialization

value

362

ARRAY_STATUS_PTR

351

initialization

value

362

AUTO_UNIQUE_VALUE

53,

351

initialization

value

362

BASE_COLUMN_NAME

53,

351

initialization

value

362

BASE_TABLE_NAME

53

initialization

value

362

BIND_OFFSET_PTR

351

initialization

value

362

BIND_TYPE

351

initialization

value

362

CASE_SENSITIVE

53,

351

initialization

value

362

CATALOG_NAME

53,

351

initialization

value

362

CONCISE_TYPE

53,

351

initialization

value

362

COUNT

53

COUNT_ALL

351

DATA_PTR

351

initialization

value

362

DATETIME_INTERVAL_

CODE

351

initialization

value

362

DATETIME_INTERVAL_

PRECISION

351

initialization

value

362

DISPLAY_SIZE

53,

351

initialization

value

362

DISTINCT_TYPE

53

FIXED_PREC_SCALE

53,

351

initialization

value

362

INDICATOR_PTR

351

initialization

value

362

LABEL

53,

351

LENGTH

53,

351

initialization

value

362

Index

411

SQL_DESC_

(continued)
LITERAL_PREFIX

53,

351

initialization

value

362

LITERAL_SUFFIX

53,

351

initialization

value

362

LOCAL_TYPE_NAME

53,

351

initialization

value

362

NAME

53,

351

initialization

value

362

NULLABLE

53,

351

initialization

value

362

NUM_PREC_RADIX

351

initialization

value

362

NUM_PREX_RADIX

53

OCTET_LENGTH

53,

351

initialization

value

362

OCTET_LENGTH_PTR

351

initialization

value

362

PARAMETER_TYPE

351

initialization

value

362

PRECISION

53,

351

initialization

value

362

ROWS_PROCESSED_PTR

351

initialization

value

362

SCALE

53,

351

initialization

value

362

SCHEMA_NAME

53,

351

initialization

value

362

SEARCHABLE

53,

351

initialization

value

362

TABLE_NAME

53,

351

initialization

value

362

TYPE

53,

351

initialization

value

362

TYPE_NAME

53,

351

initialization

value

362

UNNAMED

53,

351

initialization

value

362

UNSIGNED

53,

351

initialization

value

362

UPDATABLE

53,

351

initialization

value

362

SQL_DIAG_
CLASS_ORIGIN

369

COLUMN_NUMBER

369

CONNECTION_NAME

369

CURSOR_ROW_COUNT

369

DYNAMIC_FUNCTION

369

DYNAMIC_FUNCTION_
CODE

369

MESSAGE_TEXT

369

NATIVE

369

NUMBER

369

RETURNCODE

369

ROW_COUNT

369

ROW_NUMBER

369

SERVER_NAME

369

SQLSTATE

369

SUBCLASS_ORIGIN

369

SQLAllocConnect

deprecated

CLI

function

5

SQLAllocEnv

deprecated

CLI

function

6

SQLAllocHandle

CLI

function

6

SQLAllocStmt

deprecated

CLI

function

9

SQLBindCol

CLI

function

9

SQLBindFileToCol

CLI

function

16

SQLBindFileToParam

CLI

function

20

SQLBindParameter

CLI

function

23

SQLBrowseConnect

CLI

function
syntax

36

SQLBuildDataLink

CLI

function

41

SQLBulkOperations

CLI

function
syntax

43

SQLCancel

CLI

function

49

SQLCloseCursor

CLI

function

51

SQLColAttribute

CLI

function
syntax

53

SQLColAttributes

deprecated

CLI

function

62

SQLColumnPrivileges

CLI

function
syntax

63

SQLColumns

CLI

function
syntax

66

SQLConnect

CLI

function
syntax

73

SQLCopyDesc

CLI

function

76

SQLDataSources

CLI

function
syntax

79

SQLDescribeCol

CLI

function
syntax

82

SQLDescribeParam

CLI

function

85

SQLDisconnect

CLI

function

88

SQLDriverConnect

CLI

function
syntax

90

SQLEndTran

CLI

function

96

SQLError

deprecated

CLI

function

99

SQLExecDirect

CLI

function
syntax

100

SQLExecute

CLI

function
syntax

105

SQLExtendedBind

CLI

function

108

SQLExtendedFetch

deprecated

CLI

function

112

SQLExtendedPrepare

CLI

function
syntax

112

SQLFetch

CLI

function
syntax

117

SQLFetchScroll

CLI

function
cursor

positioning

rules

131

syntax

125

SQLForeignKeys

CLI

function
syntax

133

SQLFreeConnect

deprecated

CLI

function

138

SQLFreeEnv

deprecated

CLI

function

139

SQLFreeHandle

CLI

function

139

SQLFreeStmt

CLI

function
syntax

142

SQLGetConnectAttr

CLI

function
syntax

145

SQLGetConnectOption

deprecated

CLI

function

148

SQLGetCursorName

CLI

function
syntax

148

SQLGetData

CLI

function
syntax

151

SQLGetDataLinkAttr

CLI

function

157

SQLGetDescField

CLI

function
syntax

159

SQLGetDescRec

CLI

function
syntax

163

SQLGetDiagField

CLI

function
syntax

167

SQLGetDiagRec

CLI

function
syntax

172

SQLGetEnvAttr

CLI

function

175

SQLGetFunctions

CLI

function

177

SQLGetInfo

CLI

function
syntax

178

SQLGetLength

CLI

function

209

SQLGetPosition

CLI

function

211

SQLGetSQLCA

deprecated

CLI

function

214

SQLGetStmtAttr

CLI

function
syntax

215

SQLGetStmtOption

deprecated

CLI

function

218

SQLGetSubString

CLI

function

219

SQLGetTypeInfo

CLI

function

222

SQLMoreResults

CLI

function

227

SQLNativeSql

CLI

function
syntax

229

SQLNextResult

CLI

function

233

SQLNumParams

CLI

function

231

SQLNumResultCols

CLI

function
syntax

235

SQLParamData

CLI

function

237

SQLParamOptions

deprecated

CLI

function

240

SQLPrepare

CLI

function
syntax

240

SQLPrimaryKeys

CLI

function
syntax

245

SQLProcedureColumns

CLI

function
syntax

248

SQLProcedures

CLI

function
syntax

255

SQLPutData

CLI

function

259

SQLRowCount

CLI

function
syntax

262

SQLSetColAttributes

deprecated

CLI

function

264

SQLSetConnectAttr

CLI

function
syntax

264

SQLSetConnection

CLI

function

268

SQLSetConnectOption

deprecated

CLI

function
syntax

270

SQLSetCursorName

CLI

function
syntax

270

SQLSetDescField

CLI

function
syntax

273

SQLSetDescRec

CLI

function

278

SQLSetEnvAttr

CLI

function

281

SQLSetParam

deprecated

CLI

function

283

SQLSetPos

CLI

function

284

SQLSetStmtAttr

CLI

function
syntax

291

SQLSetStmtOption

deprecated

CLI

function

297

SQLSpecialColumns

CLI

function

297

SQLStatistics

CLI

function

302

SQLTablePrivileges

CLI

function
syntax

308

SQLTables

CLI

function
syntax

312

412

CLI

Guide

and

Reference,

Volume

2

SQLTransact

deprecated

CLI

function

316

statement

attributes
getting

215

list

334

setting,

CLI

function

291

statement

handles
allocating

6

freeing

139

statistics

CLI

function

302

T
table

privileges

CLI

function

308

tables
get

table

information,

CLI

function

312

TIME

SQL

data

type
display

size

376

length

375

precision

373

scale

374

TIMESTAMP

data

type
display

size

376

length

375

precision

373

scale

374

transactions
ending

in

CLI

96

troubleshooting
online

information

400

tutorials

400

tutorials

399

troubleshooting

and

problem

determination

400

U
Updating

HMTL

documentation

389

V
VARBINARY

SQL

data

type
display

size

376

length

375

precision

373

scale

374

VARCHAR

data

type
display

size

376

length

375

precision

373

scale

374

VARGRAPHIC

data

type
display

size

376

length

375

precision

373

scale

374

W
WCHAR

SQL

data

type
display

size

376

length

375

precision

373

WCHAR

SQL

data

type

(continued)
scale

374

WLONGVARCHAR

SQL

data

type
display

size

376

length

375

precision

373

scale

374

WVARCHAR

SQL

data

type
display

size

376

length

375

precision

373

scale

374

Index

413

414

CLI

Guide

and

Reference,

Volume

2

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

http://www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

http://www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

product

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1993

-

2004

415

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

416

CLI

Guide

and

Reference,

Volume

2

����

Printed

in

USA

SC09-4850-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

®

D
B

2

U
ni

ve
rs

al

D
at

ab
as

e™

C
LI

G
ui

de

an
d

R
ef

er
en

ce
,

Vo
lu

m
e

2

Ve
rs

io
n

8.
2

	Contents
	Chapter 1. DB2 CLI functions
	CLI and ODBC function summary
	SQLAllocConnect function (CLI) - Allocate connection handle
	SQLAllocEnv function (CLI) - Allocate environment handle
	SQLAllocHandle function (CLI) - Allocate handle
	SQLAllocStmt function (CLI) - Allocate a statement handle
	SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator
	SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB column
	SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB parameter
	SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator
	SQLBrowseConnect function (CLI) - Get required attributes to connect to data source
	SQLBuildDataLink function (CLI) - Build DATALINK value
	SQLBulkOperations function (CLI) - Add, update, delete or fetch a set of rows
	SQLCancel function (CLI) - Cancel statement
	SQLCloseCursor function (CLI) - Close cursor and discard pending results
	SQLColAttribute function (CLI) - Return a column attribute
	SQLColAttributes function (CLI) - Get column attributes
	SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a table
	SQLColumns function (CLI) - Get column information for a table
	SQLConnect function (CLI) - Connect to a data source
	SQLCopyDesc function (CLI) - Copy descriptor information between handles
	SQLDataSources function (CLI) - Get list of data sources
	SQLDescribeCol function (CLI) - Return a set of attributes for a column
	SQLDescribeParam function (CLI) - Return description of a parameter marker
	SQLDisconnect function (CLI) - Disconnect from a data source
	SQLDriverConnect function (CLI) - (Expanded) Connect to a data source
	SQLEndTran function (CLI) - End transactions of a connection or an Environment
	SQLError function (CLI) - Retrieve error information
	SQLExecDirect function (CLI) - Execute a statement directly
	SQLExecute function (CLI) - Execute a statement
	SQLExtendedBind function (CLI) - Bind an array of columns
	SQLExtendedFetch function (CLI) - Extended fetch (fetch array of rows)
	SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes
	SQLFetch function (CLI) - Fetch next row
	SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns
	Cursor positioning rules for SQLFetchScroll() (CLI)
	SQLForeignKeys function (CLI) - Get the list of foreign key columns
	SQLFreeConnect function (CLI) - Free connection handle
	SQLFreeEnv function (CLI) - Free environment handle
	SQLFreeHandle function (CLI) - Free handle resources
	SQLFreeStmt function (CLI) - Free (or reset) a statement handle
	SQLGetConnectAttr function (CLI) - Get current attribute setting
	SQLGetConnectOption function (CLI) - Return current setting of a connect option
	SQLGetCursorName function (CLI) - Get cursor name
	SQLGetData function (CLI) - Get data from a column
	SQLGetDataLinkAttr function (CLI) - Get DataLink attribute value
	SQLGetDescField function (CLI) - Get single field settings of descriptor record
	SQLGetDescRec function (CLI) - Get multiple field settings of descriptor record
	SQLGetDiagField function (CLI) - Get a field of diagnostic data
	SQLGetDiagRec function (CLI) - Get multiple fields settings of diagnostic record
	SQLGetEnvAttr function (CLI) - Retrieve current environment attribute value
	SQLGetFunctions function (CLI) - Get functions
	SQLGetInfo function (CLI) - Get general information
	SQLGetLength function (CLI) - Retrieve length of a string value
	SQLGetPosition function (CLI) - Return starting position of string
	SQLGetSQLCA function (CLI) - Get SQLCA data structure
	SQLGetStmtAttr function (CLI) - Get current setting of a statement attribute
	SQLGetStmtOption function (CLI) - Return current setting of a statement option
	SQLGetSubString function (CLI) - Retrieve portion of a string value
	SQLGetTypeInfo function (CLI) - Get data type information
	SQLMoreResults function (CLI) - Determine if there are more result sets
	SQLNativeSql function (CLI) - Get native SQL text
	SQLNumParams function (CLI) - Get number of parameters in a SQL statement
	SQLNextResult function (CLI) - Associate next result set with another statement handle
	SQLNumResultCols function (CLI) - Get number of result columns
	SQLParamData function (CLI) - Get next parameter for which a data value is needed
	SQLParamOptions function (CLI) - Specify an input array for a parameter
	SQLPrepare function (CLI) - Prepare a statement
	SQLPrimaryKeys function (CLI) - Get primary key columns of a table
	SQLProcedureColumns function (CLI) - Get input/output parameter information for a procedure
	SQLProcedures function (CLI) - Get list of procedure names
	SQLPutData function (CLI) - Passing data value for a parameter
	SQLRowCount function (CLI) - Get row count
	SQLSetColAttributes function (CLI) - Set column attributes
	SQLSetConnectAttr function (CLI) - Set connection attributes
	SQLSetConnection function (CLI) - Set connection handle
	SQLSetConnectOption function (CLI) - Set connection option
	SQLSetCursorName function (CLI) - Set cursor name
	SQLSetDescField function (CLI) - Set a single field of a descriptor record
	SQLSetDescRec function (CLI) - Set multiple descriptor fields for a column or parameter data
	SQLSetEnvAttr function (CLI) - Set environment attribute
	SQLSetParam function (CLI) - Bind a parameter marker to a buffer or LOB locator
	SQLSetPos function (CLI) - Set the cursor position in a rowset
	SQLSetStmtAttr function (CLI) - Set options related to a statement
	SQLSetStmtOption function (CLI) - Set statement option
	SQLSpecialColumns function (CLI) - Get special (row identifier) columns
	SQLStatistics function (CLI) - Get index and statistics information for a base table
	SQLTablePrivileges function (CLI) - Get privileges associated with a table
	SQLTables function (CLI) - Get table information
	SQLTransact function (CLI) - Transaction management

	Chapter 2. CLI attributes - environment, connection, and statement
	Environment attributes (CLI) list
	Connection attributes (CLI) list
	Statement attributes (CLI) list

	Chapter 3. Descriptor FieldIdentifier and initialization values
	Descriptor FieldIdentifier argument values (CLI)
	Descriptor header and record field initialization values (CLI)

	Chapter 4. DiagIdentifier argument values
	Header and record fields for the DiagIdentifier argument (CLI)

	Chapter 5. Data type attributes
	Data type precision (CLI) table
	Data type scale (CLI) table
	Data type length (CLI) table
	Data type display (CLI) table

	Appendix A. DB2 Universal Database technical information
	DB2 documentation and help
	DB2 documentation updates

	DB2 Information Center
	DB2 Information Center installation scenarios
	Installing the DB2 Information Center using the DB2 Setup wizard (UNIX)
	Installing the DB2 Information Center using the DB2 Setup wizard (Windows)
	Invoking the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Displaying topics in your preferred language in the DB2 Information Center
	DB2 PDF and printed documentation
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Invoking contextual help from a DB2 tool
	Invoking message help from the command line processor
	Invoking command help from the command line processor
	Invoking SQL state help from the command line processor
	DB2 tutorials
	DB2 troubleshooting information
	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Dotted decimal syntax diagrams
	Common Criteria certification of DB2 Universal Database products

	Appendix B. Notices for the DB2 Call Level Interface Guide and Reference
	Trademarks

	Index
	Contacting IBM
	Product information

