
IBM
®

DB2

Universal

Database
™

Call

Level

Interface

Guide

and

Reference,

Volume

1

Version

8.2

SC09-4849-01

���

IBM
®

DB2

Universal

Database
™

Call

Level

Interface

Guide

and

Reference,

Volume

1

Version

8.2

SC09-4849-01

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Notices.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative.

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

To

order

DB2

publications

from

DB2

Marketing

and

Sales

in

the

United

States

or

Canada,

call

1-800-IBM-4YOU

(426-4968).

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1993

-

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

Part

1.

CLI

background

information

1

Chapter

1.

Introduction

to

CLI

.

.

.

.

. 3

Introduction

to

CLI

.

.

.

.

.

.

.

.

.

.

.

. 3

DB2

Call

Level

Interface

(CLI)

versus

embedded

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Advantages

of

DB2

CLI

over

embedded

SQL

.

.

. 5

When

to

use

DB2

CLI

or

embedded

SQL

.

.

.

.

. 7

Chapter

2.

DB2

CLI

and

ODBC

.

.

.

.

. 9

Comparison

of

DB2

CLI

and

Microsoft

ODBC

.

.

. 9

Part

2.

Programming

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

. 13

Chapter

3.

Writing

a

basic

CLI

application

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Initialization

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Handles

in

CLI

.

.

.

.

.

.

.

.

.

.

.

. 15

Initialization

and

termination

in

CLI

overview

.

. 17

Initializing

CLI

applications

.

.

.

.

.

.

.

. 18

Transaction

processing

.

.

.

.

.

.

.

.

.

.

. 20

Transaction

processing

in

CLI

overview

.

.

.

. 20

Allocating

statement

handles

in

CLI

applications

22

Issuing

SQL

statements

in

CLI

applications

.

.

. 23

Preparing

and

executing

SQL

statements

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Deferred

prepare

in

CLI

applications

.

.

.

.

. 25

Parameter

marker

binding

in

CLI

applications

.

. 26

Binding

parameter

markers

in

CLI

applications

28

Commit

modes

in

CLI

applications

.

.

.

.

. 29

When

to

call

the

CLI

SQLEndTran()

function

.

. 31

Retrieving

query

results

in

CLI

applications

.

. 32

Updating

and

deleting

data

in

CLI

applications

35

Freeing

statement

resources

in

CLI

applications

36

Handle

freeing

in

CLI

applications

.

.

.

.

. 38

Data

types

and

data

conversion

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 39

SQL

symbolic

and

default

data

types

for

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 41

C

data

types

for

CLI

applications

.

.

.

.

.

. 42

String

handling

in

CLI

applications

.

.

.

.

. 45

Diagnostics

in

CLI

applications

overview

.

.

. 47

CLI

function

return

codes

.

.

.

.

.

.

.

. 48

SQLSTATES

for

DB2

CLI

.

.

.

.

.

.

.

.

. 49

Termination

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Terminating

a

CLI

application

.

.

.

.

.

.

. 51

Chapter

4.

Programming

hints

and

tips

53

Programming

hints

and

tips

for

CLI

applications

.

. 53

Reduction

of

network

flows

with

CLI

array

input

chaining

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Chapter

5.

Cursors

.

.

.

.

.

.

.

.

. 63

Cursors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Cursors

in

CLI

applications

.

.

.

.

.

.

.

. 63

Cursor

considerations

for

CLI

applications

.

.

. 66

Result

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Result

set

terminology

in

CLI

applications

.

.

. 68

Rowset

retrieval

examples

in

CLI

applications

.

. 69

Specifying

the

rowset

returned

from

the

result

set

71

Retrieving

data

with

scrollable

cursors

in

a

CLI

application

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Bookmarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Bookmarks

in

CLI

applications

.

.

.

.

.

.

. 76

Retrieving

data

with

bookmarks

in

a

CLI

application

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Chapter

6.

Array

input

and

output

.

.

. 79

Array

input

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Binding

parameter

markers

in

CLI

applications

with

column-wise

array

input

.

.

.

.

.

.

. 79

Binding

parameter

markers

in

CLI

applications

with

row-wise

array

input

.

.

.

.

.

.

.

. 80

Parameter

diagnostic

information

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Changing

parameter

bindings

in

CLI

applications

with

offsets

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Array

output

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Column

binding

in

CLI

applications

.

.

.

.

. 83

Result

set

retrieval

into

arrays

in

CLI

applications

85

Retrieving

array

data

in

CLI

applications

using

column-wise

binding

.

.

.

.

.

.

.

.

.

. 87

Retrieving

array

data

in

CLI

applications

using

row-wise

binding

.

.

.

.

.

.

.

.

.

.

. 88

Changing

column

bindings

in

a

CLI

application

with

column

binding

offsets

.

.

.

.

.

.

.

. 89

Chapter

7.

Working

with

large

amounts

of

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Specifying

parameter

values

at

execute

time

for

long

data

manipulation

in

CLI

applications

.

.

.

.

. 91

Data

retrieval

in

pieces

in

CLI

applications

.

.

.

. 93

Large

object

usage

in

CLI

applications

.

.

.

.

. 95

LOB

locators

in

CLI

applications

.

.

.

.

.

.

. 97

Fetching

LOB

data

with

LOB

locators

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Direct

file

input

and

output

for

LOB

handling

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

. 100

LOB

usage

in

ODBC

applications

.

.

.

.

.

.

. 101

Bulk

data

manipulation

.

.

.

.

.

.

.

.

.

. 102

Long

data

for

bulk

inserts

and

updates

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Retrieving

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

.

.

. 104

Inserting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

.

.

. 105

©

Copyright

IBM

Corp.

1993

-

2004

iii

|
||

Updating

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

.

.

. 106

Deleting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

.

.

. 108

Importing

data

with

the

CLI

LOAD

utility

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Chapter

8.

Stored

procedures

.

.

.

. 113

Calling

stored

procedures

from

CLI

applications

113

DB2

CLI

stored

procedure

commit

behavior

.

.

. 115

Chapter

9.

Compound

SQL

.

.

.

.

. 117

Executing

compound

SQL

statements

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Return

codes

for

compound

SQL

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Chapter

10.

Multithreaded

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

. 121

Multithreaded

CLI

applications

.

.

.

.

.

.

. 121

Application

model

for

multithreaded

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Mixed

multithreaded

CLI

applications

.

.

.

.

. 124

Chapter

11.

Multisite

updates

(two

phase

commit)

.

.

.

.

.

.

.

.

.

.

. 127

Multisite

updates

(two

phase

commit)

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

DB2

as

transaction

manager

in

CLI

applications

128

Microsoft

Transaction

Server

(MTS)

as

transaction

monitor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager

.

.

.

.

.

.

.

.

.

. 132

Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)

.

.

.

.

.

.

. 134

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout

.

.

.

.

.

.

.

.

.

. 134

ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

.

.

. 135

Process-based

XA-compliant

Transaction

Program

Monitor

(XA

TP)

programming

considerations

for

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

. 137

Chapter

12.

Unicode

.

.

.

.

.

.

.

. 139

Unicode

CLI

applications

.

.

.

.

.

.

.

.

. 139

Unicode

functions

(CLI)

.

.

.

.

.

.

.

.

.

. 140

Unicode

function

calls

to

ODBC

driver

managers

141

Chapter

13.

User-defined

types

(UDT)

143

Distinct

type

usage

in

CLI

applications

.

.

.

.

. 143

User-defined

type

(UDT)

usage

in

CLI

applications

144

Chapter

14.

Descriptors

.

.

.

.

.

.

. 147

Descriptors

in

CLI

applications

.

.

.

.

.

.

. 147

Consistency

checks

for

descriptors

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Descriptor

allocation

and

freeing

.

.

.

.

.

.

. 151

Descriptor

manipulation

with

descriptor

handles

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

. 154

Descriptor

manipulation

without

using

descriptor

handles

in

CLI

applications

.

.

.

.

.

.

.

.

. 156

Chapter

15.

Environment,

connection,

and

statement

attributes

.

.

.

.

.

. 159

Environment,

connection,

and

statement

attributes

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

. 159

Chapter

16.

Querying

system

catalog

information

.

.

.

.

.

.

.

.

.

.

.

. 163

Catalog

functions

for

querying

system

catalog

information

in

CLI

applications

.

.

.

.

.

.

. 163

Input

arguments

on

catalog

functions

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Chapter

17.

Vendor

escape

clauses

167

Vendor

escape

clauses

in

CLI

applications

.

.

.

. 167

Extended

scalar

functions

for

CLI

applications

.

. 170

Chapter

18.

Mixing

embedded

SQL

and

DB2

CLI

.

.

.

.

.

.

.

.

.

.

.

. 181

Considerations

for

mixing

embedded

SQL

and

DB2

CLI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Chapter

19.

CLI/ODBC/JDBC

Static

Profiling

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Capture

file

for

CLI/ODBC/JDBC

Static

Profiling

185

Chapter

20.

CLI/ODBC/JDBC

trace

facility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

CLI/ODBC/JDBC

trace

facility

.

.

.

.

.

.

. 187

CLI

and

JDBC

trace

files

.

.

.

.

.

.

.

.

.

. 192

Chapter

21.

CLI

bind

files

and

package

names

.

.

.

.

.

.

.

.

.

. 201

DB2

CLI

bind

files

and

package

names

.

.

.

.

. 201

Part

3.

CLI

environment

and

application

building

.

.

.

.

.

.

. 205

Chapter

22.

CLI

environmental

setup

207

Setting

up

the

CLI

environment

.

.

.

.

.

.

. 207

Setting

up

the

UNIX

ODBC

environment

.

.

.

. 208

Setting

up

the

unixODBC

Driver

Manager

.

.

.

. 210

Sample

build

scripts

and

configurations

for

the

unixODBC

Driver

Manager

.

.

.

.

.

.

.

.

. 212

Setting

up

the

Windows

CLI

environment

.

.

.

. 214

Chapter

23.

Building

CLI

applications

217

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Building

CLI

applications

on

UNIX

.

.

.

.

. 217

iv

CLI

Guide

and

Reference,

Volume

1

||

|
|
||
|
||
|
|
||
|
|
||

||

|

|

|

|

|

Building

CLI

multi-connection

applications

on

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Building

CLI

routines

on

UNIX

.

.

.

.

.

. 221

AIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

HP-UX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

Linux

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

Solaris

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Windows

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

Building

CLI

applications

on

Windows

.

.

.

. 240

Building

CLI

multi-connection

applications

on

Windows

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

Building

CLI

routines

on

Windows

.

.

.

.

. 244

Batch

file

for

Windows

applications

.

.

.

.

. 245

Windows

CLI

application

compile

and

link

options

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Batch

file

for

Windows

routines

.

.

.

.

.

. 246

Windows

CLI

routine

compile

and

link

options

247

Chapter

24.

CLI

sample

programs

.

. 249

CLI

sample

programs

.

.

.

.

.

.

.

.

.

. 249

CLI

samples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Part

4.

CLI/ODBC

configuration

keywords

.

.

.

.

.

.

.

.

.

.

.

. 253

Chapter

25.

CLI/ODBC

configuration

keywords

.

.

.

.

.

.

.

.

.

.

.

.

. 255

db2cli.ini

initialization

file

.

.

.

.

.

.

.

.

. 255

CLI/ODBC

configuration

keywords

listing

by

category

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

AppendAPIName

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

ArrayInputChain

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

AsyncEnable

CLI/ODBC

configuration

keyword

262

AutoCommit

CLI/ODBC

configuration

keyword

263

BitData

CLI/ODBC

configuration

keyword

.

.

. 263

BlockForNRows

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

BlockLobs

CLI/ODBC

configuration

keyword

.

. 265

ClientAcctStr

CLI/ODBC

configuration

keyword

266

ClientApplName

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

ClientBuffersUnboundLOBS

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

. 267

ClientUserID

CLI/ODBC

configuration

keyword

268

ClientWrkStnName

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

CLIPkg

CLI/ODBC

configuration

keyword

.

.

. 269

CLISchema

CLI/ODBC

configuration

keyword

.

. 270

ConnectNode

CLI/ODBC

configuration

keyword

271

ConnectType

CLI/ODBC

configuration

keyword

272

CurrentFunctionPath

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

CurrentMaintainedTableTypesForOpt

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

. 273

CurrentPackagePath

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

CurrentPackageSet

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

CurrentRefreshAge

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

CurrentSchema

CLI/ODBC

configuration

keyword

275

CurrentSQLID

CLI/ODBC

configuration

keyword

275

CursorHold

CLI/ODBC

configuration

keyword

276

CursorTypes

CLI/ODBC

configuration

keyword

277

Database

CLI/ODBC

configuration

keyword

.

.

. 278

DateTimeStringFormat

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

DB2Degree

CLI/ODBC

configuration

keyword

.

. 280

DB2Explain

CLI/ODBC

configuration

keyword

280

DB2Optimization

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

DBAlias

CLI/ODBC

configuration

keyword

.

.

. 282

DBName

CLI/ODBC

configuration

keyword

.

.

. 282

DefaultProcLibrary

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

DeferredPrepare

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

DescribeInputOnPrepare

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

DescribeParam

CLI/ODBC

configuration

keyword

285

DisableKeysetCursor

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

DisableMultiThread

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

DisableUnicode

CLI/ODBC

configuration

keyword

286

FloatPrecRadix

CLI/ODBC

configuration

keyword

287

GranteeList

CLI/ODBC

configuration

keyword

.

. 288

GrantorList

CLI/ODBC

configuration

keyword

.

. 289

Graphic

CLI/ODBC

configuration

keyword

.

.

. 289

Hostname

CLI/ODBC

configuration

keyword

.

. 290

IgnoreWarnings

CLI/ODBC

configuration

keyword

291

IgnoreWarnList

CLI/ODBC

configuration

keyword

291

KeepDynamic

CLI/ODBC

configuration

keyword

292

KeepStatement

CLI/ODBC

configuration

keyword

293

LoadXAInterceptor

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

LOBCacheSize

CLI/ODBC

configuration

keyword

293

LOBFileThreshold

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

LOBMaxColumnSize

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

LockTimeout

CLI/ODBC

configuration

keyword

295

LongDataCompat

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

MapDateCDefault

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

MapDateDescribe

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

MapGraphicDescribe

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

MapTimeCDefault

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

MapTimeDescribe

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

MapTimestampCDefault

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Contents

v

|
||

|
||

|
||

|
||
||
||
|
||
|
||
||
|
||

|
||
|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

MapTimestampDescribe

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Mode

CLI/ODBC

configuration

keyword

.

.

.

. 302

OleDbReturnCharAsWChar

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

. 303

OptimizeForNRows

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Patch1

CLI/ODBC

configuration

keyword

.

.

.

. 304

Patch2

CLI/ODBC

configuration

keyword

.

.

.

. 305

Port

CLI/ODBC

configuration

keyword

.

.

.

. 305

ProgramName

CLI/ODBC

configuration

keyword

306

Protocol

CLI/ODBC

configuration

keyword

.

.

. 307

PWD

CLI/ODBC

configuration

keyword

.

.

.

. 307

QueryTimeoutInterval

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

ReportRetryErrorsAsWarnings

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

. 309

ReportPublicPrivileges

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

RetryOnError

CLI/ODBC

configuration

keyword

310

SchemaList

CLI/ODBC

configuration

keyword

.

. 311

ServiceName

CLI/ODBC

configuration

keyword

312

SkipTrace

CLI/ODBC

configuration

keyword

.

.

. 312

SQLOverrideFileName

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

StaticCapFile

CLI/ODBC

configuration

keyword

314

StaticLogFile

CLI/ODBC

configuration

keyword

314

StaticMode

CLI/ODBC

configuration

keyword

.

. 315

StaticPackage

CLI/ODBC

configuration

keyword

315

StreamPutData

CLI/ODBC

configuration

keyword

316

SyncPoint

CLI/ODBC

configuration

keyword

.

. 317

TableType

CLI/ODBC

configuration

keyword

.

. 317

TempDir

CLI/ODBC

configuration

keyword

.

.

. 318

Trace

CLI/ODBC

configuration

keyword

.

.

.

. 319

TraceComm

CLI/ODBC

configuration

keyword

320

TraceErrImmediate

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

TraceFileName

CLI/ODBC

configuration

keyword

321

TraceFlush

CLI/ODBC

configuration

keyword

.

. 322

TraceFlushOnError

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

TraceLocks

CLI/ODBC

configuration

keyword

.

. 324

TracePathName

CLI/ODBC

configuration

keyword

324

TracePIDList

CLI/ODBC

configuration

keyword

325

TracePIDTID

CLI/ODBC

configuration

keyword

326

TraceRefreshInterval

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

TraceStmtOnly

CLI/ODBC

configuration

keyword

327

TraceTime

CLI/ODBC

configuration

keyword

.

. 328

TraceTimestamp

CLI/ODBC

configuration

keyword

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

TxnIsolation

CLI/ODBC

configuration

keyword

330

UID

CLI/ODBC

configuration

keyword

.

.

.

. 330

Underscore

CLI/ODBC

configuration

keyword

.

. 331

UseOldStpCall

CLI/ODBC

configuration

keyword

332

WarningList

CLI/ODBC

configuration

keyword

332

Part

5.

Data

conversion

.

.

.

.

.

. 335

Chapter

26.

Data

conversion

.

.

.

.

. 337

Data

conversions

supported

in

CLI

.

.

.

.

.

. 337

SQL

to

C

data

conversion

in

CLI

.

.

.

.

.

.

. 339

C

to

SQL

data

conversion

in

CLI

.

.

.

.

.

.

. 345

Part

6.

Appendixes

.

.

.

.

.

.

.

. 351

Appendix

A.

DB2

Universal

Database

technical

information

.

.

.

.

.

.

.

. 353

DB2

documentation

and

help

.

.

.

.

.

.

.

. 353

DB2

documentation

updates

.

.

.

.

.

.

. 353

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 354

DB2

Information

Center

installation

scenarios

.

. 355

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

.

.

.

.

.

.

.

.

. 358

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

.

.

.

.

.

.

.

. 360

Invoking

the

DB2

Information

Center

.

.

.

.

. 362

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

.

.

.

.

.

.

. 363

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 364

DB2

PDF

and

printed

documentation

.

.

.

.

. 365

Core

DB2

information

.

.

.

.

.

.

.

.

. 365

Administration

information

.

.

.

.

.

.

. 365

Application

development

information

.

.

.

. 366

Business

intelligence

information

.

.

.

.

.

. 367

DB2

Connect

information

.

.

.

.

.

.

.

. 367

Getting

started

information

.

.

.

.

.

.

.

. 367

Tutorial

information

.

.

.

.

.

.

.

.

.

. 368

Optional

component

information

.

.

.

.

.

. 368

Release

notes

.

.

.

.

.

.

.

.

.

.

.

. 369

Printing

DB2

books

from

PDF

files

.

.

.

.

.

. 370

Ordering

printed

DB2

books

.

.

.

.

.

.

.

. 370

Invoking

contextual

help

from

a

DB2

tool

.

.

.

. 371

Invoking

message

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 372

Invoking

command

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 372

Invoking

SQL

state

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

DB2

tutorials

.

.

.

.

.

.

.

.

.

.

.

.

. 373

DB2

troubleshooting

information

.

.

.

.

.

.

. 374

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

Keyboard

input

and

navigation

.

.

.

.

.

. 375

Accessible

display

.

.

.

.

.

.

.

.

.

.

. 375

Compatibility

with

assistive

technologies

.

.

. 376

Accessible

documentation

.

.

.

.

.

.

.

. 376

Dotted

decimal

syntax

diagrams

.

.

.

.

.

.

. 376

Common

Criteria

certification

of

DB2

Universal

Database

products

.

.

.

.

.

.

.

.

.

.

.

. 378

Appendix

B.

Notices

for

the

DB2

Call

Level

Interface

Guide

and

Reference

. 379

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 391

Product

information

.

.

.

.

.

.

.

.

.

.

. 391

vi

CLI

Guide

and

Reference,

Volume

1

||

|
||
|
||
||

|
||

||

|
||

|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Part

1.

CLI

background

information

©

Copyright

IBM

Corp.

1993

-

2004

1

2

CLI

Guide

and

Reference,

Volume

1

Chapter

1.

Introduction

to

CLI

Introduction

to

CLI

.

.

.

.

.

.

.

.

.

.

.

. 3

DB2

Call

Level

Interface

(CLI)

versus

embedded

dynamic

SQL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Advantages

of

DB2

CLI

over

embedded

SQL

.

.

. 5

When

to

use

DB2

CLI

or

embedded

SQL

.

.

.

.

. 7

Introduction

to

CLI

DB2

Call

Level

Interface

(DB2

CLI)

is

IBM®’s

callable

SQL

interface

to

the

DB2

family

of

database

servers.

It

is

a

’C’

and

’C++’

application

programming

interface

for

relational

database

access

that

uses

function

calls

to

pass

dynamic

SQL

statements

as

function

arguments.

It

is

an

alternative

to

embedded

dynamic

SQL,

but

unlike

embedded

SQL,

DB2

CLI

does

not

require

host

variables

or

a

precompiler.

DB2

CLI

is

based

on

the

Microsoft®**

Open

Database

Connectivity**

(ODBC)

specification,

and

the

International

Standard

for

SQL/CLI.

These

specifications

were

chosen

as

the

basis

for

the

DB2

Call

Level

Interface

in

an

effort

to

follow

industry

standards

and

to

provide

a

shorter

learning

curve

for

those

application

programmers

already

familiar

with

either

of

these

database

interfaces.

In

addition,

some

DB2

specific

extensions

have

been

added

to

help

the

application

programmer

specifically

exploit

DB2

features.

The

DB2

CLI

driver

also

acts

as

an

ODBC

driver

when

loaded

by

an

ODBC

driver

manager.

It

conforms

to

ODBC

3.51.

DB2

CLI

Background

information:

To

understand

DB2

CLI

or

any

callable

SQL

interface,

it

is

helpful

to

understand

what

it

is

based

on,

and

to

compare

it

with

existing

interfaces.

The

X/Open

Company

and

the

SQL

Access

Group

jointly

developed

a

specification

for

a

callable

SQL

interface

referred

to

as

the

X/Open

Call

Level

Interface.

The

goal

of

this

interface

is

to

increase

the

portability

of

applications

by

enabling

them

to

become

independent

of

any

one

database

vendor’s

programming

interface.

Most

of

the

X/Open

Call

Level

Interface

specification

has

been

accepted

as

part

of

the

ISO

Call

Level

Interface

International

Standard

(ISO/IEC

9075-3:1995

SQL/CLI).

Microsoft

developed

a

callable

SQL

interface

called

Open

Database

Connectivity

(ODBC)

for

Microsoft

operating

systems

based

on

a

preliminary

draft

of

X/Open

CLI.

The

ODBC

specification

also

includes

an

operating

environment

where

database

specific

ODBC

Drivers

are

dynamically

loaded

at

run

time

by

a

driver

manager

based

on

the

data

source

(database

name)

provided

on

the

connect

request.

The

application

is

linked

directly

to

a

single

driver

manager

library

rather

than

to

each

DBMS’s

library.

The

driver

manager

mediates

the

application’s

function

calls

at

run

time

and

ensures

they

are

directed

to

the

appropriate

DBMS

specific

ODBC

driver.

Since

the

ODBC

driver

manager

only

knows

about

the

ODBC-specific

functions,

DBMS-specific

functions

cannot

be

accessed

in

an

ODBC

environment.

DBMS-specific

dynamic

SQL

statements

are

supported

via

a

mechanism

called

an

escape

clause.

©

Copyright

IBM

Corp.

1993

-

2004

3

ODBC

is

not

limited

to

Microsoft

operating

systems;

other

implementations

are

available

on

various

platforms.

The

DB2

CLI

load

library

can

be

loaded

as

an

ODBC

driver

by

an

ODBC

driver

manager.

For

ODBC

application

development,

you

must

obtain

an

ODBC

Software

Development

Kit.

For

the

Windows®

platform,

the

ODBC

SDK

is

available

as

part

of

the

Microsoft

Data

Access

Components

(MDAC)

SDK,

available

for

download

from

http://www.microsoft.com/data/.

For

non-Windows

platforms,

the

ODBC

SDK

is

provided

by

other

vendors.

When

developing

ODBC

applications

that

may

connect

to

DB2

servers,

use

this

book

(for

information

on

DB2

specific

extensions

and

diagnostic

information),

in

conjunction

with

the

ODBC

Programmer’s

Reference

and

SDK

Guide

available

from

Microsoft.

Applications

written

directly

to

DB2

CLI

link

directly

to

the

DB2

CLI

load

library.

DB2

CLI

includes

support

for

many

ODBC

and

ISO

SQL/CLI

functions,

as

well

as

DB2

specific

functions.

The

following

DB2

features

are

available

to

both

ODBC

and

DB2

CLI

applications:

v

double

byte

(graphic)

data

types

v

stored

procedures

v

Distributed

Unit

of

Work

(DUOW),

two

phase

commit

v

compound

SQL

v

user

defined

types

(UDT)

v

user

defined

functions

(UDF)

For

DB2

CLI

updates,

visit

the

DB2®

application

development

Web

site:

http://www.ibm.com/software/data/db2/udb/ad

Related

concepts:

v

“Comparison

of

DB2

CLI

and

Microsoft

ODBC”

on

page

9

v

“DB2

Call

Level

Interface

(CLI)

versus

embedded

dynamic

SQL”

on

page

4

v

“Advantages

of

DB2

CLI

over

embedded

SQL”

on

page

5

v

“When

to

use

DB2

CLI

or

embedded

SQL”

on

page

7

DB2

Call

Level

Interface

(CLI)

versus

embedded

dynamic

SQL

An

application

that

uses

an

embedded

SQL

interface

requires

a

precompiler

to

convert

the

SQL

statements

into

code,

which

is

then

compiled,

bound

to

the

database,

and

executed.

In

contrast,

a

DB2

CLI

application

does

not

have

to

be

precompiled

or

bound,

but

instead

uses

a

standard

set

of

functions

to

execute

SQL

statements

and

related

services

at

run

time.

This

difference

is

important

because,

traditionally,

precompilers

have

been

specific

to

each

database

product,

which

effectively

ties

your

applications

to

that

product.

DB2

CLI

enables

you

to

write

portable

applications

that

are

independent

of

any

particular

database

product.

This

independence

means

DB2

CLI

applications

do

not

have

to

be

recompiled

or

rebound

to

access

different

DB2®

databases,

including

host

system

databases.

They

just

connect

to

the

appropriate

database

at

run

time.

The

following

are

differences

and

similarities

between

DB2

CLI

and

embedded

SQL:

4

CLI

Guide

and

Reference,

Volume

1

|

|

http://www.ibm.com/software/data/db2/udb/ad

v

DB2

CLI

does

not

require

the

explicit

declaration

of

cursors.

DB2

CLI

has

a

supply

of

cursors

that

get

used

as

needed.

The

application

can

then

use

the

generated

cursor

in

the

normal

cursor

fetch

model

for

multiple

row

SELECT

statements

and

positioned

UPDATE

and

DELETE

statements.

v

The

OPEN

statement

is

not

used

in

DB2

CLI.

Instead,

the

execution

of

a

SELECT

automatically

causes

a

cursor

to

be

opened.

v

Unlike

embedded

SQL,

DB2

CLI

allows

the

use

of

parameter

markers

on

the

equivalent

of

the

EXECUTE

IMMEDIATE

statement

(the

SQLExecDirect()

function).

v

A

COMMIT

or

ROLLBACK

in

DB2

CLI

is

typically

issued

via

the

SQLEndTran()

function

call

rather

than

by

executing

it

as

an

SQL

statement,

however,

doing

do

is

permitted.

v

DB2

CLI

manages

statement

related

information

on

behalf

of

the

application,

and

provides

an

abstract

object

to

represent

the

information

called

a

statement

handle.

This

handle

eliminates

the

need

for

the

application

to

use

product

specific

data

structures.

v

Similar

to

the

statement

handle,

the

environment

handle

and

connection

handle

provide

a

means

to

refer

to

global

variables

and

connection

specific

information.

The

descriptor

handle

describes

either

the

parameters

of

an

SQL

statement

or

the

columns

of

a

result

set.

v

DB2

CLI

applications

can

dynamically

describe

parameters

in

an

SQL

statement

the

same

way

that

CLI

and

embedded

SQL

applications

describe

result

sets.

This

enables

CLI

applications

to

dynamically

process

SQL

statements

that

contain

parameter

markers

without

knowing

the

data

type

of

those

parameter

markers

in

advance.

When

the

SQL

statement

is

prepared,

describe

information

is

returned

detailing

the

data

types

of

the

parameters.

v

DB2

CLI

uses

the

SQLSTATE

values

defined

by

the

X/Open

SQL

CAE

specification.

Although

the

format

and

most

of

the

values

are

consistent

with

values

used

by

the

IBM®

relational

database

products,

there

are

differences.

(There

are

also

differences

between

ODBC

SQLSTATES

and

the

X/Open

defined

SQLSTATES).

Despite

these

differences,

there

is

an

important

common

concept

between

embedded

SQL

and

DB2

CLI:

DB2

CLI

can

execute

any

SQL

statement

that

can

be

prepared

dynamically

in

embedded

SQL.

Note:

DB2

CLI

can

also

accept

some

SQL

statements

that

cannot

be

prepared

dynamically,

such

as

compound

SQL

statements.

Each

DBMS

may

have

additional

statements

that

you

can

dynamically

prepare.

In

this

case,

DB2

CLI

passes

the

statements

directly

to

the

DBMS.

There

is

one

exception:

the

COMMIT

and

ROLLBACK

statements

can

be

dynamically

prepared

by

some

DBMSs

but

will

be

intercepted

by

DB2

CLI

and

treated

as

an

appropriate

SQLEndTran()

request.

However,

it

is

recommended

you

use

the

SQLEndTran()

function

to

specify

either

the

COMMIT

or

ROLLBACK

statement.

Related

reference:

v

“Supported

SQL

Statements”

in

the

Application

Development

Guide:

Programming

Client

Applications

Advantages

of

DB2

CLI

over

embedded

SQL

The

DB2

CLI

interface

has

several

key

advantages

over

embedded

SQL.

Chapter

1.

Introduction

to

CLI

5

v

It

is

ideally

suited

for

a

client-server

environment,

in

which

the

target

database

is

not

known

when

the

application

is

built.

It

provides

a

consistent

interface

for

executing

SQL

statements,

regardless

of

which

database

server

the

application

is

connected

to.

v

It

increases

the

portability

of

applications

by

removing

the

dependence

on

precompilers.

Applications

are

distributed

not

as

embedded

SQL

source

code

which

must

be

preprocessed

for

each

database

product,

but

as

compiled

applications

or

run

time

libraries.

v

Individual

DB2

CLI

applications

do

not

need

to

be

bound

to

each

database,

only

bind

files

shipped

with

DB2

CLI

need

to

be

bound

once

for

all

DB2

CLI

applications.

This

can

significantly

reduce

the

amount

of

management

required

for

the

application

once

it

is

in

general

use.

v

DB2

CLI

applications

can

connect

to

multiple

databases,

including

multiple

connections

to

the

same

database,

all

from

the

same

application.

Each

connection

has

its

own

commit

scope.

This

is

much

simpler

using

CLI

than

using

embedded

SQL

where

the

application

must

make

use

of

multi-threading

to

achieve

the

same

result.

v

DB2

CLI

eliminates

the

need

for

application

controlled,

often

complex

data

areas,

such

as

the

SQLDA

and

SQLCA,

typically

associated

with

embedded

SQL

applications.

Instead,

DB2

CLI

allocates

and

controls

the

necessary

data

structures,

and

provides

a

handle

for

the

application

to

reference

them.

v

DB2

CLI

enables

the

development

of

multi-threaded

thread-safe

applications

where

each

thread

can

have

its

own

connection

and

a

separate

commit

scope

from

the

rest.

DB2

CLI

achieves

this

by

eliminating

the

data

areas

described

above,

and

associating

all

such

data

structures

that

are

accessible

to

the

application

with

a

specific

handle.

Unlike

embedded

SQL,

a

multi-threaded

CLI

application

does

not

need

to

call

any

of

the

context

management

DB2®

APIs;

this

is

handled

by

the

DB2

CLI

driver

automatically.

v

DB2

CLI

provides

enhanced

parameter

input

and

fetching

capability,

allowing

arrays

of

data

to

be

specified

on

input,

retrieving

multiple

rows

of

a

result

set

directly

into

an

array,

and

executing

statements

that

generate

multiple

result

sets.

v

DB2

CLI

provides

a

consistent

interface

to

query

catalog

(Tables,

Columns,

Foreign

Keys,

Primary

Keys,

etc.)

information

contained

in

the

various

DBMS

catalog

tables.

The

result

sets

returned

are

consistent

across

DBMSs.

This

shields

the

application

from

catalog

changes

across

releases

of

database

servers,

as

well

as

catalog

differences

amongst

different

database

servers;

thereby

saving

applications

from

writing

version

specific

and

server

specific

catalog

queries.

v

Extended

data

conversion

is

also

provided

by

DB2

CLI,

requiring

less

application

code

when

converting

information

between

various

SQL

and

C

data

types.

v

DB2

CLI

incorporates

both

the

ODBC

and

X/Open

CLI

functions,

both

of

which

are

accepted

industry

specifications.

DB2

CLI

is

also

aligned

with

the

ISO

CLI

standard.

Knowledge

that

application

developers

invest

in

these

specifications

can

be

applied

directly

to

DB2

CLI

development,

and

vice

versa.

This

interface

is

intuitive

to

grasp

for

those

programmers

who

are

familiar

with

function

libraries

but

know

little

about

product

specific

methods

of

embedding

SQL

statements

into

a

host

language.

v

DB2

CLI

provides

the

ability

to

retrieve

multiple

rows

and

result

sets

generated

from

a

stored

procedure

residing

on

a

DB2

Universal

Database

(or

DB2

Universal

Database

for

z/OS

and

OS/390

version

5

or

later)

server.

However,

6

CLI

Guide

and

Reference,

Volume

1

note

that

this

capability

exists

for

Version

5

DB2

Universal

Database

clients

using

embedded

SQL

if

the

stored

procedure

resides

on

a

server

accessible

from

a

DataJoiner®

Version

2

server.

v

DB2

CLI

offers

more

extensive

support

for

scrollable

cursors.

With

scrollable

cursors,

you

can

scroll

through

a

cursor

as

follows:

–

Forward

by

one

or

more

rows

–

Backward

by

one

or

more

rows

–

From

the

first

row

by

one

or

more

rows

–

From

the

last

row

by

one

or

more

rows.

Scrollable

cursors

can

be

used

in

conjunction

with

array

output.

You

can

declare

an

updateable

cursor

as

scrollable

then

move

forward

or

backward

through

the

result

set

by

one

or

more

rows.

You

can

also

fetch

rows

by

specifying

an

offset

from:

–

The

current

row

–

The

beginning

or

end

of

the

result

set

–

A

specific

row

you

have

previously

set

with

a

bookmark.

When

to

use

DB2

CLI

or

embedded

SQL

Which

interface

you

choose

depends

on

your

application.

DB2

CLI

is

ideally

suited

for

query-based

graphical

user

interface

(GUI)

applications

that

require

portability.

The

advantages

listed

above,

may

make

using

DB2

CLI

seem

like

the

obvious

choice

for

any

application.

There

is

however,

one

factor

that

must

be

considered,

the

comparison

between

static

and

dynamic

SQL.

It

is

much

easier

to

use

static

SQL

in

embedded

applications.

Static

SQL

has

several

advantages:

v

Performance

Dynamic

SQL

is

prepared

at

run

time,

static

SQL

is

prepared

at

precompile

time.

As

well

as

requiring

more

processing,

the

preparation

step

may

incur

additional

network-traffic

at

run

time.

The

additional

network

traffic

can

be

avoided

if

the

DB2

CLI

application

makes

use

of

deferred

prepare

(which

is

the

default

behavior).

It

is

important

to

note

that

static

SQL

will

not

always

have

better

performance

than

dynamic

SQL.

Dynamic

SQL

is

prepared

at

runtime

and

uses

the

database

statistics

available

at

that

time,

whereas

static

SQL

makes

use

of

database

statistics

available

at

BIND

time.

Dynamic

SQL

can

make

use

of

changes

to

the

database,

such

as

new

indexes,

to

choose

the

optimal

access

plan,

resulting

in

potentially

better

performance

than

the

same

SQL

executed

as

static

SQL.

In

addition,

precompilation

of

dynamic

SQL

statements

can

be

avoided

if

they

are

cached.

v

Encapsulation

and

Security

In

static

SQL,

the

authorizations

to

access

objects

(such

as

a

table,

view)

are

associated

with

a

package

and

are

validated

at

package

binding

time.

This

means

that

database

administrators

need

only

to

grant

execute

on

a

particular

package

to

a

set

of

users

(thus

encapsulating

their

privileges

in

the

package)

without

having

to

grant

them

explicit

access

to

each

database

object.

In

dynamic

SQL,

the

authorizations

are

validated

at

run

time

on

a

per

statement

basis;

therefore,

users

must

be

granted

explicit

access

to

each

database

object.

This

permits

these

users

access

to

parts

of

the

object

that

they

do

not

have

a

need

to

access.

Chapter

1.

Introduction

to

CLI

7

v

Embedded

SQL

is

supported

in

languages

other

than

C

or

C++.

v

For

fixed

query

selects,

embedded

SQL

is

simpler.

If

an

application

requires

the

advantages

of

both

interfaces,

it

is

possible

to

make

use

of

static

SQL

within

a

DB2

CLI

application

by

creating

a

stored

procedure

that

contains

the

static

SQL.

The

stored

procedure

is

called

from

within

a

DB2

CLI

application

and

is

executed

on

the

server.

Once

the

stored

procedure

is

created,

any

DB2

CLI

or

ODBC

application

can

call

it.

It

is

also

possible

to

write

a

mixed

application

that

uses

both

DB2

CLI

and

embedded

SQL,

taking

advantage

of

their

respective

benefits.

In

this

case,

DB2

CLI

is

used

to

provide

the

base

application,

with

key

modules

written

using

static

SQL

for

performance

or

security

reasons.

This

complicates

the

application

design,

and

should

only

be

used

if

stored

procedures

do

not

meet

the

applications

requirements.

Ultimately,

the

decision

on

when

to

use

each

interface,

will

be

based

on

individual

preferences

and

previous

experience

rather

than

on

any

one

factor.

Related

concepts:

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

tasks:

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Issuing

SQL

statements

in

CLI

applications”

on

page

23

v

“Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling”

on

page

183

8

CLI

Guide

and

Reference,

Volume

1

Chapter

2.

DB2

CLI

and

ODBC

Comparison

of

DB2

CLI

and

Microsoft

ODBC

This

topic

discusses

the

support

provided

by

the

DB2

ODBC

driver,

and

how

it

differs

from

DB2

CLI.

Figure

1

below

compares

DB2

CLI

and

the

DB2

ODBC

driver.

The

left

side

shows

an

ODBC

driver

under

the

ODBC

Driver

Manager,

and

the

right

side

illustrates

DB2

CLI,

the

callable

interface

designed

for

DB2®

specific

applications.

DB2

Client

refers

to

all

available

DB2

Clients.

DB2

refers

to

all

DB2

Universal

Database

products.

In

an

ODBC

environment,

the

Driver

Manager

provides

the

interface

to

the

application.

It

also

dynamically

loads

the

necessary

driver

for

the

database

server

that

the

application

connects

to.

It

is

the

driver

that

implements

the

ODBC

function

set,

with

the

exception

of

some

extended

functions

implemented

by

the

Driver

Manager.

In

this

environment

DB2

CLI

conforms

to

ODBC

3.51.

ODBC Driver Manager
Environment

DB2 CLI
Environment

Application

ODBC Driver Manager

other
ODBC
driver

A

DBMS
B

Gateway
B

DB2
Client

DB2
Server

DB2 Connect

DB2
Client

DB2
ODBC
driver

DB2 CLI
driver

Application

other
ODBC
driver

B

DB2 (MVS)
SQL/DS
SQL/400

Other DRDA
DBMS

DBMS
A

DB2
Server

DB2 Connect

Figure

1.

DB2

CLI

and

ODBC.

©

Copyright

IBM

Corp.

1993

-

2004

9

For

ODBC

application

development,

you

must

obtain

an

ODBC

Software

Development

Kit.

For

the

Windows®

platform,

the

ODBC

SDK

is

available

as

part

of

the

Microsoft®

Data

Access

Components

(MDAC)

SDK,

available

for

download

from

http://www.microsoft.com/data/.

For

non-Windows

platforms,

the

ODBC

SDK

is

provided

by

other

vendors.

In

environments

without

an

ODBC

driver

manager,

DB2

CLI

is

a

self

sufficient

driver

which

supports

a

subset

of

the

functions

provided

by

the

ODBC

driver.

Table

1

summarizes

the

two

levels

of

support,

and

the

CLI

and

ODBC

function

summary

provides

a

complete

list

of

ODBC

functions

and

indicates

if

they

are

supported.

Table

1.

DB2

CLI

ODBC

support

ODBC

features

DB2

ODBC

Driver

DB2

CLI

Core

level

functions

All

All

Level

1

functions

All

All

Level

2

functions

All

All,

except

for

SQLDrivers()

Additional

DB2

CLI

functions

All,

functions

can

be

accessed

by

dynamically

loading

the

DB2

CLI

library.

v

SQLSetConnectAttr()

v

SQLGetEnvAttr()

v

SQLSetEnvAttr()

v

SQLSetColAttributes()

v

SQLGetSQLCA()

v

SQLBindFileToCol()

v

SQLBindFileToParam()

v

SQLExtendedBind()

v

SQLExtendedPrepare()

v

SQLGetLength()

v

SQLGetPosition()

v

SQLGetSubString()

10

CLI

Guide

and

Reference,

Volume

1

Table

1.

DB2

CLI

ODBC

support

(continued)

ODBC

features

DB2

ODBC

Driver

DB2

CLI

SQL

data

types

All

the

types

listed

for

DB2

CLI.

v

SQL_BIGINT

v

SQL_BINARY

v

SQL_BIT

v

SQL_BLOB

v

SQL_BLOB_LOCATOR

v

SQL_CHAR

v

SQL_CLOB

v

SQL_CLOB_LOCATOR

v

SQL_DBCLOB

v

SQL_DBCLOB_LOCATOR

v

SQL_DECIMAL

v

SQL_DOUBLE

v

SQL_FLOAT

v

SQL_GRAPHIC

v

SQL_INTEGER

v

SQL_LONG

v

SQL_LONGVARBINARY

v

SQL_LONGVARCHAR

v

SQL_LONGVARGRAPHIC

v

SQL_NUMERIC

v

SQL_REAL

v

SQL_SHORT

v

SQL_SMALLINT

v

SQL_TINYINT

v

SQL_TYPE_DATE

v

SQL_TYPE_TIME

v

SQL_TYPE_TIMESTAMP

v

SQL_VARBINARY

v

SQL_VARCHAR

v

SQL_VARGRAPHIC

v

SQL_WCHAR

C

data

types

All

the

types

listed

for

DB2

CLI.

v

SQL_C_BINARY

v

SQL_C_BIT

v

SQL_C_BLOB_LOCATOR

v

SQL_C_CHAR

v

SQL_C_CLOB_LOCATOR

v

SQL_C_DATE

v

SQL_C_DBCHAR

v

SQL_C_DBCLOB_LOCATOR

v

SQL_C_DOUBLE

v

SQL_C_FLOAT

v

SQL_C_LONG

v

SQL_C_SHORT

v

SQL_C_TIME

v

SQL_C_TIMESTAMP

v

SQL_C_TINYINT

v

SQL_C_SBIGINT

v

SQL_C_UBIGINT

v

SQL_C_NUMERIC

**

v

SQL_C_WCHAR

**

Only

supported

on

Windows

platform

Chapter

2.

DB2

CLI

and

ODBC

11

Table

1.

DB2

CLI

ODBC

support

(continued)

ODBC

features

DB2

ODBC

Driver

DB2

CLI

Return

codes

All

the

codes

listed

for

DB2

CLI.

v

SQL_SUCCESS

v

SQL_SUCCESS_WITH_INFO

v

SQL_STILL_EXECUTING

v

SQL_NEED_DATA

v

SQL_NO_DATA_FOUND

v

SQL_ERROR

v

SQL_INVALID_HANDLE

SQLSTATES

Mapped

to

X/Open

SQLSTATES

with

additional

IBM®

SQLSTATES,

with

the

exception

of

the

ODBC

type

08S01.

Mapped

to

X/Open

SQLSTATES

with

additional

IBM

SQLSTATES

Multiple

connections

per

application

Supported

Supported

Dynamic

loading

of

driver

Supported

Not

applicable

Isolation

levels:

The

following

table

map

IBM

RDBMs

isolation

levels

to

ODBC

transaction

isolation

levels.

The

SQLGetInfo()

function

indicates

which

isolation

levels

are

available.

Table

2.

Isolation

levels

under

ODBC

IBM

isolation

level

ODBC

isolation

level

Cursor

stability

SQL_TXN_READ_COMMITTED

Repeatable

read

SQL_TXN_SERIALIZABLE_READ

Read

stability

SQL_TXN_REPEATABLE_READ

Uncommitted

read

SQL_TXN_READ_UNCOMMITTED

No

commit

(no

equivalent

in

ODBC)

Note:

SQLSetConnectAttr()

and

SQLSetStmtAttr()

will

return

SQL_ERROR

with

an

SQLSTATE

of

HY009

if

you

try

to

set

an

unsupported

isolation

level.

Restriction:

Mixing

ODBC

and

DB2

CLI

features

and

function

calls

in

an

application

is

not

supported

on

the

Windows

64-bit

operating

system.

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

v

“Introduction

to

CLI”

on

page

3

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“CLI

and

ODBC

function

summary”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

12

CLI

Guide

and

Reference,

Volume

1

|

|
|

Part

2.

Programming

CLI

applications

©

Copyright

IBM

Corp.

1993

-

2004

13

14

CLI

Guide

and

Reference,

Volume

1

Chapter

3.

Writing

a

basic

CLI

application

Initialization

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Handles

in

CLI

.

.

.

.

.

.

.

.

.

.

.

. 15

Initialization

and

termination

in

CLI

overview

.

. 17

Initializing

CLI

applications

.

.

.

.

.

.

.

. 18

Transaction

processing

.

.

.

.

.

.

.

.

.

.

. 20

Transaction

processing

in

CLI

overview

.

.

.

. 20

Allocating

statement

handles

in

CLI

applications

22

Issuing

SQL

statements

in

CLI

applications

.

.

. 23

Preparing

and

executing

SQL

statements

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Deferred

prepare

in

CLI

applications

.

.

.

.

. 25

Parameter

marker

binding

in

CLI

applications

.

. 26

Binding

parameter

markers

in

CLI

applications

28

Commit

modes

in

CLI

applications

.

.

.

.

. 29

When

to

call

the

CLI

SQLEndTran()

function

.

. 31

Retrieving

query

results

in

CLI

applications

.

. 32

Updating

and

deleting

data

in

CLI

applications

35

Freeing

statement

resources

in

CLI

applications

36

Handle

freeing

in

CLI

applications

.

.

.

.

. 38

Data

types

and

data

conversion

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 39

SQL

symbolic

and

default

data

types

for

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 41

C

data

types

for

CLI

applications

.

.

.

.

.

. 42

String

handling

in

CLI

applications

.

.

.

.

. 45

Diagnostics

in

CLI

applications

overview

.

.

. 47

CLI

function

return

codes

.

.

.

.

.

.

.

. 48

SQLSTATES

for

DB2

CLI

.

.

.

.

.

.

.

.

. 49

Termination

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Terminating

a

CLI

application

.

.

.

.

.

.

. 51

There

are

three

core

components

of

a

CLI

application:

initialization,

transaction

processing,

and

termination.

This

chapter

describes

the

key

steps

of

a

typical

CLI

application.

Initialization

Handles

in

CLI

A

CLI

handle

is

a

variable

that

refers

to

a

data

object

allocated

and

managed

by

DB2

CLI.

Using

handles

relieves

the

application

from

having

to

allocate

and

manage

global

variables

or

data

structures,

such

as

the

SQLDA.

There

are

four

types

of

handles

in

CLI:

Environment

handle

An

environment

handle

refers

to

a

data

object

that

holds

information

about

the

global

state

of

the

application,

such

as

attributes

or

valid

connections.

An

environment

handle

must

be

allocated

before

a

connection

handle

can

be

allocated.

Connection

handle

A

connection

handle

refers

to

a

data

object

that

holds

information

associated

with

a

connection

to

a

particular

data

source

(database).

Examples

of

such

information

include

valid

statement

and

descriptor

handles

on

a

connection,

transaction

status,

and

diagnostic

information.

An

application

can

be

connected

to

several

data

sources

at

the

same

time,

and

can

establish

several

distinct

connections

to

the

same

data

source.

A

separate

connection

handle

must

be

allocated

for

each

concurrent

connection.

A

connection

handle

must

be

allocated

before

a

statement

or

descriptor

handle

can

be

allocated.

Connection

handles

ensure

that

multithreaded

applications

which

use

one

connection

per

thread

are

thread-safe,

because

separate

data

structures

are

allocated

and

maintained

by

DB2

CLI

for

each

connection.

Note:

There

is

a

limit

of

512

active

connections

per

environment

handle.

©

Copyright

IBM

Corp.

1993

-

2004

15

Statement

handle

A

statement

handle

refers

to

a

data

object

that

is

used

to

track

the

execution

of

a

single

SQL

statement.

It

provides

access

to

statement

information

such

as

error

messages,

the

associated

cursor

name,

and

status

information

for

SQL

statement

processing.

A

statement

handle

must

be

allocated

before

an

SQL

statement

can

be

issued.

When

a

statement

handle

is

allocated,

DB2

CLI

automatically

allocates

four

descriptors

and

assigns

the

handles

for

these

descriptors

to

the

SQL_ATTR_APP_ROW_DESC,

SQL_ATTR_APP_PARAM_DESC,

SQL_ATTR_IMP_ROW_DESC,

and

SQL_ATTR_IMP_PARAM_DESC

statement

attributes.

Application

descriptors

can

be

explicitly

allocated

by

allocating

descriptor

handles.

The

number

of

statement

handles

available

to

a

CLI

application

depends

on

the

number

of

large

packages

the

application

has

defined

and

is

limited

by

overall

system

resources

(usually

stack

size).

By

default,

there

are

3

small

and

3

large

packages.

Each

small

package

allows

a

maximum

of

64

statement

handles

per

connection,

and

each

large

package

allows

a

maximum

of

384

statement

handles

per

connection.

The

number

of

available

statement

handles

by

default

is

therefore

(3

*

64)

+

(3

*

384)

=

1344.

To

get

more

than

the

default

1344

statement

handles,

increase

the

number

of

large

packages

by

setting

the

value

of

the

CLI/ODBC

configuration

keyword

CLIPkg

to

a

value

up

to

30.

CLIPkg

indicates

the

number

of

large

packages

that

will

be

generated.

If

you

set

CLIPkg

to

the

maximum

value

of

30,

then

the

maximum

number

of

statement

handles

that

is

available

becomes

(3

*

64)

+

(30

*

384)

=

11

712.

An

HY014

SQLSTATE

may

be

returned

on

the

call

to

SQLPrepare(),

SQLExecute(),

or

SQLExecDirect()

if

this

limit

is

exceeded.

It

is

recommended

that

you

only

allocate

as

many

large

packages

as

your

application

needs

to

run,

as

packages

take

up

space

in

the

database.

Descriptor

handle

A

descriptor

handle

refers

to

a

data

object

that

contains

information

about

the

columns

in

a

result

set

and

dynamic

parameters

in

an

SQL

statement.

On

operating

systems

that

support

multiple

threads,

applications

can

use

the

same

environment,

connection,

statement,

or

descriptor

handle

on

different

threads.

DB2

CLI

provides

thread

safe

access

for

all

handles

and

function

calls.

The

application

itself

might

experience

unpredictable

behavior

if

the

threads

it

creates

do

not

co-ordinate

their

use

of

DB2

CLI

resources.

Related

concepts:

v

“Descriptors

in

CLI

applications”

on

page

147

v

“Handle

freeing

in

CLI

applications”

on

page

38

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Allocating

statement

handles

in

CLI

applications”

on

page

22

v

“Freeing

statement

resources

in

CLI

applications”

on

page

36

Related

reference:

16

CLI

Guide

and

Reference,

Volume

1

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDA

(SQL

descriptor

area)”

in

the

SQL

Reference,

Volume

1

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“DB2

CLI

bind

files

and

package

names”

on

page

201

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceRefreshInterval

CLI/ODBC

configuration

keyword”

on

page

327

v

“CLIPkg

CLI/ODBC

configuration

keyword”

on

page

269

Initialization

and

termination

in

CLI

overview

Figure

2

on

page

18

shows

the

function

call

sequences

for

both

the

initialization

and

termination

tasks.

The

transaction

processing

task

in

the

middle

of

the

diagram

is

shown

in

Transaction

processing

in

CLI

overview.

The

initialization

task

consists

of

the

allocation

and

initialization

of

environment

and

connection

handles.

An

environment

handle

must

be

allocated

before

a

connection

handle

can

be

created.

Once

a

connection

handle

is

created,

the

application

can

then

establish

a

connection.

When

a

connection

exists,

the

application

can

proceed

to

the

transaction

processing

task.

An

application

then

passes

the

appropriate

handle

when

it

calls

other

DB2

CLI

functions.

The

termination

task

consists

of

disconnecting

from

the

data

source

and

freeing

those

handles

that

were

allocated

during

the

initialization

phase.

The

connection

handle

should

be

freed

before

freeing

the

environment

handle.

Chapter

3.

Writing

a

basic

CLI

application

17

Related

concepts:

v

“Handles

in

CLI”

on

page

15

v

“Transaction

processing

in

CLI

overview”

on

page

20

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLConnect

function

(CLI)

-

Connect

to

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

in

the

CLI

Guide

and

Reference,

Volume

2

Initializing

CLI

applications

Initializing

CLI

applications

is

part

of

the

larger

task

of

programming

with

CLI.

The

task

of

initializing

CLI

applications

involves

allocating

environment

and

connection

handles

and

then

connecting

to

the

data

source.

Allocate Environment

Connect

Free Connection

Disconnect

Free Environment

SQLAllocHandle()

SQLConnect()
or

SQLDriverConnect()

SQLAllocHandle()

SQLFreeHandle()

SQLDisconnect()

Allocate Connection

Initialization}

} Termination

Transaction
Processing

SQLFreeHandle()

Figure

2.

Conceptual

view

of

initialization

and

termination

tasks

18

CLI

Guide

and

Reference,

Volume

1

Procedure:

To

initialize

the

application:

1.

Allocate

an

environment

handle

by

calling

SQLAllocHandle()

with

a

HandleType

of

SQL_HANDLE_ENV

and

an

InputHandle

of

SQL_NULL_HANDLE.

For

example:

SQLAllocHandle

(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,

&henv);

Use

the

allocated

environment

handle,

returned

in

the

*OutputHandlePtr

argument

(henv

in

the

example

above),

for

all

subsequent

calls

that

require

an

environment

handle.

2.

Optional:

Set

environment

attributes

for

your

application

by

calling

SQLSetEnvAttr()

with

the

desired

environment

attribute

for

each

attribute

you

want

set.

Important:

If

you

plan

to

run

your

application

as

an

ODBC

application,

you

must

set

the

SQL_ATTR_ODBC_VERSION

environment

attribute

using

SQLSetEnvAttr().

Setting

this

attribute

for

applications

that

are

strictly

DB2

CLI

applications

is

recommended

but

not

required.

3.

Allocate

a

connection

handle

by

calling

SQLAllocHandle()

with

a

HandleType

of

SQL_HANDLE_DBC

using

the

environment

handle

returned

from

Step

1

as

the

InputHandle

argument.

For

example:

SQLAllocHandle

(SQL_HANDLE_DBC,

henv,

&hdbc);

Use

the

allocated

connection

handle,

returned

in

the

*OutputHandlePtr

argument

(hdbc

in

the

example

above),

for

all

subsequent

calls

that

require

a

connection

handle.

4.

Optional:

Set

connection

attributes

for

your

application

by

calling

SQLSetConnectAttr()

with

the

desired

connection

attribute

for

each

attribute

you

want

set.

5.

Connect

to

a

data

source

by

calling

one

of

following

functions

with

the

connection

handle

you

allocated

in

Step

3

for

each

data

source

you

want

to

connect

to:

v

SQLConnect():

basic

database

connection

method.

For

example:

SQLConnect

(hdbc,

server,

SQL_NTS,

user,

SQL_NTS,

password,

SQL_NTS);

where

SQL_NTS

is

a

special

string

length

value

that

indicates

the

referenced

string

is

null-terminated.

v

SQLDriverConnect():

extended

connect

function

that

allows

additional

connect

options

and

offers

Graphical

User

Interface

support.

For

example:

char

*

connStr

=

"DSN=SAMPLE;UID=;PWD=;";

SQLDriverConnect

(hdbc,

(SQLHWND)NULL,

connStr,

SQL_NTS,

NULL,

0,

NULL,

SQL_DRIVER_NOPROMPT);

v

SQLBrowseConnect():

least

common

connection

method

that

iteratively

returns

the

attributes

and

attribute

values

for

connecting

to

a

data

source.

For

example:

char

*

connInStr

=

"DSN=SAMPLE;UID=;PWD=;";

char

outStr[512];

SQLBrowseConnect

(hdbc,

connInStr,

SQL_NTS,

outStr,

512,

&strLen2Ptr);

Now

that

your

application

has

been

initialized,

you

can

proceed

to

processing

transactions.

Related

concepts:

Chapter

3.

Writing

a

basic

CLI

application

19

v

“Handles

in

CLI”

on

page

15

v

“Transaction

processing

in

CLI

overview”

on

page

20

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBrowseConnect

function

(CLI)

-

Get

required

attributes

to

connect

to

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLConnect

function

(CLI)

-

Connect

to

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Environment

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“clihandl.c

--

How

to

allocate

and

free

handles”

v

“dbcongui.c

--

How

to

connect

to

a

database

with

a

graphical

user

interface

(GUI)”

v

“dbconn.c

--

How

to

connect

to

and

disconnect

from

a

database”

Transaction

processing

Transaction

processing

in

CLI

overview

Figure

3

on

page

21

shows

the

typical

order

of

function

calls

in

the

transaction

processing

task

of

a

DB2

CLI

application.

Not

all

functions

or

possible

paths

are

shown.

20

CLI

Guide

and

Reference,

Volume

1

The

transaction

processing

task

contains

five

steps:

v

Allocating

statement

handle(s)

v

Preparing

and

executing

SQL

statements

v

Processing

results

v

Committing

or

Rolling

Back

v

(Optional)

Freeing

statement

handle(s)

if

the

statement

is

unlikely

to

be

executed

again.

Related

concepts:

v

“Commit

modes

in

CLI

applications”

on

page

29

Commit or Rollback Free Statement

Statement not executed again

Receive Query Results Update Data Other

(SELECT, VALUES)
(UPDATE, DELETE,
INSERT)

(ALTER, CREATE, DROP,
GRANT, REVOKE, SET)

SQLEndTran() SQLFreeHandle()
(Statement)

SQLFetch()

SQLGetData()

SQLRowCount() (no functions required)

SQLBindCol()

SQLColAttribute()
or

SQLDescribeCol()

SQLNumResultCols()

Prepare a Statement

SQLPrepare()
SQLBindParameter()

Directly Execute
a Statement

SQLBindParameter()
SQLExecDirect()

Allocate a Statement

SQLAllocHandle()

Execute a Statement

SQLExecute()

Figure

3.

Transaction

processing

Chapter

3.

Writing

a

basic

CLI

application

21

Related

tasks:

v

“Allocating

statement

handles

in

CLI

applications”

on

page

22

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Retrieving

query

results

in

CLI

applications”

on

page

32

v

“Updating

and

deleting

data

in

CLI

applications”

on

page

35

v

“Freeing

statement

resources

in

CLI

applications”

on

page

36

v

“Terminating

a

CLI

application”

on

page

51

Allocating

statement

handles

in

CLI

applications

To

issue

an

SQL

statement

in

a

CLI

application,

you

need

to

allocate

a

statement

handle.

A

statement

handle

tracks

the

execution

of

a

single

SQL

statement

and

is

associated

with

a

connection

handle.

Allocating

statement

handles

is

part

of

the

larger

task

of

processing

transactions.

Prerequisites:

Before

you

begin

allocating

statement

handles,

you

must

allocate

an

environment

handle

and

a

connection

handle.

This

is

part

of

the

task

of

initializing

your

CLI

application.

Procedure:

To

allocate

a

statement

handle:

1.

Call

SQLAllocHandle()

with

a

HandleType

of

SQL_HANDLE_STMT.

For

example:

SQLAllocHandle

(SQL_HANDLE_STMT,

hdbc,

&hstmt);

2.

Optional:

To

set

attributes

for

this

statement,

call

SQLSetStmtAttr()

for

each

desired

attribute

option.

After

allocating

environment,

connection,

and

statement

handles,

you

can

now

prepare,

issue,

or

execute

SQL

statements.

Related

concepts:

v

“Transaction

processing

in

CLI

overview”

on

page

20

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Issuing

SQL

statements

in

CLI

applications”

on

page

23

Related

reference:

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“clihandl.c

--

How

to

allocate

and

free

handles”

22

CLI

Guide

and

Reference,

Volume

1

Issuing

SQL

statements

in

CLI

applications

SQL

statements

are

passed

to

DB2

CLI

functions

as

SQLCHAR

string

variables.

The

variable

can

consist

of

one

or

more

SQL

statements,

with

or

without

parameter

markers,

depending

on

the

type

of

processing

you

want.

This

topic

describes

the

various

ways

SQL

statements

can

be

issued

in

DB2

CLI

applications.

Before

you

issue

an

SQL

statement,

ensure

you

have

allocated

a

statement

handle.

Procedure:

Perform

either

of

the

following

steps

to

issue

SQL

statements:

v

To

issue

a

single

SQL

statement,

either

initialize

an

SQLCHAR

variable

with

the

SQL

statement

and

pass

this

variable

to

the

CLI

function,

or

directly

pass

a

string

argument

cast

to

an

SQLCHAR

*

to

the

function.

For

example:

SQLCHAR

*

stmt

=

(SQLCHAR

*)

"SELECT

deptname,

location

FROM

org";

/*

...

*/

SQLExecDirect

(hstmt,

stmt,

SQL_NTS);

or

SQLExecDirect

(hstmt,

(SQLCHAR

*)

"SELECT

deptname,

location

FROM

org",

SQL_NTS);

v

To

issue

multiple

SQL

statements

on

the

same

statement

handle,

either

initialize

an

array

of

SQLCHAR

elements,

where

each

element

represents

an

individual

SQL

statement,

or

initialize

a

single

SQLCHAR

variable

that

contains

the

multiple

statements

delimited

by

a

″;″

character.

For

example:

SQLCHAR

*

multiple_stmts[]

=

{

(SQLCHAR

*)

"SELECT

deptname,

location

FROM

org",

(SQLCHAR

*)

"SELECT

id,

name

FROM

staff

WHERE

years

>

5",

(SQLCHAR

*)

"INSERT

INTO

org

VALUES

(99,’Hudson’,20,’Western’,’Seattle’)"

};

or

SQLCHAR

*

multiple_stmts

=

"SELECT

deptname,

location

FROM

org;

SELECT

id,

name

FROM

staff

WHERE

years

>

5;

INSERT

INTO

org

VALUES

(99,

’Hudson’,

20,

’Western’,

’Seattle’)";

Note:

When

a

list

of

SQL

statements

is

specified,

only

one

statement

is

executed

at

a

time,

starting

with

the

first

statement

in

the

list.

Each

subsequent

statement

is

executed

in

the

order

it

appears.

(To

execute

subsequent

statements,

you

must

call

SQLMoreResults().)

v

To

issue

SQL

statements

with

parameter

markers,

see

Binding

Parameter

Markers.

v

To

capture

and

convert

SQL

statements

dynamically

executed

with

DB2

CLI

(dynamic

SQL)

to

static

SQL,

see

Creating

Static

SQL.

Related

concepts:

v

“Parameter

marker

binding

in

CLI

applications”

on

page

26

Related

tasks:

v

“Allocating

statement

handles

in

CLI

applications”

on

page

22

Related

reference:

v

“C

data

types

for

CLI

applications”

on

page

42

Chapter

3.

Writing

a

basic

CLI

application

23

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLMoreResults

function

(CLI)

-

Determine

if

there

are

more

result

sets”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

Preparing

and

executing

SQL

statements

in

CLI

applications

Once

you

have

allocated

a

statement

handle,

you

can

then

perform

operations

using

SQL

statements.

An

SQL

statement

must

be

prepared

before

it

can

be

executed,

and

DB2

CLI

offers

two

ways

of

preparing

and

executing

an

SQL

statement:

v

perform

the

prepare

and

execute

operations

in

separate

steps

v

combine

the

prepare

and

execute

operations

into

one

step

Prerequisites:

Before

preparing

and

executing

your

SQL

statement,

ensure

you

have

allocated

a

statement

handle

for

it.

Procedure:

To

prepare

and

execute

an

SQL

statement

in

separate

steps:

1.

Prepare

the

SQL

statement

by

calling

SQLPrepare()

and

passing

the

SQL

statement

as

the

StatementText

argument.

2.

Call

SQLBindParameter()

to

bind

any

parameter

markers

you

may

have

in

the

SQL

statement.

3.

Execute

the

prepared

statement

by

calling

SQLExecute().

Use

this

method

when:

v

The

same

SQL

statement

will

be

executed

repeatedly

(usually

with

different

parameter

values).

This

avoids

having

to

prepare

the

same

statement

more

than

once.

The

subsequent

executions

make

use

of

the

access

plans

already

generated

by

the

prepare,

thus

increasing

driver

efficiency

and

delivering

better

application

performance.

v

The

application

requires

information

about

the

parameters

or

columns

in

the

result

set

prior

to

statement

execution.

To

prepare

and

execute

an

SQL

statement

in

one

step:

1.

Call

SQLBindParameter()

to

bind

any

parameter

markers

you

may

have

in

the

SQL

statement.

2.

Prepare

and

execute

the

statement

by

calling

SQLExecDirect()

with

the

SQL

statement

as

the

StatementText

argument.

3.

Optional:

If

a

list

of

SQL

statements

are

to

be

executed,

call

SQLMoreResults()

to

advance

to

the

next

SQL

statement.

Use

this

method

of

preparing

and

executing

in

one

step

when:

v

The

statement

will

be

executed

only

once.

This

avoids

having

to

call

two

functions

to

execute

the

statement.

24

CLI

Guide

and

Reference,

Volume

1

v

The

application

does

not

require

information

about

the

columns

in

the

result

set

before

the

statement

is

executed.

Related

concepts:

v

“Deferred

prepare

in

CLI

applications”

on

page

25

v

“Transaction

processing

in

CLI

overview”

on

page

20

Related

tasks:

v

“Allocating

statement

handles

in

CLI

applications”

on

page

22

Related

reference:

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLMoreResults

function

(CLI)

-

Determine

if

there

are

more

result

sets”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

Deferred

prepare

in

CLI

applications

Deferred

prepare

is

the

name

of

the

CLI

feature

that

seeks

to

minimise

communication

with

the

server

by

sending

both

the

prepare

and

execute

requests

for

SQL

statements

in

the

same

network

flow.

The

default

value

for

this

property

can

be

overridden

using

the

CLI/ODBC

configuration

keyword

DeferredPrepare.

This

property

can

be

set

on

a

per-statement

handle

basis

by

calling

SQLSetStmtAttr()

to

change

the

SQL_ATTR_DEFEFERRED_PREPARE

statement

attribute.

When

deferred

prepare

is

on,

the

prepare

request

is

not

sent

to

the

server

until

the

corresponding

execute

request

is

issued.

The

two

requests

are

then

combined

into

one

command/reply

flow

(instead

of

two)

to

minimize

network

flow

and

to

improve

performance.

Because

of

this

behavior,

any

errors

that

would

typically

be

generated

by

SQLPrepare()

will

appear

at

execute

time,

and

SQLPrepare()

will

always

return

SQL_SUCCESS.

Deferred

prepare

is

of

greatest

benefit

when

the

application

generates

queries

where

the

answer

set

is

very

small,

and

the

overhead

of

separate

requests

and

replies

is

not

spread

across

multiple

blocks

of

query

data.

Note:

Even

if

deferred

prepare

is

enabled,

operations

that

require

a

statement

to

be

prepared

prior

to

the

operation’s

execution

will

force

the

prepare

request

to

be

sent

to

the

server

before

the

execute.

Describe

operations

resulting

from

calls

to

SQLDescribeParam()

or

SQLDescribeCol()

are

examples

of

when

deferred

prepare

will

be

overridden,

because

describe

information

is

only

available

after

the

statement

has

been

prepared.

Chapter

3.

Writing

a

basic

CLI

application

25

Related

tasks:

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

Related

reference:

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeParam

function

(CLI)

-

Return

description

of

a

parameter

marker”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

v

“DeferredPrepare

CLI/ODBC

configuration

keyword”

on

page

283

Parameter

marker

binding

in

CLI

applications

Parameter

markers

are

represented

by

the

‘?’

character

and

indicate

the

position

in

the

SQL

statement

where

the

contents

of

application

variables

are

to

be

substituted

when

the

statement

is

executed.

(A

parameter

marker

is

used

where

a

host

variable

would

be

used

in

static

embedded

SQL.)

This

value

can

be

obtained

from:

v

An

application

variable.

SQLBindParameter()

is

used

to

bind

the

application

storage

area

to

the

parameter

marker.

v

A

LOB

value

from

the

database

server

(by

specifying

a

LOB

locator).

SQLBindParameter()

is

used

to

bind

a

LOB

locator

to

the

parameter

marker.

The

LOB

value

itself

is

supplied

by

the

database

server,

so

only

the

LOB

locator

is

transferred

between

the

database

server

and

the

application.

v

A

file

within

the

application’s

environment

containing

a

LOB

value.

SQLBindFileToParam()

is

used

to

bind

a

file

to

a

LOB

parameter

marker.

When

SQLExecDirect()

is

executed,

DB2

CLI

will

transfer

the

contents

of

the

file

directly

to

the

database

server.

Parameter

markers

are

referenced

sequentially,

from

left

to

right,

starting

at

1.

SQLNumParams()

can

be

used

to

determine

the

number

of

parameters

in

a

statement.

The

application

must

bind

an

application

variable

to

each

parameter

marker

in

the

SQL

statement

before

it

executes

that

statement.

Binding

is

carried

out

by

calling

the

SQLBindParameter()

function

with

a

number

of

arguments

to

indicate:

v

the

ordinal

position

of

the

parameter,

v

the

SQL

type

of

the

parameter,

v

the

type

of

parameter

(input,

output,

or

inout),

v

the

C

data

type

of

the

variable,

v

a

pointer

to

the

application

variable,

v

the

length

of

the

variable.

The

bound

application

variable

and

its

associated

length

are

called

deferred

input

arguments

because

only

the

pointers

are

passed

when

the

parameter

is

bound;

no

data

is

read

from

the

variable

until

the

statement

is

executed.

Deferred

arguments

26

CLI

Guide

and

Reference,

Volume

1

allow

the

application

to

modify

the

contents

of

the

bound

parameter

variables,

and

re-execute

the

statement

with

the

new

values.

Information

about

each

parameter

remains

in

effect

until:

v

it

is

overridden

by

the

application

v

the

application

unbinds

the

parameter

by

calling

SQLFreeStmt()

with

the

SQL_RESET_PARAMS

Option

v

the

application

drops

the

statement

handle

by

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_STMT

or

SQLFreeStmt()

with

the

SQL_DROP

Option.

Information

for

each

parameter

remains

in

effect

until

overridden,

or

until

the

application

unbinds

the

parameter

or

drops

the

statement

handle.

If

the

application

executes

the

SQL

statement

repeatedly

without

changing

the

parameter

binding,

then

DB2

CLI

uses

the

same

pointers

to

locate

the

data

on

each

execution.

The

application

can

also

change

the

parameter

binding

to

a

different

set

of

deferred

variables

by

calling

SQLBindParameter()

again

for

one

or

more

parameters

and

specifying

different

application

variables.

The

application

must

not

deallocate

or

discard

variables

used

for

deferred

input

fields

between

the

time

it

binds

the

fields

to

parameter

markers

and

the

time

DB2

CLI

accesses

them

at

execution

time.

Doing

so

can

result

in

DB2

CLI

reading

garbage

data,

or

accessing

invalid

memory

resulting

in

an

application

trap.

It

is

possible

to

bind

the

parameter

to

a

variable

of

a

different

type

from

that

required

by

the

SQL

statement.

The

application

must

indicate

the

C

data

type

of

the

source,

and

the

SQL

type

of

the

parameter

marker,

and

DB2

CLI

will

convert

the

contents

of

the

variable

to

match

the

SQL

data

type

specified.

For

example,

the

SQL

statement

may

require

an

integer

value,

but

your

application

has

a

string

representation

of

an

integer.

The

string

can

be

bound

to

the

parameter,

and

DB2

CLI

will

convert

the

string

to

the

corresponding

integer

value

when

you

execute

the

statement.

By

default,

DB2

CLI

does

not

verify

the

type

of

the

parameter

marker.

If

the

application

indicates

an

incorrect

type

for

the

parameter

marker,

it

could

cause:

v

an

extra

conversion

by

the

DBMS

v

an

error

at

the

DBMS

which

forces

DB2

CLI

to

describe

the

statement

being

executed

and

re-execute

it,

resulting

in

extra

network

traffic

v

an

error

returned

to

the

application

if

the

statement

cannot

be

described,

or

the

statement

cannot

be

re-executed

successfully.

Information

about

the

parameter

markers

can

be

accessed

using

descriptors.

If

you

enable

automatic

population

of

the

implementation

parameter

descriptor

(IPD)

then

information

about

the

parameter

markers

will

be

collected.

The

statement

attribute

SQL_ATTR_ENABLE_AUTO_IPD

must

be

set

to

SQL_TRUE

for

this

to

work.

If

the

parameter

marker

is

part

of

a

predicate

on

a

query

and

is

associated

with

a

User

Defined

Type,

then

the

parameter

marker

must

be

cast

to

the

built-in

type

in

the

predicate

portion

of

the

statement;

otherwise,

an

error

will

occur.

After

the

SQL

statement

has

been

executed,

and

the

results

processed,

the

application

may

wish

to

reuse

the

statement

handle

to

execute

a

different

SQL

statement.

If

the

parameter

marker

specifications

are

different

(number

of

parameters,

length

or

type)

then

SQLFreeStmt()

should

be

called

with

SQL_RESET_PARAMS

to

reset

or

clear

the

parameter

bindings.

Chapter

3.

Writing

a

basic

CLI

application

27

Related

concepts:

v

“Handles

in

CLI”

on

page

15

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“Large

object

usage

in

CLI

applications”

on

page

95

v

“Descriptors

in

CLI

applications”

on

page

147

v

“User-defined

type

(UDT)

usage

in

CLI

applications”

on

page

144

Related

reference:

v

“SQLBindFileToParam

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

parameter”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFreeStmt

function

(CLI)

-

Free

(or

reset)

a

statement

handle”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLNumParams

function

(CLI)

-

Get

number

of

parameters

in

a

SQL

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

v

“spclient.c

--

Call

various

stored

procedures”

v

“tbmod.c

--

How

to

modify

table

data”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

Binding

parameter

markers

in

CLI

applications

This

topic

describes

how

to

bind

parameter

markers

to

application

variables

before

executing

SQL

statements.

Parameter

markers

in

SQL

statements

can

be

bound

to

single

values

or

to

arrays

of

values.

Binding

each

parameter

marker

individually

requires

a

network

flow

to

the

server

for

each

set

of

values.

Using

arrays,

however,

allows

several

sets

of

parameter

values

to

be

bound

and

sent

at

once

to

the

server.

Prerequisites:

Before

you

bind

parameter

markers,

ensure

you

have

initialized

your

application.

Procedure:

To

bind

parameter

markers,

perform

either

of

the

following

steps:

v

To

bind

parameter

markers

one

at

a

time

to

application

variables,

call

SQLBindParameter()

for

each

application

variable

you

want

to

bind.

Ensure

you

specify

the

correct

parameter

type:

SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT,

or

SQL_PARAM_INPUT_OUTPUT.

The

following

example

shows

how

two

parameter

markers

are

bound

with

two

application

variables:

SQLCHAR

*stmt

=

(SQLCHAR

*)"DELETE

FROM

org

WHERE

deptnumb

=

?

AND

division

=

?

";

SQLSMALLINT

parameter1

=

0;

char

parameter2[20];

28

CLI

Guide

and

Reference,

Volume

1

/*

bind

parameter1

to

the

statement

*/

cliRC

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_SHORT,

SQL_SMALLINT,

0,

0,

¶meter1,

0,

NULL);

/*

bind

parameter2

to

the

statement

*/

cliRC

=

SQLBindParameter(hstmt,

2,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_VARCHAR,

20,

0,

parameter2,

20,

NULL);

v

To

bind

at

once

many

values

to

parameter

markers,

perform

either

of

the

following

tasks

which

use

arrays

of

values:

–

binding

parameter

markers

with

column-wise

array

input

–

binding

parameter

markers

with

row-wise

array

input

Related

concepts:

v

“Parameter

marker

binding

in

CLI

applications”

on

page

26

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

Related

reference:

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“tbmod.c

--

How

to

modify

table

data”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

Commit

modes

in

CLI

applications

A

transaction

is

a

recoverable

unit

of

work,

or

a

group

of

SQL

statements

that

can

be

treated

as

one

atomic

operation.

This

means

that

all

the

operations

within

the

group

are

guaranteed

to

be

completed

(committed)

or

undone

(rolled

back),

as

if

they

were

a

single

operation.

When

the

transaction

spans

multiple

connections,

it

is

referred

to

as

a

distributed

unit

of

work

(DUOW).

Transactions

are

started

implicitly

with

the

first

access

to

the

database

using

SQLPrepare(),

SQLExecDirect(),

SQLGetTypeInfo(),

or

any

function

that

returns

a

result

set,

such

as

catalog

functions.

At

this

point

a

transaction

has

begun,

even

if

the

call

failed.

Chapter

3.

Writing

a

basic

CLI

application

29

DB2

CLI

supports

two

commit

modes:

auto-commit

In

auto-commit

mode,

every

SQL

statement

is

a

complete

transaction,

which

is

automatically

committed.

For

a

non-query

statement,

the

commit

is

issued

at

the

end

of

statement

execution.

For

a

query

statement,

the

commit

is

issued

after

the

cursor

has

been

closed.

The

default

commit

mode

is

auto-commit

(except

when

participating

in

a

coordinated

transaction).

manual-commit

In

manual-commit

mode,

the

transaction

ends

when

you

use

SQLEndTran()

to

either

rollback

or

commit

the

transaction.

This

means

that

any

statements

executed

(on

the

same

connection)

between

the

start

of

a

transaction

and

the

call

to

SQLEndTran()

are

treated

as

a

single

transaction.

If

DB2

CLI

is

in

manual-commit

mode,

a

new

transaction

is

implicitly

started

when

an

SQL

statement

that

can

be

contained

within

a

transaction

is

executed

against

the

current

data

source.

An

application

can

switch

between

manual-commit

and

auto-commit

modes

by

calling

SQLSetConnectAttr().

Auto-commit

can

be

useful

for

query-only

applications,

because

the

commits

can

be

chained

to

the

SQL

execution

request

sent

to

the

server.

Another

benefit

of

auto-commit

is

improved

concurrency

since

locks

are

removed

as

soon

as

possible.

Applications

that

need

to

perform

updates

to

the

database

should

turn

off

auto-commit

as

soon

as

the

database

connection

has

been

established

and

should

not

wait

until

the

disconnect

before

committing

or

rolling

back

the

transaction.

The

following

are

examples

of

how

to

set

auto-commit

on

and

off:

v

Setting

auto-commit

on:

/*

...

*/

/*

set

AUTOCOMMIT

on

*/

sqlrc

=

SQLSetConnectAttr(

hdbc,

SQL_ATTR_AUTOCOMMIT,

(SQLPOINTER)SQL_AUTOCOMMIT_ON,

SQL_NTS)

;

/*

continue

with

SQL

statement

execution

*/

v

Setting

auto-commit

off:

/*

...

*/

/*

set

AUTOCOMMIT

OFF

*/

sqlrc

=

SQLSetConnectAttr(

hdbc,

SQL_ATTR_AUTOCOMMIT,

(SQLPOINTER)SQL_AUTOCOMMIT_OFF,

SQL_NTS)

;

/*

...

*/

/*

execute

the

statement

*/

/*

...

*/

sqlrc

=

SQLExecDirect(

hstmt,

stmt,

SQL_NTS

)

;

/*

...

*/

sqlrc

=

SQLEndTran(

SQL_HANDLE_DBC,

hdbc,

SQL_ROLLBACK

);

DBC_HANDLE_CHECK(

hdbc,

sqlrc);

/*

...

*/

30

CLI

Guide

and

Reference,

Volume

1

When

multiple

connections

exist

to

the

same

or

different

databases,

each

connection

has

its

own

transaction.

Special

care

must

be

taken

to

call

SQLEndTran()

with

the

correct

connection

handle

to

ensure

that

only

the

intended

connection

and

related

transaction

is

affected.

It

is

also

possible

to

rollback

or

commit

all

the

connections

by

specifying

a

valid

environment

handle,

and

a

NULL

connection

handle

on

the

SQLEndTran()

call.

Unlike

distributed

unit

of

work

connections,

there

is

no

coordination

between

the

transactions

on

each

connection

in

this

case.

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

on

page

163

v

“Cursors

in

CLI

applications”

on

page

63

v

“DB2

as

transaction

manager

in

CLI

applications”

on

page

128

v

“Multisite

updates

(two

phase

commit)

in

CLI

applications”

on

page

127

Related

tasks:

v

“Calling

stored

procedures

from

CLI

applications”

on

page

113

v

“Updating

and

deleting

data

in

CLI

applications”

on

page

35

Related

reference:

v

“SQLEndTran

function

(CLI)

-

End

transactions

of

a

connection

or

an

Environment”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetTypeInfo

function

(CLI)

-

Get

data

type

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“tut_mod.c

--

How

to

modify

table

data”

v

“tut_read.c

--

How

to

read

data

from

tables”

When

to

call

the

CLI

SQLEndTran()

function

In

auto-commit

mode,

a

commit

is

issued

implicitly

at

the

end

of

each

statement

execution

or

when

a

cursor

is

closed.

In

manual-commit

mode,

SQLEndTran()

must

be

called

before

calling

SQLDisconnect().

If

a

Distributed

Unit

of

Work

is

involved,

additional

rules

may

apply.

Consider

the

following

when

deciding

where

in

the

application

to

end

a

transaction:

v

Each

connection

cannot

have

more

than

one

current

transaction

at

any

given

time,

so

keep

dependent

statements

within

the

same

unit

of

work.

Note

that

statements

must

always

be

kept

on

the

same

connection

under

which

they

were

allocated.

Chapter

3.

Writing

a

basic

CLI

application

31

v

Various

resources

may

be

held

while

the

current

transaction

on

a

connection

is

running.

Ending

the

transaction

will

release

the

resources

for

use

by

other

applications.

v

Once

a

transaction

has

successfully

been

committed

or

rolled

back,

it

is

fully

recoverable

from

the

system

logs.

Open

transactions

are

not

recoverable.

Effects

of

calling

SQLEndTran():

When

a

transaction

ends:

v

All

locks

on

DBMS

objects

are

released,

except

those

that

are

associated

with

a

held

cursor.

v

Prepared

statements

are

preserved

from

one

transaction

to

the

next.

Once

a

statement

has

been

prepared

on

a

specific

statement

handle,

it

does

not

need

to

be

prepared

again

even

after

a

commit

or

rollback,

provided

the

statement

continues

to

be

associated

with

the

same

statement

handle.

v

Cursor

names,

bound

parameters,

and

column

bindings

are

maintained

from

one

transaction

to

the

next.

v

By

default,

cursors

are

preserved

after

a

commit

(but

not

a

rollback).

All

cursors

are

by

default

defined

with

the

WITH

HOLD

clause,

except

when

the

CLI

application

is

running

in

a

Distributed

Unit

of

Work

environment.

Related

concepts:

v

“Handles

in

CLI”

on

page

15

v

“Parameter

marker

binding

in

CLI

applications”

on

page

26

v

“Commit

modes

in

CLI

applications”

on

page

29

v

“Cursors

in

CLI

applications”

on

page

63

v

“Multisite

updates

(two

phase

commit)

in

CLI

applications”

on

page

127

v

“Column

binding

in

CLI

applications”

on

page

83

Related

reference:

v

“SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLEndTran

function

(CLI)

-

End

transactions

of

a

connection

or

an

Environment”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbmcon.c

--

How

to

use

multiple

databases”

v

“dbuse.c

--

How

to

use

a

database”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

Retrieving

query

results

in

CLI

applications

Retrieving

query

results

is

part

of

the

larger

task

of

processing

transactions

in

CLI

applications.

Retrieving

query

results

involves

binding

application

variables

to

columns

of

a

result

set

and

then

fetching

the

rows

of

data

into

the

application

variables.

A

typical

query

is

the

SELECT

statement.

Prerequisites:

Before

you

retrieve

results,

ensure

you

have

initialized

your

application

and

prepared

and

executed

the

necessary

SQL

statements.

32

CLI

Guide

and

Reference,

Volume

1

Procedure:

To

retrieve

each

row

of

the

result

set:

1.

Optional:

Determine

the

structure

of

the

result

set,

number

of

columns,

and

column

types

and

lengths

by

calling

SQLNumResultCols()

and

SQLDescribeCol().

Note:

Performing

this

step

can

reduce

performance

if

done

before

the

query

has

been

executed,

because

it

forces

CLI

to

describe

the

query’s

columns.

Information

about

the

result

set’s

columns

is

available

after

successful

execution,

and

describing

the

result

set

does

not

incur

any

additional

overhead

if

the

describe

is

performed

after

successful

execution.

2.

Bind

an

application

variable

to

each

column

of

the

result

set,

by

calling

SQLBindCol(),

ensuring

that

the

variable

type

matches

the

column

type.

For

example:

struct

{

SQLINTEGER

ind;

SQLSMALLINT

val;

}

deptnumb;

/*

variable

to

be

bound

to

the

DEPTNUMB

column

*/

struct

{

SQLINTEGER

ind;

SQLCHAR

val[15];

}

location;

/*

variable

to

be

bound

to

the

LOCATION

column

*/

/*

...

*/

/*

bind

column

1

to

variable

*/

cliRC

=

SQLBindCol(hstmt,

1,

SQL_C_SHORT,

&deptnumb.val,

0,

&deptnumb.ind);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

/*

bind

column

2

to

variable

*/

cliRC

=

SQLBindCol(hstmt,

2,

SQL_C_CHAR,

location.val,

15,

&location.ind);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

The

application

can

use

the

information

obtained

in

step

1

to

determine

an

appropriate

C

data

type

for

the

application

variable

and

to

allocate

the

maximum

storage

the

column

value

could

occupy.

The

columns

are

bound

to

deferred

output

arguments,

which

means

the

data

is

written

to

these

storage

locations

when

it

is

fetched.

Important:

Do

not

de-allocate

or

discard

variables

used

for

deferred

output

arguments

between

the

time

the

application

binds

them

to

columns

of

the

result

set

and

the

time

DB2

CLI

writes

to

these

arguments.

3.

Repeatedly

fetch

the

row

of

data

from

the

result

set

by

calling

SQLFetch()

until

SQL_NO_DATA_FOUND

is

returned.

For

example:

/*

fetch

each

row

and

display

*/

cliRC

=

SQLFetch(hstmt);

if

(cliRC

==

SQL_NO_DATA_FOUND)

{

printf("\n

Data

not

found.\n");

}

while

(cliRC

!=

SQL_NO_DATA_FOUND)

{

Chapter

3.

Writing

a

basic

CLI

application

33

printf("

%-8d

%-14.14s

\n",

deptnumb.val,

location.val);

/*

fetch

next

row

*/

cliRC

=

SQLFetch(hstmt);

}

SQLFetchScroll()

can

also

be

used

to

fetch

multiple

rows

of

the

result

set

into

an

array.

If

data

conversion

was

required

for

the

data

types

specified

on

the

call

to

SQLBindCol(),

the

conversion

will

occur

when

SQLFetch()

is

called.

4.

Optional:

Retrieve

columns

that

were

not

previously

bound

by

calling

SQLGetData()

after

each

successful

fetch.

You

can

retrieve

all

unbound

columns

this

way.

For

example:

/*

fetch

each

row

and

display

*/

cliRC

=

SQLFetch(hstmt);

if

(cliRC

==

SQL_NO_DATA_FOUND)

{

printf("\n

Data

not

found.\n");

}

while

(cliRC

!=

SQL_NO_DATA_FOUND)

{

/*

use

SQLGetData()

to

get

the

results

*/

/*

get

data

from

column

1

*/

cliRC

=

SQLGetData(hstmt,

1,

SQL_C_SHORT,

&deptnumb.val,

0,

&deptnumb.ind);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

/*

get

data

from

column

2

*/

cliRC

=

SQLGetData(hstmt,

2,

SQL_C_CHAR,

location.val,

15,

&location.ind);

/*

display

the

data

*/

printf("

%-8d

%-14.14s

\n",

deptnumb.val,

location.val);

/*

fetch

the

next

row

*/

cliRC

=

SQLFetch(hstmt);

}

Note:

Applications

perform

better

if

columns

are

bound,

rather

than

having

them

retrieved

as

unbound

columns

using

SQLGetData().

However,

an

application

may

be

constrained

in

the

amount

of

long

data

it

can

retrieve

and

handle

at

one

time.

If

this

is

a

concern,

then

SQLGetData()

may

be

the

better

choice.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Retrieving

array

data

in

CLI

applications

using

column-wise

binding”

on

page

87

34

CLI

Guide

and

Reference,

Volume

1

v

“Retrieving

array

data

in

CLI

applications

using

row-wise

binding”

on

page

88

Related

reference:

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLNumResultCols

function

(CLI)

-

Get

number

of

result

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

v

“tut_read.c

--

How

to

read

data

from

tables”

Updating

and

deleting

data

in

CLI

applications

Updating

and

deleting

data

is

part

of

the

larger

task

of

processing

transactions

in

CLI.

There

are

two

types

of

update

and

delete

operations

available

in

CLI

programming:

simple

and

positioned.

A

simple

update

or

delete

operation

only

requires

that

you

issue

and

execute

the

UPDATE

or

DELETE

SQL

statements

as

you

would

any

other

SQL

statement.

You

could,

in

this

case,

use

SQLRowCount()

to

obtain

the

number

of

rows

affected

by

the

SQL

statement.

Positioned

updates

and

deletes

involve

modifying

the

data

of

a

result

set.

A

positioned

update

is

the

update

of

a

column

of

a

result

set,

and

a

positioned

delete

is

when

a

row

of

a

result

set

is

deleted.

Positioned

update

and

delete

operations

require

cursors

to

be

used.

This

document

describes

how

to

perform

positioned

update

and

delete

operations

by

first

getting

the

name

of

the

cursor

associated

with

the

result

set,

and

then

issuing

and

executing

the

UPDATE

or

DELETE

on

a

second

statement

handle

using

the

retrieved

cursor

name.

Prerequisites:

Before

you

perform

a

positioned

update

or

delete

operation,

ensure

that

you

have

initialized

your

CLI

application.

Procedure:

To

perform

a

positioned

update

or

delete

operation:

1.

Generate

the

result

set

that

the

update

or

delete

will

be

performed

on

by

issuing

and

executing

the

SELECT

SQL

statement.

2.

Call

SQLGetCursorName()

to

get

the

name

of

the

cursor,

using

the

same

statement

handle

as

the

handle

that

executed

the

SELECT

statement.

This

cursor

name

will

be

needed

in

the

UPDATE

or

DELETE

statement.

Chapter

3.

Writing

a

basic

CLI

application

35

When

a

statement

handle

is

allocated,

a

cursor

name

is

automatically

generated.

You

can

define

your

own

cursor

name

using

SQLSetCursorName(),

but

it

is

recommended

that

you

use

the

name

that

is

generated

by

default

because

all

error

messages

will

reference

the

generated

name,

not

the

name

defined

using

SQLSetCursorName().

3.

Allocate

a

second

statement

handle

that

will

be

used

to

execute

the

positioned

update

or

delete.

To

update

a

row

that

has

been

fetched,

the

application

uses

two

statement

handles,

one

for

the

fetch

and

one

for

the

update.

You

cannot

reuse

the

fetch

statement

handle

to

execute

the

positioned

update

or

delete,

because

it

is

still

in

use

when

the

positioned

update

or

delete

is

executing.

4.

Fetch

data

from

the

result

set

by

calling

SQLFetch()

or

SQLFetchScroll().

5.

Issue

the

UPDATE

or

DELETE

SQL

statement

with

the

WHERE

CURRENT

of

clause

and

specify

the

cursor

name

obtained

in

step

2.

For

example:

sprintf((char

*)stmtPositionedUpdate,

"UPDATE

org

SET

location

=

’Toronto’

WHERE

CURRENT

of

%s",

cursorName);

6.

Position

the

cursor

on

the

row

of

the

data

fetched

and

execute

the

positioned

update

or

delete

statement.

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Issuing

SQL

statements

in

CLI

applications”

on

page

23

Related

reference:

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetCursorName

function

(CLI)

-

Get

cursor

name”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLRowCount

function

(CLI)

-

Get

row

count”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“DELETE

statement”

in

the

SQL

Reference,

Volume

2

v

“UPDATE

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

v

“tbmod.c

--

How

to

modify

table

data”

Freeing

statement

resources

in

CLI

applications

After

a

transaction

has

completed,

end

the

processing

for

each

statement

handle

by

freeing

the

resources

associated

with

it.

There

are

four

main

tasks

that

are

involved

with

freeing

resources

for

a

statement

handle:

v

close

the

open

cursor

v

unbind

the

column

bindings

v

unbind

the

parameter

bindings

v

free

the

statement

handle

36

CLI

Guide

and

Reference,

Volume

1

There

are

two

ways

you

can

free

statement

resources:

using

SQLFreeHandle()

or

SQLFreeStmt().

Prerequisites:

Before

you

can

free

statement

resources,

you

must

have

initialized

your

CLI

application

and

allocated

a

statement

handle.

Procedure:

To

free

statement

resources

with

SQLFreeHandle(),

call

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_STMT

and

the

handle

you

want

to

free.

This

will

close

any

open

cursor

associated

with

this

statement

handle,

unbind

column

and

parameter

bindings,

and

free

the

statement

handle.

This

invalidates

the

statement

handle.

You

do

not

need

to

explicitly

carry

out

each

of

the

four

tasks

listed

above.

To

free

statement

resources

with

SQLFreeStmt(),

you

need

to

call

SQLFreeStmt()

for

each

task

(depending

on

how

the

application

was

implemented,

all

of

these

tasks

may

not

be

necessary):

v

To

close

the

open

cursor,

call

SQLCloseCursor(),

or

call

SQLFreeStmt()

with

the

SQL_CLOSE

Option

and

statement

handle

as

arguments.

This

closes

the

cursor

and

discards

any

pending

results.

v

To

unbind

column

bindings,

call

SQLFreeStmt()

with

an

Option

of

SQL_UNBIND

and

the

statement

handle.

This

unbinds

all

columns

for

this

statement

handle

except

the

bookmark

column.

v

To

unbind

parameter

bindings,

call

SQLFreeStmt()

with

an

Option

of

SQL_RESET_PARAMS

and

the

statement

handle.

This

releases

all

parameter

bindings

for

this

statement

handle.

v

To

free

the

statement

handle,

call

SQLFreeStmt()

with

an

Option

of

SQL_DROP

and

the

statement

handle

to

be

freed.

This

invalidates

this

statement

handle.

Note:

Although

this

option

is

still

supported,

we

recommend

that

you

use

SQLFreeHandle()

in

your

DB2

CLI

applications

so

that

they

conform

to

the

latest

standards.

Related

concepts:

v

“Handles

in

CLI”

on

page

15

v

“Handle

freeing

in

CLI

applications”

on

page

38

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Allocating

statement

handles

in

CLI

applications”

on

page

22

Related

reference:

v

“SQLCloseCursor

function

(CLI)

-

Close

cursor

and

discard

pending

results”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFreeStmt

function

(CLI)

-

Free

(or

reset)

a

statement

handle”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“tut_read.c

--

How

to

read

data

from

tables”

Chapter

3.

Writing

a

basic

CLI

application

37

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

v

“utilcli.c

--

Utility

functions

used

by

DB2

CLI

samples”

Handle

freeing

in

CLI

applications

Environment

handle:

Prior

to

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_ENV,

an

application

must

call

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_DBC

for

all

connections

allocated

under

the

environment.

Otherwise,

the

call

to

SQLFreeHandle()

returns

SQL_ERROR

and

the

environment

remains

valid,

as

well

as

any

connection

associated

with

that

environment.

Connection

handle:

If

a

connection

is

open

on

the

handle,

an

application

must

call

SQLDisconnect()

for

the

connection

prior

to

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_DBC.

Otherwise,

the

call

to

SQLFreeHandle()

returns

SQL_ERROR

and

the

connection

remains

valid.

Statement

handle:

A

call

to

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_STMT

frees

all

resources

that

were

allocated

by

a

call

to

SQLAllocHandle()

with

a

HandleType

of

SQL_HANDLE_STMT.

When

an

application

calls

SQLFreeHandle()

to

free

a

statement

that

has

pending

results,

the

pending

results

are

discarded.

When

an

application

frees

a

statement

handle,

DB2

CLI

frees

all

the

automatically

generated

descriptors

associated

with

that

handle.

Note

that

SQLDisconnect()

automatically

drops

any

statements

and

descriptors

open

on

the

connection.

Descriptor

Handle:

A

call

to

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_DESC

frees

the

descriptor

handle

in

Handle.

The

call

to

SQLFreeHandle()

does

not

release

any

memory

allocated

by

the

application

that

may

be

referenced

by

the

deferred

fields

(SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR,

and

SQL_DESC_OCTET_LENGTH_PTR)

of

any

descriptor

record

of

Handle.

When

an

explicitly

allocated

descriptor

handle

is

freed,

all

statements

that

the

freed

handle

had

been

associated

with

revert

to

their

automatically

allocated

descriptor

handle.

Note

that

SQLDisconnect()

automatically

drops

any

statements

and

descriptors

open

on

the

connection.

When

an

application

frees

a

statement

handle,

DB2

CLI

frees

all

the

automatically

generated

descriptors

associated

with

that

handle.

Related

concepts:

v

“Descriptors

in

CLI

applications”

on

page

147

Related

tasks:

v

“Freeing

statement

resources

in

CLI

applications”

on

page

36

v

“Terminating

a

CLI

application”

on

page

51

Related

reference:

38

CLI

Guide

and

Reference,

Volume

1

v

“SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

Data

types

and

data

conversion

in

CLI

applications

When

writing

a

DB2

CLI

application

it

is

necessary

to

work

with

both

SQL

data

types

and

C

data

types.

This

is

unavoidable

because

the

DBMS

uses

SQL

data

types,

while

the

application

uses

C

data

types.

The

application,

therefore,

must

match

C

data

types

to

SQL

data

types

when

calling

DB2

CLI

functions

to

transfer

data

between

the

DBMS

and

the

application.

To

facilitate

this,

DB2

CLI

provides

symbolic

names

for

the

various

data

types,

and

manages

the

transfer

of

data

between

the

DBMS

and

the

application.

It

also

performs

data

conversion

(from

a

C

character

string

to

an

SQL

INTEGER

type,

for

example)

if

required.

DB2

CLI

needs

to

know

both

the

source

and

target

data

type.

This

requires

the

application

to

identify

both

data

types

using

symbolic

names.

Data

type

conversion

can

occur

under

one

of

two

conditions:

v

The

application

specified

a

C

type

that

is

not

the

default

C

type

for

the

SQL

type.

v

The

application

specified

an

SQL

type

that

does

not

match

the

base

column

SQL

type

at

the

server,

and

there

was

no

describe

information

available

to

the

DB2

CLI

driver.

Example

of

how

to

use

data

types:

Because

the

data

source

contains

SQL

data

types

and

the

CLI

application

works

with

C

data

types,

the

data

to

be

retrieved

needs

to

be

handled

with

the

correct

data

types.

The

following

example

shows

how

SQL

and

C

data

types

are

used

by

an

application

to

retrieve

data

from

the

source

into

application

variables.

The

example

is

taken

from

the

tut_read.c

sample

program

and

examines

how

data

is

retrieved

from

the

DEPTNUMB

column

of

the

ORG

table

in

the

sample

database.

v

The

DEPTNUMB

column

of

the

ORG

table

is

declared

as

the

SQL

data

type

SMALLINT.

v

The

application

variable

which

will

hold

the

retrieved

data

is

declared

using

C

types.

Since

the

DEPTNUMB

column

is

of

SQL

type

SMALLINT,

the

application

variable

needs

to

be

declared

using

the

C

type

SQLSMALLINT,

which

is

equivalent

to

the

SQL

type

SMALLINT.

struct

{

SQLINTEGER

ind;

SQLSMALLINT

val;

}

deptnumb;

/*

variable

to

be

bound

to

the

DEPTNUMB

column

*/

SQLSMALLINT

represents

the

base

C

type

of

short

int.

v

The

application

binds

the

application

variable

to

the

symbolic

C

data

type

of

SQL_C_SHORT:

sqlrc

=

SQLBindCol(hstmt,

1,

SQL_C_SHORT,

&deptnumb.val,

0,

&deptnumb.ind);

Chapter

3.

Writing

a

basic

CLI

application

39

The

data

types

are

now

consistent,

because

the

result

data

type

SQL_C_SHORT

represents

the

C

type

SQLSMALLINT.

Data

conversion:

DB2

CLI

manages

the

transfer

and

any

required

conversion

of

data

between

the

application

and

the

DBMS.

Before

the

data

transfer

actually

takes

place,

either

the

source,

the

target

or

both

data

types

are

indicated

when

calling

SQLBindParameter(),

SQLBindCol()

or

SQLGetData().

These

functions

use

the

symbolic

type

names

to

identify

the

data

types

involved.

For

example,

to

bind

a

parameter

marker

that

corresponds

to

an

SQL

data

type

of

DECIMAL(5,3),

to

an

application’s

C

buffer

type

of

double,

the

appropriate

SQLBindParameter()

call

would

look

like:

SQLBindParameter

(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_DOUBLE,

SQL_DECIMAL,

5,

3,

double_ptr,

0,

NULL);

The

functions

mentioned

in

the

previous

paragraph

can

be

used

to

convert

data

from

the

default

to

other

data

types,

but

not

all

data

conversions

are

supported

or

make

sense.

The

rules

that

specify

limits

on

precision

and

scale,

as

well

as

truncation

and

rounding

rules

for

type

conversions

apply

in

DB2

CLI,

with

the

following

exception:

truncation

of

values

to

the

right

of

the

decimal

point

for

numeric

values

may

return

a

truncation

warning,

whereas

truncation

to

the

left

of

the

decimal

point

returns

an

error.

In

cases

of

error,

the

application

should

call

SQLGetDiagRec()

to

obtain

the

SQLSTATE

and

additional

information

on

the

failure.

When

moving

and

converting

floating

point

data

values

between

the

application

and

DB2

CLI,

no

correspondence

is

guaranteed

to

be

exact

as

the

values

may

change

in

precision

and

scale.

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

on

page

49

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“C

data

types

for

CLI

applications”

on

page

42

v

“Data

conversions

supported

in

CLI”

on

page

337

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dtinfo.c

--

How

get

information

about

data

types”

v

“tut_read.c

--

How

to

read

data

from

tables”

40

CLI

Guide

and

Reference,

Volume

1

SQL

symbolic

and

default

data

types

for

CLI

applications

The

table

below

lists

each

of

the

SQL

data

types

used

by

CLI

applications,

with

its

corresponding

symbolic

name,

and

the

default

C

symbolic

name.

SQL

data

type

This

column

contains

the

SQL

data

types

as

they

would

appear

in

an

SQL

CREATE

statement.

The

SQL

data

types

are

dependent

on

the

DBMS.

Symbolic

SQL

data

type

This

column

contains

SQL

symbolic

names

that

are

defined

(in

sqlcli.h)

as

an

integer

value.

These

values

are

used

by

various

functions

to

identify

the

SQL

data

types

listed

in

the

first

column.

Default

C

symbolic

data

type

This

column

contains

C

symbolic

names,

also

defined

as

integer

values.

These

values

are

used

in

various

function

arguments

to

identify

the

C

data

type.

The

symbolic

names

are

used

by

various

functions,

such

as

SQLBindParameter(),

SQLGetData(),

and

SQLBindCol()

to

indicate

the

C

data

types

of

the

application

variables.

Instead

of

explicitly

identifying

C

data

types

when

calling

these

functions,

SQL_C_DEFAULT

can

be

specified

instead,

and

DB2

CLI

will

assume

a

default

C

data

type

based

on

the

SQL

data

type

of

the

parameter

or

column

as

shown

by

this

table.

For

example,

the

default

C

data

type

of

SQL_DECIMAL

is

SQL_C_CHAR.

It

is

recommended

that

applications

do

not

use

SQL_C_DEFAULT

to

define

C

data

types

because

it

is

less

efficient

for

the

CLI

driver.

Explicitly

indicating

the

C

data

type

in

the

application

is

preferred

since

it

yields

better

performance

than

using

SQL_C_DEFAULT.

Table

3.

SQL

symbolic

and

default

data

types

SQL

data

type

Symbolic

SQL

data

type

Default

symbolic

C

data

type

BIGINT

SQL_BIGINT

SQL_C_SBIGINT

BLOB

SQL_BLOB

SQL_C_BINARY

BLOB

LOCATOR

a

SQL_BLOB_LOCATOR

SQL_C_BLOB_LOCATOR

CHAR

SQL_CHAR

SQL_C_CHAR

CHAR

SQL_TINYINT

SQL_C_TINYINT

CHAR

FOR

BIT

DATA

b

SQL_BINARY

SQL_C_BINARY

CHAR

FOR

BIT

DATA

SQL_BIT

SQL_C_BIT

CLOB

SQL_CLOB

SQL_C_CHAR

CLOB

LOCATOR

a

SQL_CLOB_LOCATOR

SQL_C_CLOB_LOCATOR

DATALINK

SQL_DATALINK

SQL_C_CHAR

DATE

SQL_TYPE_DATE

SQL_C_TYPE_DATE

DBCLOB

SQL_DBCLOB

SQL_C_DBCHAR

DBCLOB

LOCATOR

a

SQL_DBCLOB_LOCATOR

SQL_C_DBCLOB_LOCATOR

DECIMAL

SQL_DECIMAL

SQL_C_CHAR

DOUBLE

SQL_DOUBLE

SQL_C_DOUBLE

FLOAT

SQL_FLOAT

SQL_C_DOUBLE

GRAPHIC

SQL_GRAPHIC

SQL_C_DBCHAR

INTEGER

SQL_INTEGER

SQL_C_LONG

Chapter

3.

Writing

a

basic

CLI

application

41

|

Table

3.

SQL

symbolic

and

default

data

types

(continued)

SQL

data

type

Symbolic

SQL

data

type

Default

symbolic

C

data

type

LONG

VARCHAR

b

SQL_LONGVARCHAR

SQL_C_CHAR

LONG

VARCHAR

FOR

BIT

DATA

b

SQL_LONGVARBINARY

SQL_C_BINARY

LONG

VARGRAPHIC

b

SQL_LONGVARGRAPHIC

SQL_C_DBCHAR

LONG

VARGRAPHIC

b

SQL_WLONGVARCHAR

SQL_C_DBCHAR

NUMERIC

c

SQL_NUMERIC

c

SQL_C_CHAR

REAL

SQL_REAL

SQL_C_FLOAT

SMALLINT

SQL_SMALLINT

SQL_C_SHORT

TIME

SQL_TYPE_TIME

SQL_C_TYPE_TIME

TIMESTAMP

SQL_TYPE_TIMESTAMP

SQL_C_TYPE_TIMESTAMP

VARCHAR

SQL_VARCHAR

SQL_C_CHAR

VARCHAR

FOR

BIT

DATA

b

SQL_VARBINARY

SQL_C_BINARY

VARGRAPHIC

SQL_VARGRAPHIC

SQL_C_DBCHAR

VARGRAPHIC

SQL_WVARCHAR

SQL_C_DBCHAR

WCHAR

SQL_WCHAR

SQL_C_WCHAR

a

LOB

locator

types

are

not

persistent

SQL

data

types,

(columns

can

not

be

defined

with

a

locator

type,

they

are

only

used

to

describe

parameter

markers,

or

to

represent

a

LOB

value).

b

LONG

data

types

and

FOR

BIT

DATA

data

types

should

be

replaced

by

an

appropriate

LOB

types

whenever

possible.

c

NUMERIC

is

a

synonym

for

DECIMAL

on

DB2

for

z/OS,

DB2

Server

for

VSE

&

VM

and

DB2

Universal

Database.

Note:

The

data

types

DATE,

DECIMAL,

NUMERIC,

TIME,

and

TIMESTAMP

cannot

be

transferred

to

their

default

C

buffer

types

without

a

conversion.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“LOB

locators

in

CLI

applications”

on

page

97

Related

reference:

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

C

data

types

for

CLI

applications

The

following

table

lists

the

generic

type

definitions

for

each

symbolic

C

type

that

is

used

in

CLI

applications.

42

CLI

Guide

and

Reference,

Volume

1

C

symbolic

data

type

This

column

contains

C

symbolic

names,

defined

as

integer

values.

These

values

are

used

in

various

function

arguments

to

identify

the

C

data

type

shown

in

the

last

column.

C

type

This

column

contains

C

defined

types,

defined

in

sqlcli.h

using

a

C

typedef

statement.

The

values

in

this

column

should

be

used

to

declare

all

DB2

CLI

related

variables

and

arguments,

in

order

to

make

the

application

more

portable.

Refer

to

Table

6

on

page

44

for

a

list

of

additional

symbolic

data

types

used

for

function

arguments.

Base

C

type

This

column

is

shown

for

reference

only.

All

variables

and

arguments

should

be

defined

using

the

symbolic

types

in

the

previous

column.

Some

of

the

values

are

C

structures

that

are

described

in

Table

5

on

page

44.

Table

4.

C

data

types

C

symbolic

data

type

C

type

Base

C

type

SQL_C_BINARY

SQLCHAR

unsigned

char

SQL_C_BIT

SQLCHAR

unsigned

char

or

char

(Value

1

or

0)

SQL_C_BLOB_LOCATOR

a

SQLINTEGER

long

int

SQL_C_CLOB_LOCATOR

a

SQLINTEGER

long

int

SQL_C_CHAR

SQLCHAR

unsigned

char

SQL_C_DATALINK

SQLCHAR

unsigned

char

SQL_C_DBCHAR

SQLDBCHAR

wchar_t

SQL_C_DBCLOB_LOCATOR

SQLINTEGER

long

int

SQL_C_DOUBLE

SQLDOUBLE

double

SQL_C_FLOAT

SQLREAL

float

SQL_C_LONG

SQLINTEGER

long

int

SQL_C_NUMERIC

b

SQL_NUMERIC_STRUCT

see

Table

5

on

page

44

SQL_C_SBIGINT

SQLBIGINT

_int64

SQL_C_SHORT

SQLSMALLINT

short

int

SQL_C_TINYINT

SQLSCHAR

signed

char

(Range

-128

to

127)

SQL_C_TYPE_DATE

DATE_STRUCT

see

Table

5

on

page

44

SQL_C_TYPE_TIME

TIME_STRUCT

see

Table

5

on

page

44

SQL_C_TYPE_TIMESTAMP

TIMESTAMP_STRUCT

see

Table

5

on

page

44

SQL_C_UBIGINT

SQLUBIGINT

unsigned

_int64

SQL_C_ULONG

SQLUINTEGER

unsigned

long

int

SQL_C_USHORT

SQLUSMALLINT

unsigned

short

int

SQL_C_UTINYINT

SQLUCHAR

unsigned

char

SQL_C_WCHAR

SQLWCHAR

wchar_t

v

a

LOB

Locator

Types.

v

b

Windows

only.

Note:

SQL

file

reference

data

types

(used

in

embedded

SQL)

are

not

needed

in

DB2

CLI.

Chapter

3.

Writing

a

basic

CLI

application

43

Table

5.

C

structures

C

type

Generic

structure

Windows

structure

DATE_STRUCT

typedef

struct

DATE_STRUCT

{

SQLSMALLINT

year;

SQLUSMALLINT

month;

SQLUSMALLINT

day;

}

DATE_STRUCT;

typedef

struct

tagDATE_STRUCT

{

SWORD

year;

UWORD

month;

UWORD

day;

}

DATE_STRUCT;

TIME_STRUCT

typedef

struct

TIME_STRUCT

{

SQLUSMALLINT

hour;

SQLUSMALLINT

minute;

SQLUSMALLINT

second;

}

TIME_STRUCT;

typedef

struct

tagTIME_STRUCT

{

UWORD

hour;

UWORD

minute;

UWORD

second;

}

TIME_STRUCT;

TIMESTAMP_STRUCT

typedef

struct

TIMESTAMP_STRUCT

{

SQLUSMALLINT

year;

SQLUSMALLINT

month;

SQLUSMALLINT

day;

SQLUSMALLINT

hour;

SQLUSMALLINT

minute;

SQLUSMALLINT

second;

SQLINTEGER

fraction;

}

TIMESTAMP_STRUCT;

typedef

struct

tagTIMESTAMP_STRUCT

{

SWORD

year;

UWORD

month;

UWORD

day;

UWORD

hour;

UWORD

minute;

UWORD

second;

UDWORD

fraction;

}

TIMESTAMP_STRUCT;

SQL_NUMERIC_STRUCT

(No

generic

structure.

Only

a

Windows

structure.)

typedef

struct

tagSQL_NUMERIC_STRUCT

{

SQLCHAR

precision;

SQLCHAR

scale;

SQLCHAR

sign;

a

SQLCHAR

val[SQL_MAX_NUMERIC_LEN];b

c

}

SQL_NUMERIC_STRUCT;

Refer

to

Table

6

for

more

information

on

the

SQLUSMALLINT

C

data

type.

a

Sign

field:

1

=

positive,

2

=

negative

b

A

number

is

stored

in

the

val

field

of

the

SQL_NUMERIC_STRUCT

structure

as

a

scaled

integer,

in

little

endian

mode

(the

leftmost

byte

being

the

least-significant

byte).

For

example,

the

number

10.001

base

10,

with

a

scale

of

4,

is

scaled

to

an

integer

of

100010.

Because

this

is

186AA

in

hexadecimal

format,

the

value

in

SQL_NUMERIC_STRUCT

would

be

“AA

86

01

00

00

...

00”,

with

the

number

of

bytes

defined

by

the

SQL_MAX_NUMERIC_LEN

#define.

c

The

precision

and

scale

fields

of

the

SQL_C_NUMERIC

data

type

are

never

used

for

input

from

an

application,

only

for

output

from

the

driver

to

the

application.

When

the

driver

writes

a

numeric

value

into

the

SQL_NUMERIC_STRUCT,

it

will

use

its

own

default

as

the

value

for

the

precision

field,

and

it

will

use

the

value

in

the

SQL_DESC_SCALE

field

of

the

application

descriptor

(which

defaults

to

0)

for

the

scale

field.

An

application

can

provide

its

own

values

for

precision

and

scale

by

setting

the

SQL_DESC_PRECISION

and

SQL_DESC_SCALE

fields

of

the

application

descriptor.

As

well

as

the

data

types

that

map

to

SQL

data

types,

there

are

also

C

symbolic

types

used

for

other

function

arguments

such

as

pointers

and

handles.

Both

the

generic

and

ODBC

data

types

are

shown

below.

Table

6.

C

Data

types

and

base

C

data

types

Defined

C

type

Base

C

type

Typical

usage

SQLPOINTER

void

*

Pointer

to

storage

for

data

and

parameters.

44

CLI

Guide

and

Reference,

Volume

1

Table

6.

C

Data

types

and

base

C

data

types

(continued)

Defined

C

type

Base

C

type

Typical

usage

SQLHANDLE

long

int

Handle

used

to

reference

all

4

types

of

handle

information.

SQLHENV

long

int

Handle

referencing

environment

information.

SQLHDBC

long

int

Handle

referencing

database

connection

information.

SQLHSTMT

long

int

Handle

referencing

statement

information.

SQLUSMALLINT

unsigned

short

int

Function

input

argument

for

unsigned

short

integer

values.

SQLUINTEGER

unsigned

long

int

Function

input

argument

for

unsigned

long

integer

values.

SQLRETURN

short

int

Return

code

from

DB2

CLI

functions.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“LOB

locators

in

CLI

applications”

on

page

97

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

String

handling

in

CLI

applications

The

following

conventions

deal

with

the

various

aspects

of

string

arguments

in

DB2

CLI

functions.

Length

of

string

arguments:

Input

strings

can

have

an

associated

length

argument

which

indicates

either

the

exact

length

of

the

string

(not

including

the

null

terminator),

the

special

value

SQL_NTS

to

indicate

a

null-terminated

string,

or

SQL_NULL_DATA

to

pass

a

NULL

value.

If

the

length

is

set

to

SQL_NTS,

DB2

CLI

will

determine

the

length

of

the

string

by

locating

the

null

terminator.

Output

strings

have

two

associated

length

arguments:

an

input

length

argument

to

specify

the

length

of

the

allocated

output

buffer,

and

an

output

length

argument

to

return

the

actual

length

of

the

string

returned

by

DB2

CLI.

The

returned

length

value

is

the

total

length

of

the

string

available

for

return,

regardless

of

whether

it

fits

in

the

buffer

or

not.

For

SQL

column

data,

if

the

output

is

a

null

value,

SQL_NULL_DATA

is

returned

in

the

length

argument

and

the

output

buffer

is

untouched.

The

descriptor

field

SQL_DESC_INDICATOR_PTR

is

set

to

SQL_NULL_DATA

if

the

column

value

is

a

null

value.

For

more

information,

including

which

other

fields

are

set,

see

the

descriptor

FieldIdentifier

argument

values.

If

a

function

is

called

with

a

null

pointer

for

an

output

length

argument,

DB2

CLI

will

not

return

a

length.

When

the

output

data

is

a

NULL

value,

DB2

CLI

cannot

indicate

that

the

value

is

NULL.

If

it

is

possible

that

a

column

in

a

result

set

can

contain

a

NULL

value,

a

valid

pointer

to

the

output

length

argument

must

always

be

provided.

It

is

highly

recommended

that

a

valid

output

length

argument

always

be

used.

Chapter

3.

Writing

a

basic

CLI

application

45

Performance

hint:

If

the

length

argument

(StrLen_or_IndPtr)

and

the

output

buffer

(TargetValuePtr)

are

contiguous

in

memory,

DB2

CLI

can

return

both

values

more

efficiently,

improving

application

performance.

For

example,

if

the

following

structure

is

defined:

struct

{

SQLINTEGER

pcbValue;

SQLCHAR

rgbValue

[BUFFER_SIZE];

}

buffer;

and

&buffer.pcbValue

and

buffer.rgbValue

is

passed

to

SQLBindCol(),

DB2

CLI

would

update

both

values

in

one

operation.

Null-termination

of

strings:

By

default,

every

character

string

that

DB2

CLI

returns

is

terminated

with

a

null

terminator

(hex

00),

except

for

strings

returned

from

graphic

and

DBCLOB

data

types

into

SQL_C_CHAR

application

variables.

Graphic

and

DBCLOB

data

types

that

are

retrieved

into

SQL_C_DBCHAR

application

variables

are

null

terminated

with

a

double

byte

null

terminator.

Also,

string

data

retrieved

into

SQL_C_WCHAR

are

terminated

with

the

Unicode

null

terminator

0x0000.

This

requires

that

all

buffers

allocate

enough

space

for

the

maximum

number

of

bytes

expected,

plus

the

null

terminator.

It

is

also

possible

to

use

SQLSetEnvAttr()

and

set

an

environment

attribute

to

disable

null

termination

of

variable

length

output

(character

string)

data.

In

this

case,

the

application

allocates

a

buffer

exactly

as

long

as

the

longest

string

it

expects.

The

application

must

provide

a

valid

pointer

to

storage

for

the

output

length

argument

so

that

DB2

CLI

can

indicate

the

actual

length

of

data

returned;

otherwise,

the

application

will

not

have

any

means

to

determine

this.

The

DB2

CLI

default

is

to

always

write

the

null

terminator.

It

is

possible,

using

the

Patch1

CLI/ODBC

configuration

keyword,

to

force

DB2

CLI

to

null

terminate

graphic

and

DBCLOB

strings.

String

truncation:

If

an

output

string

does

not

fit

into

a

buffer,

DB2

CLI

will

truncate

the

string

to

the

size

of

the

buffer,

and

write

the

null

terminator.

If

truncation

occurs,

the

function

will

return

SQL_SUCCESS_WITH_INFO

and

an

SQLSTATE

of

01004

indicating

truncation.

The

application

can

then

compare

the

buffer

length

to

the

output

length

to

determine

which

string

was

truncated.

For

example,

if

SQLFetch()

returns

SQL_SUCCESS_WITH_INFO,

and

an

SQLSTATE

of

01004,

it

means

at

least

one

of

the

buffers

bound

to

a

column

is

too

small

to

hold

the

data.

For

each

buffer

that

is

bound

to

a

column,

the

application

can

compare

the

buffer

length

with

the

output

length

and

determine

which

column

was

truncated.

You

can

also

call

SQLGetDiagField()

to

find

out

which

column

failed.

Interpretation

of

strings:

Normally,

DB2

CLI

interprets

string

arguments

in

a

case-sensitive

manner

and

does

not

trim

any

spaces

from

the

values.

The

one

exception

is

the

cursor

name

46

CLI

Guide

and

Reference,

Volume

1

input

argument

on

the

SQLSetCursorName()

function:

if

the

cursor

name

is

not

delimited

(enclosed

by

double

quotes)

the

leading

and

trailing

blanks

are

removed

and

case

is

ignored.

Blank

padding

of

strings:

DB2®

Version

8.1.4

and

later

do

not

pad

strings

with

blanks

to

fit

the

column

size,

as

was

the

behavior

in

releases

of

DB2

from

Version

8.1

through

to

Version

8.1.4.

With

DB2

Version

8.1.4

and

later,

a

string

may

have

a

length

which

differs

from

the

length

defined

for

the

CHAR

column

if

code

page

conversion

occurred.

For

releases

of

DB2

before

Version

8.1.4,

strings

would

be

padded

with

blanks

to

fill

the

column

size;

these

blanks

would

be

returned

as

part

of

the

string

data

when

the

string

was

fetched

from

the

CHAR

column.

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

on

page

49

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

v

“Patch1

CLI/ODBC

configuration

keyword”

on

page

304

Diagnostics

in

CLI

applications

overview

Diagnostics

refers

to

dealing

with

warning

or

error

conditions

generated

within

an

application.

There

are

two

levels

of

diagnostics

returned

when

calling

DB2

CLI

functions:

v

return

codes

v

detailed

diagnostics

(SQLSTATEs,

messages,

SQLCA)

Each

CLI

function

returns

the

function

return

code

as

a

basic

diagnostic.

Both

SQLGetDiagRec()

and

SQLGetDiagField()

provide

more

detailed

diagnostic

information.

If

the

diagnostic

originates

at

the

DBMS,

the

SQLGetSQLCA()

function

provides

access

to

the

SQLCA.

This

arrangement

lets

applications

handle

the

basic

flow

control

based

on

return

codes,

and

use

the

SQLSTATES

along

with

the

SQLCA

to

determine

the

specific

causes

of

failure

and

to

perform

specific

error

handling.

Both

SQLGetDiagRec()

and

SQLGetDiagField()

return

three

pieces

of

information:

v

SQLSTATE

v

Native

error:

if

the

diagnostic

is

detected

by

the

data

source,

this

is

the

SQLCODE;

otherwise,

this

is

set

to

-99999.

v

Message

text:

this

is

the

message

text

associated

with

the

SQLSTATE.

Chapter

3.

Writing

a

basic

CLI

application

47

|
|
|
|
|
|
|

SQLGetSQLCA()

returns

the

SQLCA

for

access

to

specific

fields,

but

should

only

be

used

when

SQLGetDiagRec()

or

SQLGetDiagField()

cannot

provide

the

desired

information.

Related

concepts:

v

“SQLSTATES

for

DB2

CLI”

on

page

49

Related

reference:

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetSQLCA

function

(CLI)

-

Get

SQLCA

data

structure”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLCA

(SQL

communications

area)”

in

the

SQL

Reference,

Volume

1

v

“CLI

function

return

codes”

on

page

48

CLI

function

return

codes

The

following

table

lists

all

possible

return

codes

for

DB2

CLI

functions.

Table

7.

DB2

CLI

Function

return

codes

Return

code

Explanation

SQL_SUCCESS

The

function

completed

successfully,

no

additional

SQLSTATE

information

is

available.

SQL_SUCCESS_WITH_INFO

The

function

completed

successfully

with

a

warning

or

other

information.

Call

SQLGetDiagRec()

or

SQLGetDiagField()

to

receive

the

SQLSTATE

and

any

other

informational

messages

or

warnings.

The

SQLSTATE

will

have

a

class

of

’01’.

SQL_STILL_EXECUTING

The

function

is

running

asynchronously

and

has

not

yet

completed.

The

DB2

CLI

driver

has

returned

control

to

the

application

after

calling

the

function,

but

the

function

has

not

yet

finished

executing.

SQL_NO_DATA_FOUND

The

function

returned

successfully,

but

no

relevant

data

was

found.

When

this

is

returned

after

the

execution

of

an

SQL

statement,

additional

information

may

be

available

and

can

be

obtained

by

calling

SQLGetDiagRec()

or

SQLGetDiagField().

SQL_NEED_DATA

The

application

tried

to

execute

an

SQL

statement

but

DB2

CLI

lacks

parameter

data

that

the

application

had

indicated

would

be

passed

at

execute

time.

SQL_ERROR

The

function

failed.

Call

SQLGetDiagRec()

or

SQLGetDiagField()

to

receive

the

SQLSTATE

and

any

other

error

information.

SQL_INVALID_HANDLE

The

function

failed

due

to

an

invalid

input

handle

(environment,

connection

or

statement

handle).

This

is

a

programming

error.

No

further

information

is

available.

The

following

code

segment

from

tut_read.c

shows

how

a

function

return

code,

SQL_NO_DATA_FOUND,

can

be

used

to

control

when

data

retrieval

should

stop:

48

CLI

Guide

and

Reference,

Volume

1

while

(cliRC

!=

SQL_NO_DATA_FOUND)

{

printf("

%-8d

%-14.14s

\n",

deptnumb.val,

location.val);

/*

fetch

next

row

*/

cliRC

=

SQLFetch(hstmt);

STMT_HANDLE_CHECK(hstmt,

hdbc,

cliRC);

}

Related

concepts:

v

“Handles

in

CLI”

on

page

15

v

“Diagnostics

in

CLI

applications

overview”

on

page

47

Related

reference:

v

“CLI

and

ODBC

function

summary”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“tut_read.c

--

How

to

read

data

from

tables”

SQLSTATES

for

DB2

CLI

SQLSTATEs

are

alphanumeric

strings

of

5

characters

(bytes)

with

a

format

of

ccsss,

where

cc

indicates

class

and

sss

indicates

subclass.

Any

SQLSTATE

that

has

a

class

of:

v

’01’,

is

a

warning.

v

’HY’,

is

generated

by

the

DB2

CLI

or

ODBC

driver.

v

’IM’,

is

generated

by

the

ODBC

driver

manager.

Note:

Versions

of

DB2

CLI

before

Version

5

returned

SQLSTATEs

with

a

class

of

’S1’

rather

than

’HY’.

To

force

the

CLI

driver

to

return

’S1’

SQLSTATEs,

the

application

should

set

the

environment

attribute

SQL_ATTR_ODBC_VERSION

to

the

value

SQL_OV_ODBC2.

DB2

CLI

SQLSTATEs

include

both

additional

IBM®

defined

SQLSTATEs

that

are

returned

by

the

database

server,

and

DB2

CLI

defined

SQLSTATEs

for

conditions

that

are

not

defined

in

the

ODBC

version

3

and

ISO

SQL/CLI

specifications.

This

allows

for

the

maximum

amount

of

diagnostic

information

to

be

returned.

When

running

applications

in

an

ODBC

environment,

it

is

also

possible

to

receive

ODBC

defined

SQLSTATEs.

Follow

these

guidelines

for

using

SQLSTATEs

within

your

application:

v

Always

check

the

function

return

code

before

calling

SQLGetDiagRec()

to

determine

if

diagnostic

information

is

available.

v

Use

the

SQLSTATEs

rather

than

the

native

error

code.

v

To

increase

your

application’s

portability,

only

build

dependencies

on

the

subset

of

DB2

CLI

SQLSTATEs

that

are

defined

by

the

ODBC

version

3

and

ISO

SQL/CLI

specifications,

and

return

the

additional

ones

as

information

only.

A

dependency

in

an

application

is

a

logic

flow

decision

based

on

specific

SQLSTATEs.

Chapter

3.

Writing

a

basic

CLI

application

49

Note:

It

may

be

useful

to

build

dependencies

on

the

class

(the

first

2

characters)

of

the

SQLSTATEs.

v

For

maximum

diagnostic

information,

return

the

text

message

along

with

the

SQLSTATE

(if

applicable,

the

text

message

will

also

include

the

IBM

defined

SQLSTATE).

It

is

also

useful

for

the

application

to

print

out

the

name

of

the

function

that

returned

the

error.

The

following

code

segment

from

utilcli.c

shows

how

diagnostic

information,

such

as

SQLSTATEs,

can

be

retrieved

and

displayed:

void

HandleDiagnosticsPrint(SQLSMALLINT

htype,

/*

handle

type

identifier

*/

SQLHANDLE

hndl

/*

handle

*/

)

{

SQLCHAR

message[SQL_MAX_MESSAGE_LENGTH

+

1];

SQLCHAR

sqlstate[SQL_SQLSTATE_SIZE

+

1];

SQLINTEGER

sqlcode;

SQLSMALLINT

length,

i;

i

=

1;

/*

get

multiple

field

settings

of

diagnostic

record

*/

while

(SQLGetDiagRec(htype,

hndl,

i,

sqlstate,

&sqlcode,

message,

SQL_MAX_MESSAGE_LENGTH

+

1,

&length)

==

SQL_SUCCESS)

{

printf("\n

SQLSTATE

=

%s\n",

sqlstate);

printf("

Native

Error

Code

=

%ld\n",

sqlcode);

printf("%s\n",

message);

i++;

}

printf("-------------------------\n");

}

You

can

use

the

CLI/ODBC

trace

facility

to

gain

a

better

understanding

of

how

your

application

calls

DB2,

including

any

errors

that

may

occur.

Related

concepts:

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

Related

samples:

v

“utilcli.c

--

Utility

functions

used

by

DB2

CLI

samples”

50

CLI

Guide

and

Reference,

Volume

1

Termination

Terminating

a

CLI

application

After

you

have

initialized

your

CLI

application

and

processed

transactions,

you

must

terminate

the

application

to

properly

disconnect

from

the

data

source

and

free

resources.

Prerequisites:

Before

terminating

your

application,

you

should

have

initialized

your

CLI

application

and

completed

processing

of

all

transactions.

Procedure:

To

terminate

a

CLI

application:

1.

Disconnect

from

the

data

source

by

calling

SQLDisconnect().

2.

Free

the

connection

handle

by

calling

SQLFreeHandle()

with

a

HandleType

argument

of

SQL_HANDLE_DBC.

If

multiple

database

connections

exist,

repeat

steps

1

-

2

until

all

connections

are

closed

and

connection

handles

freed.

3.

Free

the

environment

handle

by

calling

SQLFreeHandle()

with

a

HandleType

argument

of

SQL_HANDLE_ENV.

Related

concepts:

v

“Transaction

processing

in

CLI

overview”

on

page

20

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Freeing

statement

resources

in

CLI

applications”

on

page

36

Related

reference:

v

“SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbconn.c

--

How

to

connect

to

and

disconnect

from

a

database”

v

“dbmcon.c

--

How

to

use

multiple

databases”

v

“utilcli.c

--

Utility

functions

used

by

DB2

CLI

samples”

Chapter

3.

Writing

a

basic

CLI

application

51

52

CLI

Guide

and

Reference,

Volume

1

Chapter

4.

Programming

hints

and

tips

Programming

hints

and

tips

for

CLI

applications

This

topic

discusses

the

following

subjects:

v

“KEEPDYNAMIC

support”

v

“Common

connection

attributes”

on

page

54

v

“Common

statement

attributes”

on

page

54

v

“Reusing

statement

handles”

on

page

55

v

“Binding

and

SQLGetData()”

on

page

55

v

“Limiting

use

of

catalog

functions”

on

page

55

v

“Column

names

of

function

generated

result

sets”

on

page

56

v

“DB2

CLI-specific

functions

loaded

from

ODBC

applications”

on

page

56

v

“Global

dynamic

statement

caching”

on

page

56

v

“Data

insertion

and

retrieval

optimization”

on

page

56

v

“Large

object

data

optimization”

on

page

56

v

“Case

sensitivity

of

object

identifiers”

on

page

57

v

“SQLDriverConnect()

versus

SQLConnect()”

on

page

57

v

“SQL

Governor

implementation”

on

page

57

v

“Turning

off

statement

scanning”

on

page

58

v

“Holding

cursors

across

rollbacks”

on

page

58

v

“Preparing

compound

SQL

sub-statements”

on

page

59

v

“User-defined

types

casting”

on

page

59

v

“Deferred

prepare

to

reduce

network

flow”

on

page

59

For

DB2

CLI

updates,

visit

the

DB2®

application

development

Web

site:

http://www.ibm.com/software/data/db2/udb/ad

KEEPDYNAMIC

behavior

refers

to

the

server’s

ability

to

keep

a

dynamic

statement

in

a

prepared

state,

even

after

a

commit

has

been

performed.

This

behavior

eliminates

the

need

for

the

client

to

prepare

the

statement

again,

the

next

time

the

statement

is

executed.

Some

DB2

CLI/ODBC

applications

on

the

client

may

improve

their

performance

by

taking

advantage

of

the

KEEPDYNAMIC

behavior

on

servers

that

are

DB2

UDB

for

z/OS™

and

OS/390®

Version

7

and

later.

Complete

the

following

steps

to

enable

KEEPDYNAMIC

behavior:

1.

Enable

the

dynamic

statement

cache

on

the

DB2

UDB

for

z/OS

and

OS/390

server

(refer

to

the

DB2

UDB

for

z/OS

and

OS/390

server

documentation).

2.

Bind

the

db2clipk.bnd

file

on

your

DB2

UDB

for

Linux,

UNIX®,

and

Windows®

client

with

the

KEEPDYNAMIC

and

COLLECTION

options.

The

following

example

shows

how

to

bind

db2clipk.bnd,

creating

a

collection

named

KEEPDYNC:

v

db2

connect

to

database_name

user

userid

using

password

v

db2

bind

db2clipk.bnd

SQLERROR

CONTINUE

BLOCKING

ALL

KEEPDYNAMIC

YES

COLLECTION

KEEPDYNC

GRANT

PUBLIC

v

db2

connect

reset

©

Copyright

IBM

Corp.

1993

-

2004

53

|

|

|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|

|

http://www.ibm.com/software/data/db2/udb/ad

3.

Inform

the

client

that

the

KEEPDYNAMIC

bind

option

is

enabled

for

your

collection

by

performing

either

of

the

following:

v

Set

the

following

CLI/ODBC

configuration

keywords

in

the

db2cli.ini

file:

KeepDynamic

=

1,

CurrentPackageSet

=

collection

name

created

in

Step

2.

For

example:

[dbname]

KeepDynamic=1

CurrentPackageSet=KEEPDYNC

v

Set

the

SQL_ATTR_KEEPDYNAMIC

and

SQL_ATTR_CURRENT_PACKAGE_SET

connection

attributes

in

the

DB2

CLI/ODBC

application.

For

example:

SQLSetConnectAttr(hDbc,

SQL_ATTR_KEEP_DYNAMIC,

(SQLPOINTER)

1,

SQL_IS_UINTEGER

);

SQLSetConnectAttr(hDbc,

SQL_ATTR_CURRENT_PACKAGE_SET,

(SQLPOINTER)

"KEEPDYNC",

SQL_NTS);

Refer

to

the

DB2

UDB

for

OS/390

and

z/OS

documentation

for

further

information

on

KEEPDYNAMIC

behavior

and

configuration.

Common

connection

attributes:

The

following

connection

attributes

may

need

to

be

set

by

DB2

CLI

applications:

v

SQL_ATTR_AUTOCOMMIT

-

Generally

this

attribute

should

be

set

to

SQL_AUTOCOMMIT_OFF,

since

each

commit

request

can

generate

extra

network

flow.

Only

leave

SQL_AUTOCOMMIT_ON

on

if

specifically

needed.

Note:

The

default

is

SQL_AUTOCOMMIT_ON.

v

SQL_ATTR_TXN_ISOLATION

-

This

connection

attribute

determines

the

isolation

level

at

which

the

connection

or

statement

will

operate.

The

isolation

level

determines

the

level

of

concurrency

possible,

and

the

level

of

locking

required

to

execute

the

statement.

Applications

need

to

choose

an

isolation

level

that

maximizes

concurrency,

yet

ensures

data

consistency.

Common

statement

attributes:

The

following

statement

attributes

may

need

to

be

set

by

DB2

CLI

applications:

v

SQL_ATTR_MAX_ROWS

-

Setting

this

attribute

limits

the

number

of

rows

returned

to

the

application

from

query

operations.

This

can

be

used

to

avoid

overwhelming

an

application

with

a

very

large

result

set

generated

inadvertently,

which

is

especially

useful

for

applications

on

clients

with

limited

memory

resources.

Setting

SQL_ATTR_MAX_ROWS

while

connected

to

DB2

for

z/OS

and

OS/390

Version

7

and

later

will

add

“OPTIMIZE

FOR

n

ROWS”

and

“FETCH

n

ROWS

ONLY”

clauses

to

the

statement.

For

versions

of

DB2

for

OS/390

prior

to

Version

7

and

any

DBMS

that

does

not

support

the

“FETCH

n

ROWS

ONLY”

clause,

the

full

result

set

is

still

generated

at

the

server

using

the

“OPTIMIZE

FOR

n

ROWS”

clause,

however

DB2

CLI

will

count

the

rows

on

the

client

and

only

fetch

up

to

SQL_ATTR_MAX_ROWS

rows.

v

SQL_ATTR_CURSOR_HOLD

-

This

statement

attribute

determines

if

the

cursor

for

this

statement

will

be

declared

by

DB2

CLI

using

the

WITH

HOLD

clause.

54

CLI

Guide

and

Reference,

Volume

1

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

Resources

associated

with

statement

handles

can

be

better

utilized

by

the

server

if

the

statements

that

do

not

require

cursor-hold

behavior

have

this

attribute

set

to

SQL_CURSOR_HOLD_OFF.

The

efficiency

gains

obtained

by

the

proper

use

of

this

attribute

are

considerable

on

OS/390

and

z/OS.

Note:

Many

ODBC

applications

expect

a

default

behavior

where

the

cursor

position

is

maintained

after

a

commit.

v

SQL_ATTR_TXN_ISOLATION

-

DB2

CLI

allows

the

isolation

level

to

be

set

at

the

statement

level,

however,

it

is

recommended

that

the

isolation

level

be

set

at

the

connection

level.

The

isolation

level

determines

the

level

of

concurrency

possible,

and

the

level

of

locking

required

to

execute

the

statement.

Resources

associated

with

statement

handles

can

be

better

utilized

by

DB2

CLI

if

statements

are

set

to

the

required

isolation

level,

rather

than

leaving

all

statements

at

the

default

isolation

level.

This

should

only

be

attempted

with

a

thorough

understanding

of

the

locking

and

isolation

levels

of

the

connected

DBMS.

Applications

should

use

the

minimum

isolation

level

possible

to

maximize

concurrency.

Reusing

statement

handles:

Each

time

a

CLI

application

declares

a

statement

handle,

the

DB2

CLI

driver

allocates

and

then

initializes

an

underlying

data

structure

for

that

handle.

To

increase

performance,

CLI

applications

can

reuse

statement

handles

with

different

statements,

thereby

avoiding

the

costs

associated

with

statement

handle

allocation

and

initialization.

Note:

Before

reusing

statement

handles,

memory

buffers

and

other

resources

used

by

the

previous

statement

may

need

to

be

released

by

calling

the

SQLFreeStmt()

function.

Also,

statement

attributes

previously

set

on

a

statement

handle

(for

example,

SQL_ATTR_PARAMSET_SIZE)

need

to

be

explicitly

reset,

otherwise

they

may

be

inherited

by

all

future

statements

using

the

statement

handle.

Binding

and

SQLGetData():

Generally

it

is

more

efficient

to

bind

application

variables

or

file

references

to

result

sets

than

to

use

SQLGetData().

When

the

data

is

in

a

LOB

column,

LOB

functions

are

preferable

to

SQLGetData()

(see

“Large

object

data

optimization”

on

page

56

for

more

information).

Use

SQLGetData()

when

the

data

value

is

large

variable-length

data

that:

v

must

be

received

in

pieces,

or

v

may

not

need

to

be

retrieved.

Limiting

use

of

catalog

functions:

Catalog

functions,

such

as

SQLTables(),

force

the

DB2

CLI

driver

to

query

the

DBMS

catalog

tables

for

information.

The

queries

issued

are

complex

and

the

DBMS

catalog

tables

can

be

very

large.

In

general,

try

to

limit

the

number

of

times

the

catalog

functions

are

called,

and

limit

the

number

of

rows

returned.

The

number

of

catalog

function

calls

can

be

reduced

by

calling

the

function

once,

and

having

the

application

store

(cache)

the

data.

The

number

of

rows

returned

can

be

limited

by

specifying

a:

Chapter

4.

Programming

hints

and

tips

55

v

Schema

name

or

pattern

for

all

catalog

functions

v

Table

name

or

pattern

for

all

catalog

functions

other

than

SQLTables()

v

Column

name

or

pattern

for

catalog

functions

that

return

detailed

column

information.

Remember

that

although

an

application

may

be

developed

and

tested

against

a

data

source

with

hundreds

of

tables,

it

may

be

run

against

a

database

with

thousands

of

tables.

Consider

this

likelihood

when

developing

applications.

Close

any

open

cursors

(call

SQLCloseCursor()

or

SQLFreeStmt()

with

SQL_CLOSE

Option)

for

statement

handles

used

for

catalog

queries

to

release

any

locks

against

the

catalog

tables.

Outstanding

locks

on

the

catalog

tables

can

prevent

CREATE,

DROP

or

ALTER

statements

from

executing.

Column

names

of

function

generated

result

sets:

The

column

names

of

the

result

sets

generated

by

catalog

and

information

functions

may

change

as

the

ODBC

and

CLI

standards

evolve.

The

position

of

the

columns,

however,

will

not

change.

Any

application

dependency

should

be

based

on

the

column

position

(iCol

parameter

used

in

SQLBindCol(),

SQLGetData(),

and

SQLDescribeCol())

and

not

the

name.

DB2

CLI-specific

functions

loaded

from

ODBC

applications:

The

ODBC

Driver

Manager

maintains

its

own

set

of

statement

handles

which

it

maps

to

the

CLI

statement

handles

on

each

call.

When

a

DB2

CLI

function

is

called

directly,

it

must

be

passed

to

the

CLI

driver

statement

handle,

as

the

CLI

driver

does

not

have

access

to

the

ODBC

mapping.

Call

SQLGetInfo()

with

the

SQL_DRIVER_HSTMT

option

to

obtain

the

DB2

CLI

statement

handle

(HSTMT).

The

DB2

CLI

functions

can

then

be

called

directly

from

the

shared

library

or

DLL,

passing

the

HSTMT

argument

where

required.

Global

dynamic

statement

caching:

DB2

Universal

Database

servers

at

version

5

or

later

for

UNIX

or

Windows

have

a

global

dynamic

statement

cache.

This

cache

is

used

to

store

the

most

popular

access

plans

for

prepared

dynamic

SQL

statements.

Before

each

statement

is

prepared,

the

server

automatically

searches

this

cache

to

see

if

an

access

plan

has

already

been

created

for

this

exact

SQL

statement

(by

this

application

or

any

other

application

or

client).

If

so,

the

server

does

not

need

to

generate

a

new

access

plan,

but

will

use

the

one

in

the

cache

instead.

There

is

now

no

need

for

the

application

to

cache

connections

at

the

client

unless

connecting

to

a

server

that

does

not

have

a

global

dynamic

statement

cache.

Data

insertion

and

retrieval

optimization:

The

methods

that

describe

using

arrays

to

bind

parameters

and

retrieve

data

use

compound

SQL

to

optimize

network

flow.

Use

these

methods

as

much

as

possible.

Large

object

data

optimization:

56

CLI

Guide

and

Reference,

Volume

1

Use

LOB

data

types

and

the

supporting

functions

for

long

strings

whenever

possible.

Unlike

LONG

VARCHAR,

LONG

VARBINARY,

and

LONG

VARGRAPHIC

types,

LOB

data

values

can

use

LOB

locators

and

functions

such

as

SQLGetPosition()

and

SQLGetSubString()

to

manipulate

large

data

values

at

the

server.

LOB

values

can

also

be

fetched

directly

to

a

file,

and

LOB

parameter

values

can

be

read

directly

from

a

file.

This

saves

the

overhead

of

the

application

transferring

data

via

application

buffers.

Case

sensitivity

of

object

identifiers:

All

database

object

identifiers,

such

as

table

names,

view

names

and

column

names

are

stored

in

the

catalog

tables

in

uppercase

unless

the

identifier

is

delimited.

If

an

identifier

is

created

using

a

delimited

name,

the

exact

case

of

the

name

is

stored

in

the

catalog

tables.

When

an

identifier

is

referenced

within

an

SQL

statement,

it

is

treated

as

case

insensitive

unless

it

is

delimited.

For

example,

if

the

following

two

tables

are

created,

CREATE

TABLE

MyTable

(id

INTEGER)

CREATE

TABLE

"YourTable"

(id

INTEGER)

two

tables

will

exist,

MYTABLE

and

YourTable

Both

of

the

following

statements

are

equivalent:

SELECT

*

FROM

MyTable

(id

INTEGER)

SELECT

*

FROM

MYTABLE

(id

INTEGER)

The

second

statement

below

will

fail

with

TABLE

NOT

FOUND

since

there

is

no

table

named

YOURTABLE:

SELECT

*

FROM

"YourTable"

(id

INTEGER)

//

executes

without

error

SELECT

*

FROM

YourTable

(id

INTEGER)

//

error,

table

not

found

All

DB2

CLI

catalog

function

arguments

treat

the

names

of

objects

as

case

sensitive,

that

is,

as

if

each

name

was

delimited.

SQLDriverConnect()

versus

SQLConnect():

Using

SQLDriverConnect()

allows

the

application

to

rely

on

the

dialog

box

provided

by

DB2

CLI

to

prompt

the

user

for

the

connection

information.

If

an

application

uses

its

own

dialog

boxes

to

query

the

connect

information,

the

user

should

be

able

to

specify

additional

connect

options

in

the

connection

string.

The

string

should

also

be

stored

and

used

as

a

default

on

subsequent

connections.

SQL

Governor

implementation:

Each

time

an

SQL

statement

is

prepared,

the

server

estimates

the

cost

of

the

statement.

The

application

can

then

decide

whether

to

continue

with

the

execution

of

the

statement.

This

estimate

can

be

obtained

from

the

SQLCA

(

SQLERRD(4)

),

and

used

by

the

application

directly

or

the

SQL_ATTR_DB2ESTIMATE

connection

attribute

can

be

Chapter

4.

Programming

hints

and

tips

57

set

to

a

threshold

value.

If

the

estimated

cost

of

any

statement

exceeds

the

threshold,

DB2

CLI

displays

a

dialog

box

with

a

warning

and

a

prompt

to

continue

or

cancel

the

execution

of

the

statement.

The

suggested

threshold

value

is

60000,

although

in

general

the

application

should

allow

the

end

user

to

set

the

threshold

value.

Note:

The

estimate

is

only

an

estimate

of

the

total

resources

used

by

the

server

to

execute

the

statement,

it

does

not

indicate

the

time

required

to

execute

the

statement.

An

estimate

of

the

number

of

rows

in

the

result

is

also

available

from

the

SQLCA

(

SQLERRD(3)

),

and

could

also

be

used

by

the

application

to

restrict

large

queries.

Note:

The

accuracy

of

the

information

returned

in

the

SQLERRD(3)

and

SQLERRD(4)

fields

depends

on

many

factors

such

as

the

use

of

parameter

markers

and

expressions

within

the

statement.

If

the

database

statistics

in

the

catalog

tables

are

up

to

date,

they

will

provide

much

more

accurate

information.

You

can

update

the

database

statistics

on

DB2

Universal

Database

by

issuing

the

RUNSTATS

command

from

a

command

line

processor

session.

Turning

off

statement

scanning:

DB2

CLI

by

default,

scans

each

SQL

statement

searching

for

vendor

escape

clause

sequences.

If

the

application

does

not

generate

SQL

statements

that

contain

vendor

escape

clause

sequences,

then

the

SQL_ATTR_NOSCAN

statement

attribute

should

be

set

to

SQL_NOSCAN_ON

at

the

connection

level

so

that

DB2

CLI

does

not

perform

a

scan

for

vendor

escape

clauses.

Holding

cursors

across

rollbacks:

Applications

that

need

to

deal

with

complex

transaction

management

issues

may

benefit

from

establishing

multiple

concurrent

connections

to

the

same

database.

Each

connection

in

DB2

CLI

has

its

own

transaction

scope,

so

any

actions

performed

on

one

connection

do

not

affect

the

transactions

of

other

connections.

For

example,

all

open

cursors

within

a

transaction

get

closed

if

a

problem

causes

the

transaction

to

be

rolled

back.

An

application

can

use

multiple

connections

to

the

same

database

to

separate

statements

with

open

cursors;

since

the

cursors

are

in

separate

transactions,

a

rollback

on

one

statement

does

not

affect

the

cursors

of

the

other

statements.

However,

using

multiple

connections

may

mean

bringing

some

data

across

to

the

client

on

one

connection,

and

then

sending

it

back

to

the

server

on

the

other

connection.

For

example:

v

Suppose

in

connection

#1

you

are

accessing

large

object

columns

and

have

created

LOB

locators

that

map

to

portions

of

large

object

values.

v

If

in

connection

#2,

you

wish

to

use

(e.g.

insert)

the

portion

of

the

LOB

values

represented

by

the

LOB

locators,

you

would

have

to

move

the

LOB

values

in

connection

#1

first

to

the

application,

and

then

pass

them

to

the

tables

that

you

are

working

with

in

connection

#2.

This

is

because

connection

#2

does

not

know

anything

about

the

LOB

locators

in

connection

#1.

58

CLI

Guide

and

Reference,

Volume

1

v

If

you

only

had

one

connection,

then

you

could

just

use

the

LOB

locators

directly.

However,

you

would

lose

the

LOB

locators

as

soon

as

you

rolled

back

your

transaction.

Note:

When

multiple

connections

to

a

single

database

are

used

by

an

application,

the

application

must

be

careful

to

synchronize

access

to

database

objects

or

it

may

experience

various

lock

contention

issues,

as

database

locks

are

not

shared

between

transactions.

Updates

by

one

connection

can

easily

force

other

connections

into

a

lock-wait

state

until

the

first

connection

releases

the

lock

(through

a

COMMIT

or

ROLLBACK).

Preparing

compound

SQL

sub-statements:

In

order

to

maximize

efficiency

of

the

compound

statement,

sub-statements

should

be

prepared

before

the

BEGIN

COMPOUND

statement,

and

then

executed

within

the

compound

statement.

This

also

simplifies

error

handling

since

prepare

errors

can

be

handled

outside

of

the

compound

statement.

User-defined

types

and

casting:

If

a

parameter

marker

is

used

in

a

predicate

of

a

query

statement,

and

the

parameter

is

a

user

defined

type,

the

statement

must

use

a

CAST

function

to

cast

either

the

parameter

marker

or

the

UDT.

For

example,

suppose

the

following

type

and

table

is

defined:

CREATE

DISTINCT

TYPE

CNUM

AS

INTEGER

WITH

COMPARISONS

CREATE

TABLE

CUSTOMER

(

Cust_Num

CNUM

NOT

NULL,

First_Name

CHAR(30)

NOT

NULL,

Last_Name

CHAR(30)

NOT

NULL,

Phone_Num

CHAR(20)

WITH

DEFAULT,

PRIMARY

KEY

(Cust_Num)

)

Suppose

also

that

the

following

SQL

statement

was

then

issued:

SELECT

first_name,

last_name,

phone_num

from

customer

WHERE

cust_num

=

?

This

statement

would

fail

because

the

parameter

marker

cannot

be

of

type

CNUM

and

thus

the

comparison

fails

due

to

incompatible

types.

Casting

the

column

to

integer

(its

base

SQL

type),

allows

the

comparison

to

work

since

a

parameter

can

be

provided

for

type

integer:

SELECT

first_name,

last_name,

phone_num

from

customer

where

cast(

cust_num

as

integer

)

=

?

Alternatively

the

parameter

marker

can

be

cast

to

INTEGER

and

the

server

can

then

apply

the

INTEGER

to

CNUM

conversion:

SELECT

first_name,

last_name,

phone_num

FROM

customer

where

cust_num

=

cast(

?

as

integer

)

Deferred

prepare

to

reduce

network

flow:

In

DB2

CLI,

deferred

prepare

is

on

by

default.

The

PREPARE

request

is

not

sent

to

the

server

until

the

corresponding

execute

request

is

issued.

The

two

requests

are

Chapter

4.

Programming

hints

and

tips

59

then

combined

into

one

command/reply

flow

(instead

of

two)

to

minimize

network

flow

and

to

improve

performance.

This

is

of

greatest

benefit

when

the

application

generates

queries

where

the

answer

set

is

very

small,

and

the

overhead

of

separate

requests

and

replies

is

not

spread

across

multiple

blocks

of

query

data.

In

an

environment

where

a

DB2

Connect

or

DDCS

gateway

is

used,

there

is

a

greater

opportunity

for

cost

reduction

because

four

request

and

reply

combinations

are

reduced

to

two.

Note:

Functions

such

as

SQLDescribeParam(),

SQLDescribeCol(),

SQLNumParams(),

and

SQLNumResultCols()

require

that

the

statement

has

been

prepared.

If

the

statement

has

not

already

been

prepared,

these

functions

trigger

an

immediate

PREPARE

request

to

the

server,

and

the

benefit

of

deferred

prepare

does

not

appear.

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

on

page

163

v

“Vendor

escape

clauses

in

CLI

applications”

on

page

167

v

“Handles

in

CLI”

on

page

15

v

“Cursors

in

CLI

applications”

on

page

63

v

“Large

object

usage

in

CLI

applications”

on

page

95

v

“Reduction

of

network

flows

with

CLI

array

input

chaining”

on

page

60

Related

tasks:

v

“Executing

compound

SQL

statements

in

CLI

applications”

on

page

117

v

“Retrieving

array

data

in

CLI

applications

using

column-wise

binding”

on

page

87

v

“Retrieving

array

data

in

CLI

applications

using

row-wise

binding”

on

page

88

Related

reference:

v

“CLI

and

ODBC

function

summary”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLConnect

function

(CLI)

-

Connect

to

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Reduction

of

network

flows

with

CLI

array

input

chaining

CLI

array

input

chaining

is

a

feature

that,

when

enabled,

causes

requests

for

the

execution

of

prepared

statements

to

be

held

and

queued

at

the

client

until

the

chain

is

ended.

Once

the

chain

has

been

ended,

all

of

the

chained

SQLExecute()

requests

at

the

client

are

then

sent

to

the

server

in

a

single

network

flow.

The

following

sequence

of

events

(presented

as

pseudocode)

is

an

example

of

how

CLI

array

input

chaining

can

reduce

the

number

of

network

flows

to

the

server:

SQLPrepare

(statement1)

SQLExecute

(statement1)

SQLExecute

(statement1)

60

CLI

Guide

and

Reference,

Volume

1

|

|
|
|
|

|
|

|
|
|

/*

the

two

execution

requests

for

statement1

are

sent

to

the

server

in

two

network

flows

*/

SQLPrepare

(statement2)

/*

enable

chaining

*/

SQLSetStmtAttr

(statement2,

SQL_ATTR_CHAINGING_BEGIN)

SQLExecute

(statement2)

SQLExecute

(statement2)

SQLExecute

(statement2)

/*

end

chaining

*/

SQLSetStmtAttr

(statement2,

SQL_ATTR_CHAINING_END)

/*

the

three

execution

requests

for

statement2

are

sent

to

the

server

in

a

single

network

flow,

instead

of

three

separate

flows

*/

If

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO

is

returned

when

setting

SQL_ATTR_CHAINING_END,

then

at

least

one

statement

in

the

chain

of

statements

returned

SQL_ERROR

or

SQL_SUCCESS_WITH_INFO

when

it

was

executed.

Use

the

CLI

diagnostic

functions

SQLGetDiagRec()

and

SQLGetDiagField()

to

retrieve

information

about

what

has

caused

the

error

or

warning.

Related

concepts:

v

“Programming

hints

and

tips

for

CLI

applications”

on

page

53

Related

reference:

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

Chapter

4.

Programming

hints

and

tips

61

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

62

CLI

Guide

and

Reference,

Volume

1

Chapter

5.

Cursors

Cursors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Cursors

in

CLI

applications

.

.

.

.

.

.

.

. 63

Cursor

considerations

for

CLI

applications

.

.

. 66

Result

sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Result

set

terminology

in

CLI

applications

.

.

. 68

Rowset

retrieval

examples

in

CLI

applications

.

. 69

Specifying

the

rowset

returned

from

the

result

set

71

Retrieving

data

with

scrollable

cursors

in

a

CLI

application

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Bookmarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Bookmarks

in

CLI

applications

.

.

.

.

.

.

. 76

Retrieving

data

with

bookmarks

in

a

CLI

application

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Cursors

Cursors

in

CLI

applications

A

CLI

application

uses

a

cursor

to

retrieve

rows

from

a

result

set.

A

cursor

is

a

moveable

pointer

to

a

row

in

the

result

table

of

an

active

query

statement.

The

DB2®

UDB

client

for

the

Linux,

Unix,

and

Windows®

platforms

supports

updatable

scrollable

cursors

when

run

against

Version

8

of

DB2

for

Linux,

Unix,

and

Windows

and

DB2

for

z/OS™.

To

access

a

scrollable

cursor

in

a

three-tier

environment

on

DB2

for

z/OS

or

DB2

for

OS/390®

Version

7

and

above,

the

client

and

the

gateway

must

be

running

DB2

UDB

Version

7.2

or

above.

A

cursor

is

opened

when

a

dynamic

SQL

SELECT

statement

is

successfully

executed

by

SQLExecute()

or

SQLExecDirect().

There

is

typically

a

one-to-one

correlation

between

application

cursor

operations

and

the

operations

performed

by

the

DB2

CLI

driver

with

the

cursor.

Immediately

after

the

successful

execution,

the

cursor

is

positioned

before

the

first

row

of

the

result

set,

and

FETCH

operations

through

calls

to

SQLFetch(),

SQLFetchScroll(),

or

SQLExtendedFetch()

will

advance

the

cursor

one

row

at

a

time

through

the

result

set.

When

the

cursor

has

reached

the

end

of

the

result

set,

the

next

fetch

operation

will

return

SQLCODE

+100.

From

the

perspective

of

the

CLI

application,

SQLFetch()

returns

SQL_NO_DATA_FOUND

when

the

end

of

the

result

set

is

reached.

Types

of

cursors:

There

are

two

types

of

cursors

supported

by

DB2

CLI:

non-scrollable

Forward-only

non-scrollable

cursors

are

the

default

cursor

type

used

by

the

DB2

CLI

driver.

This

cursor

type

is

unidirectional

and

requires

the

least

amount

of

overhead

processing.

scrollable

There

are

three

types

of

scrollable

cursors

supported

by

DB2

CLI:

static

This

is

a

read-only

cursor.

Once

it

is

created,

no

rows

can

be

added

or

removed,

and

no

values

in

any

rows

will

change.

The

cursor

is

not

affected

by

other

applications

accessing

the

same

data.

The

isolation

level

of

the

statement

used

to

create

the

cursor

determines

how

the

rows

of

the

cursor

are

locked,

if

at

all.

keyset-driven

Unlike

a

static

scrollable

cursor,

a

keyset-driven

scrollable

cursor

can

detect

and

make

changes

to

the

underlying

data.

Keyset

cursors

are

based

on

row

keys.

When

a

keyset-driven

cursor

is

first

©

Copyright

IBM

Corp.

1993

-

2004

63

opened,

it

stores

the

keys

in

a

keyset

for

the

life

of

the

entire

result

set.

The

keyset

is

used

to

determine

the

order

and

set

of

rows

that

are

included

in

the

cursor.

As

the

cursor

scrolls

through

the

result

set,

it

uses

the

keys

in

this

keyset

to

retrieve

the

most

recent

values

in

the

database,

which

are

not

necessarily

the

values

that

existed

when

the

cursor

was

first

opened.

For

this

reason,

changes

are

not

reflected

until

the

application

scrolls

to

the

row.

There

are

various

types

of

changes

to

the

underlying

data

that

a

keyset-driven

cursor

may

or

may

not

reflect:

v

Changed

values

in

existing

rows.

The

cursor

will

reflect

these

types

of

changes.

Because

the

cursor

fetches

a

row

from

the

database

each

time

it

is

required,

keyset-driven

cursors

always

detect

changes

made

by

themselves

and

other

cursors.

v

Deleted

rows.

The

cursor

will

reflect

these

types

of

changes.

If

a

selected

row

in

the

rowset

is

deleted

after

the

keyset

is

generated,

it

will

appear

as

a

″hole″

in

the

cursor.

When

the

cursor

goes

to

fetch

the

row

again

from

the

database,

it

will

realize

that

the

row

is

no

longer

there.

v

Added

rows.

The

cursor

will

not

reflect

these

types

of

changes.

The

set

of

rows

is

determined

once,

when

the

cursor

is

first

opened.

To

see

the

inserted

rows,

the

application

must

re-execute

the

query.

Note:

DB2

CLI

currently

only

supports

keyset-driven

cursors

if

the

server

supports

them.

The

DB2

Version

8

server

now

supports

updatable

scrollable

cursors,

so

applications

that

require

keyset

cursor

functionality

and

currently

access

DB2

for

OS/390

Version

6

or

DB2

for

Unix

and

Windows

Version

7

and

earlier

should

not

migrate

their

clients

to

DB2

Version

8.

dynamic

Dynamic

scrollable

cursors

can

detect

all

changes

(inserts,

deletes,

and

updates)

to

the

result

set,

and

make

insertions,

deletions

and

updates

to

the

result

set.

Unlike

keyset-driven

cursors,

dynamic

cursors:

v

detect

rows

inserted

by

other

cursors

v

omit

deleted

rows

from

the

result

set

(keyset-driven

cursors

recognize

deleted

rows

as

″holes″

in

the

result

set)

Currently,

dynamic

scrollable

cursors

are

only

supported

in

DB2

CLI

when

accessing

servers

that

are

DB2

UDB

for

z/OS

Version

8.1

and

later.

Cursor

attributes:

The

table

below

lists

the

default

attributes

for

cursors

in

DB2

CLI.

Table

8.

Default

attributes

for

cursors

in

CLI

Cursor

type

Cursor

sensitivity

Cursor

updatable

Cursor

concurrency

Cursor

scrollable

forward-onlya

unspecified

non-updatable

read-only

concurrency

non-scrollable

static

insensitive

non-updatable

read-only

concurrency

scrollable

64

CLI

Guide

and

Reference,

Volume

1

|
|
|
|

|

|
|

|
|

Table

8.

Default

attributes

for

cursors

in

CLI

(continued)

Cursor

type

Cursor

sensitivity

Cursor

updatable

Cursor

concurrency

Cursor

scrollable

keyset-driven

sensitive

updatable

values

concurrency

scrollable

dynamic

sensitive

updatable

values

concurrency

scrollable

a

Forward-only

is

the

default

behavior

for

a

scrollable

cursor

without

the

FOR

UPDATE

clause.

Specifying

FOR

UPDATE

on

a

forward-only

cursor

creates

an

updatable,

lock

concurrency,

non-scrollable

cursor.

Update

of

keyset-driven

cursors:

A

keyset-driven

cursor

is

an

updatable

cursor.

The

CLI

driver

appends

the

FOR

UPDATE

clause

to

the

query,

except

when

the

query

is

issued

as

a

SELECT

...

FOR

READ

ONLY

query,

or

if

the

FOR

UPDATE

clause

already

exists.

The

keyset-driven

cursor

is

a

values

concurrency

cursor.

A

values

concurrency

cursor

results

in

optimistic

locking,

where

locks

are

not

held

until

an

update

or

delete

is

attempted.

When

an

update

or

delete

is

attempted,

the

database

server

compares

the

previous

values

the

application

retrieved

to

the

current

values

in

the

underlying

table.

If

the

values

match,

then

the

update

or

delete

succeeds.

If

the

values

do

not

match,

then

the

operation

fails.

If

failure

occurs,

the

application

should

query

the

values

again

and

re-issue

the

update

or

delete

if

it

is

still

applicable.

An

application

can

update

a

keyset-driven

cursor

in

two

ways:

v

Issue

an

UPDATE

WHERE

CURRENT

OF

<cursor

name>

or

DELETE

WHERE

CURRENT

OF

<cursor

name>

using

SQLPrepare()

with

SQLExecute()

or

SQLExecDirect()

v

Use

SQLSetPos()

or

SQLBulkOperations()

to

update,

delete,

or

add

a

row

to

the

result

set.

Note:

Rows

added

to

a

result

set

via

SQLSetPos()

or

SQLBulkOperations()

are

inserted

into

the

table

on

the

server,

but

are

not

added

to

the

server’s

result

set.

Therefore,

these

rows

are

not

updatable

nor

are

they

sensitive

to

changes

made

by

other

transactions.

The

inserted

rows

will

appear,

however,

to

be

part

of

the

result

set,

since

they

are

cached

on

the

client.

Any

triggers

that

apply

to

the

inserted

rows

will

appear

to

the

application

as

if

they

have

not

been

applied.

To

make

the

inserted

rows

updatable,

sensitive,

and

to

see

the

result

of

applicable

triggers,

the

application

must

issue

the

query

again

to

regenerate

the

result

set.

Related

concepts:

v

“Cursor

considerations

for

CLI

applications”

on

page

66

v

“Result

set

terminology

in

CLI

applications”

on

page

68

Related

reference:

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExtendedFetch

function

(CLI)

-

Extended

fetch

(fetch

array

of

rows)”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

5.

Cursors

65

||||
|
|

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“DELETE

statement”

in

the

SQL

Reference,

Volume

2

v

“UPDATE

statement”

in

the

SQL

Reference,

Volume

2

v

“CursorHold

CLI/ODBC

configuration

keyword”

on

page

276

Cursor

considerations

for

CLI

applications

Which

cursor

type

to

use:

The

first

decision

to

make

is

between

a

forward-only

cursor

and

a

scrollable

cursor.

A

forward-only

cursor

incurs

less

overhead

than

a

scrollable

cursor,

and

scrollable

cursors

have

the

potential

for

decreased

concurrency.

If

your

application

does

not

need

the

additional

features

of

a

scrollable

cursor,

then

you

should

use

a

non-scrollable

cursor.

If

a

scrollable

cursor

is

required

then

you

have

to

decide

between

a

static

cursor,

a

keyset-driven

cursor,

or

a

dynamic

cursor.

A

static

cursor

involves

the

least

overhead.

If

the

application

does

not

need

the

additional

features

of

a

keyset-driven

or

dynamic

cursor

then

a

static

cursor

should

be

used.

Note:

Currently,

dynamic

cursors

are

only

supported

when

accessing

servers

that

are

DB2®

UDB

for

z/OS™

Version

8.1

and

later.

If

the

application

needs

to

detect

changes

to

the

underlying

data

or

needs

to

add,

update,

or

delete

data

from

the

cursor,

then

the

application

must

use

either

a

keyset-driven

or

dynamic

cursor.

Because

dynamic

cursors

incur

more

overhead

and

may

have

less

concurrency

than

keyset-driven

cursors,

only

choose

dynamic

cursors

if

the

application

needs

to

detect

both

changes

made

and

rows

inserted

by

other

cursors.

If

an

application

requests

a

scrollable

cursor

that

can

detect

changes

without

specifying

a

particular

cursor

type,

then

DB2

CLI

will

assume

that

a

dynamic

cursor

is

not

needed

and

provide

a

keyset-driven

cursor.

This

behavior

avoids

the

increased

overhead

and

reduced

concurrency

that

is

incurred

with

dynamic

cursors.

To

determine

the

attributes

of

the

types

of

cursors

supported

by

the

driver

and

DBMS,

the

application

should

call

SQLGetInfo()

with

an

InfoType

of:

v

SQL_DYNAMIC_CURSOR_ATTRIBUTES1

v

SQL_DYNAMIC_CURSOR_ATTRIBUTES2

v

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

v

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2

v

SQL_KEYSET_CURSOR_ATTRIBUTES1

v

SQL_KEYSET_CURSOR_ATTRIBUTES2

v

SQL_STATIC_CURSOR_ATTRIBUTES1

v

SQL_STATIC_CURSOR_ATTRIBUTES2

Unit

of

work

considerations:

A

cursor

can

be

closed

either

explicitly

or

implicitly.

An

application

can

explicitly

close

a

cursor

by

calling

SQLCloseCursor().

Any

further

attempts

to

manipulate

the

cursor

will

result

in

error,

unless

the

cursor

is

opened

again.

The

implicit

closure

of

a

cursor

depends

on

a

several

factors

including

how

the

cursor

was

declared

and

whether

or

not

a

COMMIT

or

ROLLBACK

occurs.

66

CLI

Guide

and

Reference,

Volume

1

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

By

default,

the

DB2

CLI

driver

declares

all

cursors

as

WITH

HOLD.

This

means

that

any

open

cursor

will

persist

across

COMMITs,

thereby

requiring

the

application

to

explicitly

close

each

cursor.

Be

aware,

however,

that

if

a

cursor

is

closed

in

autocommit

mode,

then

any

other

open

cursors

that

are

not

defined

with

the

WITH

HOLD

option

will

be

closed

and

all

remaining

open

cursors

will

become

unpositioned.

(This

means

that

no

positioned

updates

or

deletes

can

be

performed

without

issuing

another

fetch.)

There

are

two

ways

to

change

whether

a

cursor

is

declared

WITH

HOLD:

v

Set

the

statement

attribute

SQL_ATTR_CURSOR_HOLD

to

SQL_CURSOR_HOLD_ON

(default)

or

SQL_CURSOR_HOLD_OFF.

This

setting

only

affects

cursors

opened

on

the

statement

handle

after

this

value

has

been

set.

It

will

not

affect

cursors

already

open.

v

Set

the

CLI/ODBC

configuration

keyword

CursorHold

to

change

the

default

DB2

CLI

driver

behavior.

Setting

CursorHold=1

preserves

the

default

behavior

of

cursors

declared

as

WITH

HOLD,

and

CursorHold=0

results

in

cursors

being

closed

when

each

transaction

is

committed.

You

can

override

this

keyword

by

setting

the

SQL_ATTR_CURSOR_HOLD

statement

attribute

described

above.

Note:

A

ROLLBACK

will

close

all

cursors,

including

those

declared

WITH

HOLD.

Troubleshooting

for

applications

created

before

scrollable

cursor

support:

Because

scrollable

cursor

support

is

a

newer

feature,

some

CLI/ODBC

applications

that

were

working

with

previous

releases

of

DB2

for

OS/390®

or

DB2

for

Unix

and

Windows®

may

encounter

behavioral

or

performance

changes.

This

occurs

because

before

scrollable

cursors

were

supported,

applications

that

requested

a

scrollable

cursor

would

receive

a

forward-only

cursor.

To

restore

an

application’s

previous

behavior

before

scrollable

cursor

support,

set

the

following

configuration

keywords

in

the

db2cli.ini

file:

Table

9.

Configuration

keyword

values

restoring

application

behavior

before

scrollable

cursor

support

Configuration

keyword

setting

Description

Patch2=6

Returns

a

message

that

scrollable

cursors

(keyset-driven,

dynamic

and

static)

are

not

supported.

CLI

automatically

downgrades

any

request

for

a

scrollable

cursor

to

a

forward-only

cursor.

DisableKeysetCursor=1

Disables

keyset-driven

scrollable

cursors.

This

can

be

used

to

force

the

CLI

driver

to

give

the

application

a

static

cursor

when

a

keyset-driven

or

dynamic

cursor

is

requested.

Related

concepts:

v

“Commit

modes

in

CLI

applications”

on

page

29

v

“Cursors

in

CLI

applications”

on

page

63

v

“Result

set

terminology

in

CLI

applications”

on

page

68

Related

reference:

v

“SQLGetInfo

function

(CLI)

-

Get

general

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“COMMIT

statement”

in

the

SQL

Reference,

Volume

2

v

“ROLLBACK

statement”

in

the

SQL

Reference,

Volume

2

Chapter

5.

Cursors

67

|
|
|
|

|
|
|
|

v

“CursorHold

CLI/ODBC

configuration

keyword”

on

page

276

v

“DisableKeysetCursor

CLI/ODBC

configuration

keyword”

on

page

285

v

“Patch2

CLI/ODBC

configuration

keyword”

on

page

305

Result

sets

Result

set

terminology

in

CLI

applications

The

following

terms

describe

result

handling:

result

set

The

complete

set

of

rows

that

satisfy

the

SQL

SELECT

statement.

This

is

the

set

from

which

fetches

retrieve

rows

to

populate

the

rowset.

rowset

The

subset

of

rows

from

the

result

set

that

is

returned

after

each

fetch.

The

application

indicates

the

size

of

the

rowset

before

the

first

fetch

of

data,

and

can

modify

the

size

before

each

subsequent

fetch.

Each

call

to

SQLFetch(),

SQLFetchScroll(),

or

SQLExtendedFetch()

populates

the

rowset

with

the

appropriate

rows

from

the

result

set.

bookmark

It

is

possible

to

store

a

reference

to

a

specific

row

in

the

result

set

called

a

bookmark.

Once

stored,

the

application

can

continue

to

move

through

the

result

set,

then

return

to

the

bookmarked

row

to

generate

a

rowset.

You

can

also

use

a

bookmark

to

perform

updates

and

deletions

with

SQLBulkOperations().

keyset

A

set

of

key

values

used

to

identify

the

set

and

order

of

rows

that

are

included

in

a

keyset-driven

cursor.

The

keyset

is

created

when

a

keyset-driven

cursor

is

first

opened.

As

the

cursor

scrolls

through

the

result

set,

it

uses

the

keys

in

the

keyset

to

retrieve

the

current

data

values

for

each

row.

68

CLI

Guide

and

Reference,

Volume

1

The

following

figure

demonstrates

the

relationship

between

the

terms

described

above:

bookmark 2

bookmark 1

key 1row 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

KEYSETRESULT SET

key 2

key 3ROWSET size = 3

key 4

key 5

key 6

.

.

.

.

.

.

key 7

key 8

key 9

key 10

key 11

key 12

key 13

key 14

key 15

key 16

Rows added after
the keyset-driven
cursor was opened
become part of the
result set.

all rows that satisfy
the SELECT
statement

Related

concepts:

v

“Cursors

in

CLI

applications”

on

page

63

v

“Cursor

considerations

for

CLI

applications”

on

page

66

v

“Bookmarks

in

CLI

applications”

on

page

76

Related

reference:

v

“SQLExtendedFetch

function

(CLI)

-

Extended

fetch

(fetch

array

of

rows)”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

v

“SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows”

in

the

CLI

Guide

and

Reference,

Volume

2

Rowset

retrieval

examples

in

CLI

applications

Partial

rowset

example:

When

working

with

rowsets,

you

should

verify

what

portion

of

the

result

set

returned

contains

meaningful

data.

The

application

cannot

assume

that

the

entire

Chapter

5.

Cursors

69

rowset

will

contain

data.

It

must

check

the

row

status

array

after

each

rowset

is

created

to

determine

the

number

of

rows

returned,

because

there

are

instances

where

the

rowset

will

not

contain

a

complete

set

of

rows.

For

instance,

consider

the

case

where

the

rowset

size

is

set

to

10,

and

SQLFetchScroll()

is

called

using

SQL_FETCH_ABSOLUTE

and

FetchOffset

is

set

to

-3.

This

will

attempt

to

return

10

rows

starting

3

rows

from

the

end

of

the

result

set.

Only

the

first

three

rows

of

the

rowset

will

contain

meaningful

data,

however,

and

the

application

must

ignore

the

rest

of

the

rows.

Fetch

orientations

example:

The

following

figure

demonstrates

a

number

of

calls

to

SQLFetchScroll()

using

various

FetchOrientation

values.

The

result

set

includes

all

of

the

rows

(from

1

to

n),

and

the

rowset

size

is

3.

The

order

of

the

calls

is

indicated

on

the

left,

and

the

FetchOrientation

values

are

indicated

on

the

right.

} Result Set

} Rowset
(FetchOffset = -3)

}}Valid rows

Invalid rows

n
n-1
n-2

row 1
2

3

Figure

4.

Partial

rowset

example

70

CLI

Guide

and

Reference,

Volume

1

Related

concepts:

v

“Result

set

terminology

in

CLI

applications”

on

page

68

Related

reference:

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

Specifying

the

rowset

returned

from

the

result

set

Before

you

begin

to

retrieve

data,

you

need

to

establish

the

rowset

that

will

be

returned.

This

topic

describes

the

steps

associated

with

setting

up

the

rowset.

Prerequisites:

Before

specifying

the

rowset,

ensure

that

you

have

initialized

your

CLI

application.

Procedure:

DB2

CLI

allows

an

application

to

specify

a

rowset

for

a

non-scrollable

or

scrollable

cursor

that

spans

more

than

one

row

at

a

time.

To

effectively

work

with

a

rowset,

an

application

should

perform

the

following:

1.

Specify

the

size

of

the

rowset

returned

from

calls

to

SQLFetch()

or

SQLFetchScroll()

by

setting

the

statement

attribute

SQL_ATTR_ROW_ARRAY_SIZE

to

the

number

of

rows

in

the

rowset.

The

default

number

of

rows

is

1.

For

example,

to

declare

a

rowset

size

of

35

rows,

issue

the

following

call:

n
n-1

n-2

row 1
2

3

n-1

2.

3.

4.

5.

1.

SQL_FETCH_FIRST

SQL_FETCH_NEXT

SQL_FETCH_RELATIVE

SQL_FETCH_ABSOLUTE

SQL_FETCH_LAST

(FetchOffset = -1)

(FetchOffset = 11)

Figure

5.

Example

of

retrieving

rowsets

Chapter

5.

Cursors

71

#define

ROWSET_SIZE

35

/*

...

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,

(SQLPOINTER)

ROWSET_SIZE,

0);

2.

Set

up

a

variable

that

will

store

the

number

of

rows

returned.

Declare

a

variable

of

type

SQLUINTEGER

and

set

the

SQL_ATTR_ROWS_FETCHED_PTR

statement

attribute

to

point

to

this

variable.

In

the

following

example,

rowsFetchedNb

will

hold

the

number

of

rows

returned

in

the

rowset

after

each

call

to

SQLFetchScroll():

/*

...

*/

SQLUINTEGER

rowsFetchedNb;

/*

...

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWS_FETCHED_PTR,

&rowsFetchedNb,

0);

3.

Set

up

the

row

status

array.

Declare

an

array

of

type

SQLUSMALLINT

with

the

same

number

of

rows

as

the

size

of

the

rowset

(as

determined

in

Step

1).

Then

specify

the

address

of

this

array

with

the

statement

attribute

SQL_ATTR_ROW_STATUS_PTR.

For

example:

/*

...

*/

SQLUSMALLINT

row_status[ROWSET_SIZE];

/*

...

*/

/*

Set

a

pointer

to

the

array

to

use

for

the

row

status

*/

rc

=

SQLSetStmtAttr(

hstmt,

SQL_ATTR_ROW_STATUS_PTR,

(SQLPOINTER)

row_status,

0);

The

row

status

array

provides

additional

information

about

each

row

in

the

rowset.

After

each

call

to

SQLFetch()

or

SQLFetchScroll(),

the

array

is

updated.

If

the

call

to

SQLFetch()

or

SQLFetchScroll()

does

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

then

the

contents

of

the

row

status

array

are

undefined.

Otherwise,

any

of

the

row

status

array

values

will

be

returned

(refer

to

the

row

status

array

section

of

the

SQLFetchScroll()

documentation

for

a

complete

list

of

values).

4.

Position

the

rowset

within

the

result

set,

indicating

the

position

you

want

the

rowset

to

begin.

Specify

this

position

by

calling

SQLFetch(),

or

SQLFetchScroll()

with

FetchOrientation

and

FetchOffset

values.

For

example,

the

following

call

generates

a

rowset

starting

on

the

11th

row

in

the

result

set:

SQLFetchScroll(hstmt,

/*

Statement

handle

*/

SQL_FETCH_ABSOLUTE,

/*

FetchOrientation

value

*/

11);

/*

Offset

value

*/

Scroll

bar

operations

of

a

screen-based

application

can

be

mapped

directly

to

the

positioning

of

a

rowset.

By

setting

the

rowset

size

to

the

number

of

lines

displayed

on

the

screen,

the

application

can

map

the

movement

of

the

scroll

bar

to

calls

to

SQLFetchScroll().

Note:

If

the

application

can

buffer

data

in

the

display

and

regenerate

the

result

set

to

see

updates,

then

use

a

forward-only

cursor

instead.

This

yields

better

performance

for

small

result

sets.

72

CLI

Guide

and

Reference,

Volume

1

Rowset

retrieved

FetchOrientation

value

Scroll

bar

First

rowset

SQL_FETCH_FIRST

Home:

Scroll

bar

at

the

top

Last

rowset

SQL_FETCH_LAST

End:

Scroll

bar

at

the

bottom

Next

rowset

SQL_FETCH_NEXT

(same

as

calling

SQLFetch())

Page

Down

Previous

rowset

SQL_FETCH_PRIOR

Page

Up

Rowset

starting

on

next

row

SQL_FETCH_RELATIVE

with

FetchOffset

set

to

1

Line

Down

Rowset

starting

on

previous

row

SQL_FETCH_RELATIVE

with

FetchOffset

set

to

-1

Line

Up

Rowset

starting

on

a

specific

row

SQL_FETCH_ABSOLUTE

with

FetchOffset

set

to

an

offset

from

the

start

(a

positive

value)

or

the

end

(a

negative

value)

of

the

result

set

Application

generated

Rowset

starting

on

a

previously

bookmarked

row

SQL_FETCH_BOOKMARK

with

FetchOffset

set

to

a

positive

or

negative

offset

from

the

bookmarked

row

Application

generated

5.

Check

the

rows

fetched

pointer

after

each

rowset

is

created

to

determine

the

number

of

rows

returned.

Check

the

row

status

array

for

the

status

of

each

row,

because

there

are

instances

where

the

rowset

will

not

contain

a

complete

set

of

rows.

The

application

cannot

assume

that

the

entire

rowset

will

contain

data.

For

instance,

consider

the

case

where

the

rowset

size

is

set

to

10,

and

SQLFetchScroll()

is

called

using

SQL_FETCH_ABSOLUTE

and

FetchOffset

is

set

to

-3.

This

will

attempt

to

return

10

rows

starting

3

rows

from

the

end

of

the

result

set.

Only

the

first

three

rows

of

the

rowset

will

contain

meaningful

data,

however,

and

the

application

must

ignore

the

rest

of

the

rows.

Related

concepts:

v

“Cursor

considerations

for

CLI

applications”

on

page

66

v

“Result

set

terminology

in

CLI

applications”

on

page

68

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Retrieving

data

with

scrollable

cursors

in

a

CLI

application”

on

page

74

v

“Retrieving

data

with

bookmarks

in

a

CLI

application”

on

page

77

Related

reference:

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

Chapter

5.

Cursors

73

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

Retrieving

data

with

scrollable

cursors

in

a

CLI

application

Scrollable

cursors

allow

you

to

move

throughout

a

result

set.

You

can

make

use

of

this

feature

when

retrieving

data.

This

topic

describes

how

to

use

scrollable

cursors

to

retrieve

data.

Prerequisites:

Before

you

retrieve

data

using

scrollable

cursors,

ensure

that

you

have

initialized

your

CLI

application.

Procedure:

To

use

scrollable

cursors

to

retrieve

data:

1.

Specify

the

size

of

the

rowset

returned

by

setting

the

statement

attribute

SQL_ATTR_ROW_ARRAY_SIZE

to

the

number

of

rows

in

the

rowset.

The

default

number

of

rows

is

1.

For

example,

to

declare

a

rowset

size

of

35

rows,

issue

the

following

call:

#define

ROWSET_SIZE

35

/*

...

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,

(SQLPOINTER)

ROWSET_SIZE,

0);

2.

Specify

the

type

of

scrollable

cursor

to

use.

Using

SQLSetStmtAttr(),

set

the

SQL_ATTR_CURSOR_TYPE

statement

attribute

to

SQL_CURSOR_STATIC

for

a

static

read-only

cursor

or

to

SQL_CURSOR_KEYSET_DRIVEN

for

a

keyset-driven

cursor.

For

example:

sqlrc

=

SQLSetStmtAttr

(hstmt,

SQL_ATTR_CURSOR_TYPE,

(SQLPOINTER)

SQL_CURSOR_STATIC,

0);

If

the

type

of

cursor

is

not

set,

the

default

forward-only

non-scrollable

cursor

will

be

used.

3.

Set

up

a

variable

that

will

store

the

number

of

rows

returned.

Declare

a

variable

of

type

SQLUINTEGER

and

set

the

SQL_ATTR_ROWS_FETCHED_PTR

statement

attribute

to

point

to

this

variable.

In

the

following

example,

rowsFetchedNb

will

hold

the

number

of

rows

returned

in

the

rowset

after

each

call

to

SQLFetchScroll():

/*

...

*/

SQLUINTEGER

rowsFetchedNb;

/*

...

*/

rc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWS_FETCHED_PTR,

&rowsFetchedNb,

0);

4.

Set

up

the

row

status

array.

Declare

an

array

of

type

SQLUSMALLINT

with

the

same

number

of

rows

as

the

size

of

the

rowset

(as

determined

in

Step

1).

Then

specify

the

address

of

this

array

with

the

statement

attribute

SQL_ATTR_ROW_STATUS_PTR.

For

example:

74

CLI

Guide

and

Reference,

Volume

1

/*

...

*/

SQLUSMALLINT

row_status[ROWSET_SIZE];

/*

...

*/

/*

Set

a

pointer

to

the

array

to

use

for

the

row

status

*/

rc

=

SQLSetStmtAttr(

hstmt,

SQL_ATTR_ROW_STATUS_PTR,

(SQLPOINTER)

row_status,

0);

The

row

status

array

provides

additional

information

about

each

row

in

the

rowset.

After

each

call

to

SQLFetchScroll(),

the

array

is

updated.

If

the

call

to

SQLFetchScroll()

does

not

return

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO,

then

the

contents

of

the

row

status

array

are

undefined.

Otherwise,

any

of

the

row

status

array

values

will

be

returned

(refer

to

the

row

status

array

section

of

the

SQLFetchScroll()

documentation

for

a

complete

list

of

values).

5.

Optional:

If

you

want

to

use

bookmarks

with

the

scrollable

cursor,

set

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

to

SQL_UB_VARIABLE.

For

example:

sqlrc

=

SQLSetStmtAttr

(hstmt,

SQL_ATTR_USE_BOOKMARKS,

(SQLPOINTER)

SQL_UB_VARIABLE,

0);

6.

Issue

an

SQL

SELECT

statement.

7.

Execute

the

SQL

SELECT

statement.

8.

Bind

the

result

set

using

either

column-wise

or

row-wise

binding.

9.

Fetch

a

rowset

of

rows

from

the

result

set.

a.

Call

SQLFetchScroll()

to

fetch

a

rowset

of

data

from

the

result

set.

Position

the

rowset

within

the

result

set

indicating

the

position

you

want

the

rowset

to

begin.

Specify

this

position

by

calling

SQLFetchScroll()

with

FetchOrientation

and

FetchOffset

values.

For

example,

the

following

call

generates

a

rowset

starting

on

the

11th

row

in

the

result

set:

SQLFetchScroll(hstmt,

/*

Statement

handle

*/

SQL_FETCH_ABSOLUTE,

/*

FetchOrientation

value

*/

11);

/*

Offset

value

*/

b.

Check

the

row

status

array

after

each

rowset

is

created

to

determine

the

number

of

rows

returned,

because

there

are

instances

where

the

rowset

will

not

contain

a

complete

set

of

rows.

The

application

cannot

assume

that

the

entire

rowset

will

contain

data.

For

instance,

consider

the

case

where

the

rowset

size

is

set

to

10,

and

SQLFetchScroll()

is

called

using

SQL_FETCH_ABSOLUTE

and

FetchOffset

is

set

to

-3.

This

will

attempt

to

return

10

rows

starting

3

rows

from

the

end

of

the

result

set.

Only

the

first

three

rows

of

the

rowset

will

contain

meaningful

data,

however,

and

the

application

must

ignore

the

rest

of

the

rows.

c.

Display

or

manipulate

the

data

in

the

rows

returned.
10.

Close

the

cursor

by

calling

SQLCloseCursor()

or

free

the

statement

handle

by

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_STMT.

Freeing

the

statement

handles

is

not

required

every

time

retrieval

has

finished.

The

statement

handles

can

be

freed

at

a

later

time,

when

the

application

is

freeing

other

handles.

Related

concepts:

v

“Cursors

in

CLI

applications”

on

page

63

Chapter

5.

Cursors

75

v

“Cursor

considerations

for

CLI

applications”

on

page

66

v

“Bookmarks

in

CLI

applications”

on

page

76

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Issuing

SQL

statements

in

CLI

applications”

on

page

23

Related

reference:

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQLCloseCursor

function

(CLI)

-

Close

cursor

and

discard

pending

results”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

Bookmarks

Bookmarks

in

CLI

applications

When

scrollable

cursors

are

used,

you

can

save

a

reference

to

any

row

in

the

result

set

using

a

bookmark.

The

application

can

then

use

that

bookmark

as

a

relative

position

to

retrieve

a

rowset

of

information,

or

to

update

or

delete

a

row

when

using

keyset

cursors.

You

can

retrieve

a

rowset

starting

from

the

bookmarked

row,

or

specify

a

positive

or

negative

offset.

Once

you

have

positioned

the

cursor

to

a

row

in

a

rowset

using

SQLSetPos(),

you

can

obtain

the

bookmark

value

starting

from

column

0

using

SQLGetData().

In

most

cases

you

will

not

want

to

bind

column

0

and

retrieve

the

bookmark

value

for

every

row,

but

use

SQLGetData()

to

retrieve

the

bookmark

value

for

the

specific

row

you

require.

A

bookmark

is

only

valid

within

the

result

set

in

which

it

was

created.

The

bookmark

value

will

be

different

if

you

select

the

same

row

from

the

same

result

set

in

two

different

cursors.

The

only

valid

comparison

is

a

byte-by-byte

comparison

between

two

bookmark

values

obtained

from

the

same

result

set.

If

they

are

the

same

then

they

both

point

to

the

same

row.

Any

other

mathematical

calculations

or

comparisons

between

bookmarks

will

not

provide

any

useful

information.

This

includes

comparing

bookmark

values

within

a

result

set,

and

between

result

sets.

Related

concepts:

v

“Cursor

considerations

for

CLI

applications”

on

page

66

v

“Result

set

terminology

in

CLI

applications”

on

page

68

76

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetPos

function

(CLI)

-

Set

the

cursor

position

in

a

rowset”

in

the

CLI

Guide

and

Reference,

Volume

2

Retrieving

data

with

bookmarks

in

a

CLI

application

Bookmarks,

available

only

when

scrollable

cursors

are

used,

allow

you

to

save

a

reference

to

any

row

in

a

result

set.

You

can

take

advantage

of

this

feature

when

retrieving

data.

This

topic

describes

how

to

retrieve

data

using

bookmarks.

Prerequisites:

Before

you

retrieve

data

with

bookmarks,

ensure

that

you

have

initialized

your

CLI

application.

The

steps

explained

here

should

be

performed

in

addition

to

those

described

in

″Retrieving

Data

with

Scrollable

Cursors

in

a

CLI

Application″.

Procedure:

To

use

bookmarks

with

scrollable

cursors

to

retrieve

data:

1.

Indicate

that

bookmarks

will

be

used

(if

not

already

done

so)

by

setting

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

to

SQL_UB_VARIABLE.

For

example:

sqlrc

=

SQLSetStmtAttr

(hstmt,

SQL_ATTR_USE_BOOKMARKS,

(SQLPOINTER)

SQL_UB_VARIABLE,

0);

2.

Get

the

bookmark

value

from

the

desired

row

in

the

rowset

after

executing

the

SELECT

statement

and

retrieving

the

rowset

using

SQLFetchScroll().

Do

this

by

calling

SQLSetPos()

to

position

the

cursor

within

the

rowset.

Then

call

SQLGetData()

to

retrieve

the

bookmark

value.

For

example:

sqlrc

=

SQLFetchScroll(hstmt,

SQL_FETCH_ABSOLUTE,

15);

/*

...

*/

sqlrc

=

SQLSetPos(hstmt,

3,

SQL_POSITION,

SQL_LOCK_NO_CHANGE);

/*

...

*/

sqlrc

=

SQLGetData(hstmt,

0,

SQL_C_LONG,

bookmark.val,

4,

&bookmark.ind);

In

most

cases,

you

will

not

want

to

bind

column

0

and

retrieve

the

bookmark

value

for

every

row,

but

use

SQLGetData()

to

retrieve

the

bookmark

value

for

the

specific

row

you

require.

3.

Store

the

bookmark

location

for

the

next

call

to

SQLFetchScroll().

Set

the

SQL_ATTR_FETCH_BOOKMARK

statement

attribute

to

the

variable

that

contains

the

bookmark

value.

For

example,

continuing

from

the

example

above,

bookmark.val

stores

the

bookmark

value,

so

call

SQLSetStmtAttr()

as

follows:

sqlrc

=

SQLSetStmtAttr(hstmt,

SQL_ATTR_FETCH_BOOKMARK_PTR,

(SQLPOINTER)

bookmark.val,

0);

4.

Retrieve

a

rowset

based

on

the

bookmark.

Once

the

bookmark

value

is

stored,

the

application

can

continue

to

use

SQLFetchScroll()

to

retrieve

data

from

the

result

set.

The

application

can

then

move

throughout

the

result

set,

but

still

retrieve

a

rowset

based

on

the

location

of

the

bookmarked

row

at

any

point

before

the

cursor

is

closed.

Chapter

5.

Cursors

77

The

following

call

to

SQLFetchScroll()

retrieves

a

rowset

starting

from

the

bookmarked

row:

sqlrc

=

SQLFetchScroll(hstmt,

SQL_FETCH_BOOKMARK,

0);

The

value

0

specifies

the

offset.

You

would

specify

-3

to

begin

the

rowset

3

rows

before

the

bookmarked

row,

or

specify

4

to

begin

4

rows

after.

For

example,

the

following

call

from

retrieves

a

rowset

4

rows

after

the

bookmarked

row:

sqlrc

=

SQLFetchScroll(hstmt,

SQL_FETCH_BOOKMARK,

4);

Note

that

the

variable

used

to

store

the

bookmark

value

is

not

specified

in

the

SQLFetchScroll()

call.

It

was

set

in

the

previous

step

using

the

statement

attribute

SQL_ATTR_FETCH_BOOKMARK_PTR.

Related

concepts:

v

“Cursor

considerations

for

CLI

applications”

on

page

66

v

“Result

set

terminology

in

CLI

applications”

on

page

68

v

“Bookmarks

in

CLI

applications”

on

page

76

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Retrieving

data

with

scrollable

cursors

in

a

CLI

application”

on

page

74

Related

reference:

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetPos

function

(CLI)

-

Set

the

cursor

position

in

a

rowset”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

78

CLI

Guide

and

Reference,

Volume

1

Chapter

6.

Array

input

and

output

Array

input

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Binding

parameter

markers

in

CLI

applications

with

column-wise

array

input

.

.

.

.

.

.

. 79

Binding

parameter

markers

in

CLI

applications

with

row-wise

array

input

.

.

.

.

.

.

.

. 80

Parameter

diagnostic

information

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Changing

parameter

bindings

in

CLI

applications

with

offsets

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Array

output

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Column

binding

in

CLI

applications

.

.

.

.

. 83

Result

set

retrieval

into

arrays

in

CLI

applications

85

Retrieving

array

data

in

CLI

applications

using

column-wise

binding

.

.

.

.

.

.

.

.

.

. 87

Retrieving

array

data

in

CLI

applications

using

row-wise

binding

.

.

.

.

.

.

.

.

.

.

. 88

Changing

column

bindings

in

a

CLI

application

with

column

binding

offsets

.

.

.

.

.

.

.

. 89

Array

input

Binding

parameter

markers

in

CLI

applications

with

column-wise

array

input

To

process

an

SQL

statement

that

will

be

repeated

with

different

values,

you

can

use

column-wise

array

input

to

achieve

bulk

inserts,

deletes,

or

updates.

This

results

in

fewer

network

flows

to

the

server

because

SQLExecute()

does

not

have

to

be

called

repeatedly

on

the

same

SQL

statement

for

each

value.

Column-wise

array

input

allows

arrays

of

storage

locations

to

be

bound

to

parameter

markers.

A

different

array

is

bound

to

each

parameter.

Prerequisites:

Before

binding

parameter

markers

with

column-wise

binding,

ensure

that

you

have

initialized

your

CLI

application.

Restrictions:

For

character

and

binary

input

data,

the

application

uses

the

maximum

input

buffer

size

argument

(BufferLength)

of

the

SQLBindParameter()

call

to

indicate

to

DB2

CLI

the

location

of

values

in

the

input

array.

For

other

input

data

types,

the

length

of

each

element

in

the

array

is

assumed

to

be

the

size

of

the

C

data

type.

Procedure:

To

bind

parameter

markers

using

column-wise

array

input:

1.

Specify

the

size

of

the

arrays

(the

number

rows

to

be

inserted)

by

calling

SQLSetStmtAttr()

with

the

SQL_ATTR_PARAMSET_SIZE

statement

attribute.

2.

Initialize

and

populate

an

array

for

each

parameter

marker

to

be

bound.

Note:

Each

array

must

contain

at

least

SQL_ATTR_PARAMSET_SIZE

elements,

otherwise,

memory

access

violations

may

occur.

3.

Optional:

Indicate

that

column-wise

binding

is

to

be

used

by

setting

the

SQL_ATTR_BIND_TYPE

statement

attribute

to

SQL_PARAMETER_BIND_BY_COLUMN

(this

is

the

default

setting).

4.

Bind

each

parameter

marker

to

its

corresponding

array

of

input

values

by

calling

SQLBindParameter()

for

each

parameter

marker.

Related

concepts:

©

Copyright

IBM

Corp.

1993

-

2004

79

v

“Parameter

marker

binding

in

CLI

applications”

on

page

26

v

“Parameter

diagnostic

information

in

CLI

applications”

on

page

81

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

Related

reference:

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Binding

parameter

markers

in

CLI

applications

with

row-wise

array

input

To

process

an

SQL

statement

that

will

be

repeated

with

different

values,

you

can

use

row-wise

array

input

to

achieve

bulk

inserts,

deletes,

or

updates.

This

results

in

fewer

network

flows

to

the

server

because

SQLExecute()

does

not

have

to

be

called

repeatedly

on

the

same

SQL

statement

for

each

value.

Row-wise

array

input

allows

an

array

of

structures

to

be

bound

to

parameters.

Prerequisites:

Before

binding

parameter

markers

with

row-wise

binding,

ensure

that

you

have

initialized

your

CLI

application.

Procedure:

To

bind

parameter

markers

using

row-wise

array

input:

1.

Initialize

and

populate

an

array

of

structures

that

contains

two

elements

for

each

parameter:

the

first

element

contains

the

length/indicator

buffer,

and

the

second

element

holds

the

value

itself.

The

size

of

the

array

corresponds

to

the

number

of

values

to

be

applied

to

each

parameter.

For

example,

the

following

array

contains

the

length

and

value

for

three

parameters:

struct

{

SQLINTEGER

La;

SQLINTEGER

A;

/*

Information

for

parameter

A

*/

SQLINTEGER

Lb;

SQLCHAR

B[4];

/*

Information

for

parameter

B

*/

SQLINTEGER

Lc;

SQLCHAR

C[11];

/*

Information

for

parameter

C

*/

}

R[n];

2.

Indicate

that

row-wise

binding

is

to

by

used

by

setting

the

SQL_ATTR_PARAM_BIND_TYPE

statement

attribute

to

the

length

of

the

struct

created

in

the

previous

step,

using

SQLSetStmtAttr().

3.

Set

the

statement

attribute

SQL_ATTR_PARAMSET_SIZE

to

the

number

of

rows

of

the

array,

using

SQLSetStmtAttr().

4.

Bind

each

parameter

to

the

first

row

of

the

array

created

in

step

1

using

SQLBindParameter().

For

example,

/*

Parameter

A

*/

rc

=

SQLBindParameter(hstmt,

1,

SQL_PARAM_INPUT,

SQL_C_LONG,

SQL_INTEGER,

5,

0,

&R[0].A,

0,

&R.La);

/*

Parameter

B

*/

rc

=

SQLBindParameter(hstmt,

2,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

80

CLI

Guide

and

Reference,

Volume

1

10,

0,

R[0].B,

10,

&R.Lb);

/*

Parameter

C

*/

rc

=

SQLBindParameter(hstmt,

3,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_CHAR,

3,

0,

R[0].C,

3,

&R.Lc);

Related

concepts:

v

“Parameter

marker

binding

in

CLI

applications”

on

page

26

v

“Parameter

diagnostic

information

in

CLI

applications”

on

page

81

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

Related

reference:

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Parameter

diagnostic

information

in

CLI

applications

A

parameter

status

array

is

an

array

of

one

or

more

SQLSMALLINTs

allocated

by

a

CLI

application.

Each

element

in

the

array

corresponds

to

an

element

in

the

input

(or

output)

parameter

array.

If

specified,

the

DB2

CLI

driver

updates

the

parameter

status

array

with

information

about

the

processing

status

of

each

set

of

parameters

included

in

an

SQLExecute()

or

SQLExecDirect()

call.

DB2

CLI

updates

the

elements

in

the

parameter

status

array

with

the

following

values:

v

SQL_PARAM_SUCCESS:

The

SQL

statement

was

successfully

executed

for

this

set

of

parameters.

v

SQL_PARAM_SUCCESS_WITH_INFO:

The

SQL

statement

was

successfully

executed

for

this

set

of

parameters,

however,

warning

information

is

available

in

the

diagnostics

data

structure.

v

SQL_PARAM_ERROR:

An

error

occurred

in

processing

this

set

of

parameters.

Additional

error

information

is

available

in

the

diagnostics

data

structure.

v

SQL_PARAM_UNUSED:

This

parameter

set

was

unused,

possibly

because

a

previous

parameter

set

caused

an

error

that

aborted

further

processing.

v

SQL_PARAM_DIAG_UNAVAILABLE:

Diagnostic

information

is

not

available,

possibly

because

an

error

was

detected

before

the

parameter

set

was

even

used

(for

example,

an

SQL

statement

syntax

error).

A

CLI

application

must

call

the

SQLSetStmtAttr()

function

to

set

the

SQL_ATTR_PARAM_STATUS_PTR

attribute

before

DB2

CLI

will

update

the

parameter

status

array.

Alternatively,

the

application

can

call

the

SQLSetDescField()

function

to

set

the

SQL_DESC_ARRAY_STATUS_PTR

field

in

the

IPD

descriptor

to

point

to

the

parameter

status

array.

Chapter

6.

Array

input

and

output

81

The

statement

attribute

SQL_ATTR_PARAMS_PROCESSED,

or

the

corresponding

IPD

descriptor

header

field

SQL_DESC_ROWS_PROCESSED_PTR,

can

be

used

to

return

the

number

of

sets

of

parameters

that

have

been

processed.

Once

the

application

has

determined

what

parameters

had

errors,

it

can

use

the

statement

attribute

SQL_ATTR_PARAM_OPERATION_PTR,

or

the

corresponding

APD

descriptor

header

field

SQL_DESC_ARRAY_STATUS_PTR,

(both

of

which

point

to

an

array

of

values)

to

control

which

sets

of

parameters

are

ignored

in

a

second

call

to

SQLExecute()

or

SQLExecDirect().

Related

tasks:

v

“Binding

parameter

markers

in

CLI

applications”

on

page

28

Related

reference:

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

FieldIdentifier

argument

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

Changing

parameter

bindings

in

CLI

applications

with

offsets

When

an

application

needs

to

change

parameter

bindings

it

can

call

SQLBindParameter()

a

second

time.

This

will

change

the

bound

parameter

buffer

address

and

the

corresponding

length/indicator

buffer

address

used.

Instead

of

multiple

calls

to

SQLBindParameter(),

however,

DB2

CLI

also

supports

parameter

binding

offsets.

Rather

than

re-binding

each

time,

an

offset

can

be

used

to

specify

new

buffer

and

length/indicator

addresses

which

will

be

used

in

a

subsequent

call

to

SQLExecute()

or

SQLExecDirect().

Prerequisites:

Before

changing

your

parameter

bindings,

ensure

that

your

application

has

been

initialized.

Procedure:

To

change

parameter

bindings

by

using

offsets:

1.

Call

SQLBindParameter()

as

you

had

been

to

bind

the

parameters.

The

first

set

of

bound

parameter

buffer

addresses

and

the

corresponding

length/indicator

buffer

addresses

will

act

as

a

template.

The

application

will

then

move

this

template

to

different

memory

locations

using

the

offset.

2.

Call

SQLExecute()

or

SQLExecDirect()

as

you

had

been

to

execute

the

statement.

The

values

stored

in

the

bound

addresses

will

be

used.

3.

Initialize

a

variable

to

hold

the

memory

offset

value.

The

statement

attribute

SQL_ATTR_PARAM_BIND_OFFSET_PTR

points

to

the

address

of

an

SQLINTEGER

buffer

where

the

offset

will

be

stored.

This

address

must

remain

valid

until

the

cursor

is

closed.

82

CLI

Guide

and

Reference,

Volume

1

This

extra

level

of

indirection

enables

the

use

of

a

single

memory

variable

to

store

the

offset

for

multiple

sets

of

parameter

buffers

on

different

statement

handles.

The

application

need

only

set

this

one

memory

variable

and

all

of

the

offsets

will

be

changed.

4.

Store

an

offset

value

(number

of

bytes)

in

the

memory

location

pointed

to

by

the

statement

attribute

set

in

the

previous

step.

The

offset

value

is

always

added

to

the

memory

location

of

the

originally

bound

values.

This

sum

must

point

to

a

valid

memory

address.

5.

Call

SQLExecute()

or

SQLExecDirect()

again.

CLI

will

add

the

offset

specified

above

to

the

locations

used

in

the

original

call

to

SQLBindParameter()

to

determine

where

the

parameters

to

be

used

are

stored

in

memory.

6.

Repeat

steps

4

and

5

above

as

required.

Related

concepts:

v

“Cursors

in

CLI

applications”

on

page

63

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Binding

parameter

markers

in

CLI

applications

with

column-wise

array

input”

on

page

79

v

“Binding

parameter

markers

in

CLI

applications

with

row-wise

array

input”

on

page

80

Related

reference:

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Array

output

Column

binding

in

CLI

applications

Columns

may

be

bound

to:

v

Application

storage

SQLBindCol()

is

used

to

bind

application

storage

to

the

column.

Data

will

be

transferred

from

the

server

to

the

application

at

fetch

time.

Length

of

the

available

data

to

return

is

also

set.

v

LOB

locators

SQLBindCol()

is

used

to

bind

LOB

locators

to

the

column.

Only

the

LOB

locator

(4

bytes)

will

be

transferred

from

the

server

to

the

application

at

fetch

time.

Once

an

application

receives

a

locator

it

can

be

used

in

SQLGetSubString(),

SQLGetPosition(),

SQLGetLength(),

or

as

the

value

of

a

parameter

marker

in

another

SQL

statement.

SQLGetSubString()

can

either

return

another

locator,

or

the

data

itself.

All

locators

remain

valid

until

the

end

of

the

transaction

in

which

Chapter

6.

Array

input

and

output

83

they

were

created

(even

when

the

cursor

moves

to

another

row),

or

until

it

is

freed

using

the

FREE

LOCATOR

statement.

v

Lob

file

references

SQLBindFileToCol()

is

used

to

bind

a

file

to

a

LOB

column.

DB2

CLI

will

write

the

data

directly

to

a

file,

and

update

the

StringLength

and

IndicatorValue

buffers

specified

on

SQLBindFileToCol().

If

the

data

value

for

the

column

is

NULL

and

SQLBindFileToCol()

was

used,

then

IndicatorValue

will

be

set

to

SQL_NULL_DATA

and

StringLength

to

0.

The

number

of

columns

in

a

result

set

can

be

determined

by

calling

SQLNumResultCols()

or

by

calling

SQLColAttribute()

with

the

DescType

argument

set

to

SQL_COLUMN_COUNT.

The

application

can

query

the

attributes

(such

as

data

type

and

length)

of

the

column

by

first

calling

SQLDescribeCol()

or

SQLColAttribute().

This

information

can

then

be

used

to

allocate

a

storage

location

of

the

correct

data

type

and

length,

to

indicate

data

conversion

to

another

data

type,

or

in

the

case

of

LOB

data

types,

optionally

return

a

locator.

An

application

can

choose

not

to

bind

every

column,

or

even

not

to

bind

any

columns.

Data

in

any

of

the

columns

can

also

be

retrieved

using

SQLGetData()

after

the

bound

columns

have

been

fetched

for

the

current

row.

It

is

usually

more

efficient

to

bind

application

variables

or

file

references

to

result

sets

than

to

use

SQLGetData().

When

the

data

is

in

a

LOB

column,

LOB

functions

are

preferable

to

SQLGetData()

.

Use

SQLGetData()

when

the

data

value

is

large

variable-length

data

that:

v

must

be

received

in

pieces,

or

v

may

not

need

to

be

retrieved.

Instead

of

multiple

calls

to

SQLBindCol(),

DB2

CLI

also

supports

column

binding

offsets.

Rather

than

re-binding

each

time,

an

offset

can

be

used

to

specify

new

buffer

and

length/indicator

addresses

which

will

be

used

in

a

subsequent

call

to

SQLFetch()

or

SQLFetchScroll().

This

can

only

be

used

with

row

wise

binding,

but

will

work

whether

the

application

retrieves

a

single

row

or

multiple

rows

at

a

time.

When

binding

any

variable

length

column,

DB2

CLI

will

be

able

to

write

StrLen_or_IndPtr

and

TargetValuePtr

in

one

operation

if

they

are

allocated

contiguously.

For

example:

struct

{

SQLINTEGER

StrLen_or_IndPtr;

SQLCHAR

TargetValuePtr[MAX_BUFFER];

}

column;

The

most

recent

bind

column

function

call

determines

the

type

of

binding

that

is

in

effect.

Related

concepts:

v

“LOB

locators

in

CLI

applications”

on

page

97

Related

tasks:

v

“Changing

column

bindings

in

a

CLI

application

with

column

binding

offsets”

on

page

89

Related

reference:

84

CLI

Guide

and

Reference,

Volume

1

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindFileToCol

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“FREE

LOCATOR

statement”

in

the

SQL

Reference,

Volume

2

Result

set

retrieval

into

arrays

in

CLI

applications

One

of

the

most

common

tasks

performed

by

an

application

is

to

issue

a

query

statement,

and

then

fetch

each

row

of

the

result

set

into

application

variables

that

have

been

bound

using

SQLBindCol().

If

the

application

requires

that

each

column

or

each

row

of

the

result

set

be

stored

in

an

array,

each

fetch

must

be

followed

by

either

a

data

copy

operation

or

a

new

set

of

SQLBindCol()

calls

to

assign

new

storage

areas

for

the

next

fetch.

Alternatively,

applications

can

eliminate

the

overhead

of

extra

data

copies

or

extra

SQLBindCol()

calls

by

retrieving

multiple

rows

of

data

(called

a

rowset)

at

one

time

into

an

array.

Note:

A

third

method

of

reducing

overhead,

which

can

be

used

on

its

own

or

with

arrays,

is

to

specify

a

binding

offset.

Rather

than

re-binding

each

time,

an

offset

can

be

used

to

specify

new

buffer

and

length/indicator

addresses

which

will

be

used

in

a

subsequent

call

to

SQLFetch()

or

SQLFetchScroll().

This

can

only

be

used

with

row

offset

binding.

When

retrieving

a

result

set

into

an

array,

SQLBindCol()

is

also

used

to

assign

storage

for

application

array

variables.

By

default,

the

binding

of

rows

is

in

column-wise

fashion:

this

is

similar

to

using

SQLBindParameter()

to

bind

arrays

of

input

parameter

values.

Figure

6

on

page

86

is

a

logical

view

of

column-wise

binding.

Chapter

6.

Array

input

and

output

85

The

application

can

also

do

row-wise

binding

which

associates

an

entire

row

of

the

result

set

with

a

structure.

In

this

case

the

rowset

is

retrieved

into

an

array

of

structures,

each

of

which

holds

the

data

in

one

row

and

the

associated

length

fields.

Figure

7

gives

a

pictorial

view

of

row-wise

binding.

Related

tasks:

v

“Retrieving

array

data

in

CLI

applications

using

column-wise

binding”

on

page

87

v

“Retrieving

array

data

in

CLI

applications

using

row-wise

binding”

on

page

88

v

“Changing

column

bindings

in

a

CLI

application

with

column

binding

offsets”

on

page

89

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

Result Set

Fetch Scroll, Column-Wise Binding

Column:
A
B
C

Data Type:
INTEGER
CHAR(3)

CHAR(10)

Column A

SQLCHAR B[n][4]
SQLINTEGER Lb[n]

SQLCHAR C[n][11]
SQLINTEGER Lc[n]

SQLINTEGER A[n]
SQLINTEGER La[n]

Column B Column C
Data Data DataLength Length Length

AbcdeXYZ10

10 4 3 5XYZ Abcde

}1

2

3

...

A CB

n

...

1

2

3

...

n

... ...

1

2

3

...

n

... ...

1

2

3

...

n

... ...

Figure

6.

Column-wise

binding

Result Set
Fetch Scroll, Row-Wise Binding

Column:
A
B
C

Data Type:
INTEGER
CHAR(3)

CHAR(10)

Column A

SQLCHAR B[4];SQLINTEGER Lb;
SQLCHAR C[11];

} buffer[n];
SQLINTEGER Lc;

SQLINTEGER A;struct { SQLINTEGER La;

Column B Column C

AbcdeXYZ10

104 3 5XYZ Abcde

}
1

2

3

...

n

1

2

3

...

n

A CB

...

......

Figure

7.

Row-wise

binding

86

CLI

Guide

and

Reference,

Volume

1

Retrieving

array

data

in

CLI

applications

using

column-wise

binding

When

retrieving

data,

you

may

want

to

retrieve

more

than

one

row

at

a

time

and

store

the

data

in

an

array.

Instead

of

fetching

and

copying

each

row

of

data

into

an

array,

or

binding

to

new

storage

areas,

you

can

retrieve

multiple

rows

of

data

at

once

using

column-wise

binding.

Column-wise

binding

is

the

default

row-binding

method

whereby

each

data

value

and

its

length

is

stored

in

an

array.

Prerequisites:

Before

using

column-wise

binding

to

retrieve

data

into

arrays,

ensure

you

have

initialized

your

CLI

application.

Procedure:

To

retrieve

data

using

column-wise

binding:

1.

Allocate

an

array

of

the

appropriate

data

type

for

each

column

data

value.

This

array

will

hold

the

retrieved

data

value.

2.

Allocate

an

array

of

SQLINTEGER

for

each

column.

Each

array

will

store

the

length

of

each

column’s

data

value.

3.

Specify

that

column-wise

array

retrieval

will

be

used

by

setting

the

SQL_ATTR_ROW_BIND_TYPE

statement

attribute

to

SQL_BIND_BY_COLUMN

using

SQLSetStmtAttr().

4.

Specify

the

number

of

rows

that

will

be

retrieved

by

setting

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

using

SQLSetStmtAttr().

When

the

value

of

the

SQL_ATTR_ROW_ARRAY_SIZE

attribute

is

greater

than

1,

DB2

CLI

treats

the

deferred

output

data

pointer

and

length

pointer

as

pointers

to

arrays

of

data

and

length

rather

than

to

one

single

element

of

data

and

length

of

a

result

set

column.

5.

Prepare

and

execute

the

SQL

statement

used

to

retrieve

the

data.

6.

Bind

each

array

to

its

column

by

calling

SQLBindCol()

for

each

column.

7.

Retrieve

the

data

by

calling

SQLFetch()

or

SQLFetchScroll().

When

returning

data,

DB2

CLI

uses

the

maximum

buffer

size

argument

(BufferLength)

of

SQLBindCol()

to

determine

where

to

store

successive

rows

of

data

in

the

array.

The

number

of

bytes

available

for

return

for

each

element

is

stored

in

the

deferred

length

array.

If

the

number

of

rows

in

the

result

set

is

greater

than

the

SQL_ATTR_ROW_ARRAY_SIZE

attribute

value,

multiple

calls

to

SQLFetchScroll()

are

required

to

retrieve

all

the

rows.

Related

concepts:

v

“Result

set

retrieval

into

arrays

in

CLI

applications”

on

page

85

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Retrieving

array

data

in

CLI

applications

using

row-wise

binding”

on

page

88

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

6.

Array

input

and

output

87

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

Retrieving

array

data

in

CLI

applications

using

row-wise

binding

When

retrieving

data,

you

may

want

to

retrieve

more

than

one

row

at

a

time

and

store

the

data

in

an

array.

Instead

of

fetching

and

copying

each

row

of

data

into

an

array,

or

binding

to

new

storage

areas,

you

can

retrieve

multiple

rows

of

data

using

row-wise

binding.

Row-wise

binding

associates

an

entire

row

of

the

result

set

with

a

structure.

The

rowset

is

retrieved

into

an

array

of

structures,

each

of

which

holds

the

data

in

one

row

and

the

associated

length

fields.

Prerequisites:

Before

using

row-wise

binding

to

retrieve

data

into

arrays,

ensure

you

have

initialized

your

CLI

application.

Procedure:

To

retrieve

data

using

row-wise

binding:

1.

Allocate

an

array

of

structures

of

size

equal

to

the

number

of

rows

to

be

retrieved,

where

each

element

of

the

structure

is

composed

of

each

row’s

data

value

and

each

data

value’s

length.

For

example,

if

each

row

of

the

result

set

consisted

of

Column

A

of

type

INTEGER,

Column

B

of

type

CHAR(3),

and

Column

C

of

type

CHAR(10),

then

you

would

allocate

the

following

structure,

where

n

represents

the

number

of

rows

in

the

result

set:

struct

{

SQLINTEGER

La;

SQLINTEGER

A;

SQLINTEGER

Lb;

SQLCHAR

B[4];

SQLINTEGER

Lc;

SQLCHAR

C[11];

}

buffer[n];

2.

Specify

that

row-wise

array

retrieval

will

be

used

by

setting

the

SQL_ATTR_ROW_BIND_TYPE

statement

attribute,

using

SQLSetStmtAttr()

to

the

size

of

the

structure

to

which

the

result

columns

will

be

bound.

3.

Specify

the

number

of

rows

that

will

be

retrieved

by

setting

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

using

SQLSetStmtAttr().

4.

Prepare

and

execute

the

SQL

statement

used

to

retrieve

the

data.

5.

Bind

each

structure

to

the

row

by

calling

SQLBindCol()

for

each

column

of

the

row.

DB2

CLI

treats

the

deferred

output

data

pointer

of

SQLBindCol()

as

the

address

of

the

data

field

for

the

column

in

the

first

element

of

the

array

of

structures.

The

deferred

output

length

pointer

is

treated

as

the

address

of

the

associated

length

field

of

the

column.

6.

Retrieve

the

data

by

calling

SQLFetchScroll().

88

CLI

Guide

and

Reference,

Volume

1

When

returning

data,

DB2

CLI

uses

the

structure

size

provided

with

the

SQL_ATTR_ROW_BIND_TYPE

statement

attribute

to

determine

where

to

store

successive

rows

in

the

array

of

structures.

Related

concepts:

v

“Result

set

retrieval

into

arrays

in

CLI

applications”

on

page

85

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Retrieving

array

data

in

CLI

applications

using

column-wise

binding”

on

page

87

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“tbread.c

--

How

to

read

data

from

tables”

Changing

column

bindings

in

a

CLI

application

with

column

binding

offsets

When

an

application

needs

to

change

bindings

(for

a

subsequent

fetch,

for

example)

it

can

call

SQLBindCol()

a

second

time.

This

will

change

the

buffer

address

and

length/indicator

pointer

used.

Instead

of

multiple

calls

to

SQLBindCol(),

DB2

CLI

supports

column

binding

offsets.

Rather

than

re-binding

each

time,

an

offset

can

be

used

to

specify

new

buffer

and

length/indicator

addresses

which

will

be

used

in

a

subsequent

call

to

SQLFetch()

or

SQLFetchScroll().

Prerequisites:

Before

using

column

binding

offsets

to

change

result

set

bindings,

ensure

you

have

initialized

your

CLI

application.

Restrictions:

This

method

can

only

be

used

with

row-wise

binding,

but

will

work

whether

the

application

retrieves

a

single

row

or

multiple

rows

at

a

time.

Procedure:

To

change

result

set

bindings

using

column

binding

offsets:

1.

Call

SQLBindCol()

as

usual

to

bind

the

result

set.

The

first

set

of

bound

data

buffer

and

length/indicator

buffer

addresses

will

act

as

a

template.

The

application

will

then

move

this

template

to

different

memory

locations

using

the

offset.

Chapter

6.

Array

input

and

output

89

2.

Call

SQLFetch()

or

SQLFetchScroll()

as

usual

to

fetch

the

data.

The

data

returned

will

be

stored

in

the

locations

bound

above.

3.

Set

up

a

variable

to

hold

the

memory

offset

value.

The

statement

attribute

SQL_ATTR_ROW_BIND_OFFSET_PTR

points

to

the

address

of

an

SQLINTEGER

buffer

where

the

offset

will

be

stored.

This

address

must

remain

valid

until

the

cursor

is

closed.

This

extra

level

of

indirection

enables

the

use

of

a

single

memory

variable

to

store

the

offset

for

multiple

sets

of

bindings

on

different

statement

handles.

The

application

need

only

set

this

one

memory

variable

and

all

of

the

offsets

will

be

changed.

4.

Store

an

offset

value

(number

of

bytes)

in

the

memory

location

pointed

to

by

the

statement

attribute

set

in

the

previous

step.

The

offset

value

is

always

added

to

the

memory

location

of

the

originally

bound

values.

This

sum

must

point

to

a

valid

memory

address

with

sufficient

space

to

hold

the

next

set

of

data.

5.

Call

SQLFetch()

or

SQLFetchScroll()

again.

CLI

will

add

the

offset

specified

above

to

the

locations

used

in

the

original

call

to

SQLBindCol().

This

will

determine

where

in

memory

to

store

the

results.

6.

Repeat

steps

4

and

5

above

as

required.

Related

concepts:

v

“Column

binding

in

CLI

applications”

on

page

83

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Retrieving

array

data

in

CLI

applications

using

row-wise

binding”

on

page

88

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

90

CLI

Guide

and

Reference,

Volume

1

Chapter

7.

Working

with

large

amounts

of

data

Specifying

parameter

values

at

execute

time

for

long

data

manipulation

in

CLI

applications

.

.

.

.

. 91

Data

retrieval

in

pieces

in

CLI

applications

.

.

.

. 93

Large

object

usage

in

CLI

applications

.

.

.

.

. 95

LOB

locators

in

CLI

applications

.

.

.

.

.

.

. 97

Fetching

LOB

data

with

LOB

locators

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Direct

file

input

and

output

for

LOB

handling

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

. 100

LOB

usage

in

ODBC

applications

.

.

.

.

.

.

. 101

Bulk

data

manipulation

.

.

.

.

.

.

.

.

.

. 102

Long

data

for

bulk

inserts

and

updates

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Retrieving

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

.

.

. 104

Inserting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

.

.

. 105

Updating

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

.

.

. 106

Deleting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

.

.

. 108

Importing

data

with

the

CLI

LOAD

utility

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Specifying

parameter

values

at

execute

time

for

long

data

manipulation

in

CLI

applications

When

manipulating

long

data,

it

may

not

be

feasible

for

the

application

to

load

the

entire

parameter

data

value

into

storage

at

the

time

the

statement

is

executed,

or

when

the

data

is

fetched

from

the

database.

A

method

has

been

provided

to

allow

the

application

to

handle

the

data

in

a

piecemeal

fashion.

The

technique

of

sending

long

data

in

pieces

is

called

specifying

parameter

values

at

execute

time.

It

can

also

be

used

to

specify

values

for

fixed

size

non-character

data

types

such

as

integers.

Prerequisites:

Before

specifying

parameter

values

at

execute

time,

ensure

you

have

initialized

your

CLI

application.

Restrictions:

While

the

data-at-execution

flow

is

in

progress,

the

only

DB2

CLI

functions

the

application

can

call

are:

v

SQLParamData()

and

SQLPutData()

as

given

in

the

sequence

below.

v

The

SQLCancel()

function

which

is

used

to

cancel

the

flow

and

force

an

exit

from

the

loops

described

below

without

executing

the

SQL

statement.

v

The

SQLGetDiagRec()

function.

Procedure:

A

data-at-execute

parameter

is

a

bound

parameter

for

which

a

value

is

prompted

at

execution

time

instead

of

stored

in

memory

before

SQLExecute()

or

SQLExecDirect()

is

called.

To

indicate

such

a

parameter

on

an

SQLBindParameter()

call:

1.

Set

the

input

data

length

pointer

to

point

to

a

variable

that,

at

execute

time,

will

contain

the

value

SQL_DATA_AT_EXEC.

For

example:

/*

dtlob.c

*/

/*

...

*/

SQLINTEGER

blobInd

;

/*

...

*/

blobInd

=

SQL_DATA_AT_EXEC;

©

Copyright

IBM

Corp.

1993

-

2004

91

sqlrc

=

SQLBindParameter(hstmt,

3,

SQL_PARAM_INPUT,

SQL_C_BINARY,

SQL_BLOB,

BUFSIZ,

0,

(SQLPOINTER)inputParam,

BUFSIZ,

&blobInd);

2.

If

there

is

more

than

one

data-at-execute

parameter,

set

each

input

data

pointer

argument

to

some

value

that

it

will

recognize

as

uniquely

identifying

the

field

in

question.

3.

If

there

are

any

data-at-execute

parameters

when

the

application

calls

SQLExecDirect()

or

SQLExecute(),

the

call

returns

with

SQL_NEED_DATA

to

prompt

the

application

to

supply

values

for

these

parameters.

The

application

responds

with

the

subsequent

steps.

4.

Call

SQLParamData()

to

conceptually

advance

to

the

first

such

parameter.

SQLParamData()

returns

SQL_NEED_DATA

and

provides

the

contents

of

the

input

data

pointer

argument

specified

on

the

associated

SQLBindParameter()

call

to

help

identify

the

information

required.

5.

Pass

the

actual

data

for

the

parameter

by

calling

SQLPutData().

Long

data

can

be

sent

in

pieces

by

calling

SQLPutData()

repeatedly.

6.

Call

SQLParamData()

again

after

providing

the

entire

data

for

this

data-at-execute

parameter.

7.

If

more

data-at-execute

parameters

exist,

SQLParamData()

again

returns

SQL_NEED_DATA

and

the

application

repeats

steps

4

and

5

above.

For

example:

/*

dtlob.c

*/

/*

...

*/

else

{

sqlrc

=

SQLParamData(

hstmt,

(SQLPOINTER

*)

&valuePtr);

/*

...

*/

while

(

sqlrc

==

SQL_NEED_DATA)

{

/*

if

more

than

1

parms

used

DATA_AT_EXEC

then

valuePtr

would

have

to

be

checked

to

determine

which

param

needed

data

*/

while

(

feof(

pFile

)

==

0

)

{

n

=

fread(

buffer,

sizeof(char),

BUFSIZ,

pFile);

sqlrc

=

SQLPutData(hstmt,

buffer,

n);

STMT_HANDLE_CHECK(

hstmt,

sqlrc);

fileSize

=

fileSize

+

n;

if

(

fileSize

>

102400u)

{

/*

BLOB

column

defined

as

100K

MAX

*/

/*

...

*/

break;

}

}

/*

...

*/

sqlrc

=

SQLParamData(

hstmt,

(SQLPOINTER

*)

&valuePtr);

/*

...

*/

}

}

When

all

data-at-execute

parameters

have

been

assigned

values,

SQLParamData()

completes

execution

of

the

SQL

statement

and

returns

a

return

value

and

diagnostics

as

the

original

SQLExecDirect()

or

SQLExecute()

would

have

produced.

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

Related

reference:

92

CLI

Guide

and

Reference,

Volume

1

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLParamData

function

(CLI)

-

Get

next

parameter

for

which

a

data

value

is

needed”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

Data

retrieval

in

pieces

in

CLI

applications

Typically,

an

application

may

choose

to

allocate

the

maximum

memory

the

column

value

could

occupy

and

bind

it

via

SQLBindCol(),

based

on

information

about

a

column

in

the

result

set

(obtained

via

a

call

to

SQLDescribeCol(),

for

example,

or

prior

knowledge).

However,

in

the

case

of

character

and

binary

data,

the

column

can

be

arbitrarily

long.

If

the

length

of

the

column

value

exceeds

the

length

of

the

buffer

the

application

can

allocate

or

afford

to

allocate,

a

feature

of

SQLGetData()

lets

the

application

use

repeated

calls

to

obtain

in

sequence

the

value

of

a

single

column

in

more

manageable

pieces.

Basically,

as

shown

in

the

left

branch

of

the

flow

diagrammed

in

Figure

8

on

page

94,

a

call

to

SQLGetData()

returns

SQL_SUCCESS_WITH_INFO

(with

SQLSTATE

01004)

to

indicate

more

data

exists

for

this

column.

SQLGetData()

is

called

repeatedly

to

get

the

remaining

pieces

of

data

until

it

returns

SQL_SUCCESS,

signifying

that

the

entire

data

has

been

retrieved

for

this

column.

For

example:

/*

dtlob.c

*/

/*

...

*/

sqlrc

=

SQLGetData(hstmt,

1,

SQL_C_BINARY,

(SQLPOINTER)

buffer,

BUFSIZ,

&bufInd);

/*

...

*/

while(

sqlrc

==

SQL_SUCCESS_WITH_INFO

||

sqlrc

==

SQL_SUCCESS

)

{

if

(

bufInd

>

BUFSIZ)

/*

full

buffer

*/

{

fwrite(

buffer,

sizeof(char),

BUFSIZ,

pFile);

}

else

/*

partial

buffer

on

last

GetData

*/

{

fwrite(

buffer,

sizeof(char),

bufInd,

pFile);

}

sqlrc

=

SQLGetData(

hstmt,

1,

SQL_C_BINARY,

(SQLPOINTER)buffer,

BUFSIZ,

&bufInd);

/*

...

*/

}

The

function

SQLGetSubString()

can

also

be

used

to

retrieve

a

specific

portion

of

a

large

object

value.

For

other

alternative

methods

to

retrieve

long

data,

refer

to

the

documentation

on

large

object

usage.

Chapter

7.

Working

with

large

amounts

of

data

93

Related

concepts:

v

“Large

object

usage

in

CLI

applications”

on

page

95

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetSubString

function

(CLI)

-

Retrieve

portion

of

a

string

value”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

SQLParamData

SQLParamData

SQLBindParameter

SQLAllocHandle
(Statement)

SQLPrepare

or
SQLExecDirect

SQLPrepare &

or
SQLExecDirect

SQLExecute
SQLExecute

SQLPutDataSQLGetData

SQLFreeHandle
(Statement)

SQLFetch

SQL_DATA_AT_EXEC

SQL_NEED_DATA?

SQL_NEED_DATA?

more data?

Next Param

SQL_SUCCESS_WITH_INFO ?

SQL_SUCCESS

If statement is not executed again.

Figure

8.

Piecewise

input

and

retrieval

94

CLI

Guide

and

Reference,

Volume

1

Large

object

usage

in

CLI

applications

The

term

large

object

and

the

generic

acronym

LOB

are

used

to

refer

to

any

type

of

large

object.

There

are

three

LOB

data

types:

Binary

Large

Object

(BLOB),

Character

Large

Object

(CLOB),

and

Double-Byte

Character

Large

Object

(DBCLOB).

These

LOB

data

types

are

represented

symbolically

as

SQL_BLOB,

SQL_CLOB,

SQL_DBCLOB

respectively.

The

LOB

symbolic

constants

can

be

specified

or

returned

on

any

of

the

DB2

CLI

functions

that

take

in

or

return

an

SQL

data

type

argument

(such

as

SQLBindParameter(),

SQLDescribeCol()).

Since

LOB

values

can

be

very

large,

transfer

of

data

using

the

piecewise

sequential

method

provided

by

SQLGetData()

and

SQLPutData()

can

be

quite

time

consuming.

Applications

dealing

with

such

data

will

often

do

so

in

random

access

segments

using

LOB

locators

or

via

direct

file

input

and

output.

To

determine

if

any

of

the

LOB

functions

are

supported

for

the

current

server,

call

SQLGetFunctions()

with

the

appropriate

function

name

argument

value,

or

SQLGetTypeInfo()

with

the

particular

LOB

data

type.

Figure

9

on

page

96

shows

the

retrieval

of

a

character

LOB

(CLOB).

v

The

left

hand

side

shows

a

locator

being

used

to

extract

a

character

string

from

the

CLOB,

without

having

to

transfer

the

entire

CLOB

to

an

application

buffer.

A

LOB

locator

is

fetched,

which

is

then

used

as

an

input

parameter

to

search

the

CLOB

for

a

substring,

the

substring

is

then

retrieved.

v

The

right

hand

side

shows

how

the

CLOB

can

be

fetched

directly

into

a

file.

The

file

is

first

bound

to

the

CLOB

column,

and

when

the

row

is

fetched,

the

entire

CLOB

value

is

transferred

directly

to

a

file.

Chapter

7.

Working

with

large

amounts

of

data

95

Related

concepts:

v

“Data

retrieval

in

pieces

in

CLI

applications”

on

page

93

v

“LOB

locators

in

CLI

applications”

on

page

97

Related

reference:

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetFunctions

function

(CLI)

-

Get

functions”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetTypeInfo

function

(CLI)

-

Get

data

type

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter”

in

the

CLI

Guide

and

Reference,

Volume

2

SQLFreeHandle
(Statement)

If statement is not executed again.

SQLBindCol SQLBindFileToCol

SQLExecuteSQLExecute

CLOB

CLOB

SQLFetch SQLFetch

SQLPrepare

SQLAllocHandle
(Statement)

SQLGetPosition

SQLGetSubString

SQLExecDirect
"FREE LOCATOR"

SQLGetLength

locator

locator

locator , buffer buffer

locator

locator

"string",

Figure

9.

Fetching

CLOB

data

96

CLI

Guide

and

Reference,

Volume

1

LOB

locators

in

CLI

applications

There

are

many

cases

where

an

application

needs

to

select

a

large

object

value

and

operate

on

pieces

of

it,

but

does

not

need

or

want

the

entire

value

to

be

transferred

from

the

database

server

into

application

memory.

In

these

cases,

the

application

can

reference

an

individual

LOB

value

via

a

large

object

locator

(LOB

locator).

A

LOB

locator

is

a

token

value,

defined

as

type

SQLINTEGER,

that

allows

for

efficient

random

access

of

a

large

object.

When

a

LOB

locator

is

used,

the

server

performs

the

query

and

instead

of

placing

the

value

of

the

LOB

column

in

the

result

set,

it

updates

the

LOB

locator

with

an

integer

that

corresponds

to

the

value

of

the

LOB.

When

the

application

later

requests

the

result,

the

application

then

passes

the

locator

to

the

server

and

the

server

returns

the

LOB

result.

A

LOB

locator

is

not

stored

in

the

database.

It

refers

to

a

LOB

value

during

a

transaction,

and

does

not

persist

beyond

the

transaction

in

which

it

was

created.

It

is

a

simple

token

value

created

to

reference

a

single

large

object

value,

and

not

a

column

in

a

row.

There

is

no

operation

that

could

be

performed

on

a

locator

that

would

have

an

effect

on

the

original

LOB

value

stored

in

the

row.

Each

of

the

three

LOB

locator

types

has

its

own

C

data

type

(SQL_C_BLOB_LOCATOR,

SQL_C_CLOB_LOCATOR,

SQL_C_DBCLOB_LOCATOR).

These

types

are

used

to

enable

transfer

of

LOB

locator

values

to

and

from

the

database

server.

Locators

are

implicitly

allocated

by:

v

Fetching

a

bound

LOB

column

to

the

appropriate

C

locator

type.

v

Calling

SQLGetSubString()

and

specifying

that

the

substring

be

retrieved

as

a

locator.

v

Calling

SQLGetData()

on

an

unbound

LOB

column

and

specifying

the

appropriate

C

locator

type.

The

C

locator

type

must

match

the

LOB

column

type

or

an

error

will

occur.

LOB

locators

also

provide

an

efficient

method

of

moving

data

from

one

column

of

a

table

in

a

database

to

another

column

(of

the

same

or

different

table)

without

having

to

pull

the

data

first

into

application

memory

and

then

sending

it

back

to

the

server.

For

example,

the

following

INSERT

statement

inserts

a

LOB

value

that

is

a

concatenation

of

2

LOB

values

as

represented

by

their

locators:

INSERT

INTO

lobtable

values

(CAST

?

AS

CLOB(4k)

||

CAST

?

AS

CLOB(5k))

Differences

between

regular

data

types

and

LOB

locators:

LOB

locators

can

in

general

be

treated

as

any

other

data

type,

but

there

are

some

important

differences:

v

Locators

are

generated

at

the

server

when

a

row

is

fetched

and

a

LOB

locator

C

data

type

is

specified

on

SQLBindCol(),

or

when

SQLGetSubString()

is

called

to

define

a

locator

on

a

portion

of

another

LOB.

Only

the

locator

is

transferred

to

the

application.

v

The

value

of

the

locator

is

only

valid

within

the

current

transaction.

You

cannot

store

a

locator

value

and

use

it

beyond

the

current

transaction,

even

if

the

cursor

used

to

fetch

the

LOB

locator

has

the

WITH

HOLD

attribute.

v

A

locator

can

also

be

freed

before

the

end

of

the

transaction

with

the

FREE

LOCATOR

statement.

Chapter

7.

Working

with

large

amounts

of

data

97

v

Once

a

locator

is

received,

the

application

can

use

SQLGetSubString(),

to

either

receive

a

portion

of

the

LOB

value,

or

to

generate

another

locator

representing

the

sub-string.

The

locator

value

can

also

be

used

as

input

for

a

parameter

marker

(using

SQLBindParameter()).

A

LOB

locator

is

not

a

pointer

to

a

database

position,

but

rather

it

is

a

reference

to

a

LOB

value:

a

snapshot

of

that

LOB

value.

There

is

no

association

between

the

current

position

of

the

cursor

and

the

row

from

which

the

LOB

value

was

extracted.

This

means

that

even

after

the

cursor

has

moved

to

a

different

row,

the

LOB

locator

(and

thus

the

value

that

it

represents)

can

still

be

referenced.

v

SQLGetPosition()

and

SQLGetLength()

can

be

used

with

SQLGetSubString()

to

define

the

sub-string.

For

a

given

LOB

column

in

the

result

set,

the

binding

can

be

to

a:

v

storage

buffer

for

holding

the

entire

LOB

data

value,

v

LOB

locator,

or

v

LOB

file

reference

(using

SQLBindFileToCol()).

Related

concepts:

v

“Parameter

marker

binding

in

CLI

applications”

on

page

26

v

“Large

object

usage

in

CLI

applications”

on

page

95

Related

tasks:

v

“Fetching

LOB

data

with

LOB

locators

in

CLI

applications”

on

page

98

Related

reference:

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetLength

function

(CLI)

-

Retrieve

length

of

a

string

value”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetPosition

function

(CLI)

-

Return

starting

position

of

string”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetSubString

function

(CLI)

-

Retrieve

portion

of

a

string

value”

in

the

CLI

Guide

and

Reference,

Volume

2

Fetching

LOB

data

with

LOB

locators

in

CLI

applications

The

following

are

typical

steps

for

fetching

LOB

data

using

a

LOB

locator.

The

examples

shown

in

each

step

illustrate

how

using

a

locator

to

retrieve

CLOB

data

allows

a

character

string

to

be

extracted

from

the

CLOB,

without

having

to

transfer

the

entire

CLOB

to

an

application

buffer.

The

LOB

locator

is

fetched

and

then

used

as

an

input

parameter

to

search

the

CLOB

for

a

substring.

This

substring

is

then

retrieved.

Prerequisites:

Before

fetching

LOB

data

with

LOB

locators,

ensure

you

have

initialized

your

CLI

application.

Procedure:

98

CLI

Guide

and

Reference,

Volume

1

To

fetch

LOB

data

using

LOB

locators:

1.

Retrieve

a

LOB

locator

into

an

application

variable

using

the

SQLBindCol()

or

SQLGetData()

functions.

For

example:

SQLINTEGER

clobLoc

;

SQLINTEGER

pcbValue

;

/*

...

*/

sqlrc

=

SQLBindCol(

hstmtClobFetch,

1,

SQL_C_CLOB_LOCATOR,

&clobLoc,

0,

&pcbValue);

2.

Fetch

the

locator

using

SQLFetch():

sqlrc

=

SQLFetch(

hstmtClobFetch

);

3.

Call

SQLGetLength()

to

get

the

length

of

a

string

that

is

represented

by

a

LOB

locator.

For

example:

sqlrc

=

SQLGetLength(

hstmtLocUse,

SQL_C_CLOB_LOCATOR,

clobLoc,

&clobLen,

&ind

)

;

4.

Call

SQLGetPosition()

to

get

the

position

of

a

search

string

within

a

source

string

where

the

source

string

is

represented

by

a

LOB

locator.

The

search

string

can

also

be

represented

by

a

LOB

locator.

For

example:

sqlrc

=

SQLGetPosition(

hstmtLocUse,

SQL_C_CLOB_LOCATOR,

clobLoc,

0,

(

SQLCHAR

*

)

"Interests",

strlen(

"Interests"),

1,

&clobPiecePos,

&ind

)

;

5.

Call

SQLGetSubString()

to

retrieve

the

substring.

For

example:

sqlrc

=

SQLGetSubString(

hstmtLocUse,

SQL_C_CLOB_LOCATOR,

clobLoc,

clobPiecePos,

clobLen

-

clobPiecePos,

SQL_C_CHAR,

buffer,

clobLen

-

clobPiecePos

+

1,

&clobPieceLen,

&ind

)

;

6.

Free

the

locator.

All

LOB

locators

are

implicitly

freed

when

a

transaction

ends.

The

locator

can

be

explicitly

freed

before

the

end

of

a

transaction

by

executing

the

FREE

LOCATOR

statement.

Although

this

statement

cannot

be

prepared

dynamically,

DB2

CLI

will

accept

it

as

a

valid

statement

on

SQLPrepare()

and

SQLExecDirect().

The

application

uses

SQLBindParameter()

with

the

SQL

data

type

argument

set

to

the

appropriate

SQL

and

C

symbolic

data

types.

For

example,

sqlrc

=

SQLSetParam(

hstmtLocFree,

1,

SQL_C_CLOB_LOCATOR,

SQL_CLOB_LOCATOR,

0,

0,

&clobLoc,

NULL

)

;

/*

...

*/

sqlrc

=

SQLExecDirect(

hstmtLocFree,

stmtLocFree,

SQL_NTS

)

;

Related

concepts:

v

“LOB

locators

in

CLI

applications”

on

page

97

Chapter

7.

Working

with

large

amounts

of

data

99

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetch

function

(CLI)

-

Fetch

next

row”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetLength

function

(CLI)

-

Retrieve

length

of

a

string

value”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetPosition

function

(CLI)

-

Return

starting

position

of

string”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetSubString

function

(CLI)

-

Retrieve

portion

of

a

string

value”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“FREE

LOCATOR

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

Direct

file

input

and

output

for

LOB

handling

in

CLI

applications

As

an

alternative

to

using

LOB

locators,

if

an

application

requires

the

entire

LOB

column

value,

it

can

request

direct

file

input

and

output

for

LOBs.

Database

queries,

updates,

and

inserts

may

involve

transfer

of

single

LOB

column

values

into

and

from

files.

The

two

DB2

CLI

LOB

file

access

functions

are:

SQLBindFileToCol()

Binds

(associates)

a

LOB

column

in

a

result

set

with

a

file

name.

Example:

SQLUINTEGER

fileOption

=

SQL_FILE_OVERWRITE;

SQLINTEGER

fileInd

=

0;

SQLSMALLINT

fileNameLength

=

14;

/*

...

*/

SQLCHAR

fileName[14]

=

"";

/*

...

*/

rc

=

SQLBindFileToCol(hstmt,

1,

fileName,

&fileNameLength,

&fileOption,

14,

NULL,

&fileInd);

SQLBindFileToParam()

Binds

(associates)

a

LOB

parameter

marker

with

a

file

name.

Example:

SQLUINTEGER

fileOption

=

SQL_FILE_OVERWRITE;

SQLINTEGER

fileInd

=

0;

SQLSMALLINT

fileNameLength

=

14;

/*

...

*/

SQLCHAR

fileName[14]

=

"";

/*

...

*/

100

CLI

Guide

and

Reference,

Volume

1

rc

=

SQLBindFileToParam(hstmt,

3,

SQL_BLOB,

fileName,

&fileNameLength,

&fileOption,

14,

&fileInd);

The

file

name

is

either

the

complete

path

name

of

the

file

(which

is

recommended),

or

a

relative

file

name.

If

a

relative

file

name

is

provided,

it

is

appended

to

the

current

path

(of

the

operating

environment)

of

the

client

process.

On

execute

or

fetch,

data

transfer

to

and

from

the

file

would

take

place,

in

a

similar

way

to

that

of

bound

application

variables.

A

file

options

argument

associated

with

these

2

functions

indicates

how

the

files

are

to

be

handled

at

time

of

transfer.

Use

of

SQLBindFileToParam()

is

more

efficient

than

the

sequential

input

of

data

segments

using

SQLPutData(),

since

SQLPutData()

essentially

puts

the

input

segments

into

a

temporary

file

and

then

uses

the

SQLBindFileToParam()

technique

to

send

the

LOB

data

value

to

the

server.

Applications

should

take

advantage

of

SQLBindFileToParam()

instead

of

using

SQLPutData().

Note:

DB2

CLI

uses

a

temporary

file

when

inserting

LOB

data

in

pieces.

If

the

data

originates

in

a

file,

the

use

of

a

temporary

file

can

be

avoided

by

using

SQLBindFileToParam().

Call

SQLGetFunctions()

to

query

if

support

is

provided

for

SQLBindFileToParam(),

since

SQLBindFileToParam()

is

not

supported

against

servers

that

do

not

support

LOBs.

Related

concepts:

v

“Large

object

usage

in

CLI

applications”

on

page

95

v

“LOB

locators

in

CLI

applications”

on

page

97

Related

reference:

v

“SQLBindFileToCol

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindFileToParam

function

(CLI)

-

Bind

LOB

file

reference

to

LOB

parameter”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetFunctions

function

(CLI)

-

Get

functions”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dtlob.c

--

How

to

read

and

write

LOB

data”

LOB

usage

in

ODBC

applications

Existing

ODBC-compliant

applications

use

SQL_LONGVARCHAR

and

SQL_LONGVARBINARY

instead

of

the

DB2

BLOB

and

CLOB

data

types.

You

can

still

access

LOB

columns

from

these

ODBC-compliant

applications

by

setting

the

LongDataCompat

configuration

keyword

in

the

initialization

file,

or

setting

the

SQL_ATTR_LONGDATA_COMPAT

connection

attribute

using

SQLSetConnectAttr().

Once

this

is

done,

DB2

CLI

will

map

the

ODBC

long

data

types

to

the

DB2

LOB

data

types.

The

LOBMaxColumnSize

configuration

keyword

allows

you

to

override

the

default

COLUMN_SIZE

for

LOB

data

types.

When

this

mapping

is

in

effect:

Chapter

7.

Working

with

large

amounts

of

data

101

v

SQLGetTypeInfo()

will

return

CLOB,

BLOB

and

DBCLOB

characteristics

when

called

with

SQL_LONGVARCHAR,

SQL_LONGVARBINARY

or

SQL_LONGVARGRAPHIC.

v

The

following

functions

will

return

SQL_LONGVARCHAR,

SQL_LONGVARBINARY

or

SQL_LONGVARGRAPHIC

when

describing

CLOB,

BLOB

or

DBCLOB

data

types:

–

SQLColumns()

–

SQLSpecialColumns()

–

SQLDescribeCol()

–

SQLColAttribute()

–

SQLProcedureColumns()

v

LONG

VARCHAR

and

LONG

VARCHAR

FOR

BIT

DATA

will

continue

to

be

described

as

SQL_LONGVARCHAR

and

SQL_LONGVARBINARY.

The

default

setting

for

SQL_ATTR_LONGDATA_COMPAT

is

SQL_LD_COMPAT_NO;

that

is,

mapping

is

not

in

effect.

With

mapping

in

effect,

ODBC

applications

can

retrieve

and

input

LOB

data

by

using

the

SQLGetData(),

SQLPutData()

and

related

functions.

Related

concepts:

v

“Large

object

usage

in

CLI

applications”

on

page

95

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“SQLGetData

function

(CLI)

-

Get

data

from

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“LOBMaxColumnSize

CLI/ODBC

configuration

keyword”

on

page

294

v

“LongDataCompat

CLI/ODBC

configuration

keyword”

on

page

296

Bulk

data

manipulation

Long

data

for

bulk

inserts

and

updates

in

CLI

applications

Long

data

can

be

provided

for

bulk

inserts

and

updates

performed

by

calls

to

SQLBulkOperations().

1.

When

an

application

binds

the

data

using

SQLBindCol(),

the

application

places

an

application-defined

value,

such

as

the

column

number,

in

the

*TargetValuePtr

buffer

for

data-at-execution

columns.

The

value

can

be

used

later

to

identify

the

column.

The

application

places

the

result

of

the

SQL_LEN_DATA_AT_EXEC(length)

macro

in

the

*StrLen_or_IndPtr

buffer.

If

the

SQL

data

type

of

the

column

is

SQL_LONGVARBINARY,

SQL_LONGVARCHAR,

or

a

long,

data

source-specific

data

type

and

CLI

returns

″Y″

for

the

SQL_NEED_LONG_DATA_LEN

information

type

in

SQLGetInfo(),

length

is

the

number

of

bytes

of

data

to

be

sent

for

the

parameter;

otherwise,

it

must

be

a

non-negative

value

and

is

ignored.

102

CLI

Guide

and

Reference,

Volume

1

2.

When

SQLBulkOperations()

is

called,

if

there

are

data-at-execution

columns,

the

function

returns

SQL_NEED_DATA

and

proceeds

to

the

next

event

in

the

sequence,

described

in

the

next

item.

(If

there

are

no

data-at-execution

columns,

the

process

is

complete.)

3.

The

application

calls

SQLParamData()

to

retrieve

the

address

of

the

*TargetValuePtr

buffer

for

the

first

data-at-execution

column

to

be

processed.

SQLParamData()

returns

SQL_NEED_DATA.

The

application

retrieves

the

application-defined

value

from

the

*TargetValuePtr

buffer.

Note:

Although

data-at-execution

parameters

are

similar

to

data-at-execution

columns,

the

value

returned

by

SQLParamData()

is

different

for

each.

Data-at-execution

columns

are

columns

in

a

rowset

for

which

data

will

be

sent

with

SQLPutData()

when

a

row

is

updated

or

inserted

with

SQLBulkOperations().

They

are

bound

with

SQLBindCol().

The

value

returned

by

SQLParamData()

is

the

address

of

the

row

in

the

*TargetValuePtr

buffer

that

is

being

processed.

4.

The

application

calls

SQLPutData()

one

or

more

times

to

send

data

for

the

column.

More

than

one

call

is

needed

if

all

the

data

value

cannot

be

returned

in

the

*TargetValuePtr

buffer

specified

in

SQLPutData();

note

that

multiple

calls

to

SQLPutData()

for

the

same

column

are

allowed

only

when

sending

character

C

data

to

a

column

with

a

character,

binary,

or

data

source-specific

data

type

or

when

sending

binary

C

data

to

a

column

with

a

character,

binary,

or

data

source-specific

data

type.

5.

The

application

calls

SQLParamData()

again

to

signal

that

all

data

has

been

sent

for

the

column.

v

If

there

are

more

data-at-execution

columns,

SQLParamData()

returns

SQL_NEED_DATA

and

the

address

of

the

TargetValuePtr

buffer

for

the

next

data-at-execution

column

to

be

processed.

The

application

repeats

steps

4

and

5

above.

v

If

there

are

no

more

data-at-execution

columns,

the

process

is

complete.

If

the

statement

was

executed

successfully,

SQLParamData()

returns

SQL_SUCCESS

or

SQL_SUCCESS_WITH_INFO;

if

the

execution

failed,

it

returns

SQL_ERROR.

At

this

point,

SQLParamData()

can

return

any

SQLSTATE

that

can

be

returned

by

SQLBulkOperations().

If

the

operation

is

canceled,

or

an

error

occurs

in

SQLParamData()

or

SQLPutData(),

after

SQLBulkOperations()

returns

SQL_NEED_DATA,

and

before

data

is

sent

for

all

data-at-execution

columns,

the

application

can

call

only

SQLCancel(),

SQLGetDiagField(),

SQLGetDiagRec(),

SQLGetFunctions(),

SQLParamData(),

or

SQLPutData()

for

the

statement

or

the

connection

associated

with

the

statement.

If

it

calls

any

other

function

for

the

statement

or

the

connection

associated

with

the

statement,

the

function

returns

SQL_ERROR

and

SQLSTATE

HY010

(Function

sequence

error).

If

the

application

calls

SQLCancel()

while

CLI

still

needs

data

for

data-at-execution

columns,

CLI

cancels

the

operation.

The

application

can

then

call

SQLBulkOperations()

again;

canceling

does

not

affect

the

cursor

state

or

the

current

cursor

position.

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“SQLGetInfo

function

(CLI)

-

Get

general

information”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

7.

Working

with

large

amounts

of

data

103

v

“SQLParamData

function

(CLI)

-

Get

next

parameter

for

which

a

data

value

is

needed”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

Retrieving

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

You

can

retrieve,

or

fetch,

bulk

data

using

bookmarks

and

the

DB2

CLI

SQLBulkOperations()

function.

Prerequisites:

Before

fetching

bulk

data

using

bookmarks

and

SQLBulkOperations(),

ensure

you

have

initialized

your

CLI

application.

Restrictions:

Bookmarks

in

DB2

CLI

do

not

persist

across

cursor

close

operations.

This

means

that

an

application

cannot

use

bookmarks

that

it

has

stored

from

a

previous

cursor.

Instead,

it

has

to

call

SQLFetch()

or

SQLFetchScroll()

to

retrieve

the

bookmarks

before

updating

with

bookmarks.

Procedure:

To

perform

bulk

fetches

using

bookmarks

with

SQLBulkOperations():

1.

Set

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

to

SQL_UB_VARIABLE

using

SQLSetStmtAttr().

2.

Execute

a

query

that

returns

a

result

set.

3.

Set

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

to

the

number

of

rows

you

want

to

fetch

by

calling

SQLSetStmtAttr().

4.

Call

SQLBindCol()

to

bind

the

data

you

want

to

fetch.

The

data

is

bound

to

an

array

with

a

size

equal

to

the

value

of

SQL_ATTR_ROW_ARRAY_SIZE.

5.

Call

SQLBindCol()

to

bind

column

0,

the

bookmark

column.

6.

Copy

the

bookmarks

for

rows

you

want

to

fetch

into

the

array

bound

to

column

0.

Note:

The

size

of

the

array

pointed

to

by

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

should

either

be

equal

to

SQL_ATTR_ROW_ARRAY_SIZE,

or

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

should

be

a

null

pointer.

7.

Fetch

the

data

by

calling

SQLBulkOperations()

with

an

Operation

argument

of

SQL_FETCH_BY_BOOKMARK.

If

the

application

has

set

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute,

then

it

can

inspect

this

array

to

see

the

result

of

the

operation.

Related

concepts:

v

“Bookmarks

in

CLI

applications”

on

page

76

104

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Inserting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

105

v

“Deleting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

108

v

“Updating

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

106

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Inserting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

You

can

insert

data

in

bulk

with

bookmarks

using

SQLBulkOperations().

Prerequisites:

Before

inserting

bulk

data

with

SQLBulkOperations(),

ensure

you

have

initialized

your

CLI

application.

Restrictions:

Bookmarks

in

DB2

CLI

do

not

persist

across

cursor

close

operations.

This

means

that

an

application

cannot

use

bookmarks

that

it

has

stored

from

a

previous

cursor.

Instead,

it

has

to

call

SQLFetch()

or

SQLFetchScroll()

to

retrieve

the

bookmarks

before

updating

with

bookmarks.

Procedure:

To

perform

a

bulk

data

insert

using

SQLBulkOperations():

1.

Set

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

to

SQL_UB_VARIABLE

using

SQLSetStmtAttr().

2.

Execute

a

query

that

returns

a

result

set.

3.

Set

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

to

the

number

of

rows

you

want

to

insert

using

SQLSetStmtAttr().

4.

Call

SQLBindCol()

to

bind

the

data

you

want

to

insert.

The

data

is

bound

to

an

array

with

a

size

equal

to

the

value

of

SQL_ATTR_ROW_ARRAY_SIZE,

set

in

the

previous

step.

Note:

The

size

of

the

array

pointed

to

by

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

should

either

be

equal

to

SQL_ATTR_ROW_ARRAY_SIZE

or

SQL_ATTR_ROW_STATUS_PTR

should

be

a

null

pointer.

Chapter

7.

Working

with

large

amounts

of

data

105

5.

Insert

the

data

by

calling

SQLBulkOperations()

with

SQL_ADD

as

the

Operation

argument.

CLI

will

update

the

bound

column

0

buffers

with

the

bookmark

values

for

the

newly

inserted

rows.

For

this

to

occur,

the

application

must

have

set

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

to

SQL_UB_VARIABLE

before

executing

the

statement.

Note:

If

SQLBulkOperations()

is

called

with

an

Operation

argument

of

SQL_ADD

on

a

cursor

that

contains

duplicate

columns,

an

error

is

returned.

Related

concepts:

v

“Bookmarks

in

CLI

applications”

on

page

76

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Retrieving

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

104

v

“Deleting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

108

v

“Updating

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

106

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Updating

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

You

can

update

data

in

bulk

with

bookmarks

using

SQLBulkOperations().

Prerequisites:

Before

updating

data

in

bulk,

ensure

you

have

initialized

your

CLI

application.

Restrictions:

Bookmarks

in

DB2

CLI

do

not

persist

across

cursor

close

operations.

This

means

that

an

application

cannot

use

bookmarks

that

it

has

stored

from

a

previous

cursor.

Instead,

it

has

to

call

SQLFetch()

or

SQLFetchScroll()

to

retrieve

the

bookmarks

before

updating

with

bookmarks.

Procedure:

To

update

data

in

bulk:

1.

Set

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

to

SQL_UB_VARIABLE

using

SQLSetStmtAttr().

106

CLI

Guide

and

Reference,

Volume

1

2.

Execute

a

query

that

returns

a

result

set.

3.

Set

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

to

the

number

of

rows

you

want

to

update

using

SQLSetStmtAttr().

4.

Call

SQLBindCol()

to

bind

the

data

you

want

to

update.

The

data

is

bound

to

an

array

with

a

size

equal

to

the

value

of

SQL_ATTR_ROW_ARRAY_SIZE,

set

in

the

previous

step.

5.

Bind

the

bookmark

column

to

column

0

by

calling

SQLBindCol().

6.

Copy

the

bookmarks

for

rows

that

you

want

to

update

into

the

array

bound

to

column

0.

7.

Update

the

data

in

the

bound

buffers.

Note:

The

size

of

the

array

pointed

to

by

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

should

either

be

equal

to

SQL_ATTR_ROW_ARRAY_SIZE

or

SQL_ATTR_ROW_STATUS_PTR

should

be

a

null

pointer.

8.

Update

the

data

by

calling

SQLBulkOperations()

with

an

Operation

argument

of

SQL_UPDATE_BY_BOOKMARK.

Note:

If

the

application

has

set

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute,

then

it

can

inspect

this

array

to

see

the

result

of

the

operation.

9.

Optional:

Verify

that

the

update

has

occurred

by

calling

SQLBulkOperations()

with

an

Operation

argument

of

SQL_FETCH_BY_BOOKMARK.

This

will

fetch

the

data

into

the

bound

application

buffers.

If

data

has

been

updated,

CLI

changes

the

value

in

the

row

status

array

for

the

appropriate

rows

to

SQL_ROW_UPDATED.

Note:

If

SQLBulkOperations()

is

called

with

an

Operation

argument

of

SQL_UPDATE_BY_BOOKMARK

on

a

cursor

that

contains

duplicate

columns,

an

error

is

returned.

Related

concepts:

v

“Bookmarks

in

CLI

applications”

on

page

76

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Inserting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

105

v

“Retrieving

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

104

v

“Deleting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

108

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

7.

Working

with

large

amounts

of

data

107

Deleting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications

You

can

use

SQLBulkOperations()

and

bookmarks

to

delete

data

in

bulk.

Prerequisites:

Before

deleting

data

in

bulk,

ensure

you

have

initialized

your

CLI

application.

Restrictions:

Bookmarks

in

DB2

CLI

do

not

persist

across

cursor

close

operations.

This

means

that

an

application

cannot

use

bookmarks

that

it

has

stored

from

a

previous

cursor.

Instead,

it

has

to

call

SQLFetch()

or

SQLFetchScroll()

to

retrieve

the

bookmarks

before

updating

by

bookmarks.

Procedure:

To

perform

bulk

deletions

using

bookmarks

and

SQLBulkOperations():

1.

Set

the

SQL_ATTR_USE_BOOKMARKS

statement

attribute

to

SQL_UB_VARIABLE

using

SQLSetStmtAttr().

2.

Execute

a

query

that

returns

a

result

set.

3.

Set

the

SQL_ATTR_ROW_ARRAY_SIZE

statement

attribute

to

the

number

of

rows

you

want

to

delete.

4.

Bind

the

bookmark

column

to

column

0

by

calling

SQLBindCol().

5.

Copy

the

bookmarks

for

the

rows

you

want

to

delete

into

the

array

bound

to

column

0.

Note:

The

size

of

the

array

pointed

to

by

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

should

either

be

equal

to

SQL_ATTR_ROW_ARRAY_SIZE,

or

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute

should

be

a

null

pointer.

6.

Perform

the

deletion

by

calling

SQLBulkOperations()

with

an

Operation

argument

of

SQL_DELETE_BY_BOOKMARK.

If

the

application

has

set

the

SQL_ATTR_ROW_STATUS_PTR

statement

attribute,

then

it

can

inspect

this

array

to

see

the

result

of

the

operation.

Related

concepts:

v

“Bookmarks

in

CLI

applications”

on

page

76

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Inserting

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

105

v

“Retrieving

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

104

v

“Updating

bulk

data

with

bookmarks

using

SQLBulkOperations()

in

CLI

applications”

on

page

106

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

108

CLI

Guide

and

Reference,

Volume

1

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Importing

data

with

the

CLI

LOAD

utility

in

CLI

applications

The

CLI

LOAD

functionality

provides

an

interface

to

the

IBM

DB2

LOAD

utility

from

CLI.

This

functionality

allows

you

to

insert

data

in

CLI

using

LOAD

instead

of

array

insert.

This

option

can

yield

significant

performance

benefits

when

large

amounts

of

data

need

to

be

inserted.

Because

this

interface

invokes

LOAD,

the

same

consideration

given

for

using

LOAD

should

also

be

taken

into

account

when

using

the

CLI

LOAD

interface.

Prerequisites:

Before

importing

data

with

the

CLI

LOAD

utility,

ensure

you

have

initialized

your

CLI

application.

Restrictions:

v

Unlike

the

IBM

DB2

LOAD

utility,

the

CLI

LOAD

utility

does

not

load

data

directly

from

an

input

file.

Instead,

if

desired,

the

application

should

retrieve

the

data

from

the

input

file

and

insert

it

into

the

appropriate

application

parameters

that

correspond

to

the

parameter

markers

in

the

prepared

statement.

v

The

insertion

of

data

is

non-atomic

because

the

load

utility

precludes

atomicity.

LOAD

may

not

be

able

to

successfully

insert

all

the

rows

passed

to

it.

For

example,

if

a

unique

key

constraint

is

violated

by

a

row

being

inserted,

LOAD

will

not

insert

this

row

but

will

continue

loading

the

remaining

rows.

v

The

prepared

SQL

statement

for

inserting

data

must

include

parameter

markers

for

all

columns

in

the

target

table,

unless

a

fullselect

is

used

instead

of

the

VALUES

clause

in

the

INSERT

statement.

v

A

COMMIT

will

be

issued

by

LOAD.

Therefore,

if

the

insertion

of

the

data

completes

successfully,

the

LOAD

and

any

other

statements

within

the

transaction

cannot

be

rolled

back.

v

The

error

reporting

for

the

CLI

LOAD

interface

differs

from

that

of

array

insert.

Non-severe

errors

or

warnings,

such

as

errors

with

specific

rows,

will

only

appear

in

the

LOAD

message

file.

Procedure:

To

import

data

using

the

CLI

LOAD

utility:

1.

Specify

the

statement

attribute

SQL_ATTR_USE_LOAD_API

in

SQLSetStmtAttr()

with

one

of

the

following

supported

values:

SQL_USE_LOAD_INSERT

Use

the

LOAD

utility

to

append

to

existing

data

in

the

table.

SQL_USE_LOAD_REPLACE

Use

the

LOAD

utility

to

replace

existing

data

in

the

table.
For

example,

the

following

call

indicates

that

the

CLI

LOAD

utility

will

be

used

to

add

to

the

existing

data

in

the

table:

SQLSetStmtAttr

(hStmt,

SQL_ATTR_USE_LOAD_API,

(SQLPOINTER)

SQL_USE_LOAD_INSERT,

0);

Chapter

7.

Working

with

large

amounts

of

data

109

|
|
|

Note:

When

SQL_USE_LOAD_INSERT

or

SQL_USE_LOAD_REPLACE

is

set,

no

other

CLI

functions

except

for

the

following

can

be

called

until

SQL_USE_LOAD_OFF

is

set

(see

Step

3

below):

v

SQLBindParameter()

v

SQLExecute()

v

SQLExtendedBind()

v

SQLParamOptions()

v

SQLSetStmtAttr()
2.

Create

a

structure

of

type

db2LoadStruct

and

specify

the

desired

load

options

through

this

structure.

Set

the

SQL_ATTR_LOAD_INFO

statement

attribute

to

a

pointer

to

this

structure.

3.

Issue

SQLExecute()

on

the

prepared

SQL

statement

for

the

data

to

be

inserted.

The

INSERT

SQL

statement

can

be

a

fullselect

which

allows

data

to

be

loaded

from

a

table

using

the

SELECT

statement.

With

a

single

execution

of

the

INSERT

statement,

all

of

the

data

from

the

SELECT

is

loaded.

The

following

example

shows

how

a

fullselect

statement

loads

data

from

one

table

into

another:

SQLPrepare

(hStmt,

(SQLCHAR

*)

"INSERT

INTO

tableB

SELECT

*

FROM

tableA",

SQL_NTS);

SQLExecute

(hStmt);

4.

Call

SQLSetStmtAttr()

with

SQL_USE_LOAD_OFF.

This

ends

the

processing

of

data

using

the

LOAD

utility.

Subsequently,

regular

CLI

array

insert

will

be

in

effect

until

SQL_ATTR_USE_LOAD_API

is

set

again

(see

Step

1).

5.

Optional:

Query

the

results

of

the

completed

CLI

LOAD

operation

by

calling

SQLGetStmtAttr()

with

any

of

the

following

statement

attributes:

v

SQL_ATTR_LOAD_ROWS_COMMITTED_PTR:

A

pointer

to

an

integer

that

represents

the

total

number

of

rows

processed.

This

value

equals

the

number

of

rows

successfully

loaded

and

committed

to

the

database,

plus

the

number

of

skipped

and

rejected

rows.

v

SQL_ATTR_LOAD_ROWS_DELETED_PTR:

A

pointer

to

an

integer

that

represents

the

number

of

duplicate

rows

deleted.

v

SQL_ATTR_LOAD_ROWS_LOADED_PTR:

A

pointer

to

an

integer

that

represents

the

number

of

rows

loaded

into

the

target

table.

v

SQL_ATTR_LOAD_ROWS_READ_PTR:

A

pointer

to

an

integer

that

represents

the

number

of

rows

read.

v

SQL_ATTR_LOAD_ROWS_REJECTED_PTR:

A

pointer

to

an

integer

that

represents

the

number

of

rows

that

could

not

be

loaded.

v

SQL_ATTR_LOAD_ROWS_SKIPPED_PTR:

A

pointer

to

an

integer

that

represents

the

number

of

rows

skipped

before

the

CLI

LOAD

operation

began.

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Binding

parameter

markers

in

CLI

applications

with

column-wise

array

input”

on

page

79

v

“Binding

parameter

markers

in

CLI

applications

with

row-wise

array

input”

on

page

80

Related

reference:

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

110

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

v

“LOAD

Command”

in

the

Command

Reference

v

“db2Load

-

Load”

in

the

Administrative

API

Reference

Related

samples:

v

“tbload.c

--

How

to

insert

data

using

the

CLI

LOAD

utility

”

Chapter

7.

Working

with

large

amounts

of

data

111

112

CLI

Guide

and

Reference,

Volume

1

Chapter

8.

Stored

procedures

Calling

stored

procedures

from

CLI

applications

CLI

applications

invoke

stored

procedures

by

executing

the

CALL

procedure

SQL

statement.

This

topic

describes

how

to

call

stored

procedures

from

CLI

applications.

Prerequisites:

Before

calling

a

stored

procedure,

ensure

that

you

have

initialized

your

CLI

application.

Restrictions:

If

the

stored

procedure

being

called

is

uncataloged,

ensure

that

it

does

not

call

any

of

the

CLI

schema

functions.

Calling

CLI

schema

functions

from

uncataloged

stored

procedures

is

not

supported.

The

CLI

schema

functions

are:

SQLColumns(),

SQLColumnPrivileges(),

SQLForeignKeys(),

SQLPrimaryKeys(),

SQLProcedureColumns(),

SQLProcedures(),

SQLSpecialColumns(),

SQLStatistics(),

SQLTables(),

and

SQLTablePrivileges().

Procedure:

To

call

a

stored

procedure:

1.

Declare

application

host

variables

corresponding

to

each

of

the

IN,

INOUT,

and

OUT

parameters

of

the

stored

procedure.

Ensure

the

application

variable

data

types

and

lengths

match

the

data

types

and

lengths

of

the

arguments

in

the

stored

procedure

signature.

DB2

CLI

supports

calling

stored

procedures

with

all

SQL

types

as

parameter

markers.

2.

Initialize

the

IN,

INOUT,

and

OUT

parameter

application

variables.

3.

Issue

the

CALL

SQL

statement.

For

example:

SQLCHAR

*stmt

=

(SQLCHAR

*)"CALL

OUT_LANGUAGE

(?)";

For

optimal

performance,

applications

should

use

parameter

markers

for

stored

procedure

arguments

in

the

CALL

procedure

string

and

then

bind

the

host

variables

to

those

parameter

markers.

If

inbound

stored

procedure

arguments

must

be

specified

as

string

literals

rather

than

parameter

markers,

however,

include

the

ODBC

call

escape

clause

delimiters

{

}

in

the

CALL

procedure

statement.

For

example:

SQLCHAR

*stmt

=

(SQLCHAR

*)"{CALL

IN_PARAM

(123,

’Hello

World!’)}";

When

string

literals

and

the

ODBC

escape

clause

are

used

in

a

CALL

procedure

statement,

the

string

literals

can

only

be

specified

as

IN

mode

stored

procedure

arguments.

INOUT

and

OUT

mode

stored

procedure

arguments

must

still

be

specified

using

parameter

markers.

4.

Optional:

Prepare

the

CALL

statement

by

calling

SQLPrepare().

5.

Bind

each

parameter

of

the

CALL

procedure

statement

by

calling

SQLBindParameter().

©

Copyright

IBM

Corp.

1993

-

2004

113

|
|

|

|
|
|

|
|
|

|
|

Note:

Ensure

each

parameter

is

bound

correctly

(to

SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT,

or

SQL_PARAM_INPUT_OUTPUT),

otherwise

unexpected

results

could

occur

when

the

CALL

procedure

statement

is

executed.

This

would

happen,

for

example,

if

an

input

parameter

was

incorrectly

bound

with

an

InputOutputType

of

SQL_PARAM_OUTPUT.

6.

Execute

the

CALL

procedure

statement

using

SQLExecDirect(),

or

if

the

CALL

procedure

statement

was

prepared

in

step

4,

SQLExecute().

Note:

If

an

application

or

thread

that

has

invoked

a

stored

procedure

is

terminated

before

the

stored

procedure

completes,

execution

of

the

stored

procedure

will

also

be

terminated.

It

is

important

that

a

stored

procedure

contain

logic

to

ensure

that

the

database

is

in

both

a

consistent

and

desirable

state

if

the

stored

procedure

is

terminated

prematurely.

7.

Check

the

return

code

of

SQLExecDirect()

or

SQLExecute()

when

the

function

has

returned

to

determine

if

any

errors

occurred

during

execution

of

either

the

CALL

procedure

statement

or

the

stored

procedure.

If

the

return

code

is

SQL_SUCCESS_WITH_INFO

or

SQL_ERROR,

use

the

CLI

diagnostic

functions

SQLGetDiagRec()

and

SQLGetDiagField()

to

determine

why

the

error

occurred.

If

a

stored

procedure

has

executed

successfully,

any

variables

bound

as

OUT

parameters

may

contain

data

that

the

stored

procedure

has

passed

back

to

the

CLI

application.

If

applicable,

the

stored

procedure

may

also

return

one

or

more

result

sets

through

non-scrollable

cursors.

CLI

applications

should

process

stored

procedure

result

sets

as

they

would

process

result

sets

generated

by

executing

SELECT

statements.

Note:

If

a

CLI

application

is

unsure

of

the

number

or

type

of

parameters

in

a

result

set

returned

by

a

stored

procedure,

the

SQLNumResultCols(),

SQLDescribeCol(),

and

SQLColAttribute()

functions

can

be

called

(in

this

order)

on

the

result

set

to

determine

this

information.

Once

you

have

executed

the

CALL

statement,

you

can

retrieve

result

sets

from

the

stored

procedure

if

applicable.

Note:

DB2

CLI

packages

are

automatically

bound

to

databases

when

the

databases

are

created

or

migrated.

If

a

FixPak

is

applied

to

either

the

client

or

the

server,

however,

then

you

must

rebind

db2cli.lst

by

issuing

the

following

command:

UNIX

db2

bind

<BNDPATH>/@db2cli.lst

blocking

all

grant

public

Windows

db2

bind

"%DB2PATH%\bnd\@db2cli.lst"

blocking

all

grant

public

Related

concepts:

v

“Routines:

procedures”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“DB2

Stored

Procedures”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

114

CLI

Guide

and

Reference,

Volume

1

|
|
|
|

|

|

|

|

|

v

“Setting

up

the

CLI

environment”

on

page

207

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Binding

parameter

markers

in

CLI

applications”

on

page

28

Related

reference:

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

v

“DB2

CLI

bind

files

and

package

names”

on

page

201

v

“DB2

CLI

stored

procedure

commit

behavior”

on

page

115

Related

samples:

v

“spcall.c

--

Call

individual

stored

procedures”

v

“spclient.c

--

Call

various

stored

procedures”

v

“spclires.c

--

Contrast

stored

procedure

multiple

result

set

handling

methods”

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

DB2

CLI

stored

procedure

commit

behavior

The

commit

behavior

of

SQL

statements,

both

in

a

DB2

CLI

client

application

and

in

the

called

stored

procedure

running

on

a

DB2

server,

depends

on

the

commit

combinations

applied

in

the

application

and

the

stored

procedure.

The

possible

combinations

and

the

resulting

commit

behavior

are

described

in

the

following

table.

Table

10.

DB2

CLI

Stored

procedure

commit

behavior

CLI

client

Stored

procedure

Commit

behavior

autocommit

on

autocommit

on

All

successfully

executed

SQL

statements

in

the

stored

procedure

are

committed,

even

if

other

SQL

statements

in

the

stored

procedure

fail

and

an

error

or

warning

SQLCODE

is

returned

to

the

CALL

statement.

autocommit

on

autocommit

off

If

the

stored

procedure

returns

an

SQLCODE

>=

0,

all

successfully

executed

SQL

statements

in

the

stored

procedure

are

committed.

Otherwise,

all

SQL

statements

in

the

stored

procedure

are

rolled

back.

autocommit

on

manual

commit

All

successfully

executed

SQL

statements

in

the

stored

procedure

that

are

manually

committed

will

not

be

rolled

back,

even

if

an

error

SQLCODE

is

returned

to

the

CALL

statement.

Note:

If

the

stored

procedure

returns

an

SQLCODE

>=

0,

any

successfully

executed

SQL

statements

in

the

stored

procedure

that

occur

after

the

last

manual

commit

will

be

committed;

otherwise,

they

will

be

rolled

back

to

the

manual

commit

point.

Chapter

8.

Stored

procedures

115

|

|
|
|
|
|

||

||
|
|

|||
|
|

|||
|
|

|||
|
|
|
|
|
|

Table

10.

DB2

CLI

Stored

procedure

commit

behavior

(continued)

CLI

client

Stored

procedure

Commit

behavior

autocommit

off

autocommit

on

All

successfully

executed

SQL

statements

in

the

stored

procedure

are

committed

and

will

not

be

rolled

back,

even

if

an

error

SQLCODE

is

returned

to

the

CALL

statement.

In

addition,

all

uncommitted

and

successfully

executed

SQL

statements

in

the

CLI

client

application

up

to

and

including

the

CALL

statement

are

committed.

Note:

Exercise

caution

when

using

this

commit

combination

in

a

multi-SQL

statement

client-side

transaction,

because

the

transaction

cannot

be

fully

rolled

back

after

the

CALL

statement

has

been

issued.

autocommit

off

autocommit

off

If

the

stored

procedure

returns

an

SQLCODE

>=

0,

all

successfully

executed

SQL

statements

in

the

stored

procedure

will

be

committed

when

the

transaction

that

includes

the

CALL

statement

is

committed.

Otherwise,

all

SQL

statements

in

the

stored

procedure

will

be

rolled

back

when

the

transaction

that

includes

the

CALL

statement

is

rolled

back.

autocommit

off

manual

commit

All

successfully

executed

SQL

statements

in

the

stored

procedure

that

are

manually

committed

will

not

be

rolled

back,

even

if

an

error

SQLCODE

is

returned

to

the

CALL

statement.

In

addition,

all

uncommitted

and

successfully

executed

SQL

statements

in

the

CLI

client

application

up

to

the

CALL

statement

are

committed.

Note:

If

the

stored

procedure

returns

an

SQLCODE

>=

0,

any

successfully

executed

SQL

statements

within

the

stored

procedure

that

occur

after

the

last

manual

commit

will

be

committed;

otherwise,

they

will

be

rolled

back

to

the

manual

commit

point.

Note:

Exercise

caution

when

using

this

commit

combination

in

a

multi-SQL

statement

client-side

transaction,

because

the

transaction

cannot

be

fully

rolled

back

after

the

CALL

statement

has

been

issued.

Related

concepts:

v

“Routines:

procedures”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“DB2

Stored

Procedures”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

tasks:

v

“Calling

stored

procedures

from

CLI

applications”

on

page

113

Related

reference:

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

116

CLI

Guide

and

Reference,

Volume

1

|

||
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|

|

|

Chapter

9.

Compound

SQL

Executing

compound

SQL

statements

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Return

codes

for

compound

SQL

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Executing

compound

SQL

statements

in

CLI

applications

Compound

SQL

allows

multiple

SQL

statements

to

be

grouped

into

a

single

executable

block.

This

block

of

statements,

together

with

any

input

parameter

values,

can

then

be

executed

in

a

single

continuous

stream,

reducing

the

execution

time

and

network

traffic.

Restrictions:

v

Compound

SQL

does

not

guarantee

the

order

in

which

the

substatements

are

executed,

therefore

there

must

not

be

any

dependencies

among

the

substatements.

v

Compound

SQL

statements

cannot

be

nested.

v

The

BEGIN

COMPOUND

and

END

COMPOUND

statements

must

be

executed

with

the

same

statement

handle.

v

The

value

specified

in

the

STOP

AFTER

FIRST

?

STATEMENTS

clause

of

the

BEGIN

COMPOUND

SQL

statement

must

be

of

type

SQL_INTEGER,

and

you

can

only

bind

an

application

buffer

of

type

SQL_C_INTEGER

or

SQL_C_SMALLINT

for

this

value.

v

Each

substatement

must

have

its

own

statement

handle.

v

All

statement

handles

must

belong

to

the

same

connection

and

have

the

same

isolation

level.

v

Atomic

array

input

is

not

supported

within

a

BEGIN

COMPOUND

and

END

COMPOUND

block

of

SQL

statements.

Atomic

array

input

refers

to

the

behavior

where

all

inserts

will

be

undone

if

any

single

insert

fails.

v

All

statement

handles

must

remain

allocated

until

the

END

COMPOUND

statement

is

executed.

v

SQLEndTran()

cannot

be

called

for

the

same

connection

or

any

connect

requests

between

BEGIN

COMPOUND

and

END

COMPOUND.

v

Only

the

following

functions

may

be

called

using

the

statement

handles

allocated

for

the

compound

substatements:

–

SQLAllocHandle()

–

SQLBindParameter()

–

SQLBindFileToParam()

–

SQLExecute()

–

SQLParamData()

–

SQLPrepare()

–

SQLPutData()

Procedure:

To

execute

compound

SQL

statements

in

CLI

applications:

1.

Allocate

a

parent

statement

handle.

For

example:

SQLAllocHandle

(SQL_HANDLE_STMT,

hdbc,

&hstmtparent);

©

Copyright

IBM

Corp.

1993

-

2004

117

|
|
|

|

|

|

|

|

|

|

|

2.

Allocate

statement

handles

for

each

of

the

compound

substatements.

For

example:

SQLAllocHandle

(SQL_HANDLE_STMT,

hdbc,

&hstmtsub1);

SQLAllocHandle

(SQL_HANDLE_STMT,

hdbc,

&hstmtsub2);

SQLAllocHandle

(SQL_HANDLE_STMT,

hdbc,

&hstmtsub3);

3.

Prepare

the

substatements.

For

example:

SQLPrepare

(hstmtsub1,

stmt1,

SQL_NTS);

SQLPrepare

(hstmtsub2,

stmt2,

SQL_NTS);

SQLPrepare

(hstmtsub3,

stmt3,

SQL_NTS);

4.

Execute

the

BEGIN

COMPOUND

statement

using

the

parent

statement

handle.

For

example:

SQLExecDirect

(hstmtparent,

(SQLCHAR

*)

"BEGIN

COMPOUND

NOT

ATOMIC

STATIC",

SQL_NTS);

5.

If

this

is

an

atomic

compound

SQL

operation,

execute

the

substatements

using

the

SQLExecute()

function

only.

For

example:

SQLExecute

(hstmtsub1);

SQLExecute

(hstmtsub2);

SQLExecute

(hstmtsub3);

Note:

All

statements

to

be

executed

inside

an

atomic

compound

block

must

first

be

prepared.

Attempts

to

use

the

SQLExecDirect()

function

within

an

atomic

compound

block

will

result

in

errors.

6.

Execute

the

END

COMPOUND

statement

using

the

parent

statement

handle.

For

example:

SQLExecDirect

(hstmtparent,

(SQLCHAR

*)

"END

COMPOUND

NOT

ATOMIC

STATIC",

SQL_NTS);

7.

Optional:

If

you

used

an

input

parameter

value

array,

call

SQLRowCount()

with

the

parent

statement

handle

to

retrieve

the

aggregate

number

of

rows

affected

by

all

elements

of

the

input

array.

For

example:

SQLRowCount

(hstmtparent,

&numRows);

8.

Free

the

handles

of

the

substatements.

For

example:

SQLFreeHandle

(SQL_HANDLE_STMT,

hstmtsub1);

SQLFreeHandle

(SQL_HANDLE_STMT,

hstmtsub2);

SQLFreeHandle

(SQL_HANDLE_STMT,

hstmtsub3);

9.

Free

the

parent

statement

handle

when

you

have

finished

using

it.

For

example:

SQLFreeHandle

(SQL_HANDLE_STMT,

hstmtparent);

If

the

application

is

not

operating

in

auto-commit

mode

and

the

COMMIT

option

is

not

specified,

the

sub-statements

will

not

be

committed.

If

the

application

is

operating

in

auto-commit

mode,

however,

then

the

sub-statements

will

be

committed

at

END

COMPOUND,

even

if

the

COMMIT

option

is

not

specified.

Related

tasks:

v

“Allocating

statement

handles

in

CLI

applications”

on

page

22

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Binding

parameter

markers

in

CLI

applications

with

column-wise

array

input”

on

page

79

v

“Binding

parameter

markers

in

CLI

applications

with

row-wise

array

input”

on

page

80

v

“Freeing

statement

resources

in

CLI

applications”

on

page

36

Related

reference:

118

CLI

Guide

and

Reference,

Volume

1

|
|

|
|
|

|
|
|

v

“SQLAllocHandle

function

(CLI)

-

Allocate

handle”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLRowCount

function

(CLI)

-

Get

row

count”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“COMMIT

statement”

in

the

SQL

Reference,

Volume

2

v

“ROLLBACK

statement”

in

the

SQL

Reference,

Volume

2

v

“Compound

SQL

(Dynamic)

statement”

in

the

SQL

Reference,

Volume

2

v

“Return

codes

for

compound

SQL

in

CLI

applications”

on

page

119

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

Return

codes

for

compound

SQL

in

CLI

applications

Return

codes

are

generated

on

the

call

to

SQLExecute()

or

SQLExecDirect()

for

the

END

COMPOUND

statement.

The

following

lists

the

return

codes

for

ATOMIC

and

NOT

ATOMIC

compound

statements:

ATOMIC

v

SQL_SUCCESS:

all

substatements

have

executed

without

any

warnings

or

errors.

v

SQL_SUCCESS_WITH_INFO:

all

substatements

executed

successfully

with

one

or

more

warnings.

Call

SQLGetDiagRec()

or

SQLGetDiagField()

to

retrieve

additional

information

on

the

error

or

warning.

The

handle

used

by

SQLGetDiagRec()

or

SQLGetDiagField()

must

be

the

same

one

used

to

process

the

BEGIN

COMPOUND

and

END

COMPOUND

statements.

v

SQL_NO_DATA_FOUND:

BEGIN

COMPOUND

and

END

COMPOUND

statements

executed

without

any

substatements,

or

none

of

the

substatements

affected

any

rows.

v

SQL_ERROR:

one

or

more

substatements

failed

and

all

substatements

were

rolled

back.

NOT

ATOMIC

v

SQL_SUCCESS:

all

substatements

executed

without

any

errors.

v

SQL_SUCCESS_WITH_INFO:

the

COMPOUND

statement

executed

with

one

or

more

warnings

returned

by

one

or

more

substatements.

Call

SQLGetDiagRec()

or

SQLGetDiagField()

to

retrieve

additional

information

on

the

error

or

warning.

The

handle

used

by

SQLGetDiagRec()

or

SQLGetDiagField()

must

be

the

same

one

used

to

process

the

BEGIN

COMPOUND

and

END

COMPOUND

statements.

v

SQL_NO_DATA_FOUND:

the

BEGIN

COMPOUND

and

END

COMPOUND

statements

executed

without

any

substatements,

or

none

of

the

substatements

affected

any

rows.

Chapter

9.

Compound

SQL

119

v

SQL_ERROR:

the

COMPOUND

statement

failed.

At

least

one

substatement

returned

an

error.

Examine

the

SQLCA

to

determine

which

statements

failed.

Related

tasks:

v

“Executing

compound

SQL

statements

in

CLI

applications”

on

page

117

Related

reference:

v

“SQLError

function

(CLI)

-

Retrieve

error

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetSQLCA

function

(CLI)

-

Get

SQLCA

data

structure”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLCA

(SQL

communications

area)”

in

the

SQL

Reference,

Volume

1

v

“Compound

SQL

(Dynamic)

statement”

in

the

SQL

Reference,

Volume

2

120

CLI

Guide

and

Reference,

Volume

1

Chapter

10.

Multithreaded

CLI

applications

Multithreaded

CLI

applications

.

.

.

.

.

.

. 121

Application

model

for

multithreaded

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Mixed

multithreaded

CLI

applications

.

.

.

.

. 124

Multithreaded

CLI

applications

DB2

CLI

supports

concurrent

execution

of

threads

on

the

following

platforms:

v

AIX®

v

HP-UX

v

Linux

v

Solaris™

v

Windows®

On

any

other

platform

that

supports

threads,

DB2

CLI

is

guaranteed

to

be

thread

safe

by

serializing

all

threaded

access

to

the

database.

In

other

words,

applications

or

stored

procedures

that

use

DB2

CLI

can

be

invoked

multiple

times

and

at

the

same

time.

Note:

If

you

are

writing

applications

that

use

DB2

CLI

calls

and

either

embedded

SQL

or

DB2®

API

calls,

see

the

documentation

for

multithreaded

mixed

applications.

Concurrent

execution

means

that

two

threads

can

run

independently

of

each

other

(on

a

multi-processor

machine

they

may

run

simultaneously).

For

example,

an

application

could

implement

a

database-to-database

copy

in

the

following

way:

v

One

thread

connects

to

database

A

and

uses

SQLExecute()

and

SQLFetch()

calls

to

read

data

from

one

connection

into

a

shared

application

buffer.

v

The

other

thread

connects

to

database

B

and

concurrently

reads

from

the

shared

buffer

and

inserts

the

data

into

database

B.

In

contrast,

if

DB2

CLI

serializes

all

function

calls,

only

one

thread

may

be

executing

a

DB2

CLI

function

at

a

time.

All

other

threads

would

have

to

wait

until

the

current

thread

is

done

before

it

would

get

a

chance

to

execute.

When

to

use

multiple

threads:

The

most

common

reason

to

create

another

thread

in

a

DB2

CLI

application

is

so

a

thread

other

than

the

one

executing

can

be

used

to

call

SQLCancel()

(to

cancel

a

long

running

query

for

example).

Most

GUI-based

applications

use

threads

in

order

to

ensure

that

user

interaction

can

be

handled

on

a

higher

priority

thread

than

other

application

tasks.

The

application

can

simply

delegate

one

thread

to

run

all

DB2

CLI

functions

(with

the

exception

of

SQLCancel()).

In

this

case

there

are

no

thread-related

application

design

issues

since

only

one

thread

will

be

accessing

the

data

buffers

that

are

used

to

interact

with

DB2

CLI.

Applications

that

use

multiple

connections,

and

are

executing

statements

that

may

take

some

time

to

execute,

should

consider

executing

DB2

CLI

functions

on

©

Copyright

IBM

Corp.

1993

-

2004

121

multiple

threads

to

improve

throughput.

Such

an

application

should

follow

standard

practices

for

writing

any

multi-threaded

application,

most

notably,

those

concerned

with

sharing

data

buffers.

Programming

tips:

Any

resource

allocated

by

DB2

CLI

is

guaranteed

to

be

thread-safe.

This

is

accomplished

by

using

either

a

shared

global

or

connection

specific

semaphore.

At

any

one

time,

only

one

thread

can

be

executing

a

DB2

CLI

function

that

accepts

an

environment

handle

as

input.

All

other

functions

that

accept

a

connection

handle

(or

a

statement

or

descriptor

allocated

on

that

connection

handle)

will

be

serialized

on

the

connection

handle.

This

means

that

once

a

thread

starts

executing

a

function

with

a

connection

handle,

or

child

of

a

connection

handle,

any

other

thread

will

block

and

wait

for

the

executing

thread

to

return.

The

one

exception

to

this

is

SQLCancel(),

which

must

be

able

to

cancel

a

statement

currently

executing

on

another

thread.

For

this

reason,

the

most

natural

design

is

to

map

one

thread

per

connection,

plus

one

thread

to

handle

SQLCancel()

requests.

Each

thread

can

then

execute

independently

of

the

others.

If

an

object

is

shared

across

threads,

application

timing

issues

may

arise.

For

example,

if

a

thread

is

using

a

handle

in

one

thread,

and

another

thread

frees

that

handle

between

function

calls,

the

next

attempt

to

use

that

handle

would

result

in

a

return

code

of

SQL_INVALID_HANDLE.

Notes:

1.

Thread

safety

for

handles

only

applies

for

DB2

CLI

applications.

ODBC

applications

may

trap

since

the

handle

in

this

case

is

a

pointer

and

the

pointer

may

no

longer

be

valid

if

another

thread

has

freed

it.

For

this

reason,

it

is

best

when

writing

an

ODBC

application

to

follow

the

application

model

for

multithreaded

CLI

applications.

2.

There

may

be

platform

or

compiler

specific

link

options

required

for

multi-threaded

applications.

Refer

to

your

compiler

documentation

for

further

details.

Related

concepts:

v

“Application

model

for

multithreaded

CLI

applications”

on

page

122

v

“Mixed

multithreaded

CLI

applications”

on

page

124

Related

reference:

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI

function

return

codes”

on

page

48

Application

model

for

multithreaded

CLI

applications

The

following

model

of

a

typical

multithreaded

CLI

application

is

intended

as

an

example:

v

Designate

a

master

thread

which

allocates:

–

m

″child″

threads

–

n

connection

handles
v

Each

task

that

requires

a

connection

is

executed

by

one

of

the

child

threads,

and

is

given

one

of

the

n

connections

by

the

master

thread.

122

CLI

Guide

and

Reference,

Volume

1

v

Each

connection

is

marked

as

in

use

by

the

master

thread

until

the

child

thread

returns

it

to

the

master

thread.

v

Any

SQLCancel()

request

is

handled

by

the

master

thread.

This

model

allows

the

master

thread

to

have

more

threads

than

connections

if

the

threads

are

also

used

to

perform

non-SQL

related

tasks,

or

more

connections

than

threads

if

the

application

wants

to

maintain

a

pool

of

active

connections

to

various

databases,

but

limit

the

number

of

active

tasks.

Note:

A

multithreaded

DB2

CLI

stored

procedure

can

only

connect

to

the

database

where

the

stored

procedure

is

currently

executing.

Most

importantly,

this

ensures

that

two

threads

are

not

trying

to

use

the

same

connection

handle

at

any

one

time.

Although

DB2

CLI

controls

access

to

its

resources,

the

application

resources

such

as

bound

columns

and

parameter

buffers

are

not

controlled

by

DB2

CLI,

and

the

application

must

guarantee

that

a

pointer

to

a

buffer

is

not

being

used

by

two

threads

at

any

one

time.

Any

deferred

arguments

must

remain

valid

until

the

column

or

parameter

has

been

unbound.

If

it

is

necessary

for

two

threads

to

share

a

data

buffer,

the

application

must

implement

some

form

of

synchronization

mechanism.

For

example,

in

the

database-to-database

copy

scenario

where

one

thread

connects

to

database

A

and

reads

data

from

one

connection

into

a

shared

application

buffer

while

the

other

thread

connects

to

database

B

and

concurrently

reads

from

the

shared

buffer

and

inserts

data

into

database

B,

the

use

of

the

shared

buffer

must

be

synchronized

by

the

application.

Application

deadlocks:

The

application

must

be

aware

of

the

possibility

of

creating

deadlock

situations

with

shared

resources

in

the

database

and

the

application.

DB2®

can

detect

deadlocks

at

the

server

and

rollback

one

or

more

transactions

to

resolve

them.

An

application

may

still

deadlock

if:

v

two

threads

are

connected

to

the

same

database,

and

v

one

thread

is

holding

an

application

resource

’A’

and

is

waiting

for

a

database

resource

’B’,

and

v

the

other

thread

has

a

lock

on

the

database

resource

’B’

while

waiting

for

the

application

resource

’A’.

In

this

case

the

DB2

server

is

only

going

to

see

a

lock,

not

a

deadlock,

and

unless

the

database

LockTimeout

configuration

keyword

is

set,

the

application

will

wait

forever.

The

model

suggested

above

avoids

this

problem

by

not

sharing

application

resources

between

threads

once

a

thread

starts

executing

on

a

connection.

Related

concepts:

v

“Multithreaded

CLI

applications”

on

page

121

v

“Mixed

multithreaded

CLI

applications”

on

page

124

Related

reference:

v

“locktimeout

-

Lock

timeout

configuration

parameter”

in

the

Administration

Guide:

Performance

Chapter

10.

Multithreaded

CLI

applications

123

v

“SQLCancel

function

(CLI)

-

Cancel

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

Mixed

multithreaded

CLI

applications

It

is

possible

for

a

multi-threaded

application

to

mix

CLI

calls

with

DB2®

API

calls

and

embedded

SQL.

The

type

of

the

call

executed

earliest

in

the

application

determines

the

best

way

to

organize

the

application:

DB2

CLI

Calls

first

The

DB2

CLI

driver

automatically

calls

the

DB2

context

APIs

to

allocate

and

manage

contexts

for

the

application.

This

means

that

any

application

that

calls

SQLAllocEnv()

before

calling

any

other

DB2

API

or

embedded

SQL

will

be

initialized

with

the

context

type

set

to

SQL_CTX_MULTI_MANUAL.

In

this

case

the

application

should

allow

DB2

CLI

to

allocate

and

manage

all

contexts.

Use

DB2

CLI

to

allocate

all

connection

handles

and

to

perform

all

connections.

Call

the

SQLSetConnect()

function

in

each

thread

prior

to

calling

any

embedded

SQL.

DB2

APIs

can

be

called

after

any

DB2

CLI

function

has

been

called

in

the

same

thread.

DB2

API

or

embedded

SQL

calls

first

The

DB2

CLI

driver

does

not

automatically

call

the

DB2

context

APIs

if

the

application

calls

any

DB2

API

or

embedded

SQL

functions

before

a

CLI

function.

This

means

that

any

thread

that

calls

a

DB2

API

or

embedded

SQL

function

must

be

attached

to

a

context,

otherwise

the

call

will

fail

with

an

SQLCODE

of

SQL1445N.

This

can

be

done

by

calling

the

DB2

API

sqleAttachToCtx()

which

will

explicitly

attach

the

thread

to

a

context,

or

by

calling

any

DB2

CLI

function

(SQLSetConnection()

for

example).

In

this

case,

the

application

must

explicitly

manage

all

contexts.

Use

the

context

APIs

to

allocate

and

attach

to

contexts

prior

to

calling

DB2

CLI

functions

(SQLAllocEnv()

will

use

the

existing

context

as

the

default

context).

Use

the

SQL_ATTR_CONN_CONTEXT

connection

attribute

to

explicitly

set

the

context

that

each

DB2

CLI

connection

should

use.

Note:

It

is

recommended

that

you

do

not

use

the

default

application

stack

size,

but

instead

increase

the

stack

size

to

at

least

256

000.

DB2

requires

a

minimum

application

stack

size

of

256

000

when

calling

a

DB2

function.

You

must

ensure

therefore,

that

you

allocate

a

total

stack

size

that

is

large

enough

for

both

your

application

and

the

minimum

requirements

for

a

DB2

function

call.

Related

concepts:

v

“DB2

CLI

versus

Embedded

Dynamic

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Multithreaded

CLI

applications”

on

page

121

v

“Application

model

for

multithreaded

CLI

applications”

on

page

122

Related

reference:

124

CLI

Guide

and

Reference,

Volume

1

v

“SQLAllocEnv

function

(CLI)

-

Allocate

environment

handle”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“sqleAttachToCtx

-

Attach

to

Context”

in

the

Administrative

API

Reference

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

10.

Multithreaded

CLI

applications

125

126

CLI

Guide

and

Reference,

Volume

1

Chapter

11.

Multisite

updates

(two

phase

commit)

Multisite

updates

(two

phase

commit)

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

DB2

as

transaction

manager

in

CLI

applications

128

Microsoft

Transaction

Server

(MTS)

as

transaction

monitor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager

.

.

.

.

.

.

.

.

.

. 132

Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)

.

.

.

.

.

.

. 134

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout

.

.

.

.

.

.

.

.

.

. 134

ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

.

.

. 135

Process-based

XA-compliant

Transaction

Program

Monitor

(XA

TP)

programming

considerations

for

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

. 137

Multisite

updates

(two

phase

commit)

in

CLI

applications

A

typical

transaction

scenario

portrays

an

application

which

interacts

with

only

one

database

server

in

a

transaction.

Even

though

concurrent

connections

allow

for

concurrent

transactions,

the

different

transactions

are

not

coordinated.

With

multisite

updates,

the

two

phase

commit

(2PC)

protocol,

and

coordinated

distributed

transactions,

an

application

is

able

to

update

data

in

multiple

remote

database

servers

with

guaranteed

integrity.

Note:

Multisite

update

is

also

known

as

Distributed

Unit

of

Work

(DUOW).

A

typical

banking

transaction

is

a

good

example

of

a

multisite

update.

Consider

the

transfer

of

money

from

one

account

to

another

in

a

different

database

server.

In

such

a

transaction

it

is

critical

that

the

updates

that

implement

the

debit

operation

on

one

account

do

not

get

committed

unless

the

updates

required

to

process

the

credit

to

the

other

account

are

committed

as

well.

Multisite

update

considerations

apply

when

data

representing

these

accounts

is

managed

by

two

different

database

servers

Some

multisite

updates

involve

the

use

of

a

transaction

manager

(TM)

to

coordinate

two-phase

commit

among

multiple

databases.

DB2

CLI

applications

can

be

written

to

use

various

transaction

managers:

v

DB2®

as

transaction

manager

v

Process-based

XA-compliant

transaction

program

monitor

v

Host

and

AS/400®

database

servers

Note:

There

is

no

specific

DB2

CLI/ODBC

client

configuration

required

when

connecting

to

a

host

or

iSeries™

database

server,

although

the

machine

running

DB2

Connect™

may

require

certain

configuration

settings

to

enable

running

multisite

update

mode

against

the

host.

Related

concepts:

v

“Multisite

Updates”

in

the

DB2

Connect

User’s

Guide

v

“Configuration

Parameter

Considerations

for

Multisite

Update

Applications”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“DB2

as

transaction

manager

in

CLI

applications”

on

page

128

v

“Process-based

XA-compliant

Transaction

Program

Monitor

(XA

TP)

programming

considerations

for

CLI

applications”

on

page

137

©

Copyright

IBM

Corp.

1993

-

2004

127

|
|
||
|
||

|

|

|

|

|

|

|

|

Related

tasks:

v

“Enabling

Multisite

Updates

using

the

Control

Center”

in

the

DB2

Connect

User’s

Guide

DB2

as

transaction

manager

in

CLI

applications

Configuration

of

DB2

as

transaction

manager:

DB2

CLI/ODBC

applications

can

use

DB2®

itself

as

the

Transaction

Manager

(DB2

TM)

to

coordinate

distributed

transactions

against

all

IBM®

database

servers.

The

DB2

Transaction

Manager

must

be

set

up

according

to

the

information

in

the

DB2

transaction

manager

configuration

documentation.

To

use

DB2

as

the

transaction

manager

in

CLI/ODBC

applications,

the

following

configurations

must

be

applied:

v

Set

the

DisableMultiThread

CLI/ODBC

configuration

keyword

to

1

in

the

[COMMON]

section

of

the

db2cli.ini

file.

This

indicates

that

the

DB2

CLI/ODBC

driver

will

use

a

single

DB2

context

for

all

connections

made

by

the

application

process.

All

database

requests

will

be

serialized

at

the

process

level.

Because

the

DisableMultiThread

keyword

must

appear

in

the

[COMMON]

section

of

the

db2cli.ini

file,

it

impacts

all

connections

to

all

data

sources

from

that

client

instance.

This

means

that

a

DB2

client

instance

can

only

support

process-based

CLI

applications

or

thread-based

CLI

applications,

but

not

both.

v

Set

the

SQL_ATTR_CONNECTTYPE

environment

attribute.

This

attribute

controls

whether

the

application

is

to

operate

in

a

coordinated

or

uncoordinated

distributed

environment.

Commits

or

rollbacks

among

multiple

database

connections

are

coordinated

in

a

coordinated

distributed

environment.

The

two

possible

values

for

this

attribute

are:

–

SQL_CONCURRENT_TRANS

-

supports

single

database

per

transaction

semantics.

Multiple

concurrent

connections

to

the

same

database

and

to

different

databases

are

permitted.

Each

connection

has

its

own

commit

scope.

No

effort

is

made

to

enforce

coordination

of

transactions.

This

is

the

default

and

corresponds

to

a

Type

1

CONNECT

in

embedded

SQL.

The

current

setting

of

the

SQL_ATTR_SYNC_POINT

environment

attribute

is

ignored.

–

SQL_COORDINATED_TRANS

-

supports

multiple

databases

per

transaction

semantics.

A

coordinated

transaction

is

one

in

which

commits

or

rollbacks

among

multiple

database

connections

are

coordinated.

Setting

SQL_ATTR_CONNECTTYPE

to

this

value

corresponds

to

Type

2

CONNECT

in

embedded

SQL.

It

is

recommended

that

the

application

set

this

environment

attribute

with

a

call

to

SQLSetEnvAttr(),

if

necessary,

as

soon

as

the

environment

handle

has

been

allocated.

Since

ODBC

applications

cannot

access

SQLSetEnvAttr(),

they

must

set

this

using

SQLSetConnectAttr()

after

each

connection

handle

is

allocated,

but

before

any

connections

have

been

established.

All

connections

within

an

application

must

have

the

same

SQL_ATTR_CONNECTTYPE

setting.

An

application

cannot

have

a

mixture

of

concurrent

and

coordinated

connections;

the

type

of

the

first

connection

will

determine

the

type

of

all

subsequent

connections.

SQLSetEnvAttr()

will

return

an

error

if

an

application

attempts

to

change

the

connect

type

while

there

is

an

active

connection.

v

If

SQL_ATTR_CONNECTTYPE

was

set

to

SQL_COORDINATED_TRANS

as

described

above,

set

the

SQL_ATTR_SYNC_POINT

environment

attribute

to

128

CLI

Guide

and

Reference,

Volume

1

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

SQL_TWOPHASE.

Two

phase

commit

is

used

to

commit

the

work

done

by

each

database

in

a

multiple

database

transaction.

This

requires

the

use

of

a

Transaction

Manager

to

coordinate

two

phase

commits

amongst

the

databases

that

support

this

protocol.

Multiple

readers

and

multiple

updaters

are

allowed

within

a

transaction.

The

application

should

set

this

environment

attribute

as

soon

as

the

environment

handle

has

been

created.

It

should

be

set

with

a

call

to

SQLSetEnvAttr().

ODBC

applications

must

use

SQLSetConnectAttr()

to

set

this

for

each

connection

handle

under

the

environment

before

any

connections

have

been

established.

Note:

The

SQL_ONEPHASE

setting

of

the

SQL_ATTR_SYNC_POINT

attribute

is

no

longer

supported.

Setting

SQL_ONEPHASE

will

yield

the

two

phase

behavior

of

the

SQL_TWOPHASE

option.

v

The

function

SQLEndTran()

must

be

used

in

a

multisite

update

environment

when

DB2

is

acting

as

the

transaction

manager.

Application

flows

in

concurrent

and

coordinated

transactions:

Figure

10

on

page

130

shows

the

logical

flow

of

an

application

executing

statements

on

two

SQL_CONCURRENT_TRANS

connections

(’A’

and

’B’),

and

indicates

the

scope

of

the

transactions.

Figure

11

on

page

131

shows

the

same

statements

being

executed

on

two

SQL_COORDINATED_TRANS

connections

(’A’

and

’B’),

and

the

scope

of

a

coordinated

distributed

transaction.

Chapter

11.

Multisite

updates

(two

phase

commit)

129

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

Transaction

Transaction

Transaction Transaction

Allocate Connect "A"
Connect "A"

Allocate Statement "A1"
Allocate Statement "A2"

Allocate Connect "B"
Connect "B"

Allocate Statement "B1"
Allocate Statement "B2"

Execute Statement "A1"
Execute Statement "A2"

Commit "A"

Execute Statement "B2"
Execute Statement "B1"

Commit "B"

Execute Statement "A1"

Execute Statement "A2"
Commit "A"

Execute Statement "B2"

Execute Statement "B2"

Execute Statement "B1"
Commit "B"

Initialize two connections.
Two statement handles
per connection.

Figure

10.

Multiple

connections

with

concurrent

transactions

130

CLI

Guide

and

Reference,

Volume

1

Restrictions:

Mixing

embedded

SQL

and

CLI/ODBC

calls

in

a

multisite

update

environment

is

supported,

but

all

the

same

restrictions

of

writing

mixed

applications

are

imposed.

Related

concepts:

v

“Considerations

for

mixing

embedded

SQL

and

DB2

CLI”

on

page

181

v

“DB2

Universal

Database

transaction

manager

configuration”

in

the

Administration

Guide:

Planning

v

“Multisite

updates

(two

phase

commit)

in

CLI

applications”

on

page

127

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLEndTran

function

(CLI)

-

End

transactions

of

a

connection

or

an

Environment”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

Coordinated
Transaction

Coordinated
Transaction

Allocate Connect "A"
Connect "A"
(SQL_COORDINATED_TRANS,
Syncpoint SQL_TWOPHASE)

Allocate Environment
Set Environment Attributes

(SQL_ATTR_CONNECTTYPE,
SQL_ATTR_SYNC_POINT)

Allocate Statement "A1"
Allocate Statement "A2"

Allocate Statement "B1"
Allocate Statement "B2"

Allocate Connect "B"
Connect "B"

(SQL_COORDINATED_TRANS,
Syncpoint SQL_TWOPHASE)

Execute Statement "A1"
Execute Statement "A2"

Execute Statement "B1"
Execute Statement "B2"

Commit

Execute Statement "B2"
Execute Statement "A1"

Execute Statement "B2"
Execute Statement "A2"

Commit

Execute Statement "B1"

Initialize two connections.
Two statement handles
per connection.

Figure

11.

Multiple

connections

with

coordinated

transactions

Chapter

11.

Multisite

updates

(two

phase

commit)

131

v

“SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“CONNECT

(Type

2)

statement”

in

the

SQL

Reference,

Volume

2

v

“Environment

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“ConnectType

CLI/ODBC

configuration

keyword”

on

page

272

v

“DisableMultiThread

CLI/ODBC

configuration

keyword”

on

page

286

Related

samples:

v

“dbmcon.c

--

How

to

use

multiple

databases”

v

“dbmconx.c

--

How

to

use

multiple

databases

with

embedded

SQL.”

Microsoft

Transaction

Server

(MTS)

as

transaction

monitor

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager

DB2®

UDB

can

be

fully

integrated

with

Microsoft®

Transaction

Server

(MTS)

Version

2.0

on

Windows®

NT

or

Microsoft

Component

Services

(COM+)

on

Windows

2000

and

Windows

XP

to

coordinate

two-phase

commit

with

multiple

DB2

UDB,

zSeries™,

and

iSeries™

database

servers,

as

well

as

with

other

resource

managers

that

comply

with

MTS

or

COM+

specifications.

Prerequisites:

To

use

MTS

or

COM+

distributed

transaction

support,

ensure

that

the

following

requirements

are

met

for

the

Windows

machine

where

the

DB2

client

is

installed:

v

Windows

NT®

with

MTS

at

Version

2.0:

Microsoft

Hotfix

0772

or

later

MTS

Version

2.0

for

Windows

NT

is

available

as

part

of

the

Windows

NT

4.0

Option

Pack.

You

can

download

the

Option

Pack

from:

http://www.microsoft.com/ntserver/nts/downloads/recommended/NT4OptPk/

v

Windows

2000:

Service

Pack

3

or

later

For

DB2

CLI

applications

using

MTS

or

COM+:

v

Do

not

change

the

default

value

of

the

SQL_ATTR_CONNECTION_POOLING

CLI

environment

attribute

(default

SQL_CP_OFF)

v

The

installation

of

the

DB2

ODBC

driver

on

Windows

operating

systems

will

automatically

add

a

new

keyword

to

the

registry:

HKEY_LOCAL_MACHINE\software\ODBC\odbcinit.ini\IBM

DB2

ODBC

Driver:

Keyword

Value

Name:

CPTimeout

Data

Type:

REG_SZ

Value:

60

Supported

DB2

database

servers:

The

following

servers

are

supported

for

multisite

update

using

MTS

or

COM+

coordinated

transactions:

v

DB2

Universal

Database™

Enterprise

Server

Edition

(ESE)

Note:

Loosely

coupled

global

transactions

for

MTS

or

COM+

are

not

supported

in

massively

parallel

processing

(MPP)

environments.

Loosely

coupled

global

transactions

exist

when

each

of

a

number

of

application

processes

132

CLI

Guide

and

Reference,

Volume

1

|

|

|
|
|
|
|

|

|
|

|

|
|

|

|

|

|
|

|
|

|
|
|
|

|

|
|

|

|
|
|

accesses

resource

managers

as

if

it

was

in

a

separate

global

transaction,

however,

those

application

processes

are

under

the

coordination

of

the

transaction

manager.

Each

application

process

will

have

its

own

transaction

branch

within

a

resource

manager.

When

a

commit

or

rollback

is

requested

by

any

one

of

the

application

processes,

transaction

manager,

or

resource

manager,

the

transaction

branches

are

completed

altogether.

It

is

the

application’s

responsibility

to

ensure

that

resource

deadlock

does

not

occur

among

the

branches.

(Tightly

coupled

global

transactions

exist

when

multiple

application

processes

take

turns

to

do

work

under

the

same

transaction

branch

in

a

resource

manager.

To

the

resource

manager,

the

two

application

processes

are

a

single

entity.

The

resource

manager

must

ensure

that

resource

deadlock

does

not

occur

within

the

transaction

branch.)

v

DB2

Universal

Database

for

z/OS™

v

DB2

Universal

Database

for

iSeries

v

DB2

Server

for

VSE

&

VM

Installation

and

configuration

considerations:

The

following

is

a

summary

of

installation

and

configuration

considerations

for

using

MTS

(COM+

should

be

installed

by

default

as

part

of

Windows

2000):

v

Install

MTS

and

the

DB2

client

on

the

same

machine

where

the

MTS

application

runs.

v

If

host

or

iSeries

database

servers

are

involved

in

a

multisite

update:

1.

Install

DB2

Connect™

functionality

(either

DB2

Connect

Enterprise

Edition

(EE)

or

DB2

UDB

Enterprise

Server

Edition

(ESE)

with

the

DB2

Connect

functionality

installed)

on

your

local

machine

or

on

a

remote

machine.

DB2

Connect

functionality

allows

host

or

iSeries

database

servers

to

participate

in

a

multisite

update

transaction.

2.

Ensure

that

your

DB2

Connect

server

is

enabled

for

multisite

update.

Related

concepts:

v

“X/Open

distributed

transaction

processing

model”

in

the

Administration

Guide:

Planning

v

“MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout”

on

page

134

v

“Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)”

on

page

134

v

“ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)”

on

page

135

Related

tasks:

v

“Installing

DB2

Connect

Enterprise

Edition

(Windows)”

in

the

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition

Related

reference:

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“DB2

Connect

product

offerings”

in

the

DB2

Connect

User’s

Guide

Chapter

11.

Multisite

updates

(two

phase

commit)

133

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|
|

|
|

|

|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Environment

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)

Loosely

coupled

global

transactions

exist

when

each

of

a

number

of

application

processes

accesses

resource

managers

as

if

it

was

in

a

separate

global

transaction,

however,

those

application

processes

are

under

the

coordination

of

the

transaction

manager.

Each

application

process

will

have

its

own

transaction

branch

within

a

resource

manager.

When

a

commit

or

rollback

is

requested

by

any

one

of

the

application

processes,

transaction

manager,

or

resource

manager,

the

transaction

branches

are

completed

altogether.

It

is

the

application’s

responsibility

to

ensure

that

resource

deadlock

does

not

occur

among

the

branches.

DB2®

Universal

Database

Version

8

supports

loosely

coupled

global

transactions

for

COM+

objects,

with

no

lock

timeout

or

deadlock,

given

the

following

restrictions:

v

Data

definition

language

(DDL)

is

supported

if

it

is

executed

on

a

single

branch

while

no

other

loosely

coupled

transactions

are

active.

If

a

loosely

coupled

branch

attempts

to

start

while

a

single

branch

executing

DDL

is

active,

the

loosely

coupled

branch

will

be

rejected.

Conversely,

if

there

is

at

least

one

active

loosely

coupled

transaction,

then

any

attempts

to

execute

DDL

on

another

branch

will

be

rejected.

v

Loosely

coupled

global

transactions

are

not

supported

on

massively

parallel

processing

(MPP)

environments.

In

an

MPP

environment,

each

global

transaction

is

treated

in

isolation,

where

deadlock

or

timeout

might

occur.

v

Savepoint

processing

and

SQL

statements

are

executed

serially

across

multiple

connections.

v

When

an

implicit

rollback

has

been

performed

on

one

connection,

all

branches

on

other

connections

that

are

related

to

the

loosely

coupled

transaction

will

return

SQL0998N,

with

reason

code:

225

and

subcode

4:

″Only

rollbacks

are

allowed

for

this

transaction″.

Related

concepts:

v

“X/Open

distributed

transaction

processing

model”

in

the

Administration

Guide:

Planning

v

“MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager”

on

page

132

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout”

on

page

134

v

“ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)”

on

page

135

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout

Transaction

timeout

can

be

set

through

the

following

tools

when

MTS

or

COM+

is

used:

v

MTS

(Microsoft

Windows®

NT):

MTS

Explorer

tool

134

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|

v

COM+

(Microsoft

Windows

2000

and

XP):

Component

Services,

located

under

Administrative

Tools

of

the

Windows

Control

Panel

If

a

transaction

takes

longer

than

the

transaction

timeout

value

(the

default

value

is

60

seconds),

MTS

or

COM+

will

asynchronously

issue

an

abort

to

all

Resource

Managers

involved,

and

the

entire

transaction

is

aborted.

The

abort

is

translated

into

a

DB2®

rollback

request

at

the

server.

The

rollback

request

is

serialized

on

the

connection,

on

servers

other

than

DB2

for

z/OS™

and

DB2

for

iSeries™,

to

guarantee

the

integrity

of

the

data

on

the

database

server.

When

the

server

is

DB2

for

z/OS

or

DB2

for

iSeries,

then

the

connection

should

be

defined

with

the

INTERRUPT_ENABLED

option

in

the

DCS

catalog

entry

so

that

when

a

timeout

occurs,

the

connection

from

the

DB2

Connect

server

to

the

z/OS

or

iSeries

server

will

be

disconnected,

forcing

a

rollback

on

the

z/OS

or

iSeries

server.

As

a

result:

v

If

the

connection

is

idle,

the

rollback

is

executed

immediately.

v

If

a

long-running

SQL

statement

is

processing,

the

rollback

request

waits

until

the

SQL

statement

finishes.

Related

concepts:

v

“X/Open

distributed

transaction

processing

model”

in

the

Administration

Guide:

Planning

v

“DCS

directory

values”

in

the

DB2

Connect

User’s

Guide

v

“MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Processing

of

Interrupt

Requests”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager”

on

page

132

v

“Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)”

on

page

134

v

“ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)”

on

page

135

ODBC

and

ADO

connection

pooling

with

Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

Connection

pooling

enables

an

application

to

use

a

connection

from

a

pool

of

connections,

so

that

the

connection

does

not

need

to

be

re-established

for

each

use.

Once

a

connection

has

been

created

and

placed

in

a

pool,

an

application

can

reuse

that

connection

without

performing

a

complete

connection

process.

The

connection

is

pooled

when

the

application

disconnects

from

the

data

source

and

will

be

given

to

a

new

connection

whose

attributes

are

the

same.

ODBC

connection

pooling:

Connection

pooling

has

been

a

feature

of

the

ODBC

Driver

Manager

since

ODBC

2.x.

With

the

latest

ODBC

Driver

Manager

(version

3.5)

available

as

part

of

the

Chapter

11.

Multisite

updates

(two

phase

commit)

135

|
|

|
|
|

|
|
|
|
|
|
|
|

|

|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|
|
|
|
|
|

|

|
|

Microsoft®

Data

Access

Components

(MDAC)

download,

connection

pooling

has

some

configuration

changes

and

new

behavior

for

ODBC

connections

of

transactional

MTS

COM+

objects.

The

ODBC

Driver

Manager

3.5

requires

that

the

ODBC

driver

register

a

new

keyword

in

the

registry

before

it

allows

connection

pooling

to

be

activated.

The

keyword

is:

Key

Name:

SOFTWARE\ODBC\ODBCINST.INI\IBM

DB2®

ODBC

DRIVER

Name:

CPTimeout

Type:

REG_SZ

Data:

60

The

DB2

ODBC

driver

for

the

Windows®

operating

system

fully

supports

connection

pooling;

therefore,

this

keyword

is

registered.

The

default

value

of

60

means

that

the

connection

will

be

pooled

for

60

seconds

before

it

is

disconnected.

In

a

busy

environment,

it

is

better

to

increase

the

CPTimeout

value

to

a

large

number

to

prevent

too

many

physical

connects

and

disconnects,

because

these

consume

large

amounts

of

system

resource,

including

system

memory

and

communications

stack

resources.

In

addition,

to

ensure

that

the

same

connection

is

used

between

objects

in

the

same

transaction

in

a

multiple

processor

machine,

you

must

turn

off

″multiple

pool

per

processor″

support.

To

do

this,

copy

the

following

registry

setting

into

a

file

called

odbcpool.reg,

save

it

as

a

plain

text

file,

and

issue

the

command

odbcpool.reg.

The

Windows

operating

system

will

import

this

registry

setting.

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC

Connection

Pooling]

"NumberOfPools"="1"

Without

this

keyword

set

to

1,

MTS

or

COM+

may

pool

connections

for

the

same

transaction

in

different

pools,

and

hence

may

not

reuse

the

same

connection.

ADO

connection

pooling:

If

the

MTS

or

COM+

objects

use

ADO

to

access

the

database,

you

must

turn

off

the

OLE

DB

resource

pooling

so

that

the

Microsoft

OLE

DB

provider

for

ODBC

(MSDASQL)

will

not

interfere

with

ODBC

connection

pooling.

This

feature

was

initialized

to

OFF

in

ADO

2.0,

but

is

initialized

to

ON

in

ADO

2.1.

To

turn

OLE

DB

resource

pooling

off,

copy

the

following

lines

into

a

file

called

oledb.reg,

save

it

as

a

plain

text

file,

and

issue

the

command

oledb.reg.

The

Windows

operating

system

will

import

these

registry

settings.

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{c8b522cb-5cf3-11ce-ade5-00aa0044773d}]

@="MSDASQL"

"OLEDB_SERVICES"=dword:fffffffc

Related

concepts:

v

“X/Open

distributed

transaction

processing

model”

in

the

Administration

Guide:

Planning

v

“MTS

and

COM+

Distributed

Transaction

Support

and

the

IBM

OLE

DB

Provider”

in

the

Application

Development

Guide:

Programming

Client

Applications

136

CLI

Guide

and

Reference,

Volume

1

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

as

transaction

manager”

on

page

132

v

“Microsoft

Transaction

Server

(MTS)

and

Microsoft

Component

Services

(COM+)

transaction

timeout”

on

page

134

v

“Loosely

coupled

support

with

Microsoft

Component

Services

(COM+)”

on

page

134

Process-based

XA-compliant

Transaction

Program

Monitor

(XA

TP)

programming

considerations

for

CLI

applications

Process-based

XA

TPs,

such

as

CICS®

and

Encina®,

start

up

one

application

server

per

process.

In

each

application-server

process,

the

connections

are

already

established

using

the

XA

API

(xa_open).

This

section

describes

the

environment

configurations

and

considerations

for

running

DB2

CLI/ODBC

applications

under

this

environment.

Configuration:

The

XA

Transaction

Manager

must

be

set

up

according

to

the

configuration

considerations

for

XA

transaction

managers.

Note:

Setting

the

CLI/ODBC

configuration

keywords

for

connections

is

no

longer

required

when

in

an

XA

Transactional

processing

environment.

Programming

considerations:

DB2

CLI/ODBC

applications

written

for

this

environment

must

complete

the

following

steps:

v

The

application

must

first

call

SQLConnect()

or

SQLDriverConnect()

to

associate

the

TM-opened

connections

with

the

CLI/ODBC

connection

handle.

The

data

source

name

must

be

specified.

User

ID

and

Password

are

optional.

v

The

application

must

call

the

XA

TM

to

do

a

commit

or

rollback.

As

a

result,

since

the

CLI/ODBC

driver

does

not

know

that

the

transaction

has

ended,

the

application

should

do

the

following

before

exiting:

–

Drop

all

CLI/ODBC

statement

handles.

–

Free

up

the

connection

handle

by

calling

SQLDisconnect()

and

SQLFreeHandle().

The

actual

database

connection

will

not

be

disconnected

until

the

XA

TM

performs

an

xa_close.

Restrictions:

Mixing

embedded

SQL

and

CLI/ODBC

calls

in

a

multisite

update

environment

is

supported,

but

all

the

same

restrictions

of

writing

mixed

applications

are

imposed.

Related

concepts:

v

“Considerations

for

mixing

embedded

SQL

and

DB2

CLI”

on

page

181

v

“Configuration

considerations

for

XA

transaction

managers”

in

the

Administration

Guide:

Planning

v

“DB2

as

transaction

manager

in

CLI

applications”

on

page

128

v

“Multisite

updates

(two

phase

commit)

in

CLI

applications”

on

page

127

Related

reference:

Chapter

11.

Multisite

updates

(two

phase

commit)

137

|
|

|
|

|
|

v

“SQLConnect

function

(CLI)

-

Connect

to

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDisconnect

function

(CLI)

-

Disconnect

from

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDriverConnect

function

(CLI)

-

(Expanded)

Connect

to

a

data

source”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

in

the

CLI

Guide

and

Reference,

Volume

2

138

CLI

Guide

and

Reference,

Volume

1

Chapter

12.

Unicode

Unicode

CLI

applications

.

.

.

.

.

.

.

.

. 139

Unicode

functions

(CLI)

.

.

.

.

.

.

.

.

.

. 140

Unicode

function

calls

to

ODBC

driver

managers

141

Unicode

CLI

applications

There

are

two

main

areas

of

support

for

DB2®

CLI

Unicode

applications:

v

The

addition

of

a

set

of

functions

that

accept

Unicode

string

arguments

in

place

of

ANSI

string

arguments.

v

The

addition

of

new

C

and

SQL

data

types

to

describe

Unicode

data.

To

be

considered

a

Unicode

application,

the

application

must

connect

to

the

database

using

either

SQLConnectW()

or

SQLDriverConnectW().

This

will

ensure

that

CLI

will

consider

Unicode

the

preferred

method

of

communication

between

itself

and

the

database.

ODBC

adds

types

to

the

set

of

C

and

SQL

types

that

already

exist

to

accommodate

Unicode,

and

CLI

uses

these

additional

types

accordingly.

The

new

C

type,

SQL_C_WCHAR,

indicates

that

the

C

buffer

contains

Unicode

data.

The

DB2

CLI/ODBC

driver

considers

all

Unicode

data

exchanged

with

the

application

to

be

UCS-2

in

native-endian

format.

The

new

SQL

types,

SQL_WCHAR,

SQL_WVARCHAR,

and

SQL_WLONGVARCHAR,

indicate

that

a

particular

column

or

parameter

marker

contains

Unicode

data.

For

DB2

Unicode

databases,

graphic

columns

are

described

using

the

new

types.

Conversion

is

allowed

between

SQL_C_WCHAR

and

SQL_CHAR,

SQL_VARCHAR,

SQL_LONGVARCHAR

and

SQL_CLOB,

as

well

as

with

the

graphic

data

types.

Note:

UCS-2

is

a

fixed-length

character

encoding

scheme

that

uses

2

bytes

to

represent

each

character.

When

referring

to

the

number

of

characters

in

a

UCS-2

encoded

string,

the

count

is

simply

the

number

of

SQLWCHAR

elements

needed

to

store

the

string.

Obsolete

CLI/ODBC

keyword

values:

Before

Unicode

applications

were

supported,

applications

that

were

written

to

work

with

single-byte

character

data

could

be

made

to

work

with

double-byte

graphic

data

by

a

series

of

DB2

CLI

configuration

keywords,

such

as

Graphic=1,2

or

3,

Patch2=7.

These

workarounds

presented

graphic

data

as

character

data,

and

also

affected

the

reported

length

of

the

data.

These

keywords

are

no

longer

required

for

Unicode

applications,

and

should

not

be

used

due

to

the

risk

of

potential

side

effects.

If

it

is

not

known

if

a

particular

application

is

a

Unicode

application,

try

without

any

of

the

keywords

that

affect

the

handling

of

graphic

data.

Literals

in

unicode

databases:

In

non-Unicode

databases,

data

in

LONG

VARGRAPHIC

and

LONG

VARCHAR

columns

cannot

be

compared.

Data

in

GRAPHIC/VARGRAPHIC

and

CHAR/VARCHAR

columns

can

only

be

compared,

or

assigned

to

each

other,

using

explicit

cast

functions

since

no

implicit

code

page

conversion

is

supported.

This

includes

GRAPHIC/VARGRAPHIC

and

CHAR/VARCHAR

literals

where

a

©

Copyright

IBM

Corp.

1993

-

2004

139

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

GRAPHIC/VARGRAPHIC

literal

is

differentiated

from

a

CHAR/VARCHAR

literal

by

a

G

prefix.

For

Unicode

databases,

casting

between

GRAPHIC/VARGRAPHIC

and

CHAR/VARCHAR

literals

is

not

required.

Also,

a

G

prefix

is

not

required

in

front

of

a

GRAPHIC/VARGRAPHIC

literal.

Provided

at

least

one

of

the

arguments

is

a

literal,

implicit

conversions

occur.

This

allows

literals

with

or

without

the

G

prefix

to

be

used

within

statements

that

use

either

SQLPrepareW()

or

SQLExecDirect().

Literals

for

LONG

VARGRAPHICs

still

must

have

a

G

prefix.

Related

concepts:

v

“Unicode

functions

(CLI)”

on

page

140

v

“Applications

Connected

to

Unicode

Databases”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Unicode

function

calls

to

ODBC

driver

managers”

on

page

141

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“C

data

types

for

CLI

applications”

on

page

42

v

“Patch2

CLI/ODBC

configuration

keyword”

on

page

305

Unicode

functions

(CLI)

DB2

CLI

Unicode

functions

accept

Unicode

string

arguments

in

place

of

ANSI

string

arguments.

The

Unicode

string

arguments

must

be

in

UCS-2

encoding

(native-endian

format).

ODBC

API

functions

have

suffixes

to

indicate

the

format

of

their

string

arguments:

those

that

accept

Unicode

end

in

W,

and

those

that

accept

ANSI

have

no

suffix

(ODBC

adds

equivalent

functions

with

names

that

end

in

A,

but

these

are

not

offered

by

DB2

CLI).

The

following

is

a

list

of

functions

available

in

DB2

CLI

which

have

both

ANSI

and

Unicode

versions:

SQLBrowseConnect

SQLForeignKeys

SQLPrimaryKeys

SQLColAttribute

SQLGetConnectAttr

SQLProcedureColumns

SQLColAttributes

SQLGetConnectOption

SQLProcedures

SQLColumnPrivileges

SQLGetCursorName

SQLSetConnectAttr

SQLColumns

SQLGetDescField

SQLSetConnectOption

SQLConnect

SQLGetDescRec

SQLSetCursorName

SQLDataSources

SQLGetDiagField

SQLSetDescField

SQLDescribeCol

SQLGetDiagRec

SQLSetStmtAttr

SQLDriverConnect

SQLGetInfo

SQLSpecialColumns

SQLError

SQLGetStmtAttr

SQLStatistics

SQLExecDirect

SQLNativeSQL

SQLTablePrivileges

SQLExtendedPrepare

SQLPrepare

SQLTables

Unicode

functions

that

have

arguments

which

are

always

the

length

of

strings

interpret

these

arguments

as

the

number

of

SQLWCHAR

elements

needed

to

store

the

string.

For

functions

that

return

length

information

for

server

data,

the

display

size

and

precision

are

again

described

in

terms

of

the

number

of

SQLWCHAR

elements

used

to

store

them.

When

the

length

(transfer

size

of

the

data)

could

refer

to

string

or

non-string

data,

it

is

interpreted

as

the

number

of

bytes

needed

to

store

the

data.

For

example,

SQLGetInfoW()

will

still

take

the

length

as

the

number

of

bytes,

but

SQLExecDirectW()

will

use

the

number

of

SQLWCHAR

elements.

Consider

a

single

character

from

the

UTF-16

extended

character

set

(UTF-16

is

an

extended

character

set

of

UCS-2;

Microsoft®

Windows®

2000

and

Microsoft

Windows

XP

use

UTF-16).

Microsoft

Windows

2000

will

use

two

SQL_C_WCHAR

elements,

which

is

equivalent

to

4

bytes,

to

store

this

single

character.

The

character

therefore

has

a

140

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

display

size

of

1,

a

string

length

of

2

(when

using

SQL_C_WCHAR),

and

a

byte

count

of

4.

CLI

will

return

data

from

result

sets

in

either

Unicode

or

ANSI,

depending

on

the

application’s

binding.

If

an

application

binds

to

SQL_C_CHAR,

the

driver

will

convert

SQL_WCHAR

data

to

SQL_CHAR.

An

ODBC

driver

manager,

if

used,

maps

SQL_C_WCHAR

to

SQL_C_CHAR

for

ANSI

drivers

but

does

no

mapping

for

Unicode

drivers.

ANSI

to

Unicode

function

mappings:

The

syntax

for

a

DB2

CLI

Unicode

function

is

the

same

as

the

syntax

for

its

corresponding

ANSI

function,

except

that

SQLCHAR

parameters

are

defined

as

SQLWCHAR.

Character

buffers

defined

as

SQLPOINTER

in

the

ANSI

syntax

can

be

defined

as

either

SQLCHAR

or

SQLWCHAR

in

the

Unicode

function.

Refer

to

the

ANSI

version

of

the

CLI

Unicode

functions

for

ANSI

syntax

details.

Related

concepts:

v

“Unicode

CLI

applications”

on

page

139

v

“Unicode

function

calls

to

ODBC

driver

managers”

on

page

141

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“C

data

types

for

CLI

applications”

on

page

42

v

“CLI

and

ODBC

function

summary”

in

the

CLI

Guide

and

Reference,

Volume

2

Unicode

function

calls

to

ODBC

driver

managers

ODBC-compliant

applications

can

access

a

DB2®

database

through

the

DB2

CLI/ODBC

driver

in

one

of

two

ways:

linking

to

the

DB2

CLI/ODBC

driver

library

or

linking

to

the

ODBC

driver

manager

library.

This

topic

discusses

CLI

applications

that

link

to

the

ODBC

driver

manager

library.

v

Direct

access

-

An

application

links

to

the

DB2

CLI/ODBC

driver

library

and

makes

calls

to

exported

CLI/ODBC

functions.

Unicode

applications

accessing

the

DB2

CLI/ODBC

driver

directly

should

access

and

perform

transactions

against

the

database

using

the

CLI

Unicode

functions,

and

use

SQLWCHAR

buffers

with

the

understanding

that

all

Unicode

data

is

UCS-2.

To

identify

itself

as

a

Unicode

application,

the

application

must

connect

to

the

database

using

either

SQLConnectW()

or

SQLDriverConnectW().

v

Indirect

access

-

An

application

links

to

an

ODBC

driver

manager

library

and

makes

calls

to

standard

ODBC

functions.

The

ODBC

driver

manager

then

loads

the

DB2

CLI/ODBC

driver

and

calls

exported

ODBC

functions

on

behalf

of

the

application.

The

data

passed

to

the

DB2

CLI/ODBC

driver

from

the

application

may

be

converted

by

the

ODBC

driver

manager.

An

application

identifies

itself

to

an

ODBC

driver

manager

as

a

Unicode

application

by

calling

SQLConnectW()

or

SQLDriverConnectW().

When

connecting

to

a

data

source,

the

ODBC

driver

manager

checks

to

see

if

the

requested

driver

exports

the

SQLConnectW()

function.

If

the

function

is

supported,

the

ODBC

driver

is

considered

a

Unicode

driver,

and

all

subsequent

calls

in

the

application

to

ODBC

functions

are

routed

to

the

functions’

Unicode

equivalents

(identified

by

the

’W’

suffix;

for

example,

SQLConnectW())

by

the

ODBC

driver

manager.

If

the

application

calls

Unicode

functions,

no

string

conversion

is

necessary,

and

the

ODBC

driver

manager

calls

the

Unicode

functions

directly.

If

the

application

calls

ANSI

functions,

the

ODBC

driver

manager

converts

all

ANSI

strings

to

Unicode

strings

prior

to

calling

the

equivalent

Unicode

function.

Chapter

12.

Unicode

141

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

If

an

application

calls

Unicode

functions,

but

the

driver

does

not

export

SQLConnectW(),

then

the

ODBC

driver

manager

routes

any

Unicode

function

calls

to

their

ANSI

equivalents.

All

Unicode

strings

are

converted

by

the

ODBC

driver

manager

to

ANSI

strings

in

the

application’s

code

page

before

calling

the

equivalent

ANSI

function.

This

may

result

in

data

loss

if

the

application

uses

Unicode

characters

which

cannot

be

converted

to

the

application’s

code

page.

Various

ODBC

driver

managers

use

different

encoding

schemes

for

Unicode

strings,

depending

on

the

operating

system:

Table

11.

Unicode

string

encoding

schemes

by

operating

system

Driver

manager

Operating

system

Microsoft®

Windows®

98,

Windows

ME

and

Windows

NT®

Microsoft

Windows

2000

and

Windows

XP

UNIX®-based

Microsoft

ODBC

Driver

Manager

UCS-2

UTF-16*

not

applicable

unixODBC

Driver

Manager

UCS-2

UCS-2

UCS-2

DataDirect

Connect

for

ODBC

Driver

Manager

UCS-2

UTF-16*

UTF-8

*

UTF-16

is

a

superset

of

UCS-2

and

therefore

is

compatible

DataDirect

Connect

for

ODBC

Driver

Manager

UNIX

restrictions:

Complications

arise

when

using

the

DB2

CLI/ODBC

driver

with

the

DataDirect

Connect

for

ODBC

Driver

Manager

in

the

UNIX

environment

because

of

the

use

of

UTF-8

character

encoding

by

the

driver

manager.

UTF-8

is

a

variable

length

character

encoding

scheme

using

anywhere

from

1

to

6

bytes

to

store

characters.

UTF-8

and

UCS-2

are

not

inherently

compatible,

and

passing

UTF-8

data

to

the

DB2

CLI/ODBC

driver

(which

expects

UCS-2)

may

result

in

application

errors,

data

corruption,

or

application

exceptions.

To

avoid

this

problem,

the

DataDirect

Connect

for

ODBC

Driver

Manager

4.2

Service

Pack

2

recognizes

a

DB2

CLI/ODBC

driver

and

not

use

the

Unicode

functions,

effectively

treating

the

DB2

CLI/ODBC

driver

as

an

ANSI-only

driver.

Before

release

4.2

Service

Pack

2,

the

DataDirect

Connect

for

ODBC

Driver

Manager

had

to

be

linked

with

the

"_36"

version

of

the

DB2

CLI/ODBC

driver

which

does

not

export

the

SQLConnectW()

function.

Related

concepts:

v

“Comparison

of

DB2

CLI

and

Microsoft

ODBC”

on

page

9

v

“Unicode

functions

(CLI)”

on

page

140

v

“Unicode

CLI

applications”

on

page

139

Related

tasks:

v

“Setting

up

the

UNIX

ODBC

environment”

on

page

208

v

“Setting

up

the

unixODBC

Driver

Manager”

on

page

210

142

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|

|
|

||

|

|

|
|
|
|

|
|
||

|
|
|||

|
|
|||

|
|
|

|||

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

Chapter

13.

User-defined

types

(UDT)

Distinct

type

usage

in

CLI

applications

In

addition

to

SQL

data

types

(referred

to

as

base

SQL

data

types),

new

distinct

types

can

be

defined

by

the

user.

This

variety

of

user

defined

types

(UDTs)

shares

its

internal

representation

with

an

existing

type,

but

is

considered

to

be

a

separate

and

incompatible

type

for

most

operations.

Distinct

types

are

created

using

the

CREATE

DISTINCT

TYPE

SQL

statement.

Distinct

types

help

provide

the

strong

typing

control

needed

in

object

oriented

programming

by

ensuring

that

only

those

functions

and

operators

explicitly

defined

on

a

distinct

type

can

be

applied

to

its

instances.

Applications

continue

to

work

with

C

data

types

for

application

variables,

and

only

need

to

consider

the

distinct

types

when

constructing

SQL

statements.

This

means:

v

All

SQL

to

C

data

type

conversion

rules

that

apply

to

the

built-in

type

apply

to

distinct

types.

v

Distinct

types

will

have

the

same

default

C

Type

as

the

built-in

type.

v

SQLDescribeCol()

will

return

the

built-in

type

information.

The

user

defined

type

name

can

be

obtained

by

calling

SQLColAttribute()

with

the

input

descriptor

type

set

to

SQL_DESC_DISTINCT_TYPE.

v

SQL

predicates

that

involve

parameter

markers

must

be

explicitly

cast

to

the

distinct

type.

This

is

required

since

the

application

can

only

deal

with

the

built-in

types,

so

before

any

operation

can

be

performed

using

the

parameter,

it

must

be

cast

from

the

C

built-in

type

to

the

distinct

type;

otherwise

an

error

will

occur

when

the

statement

is

prepared.

Related

concepts:

v

“User-defined

type

(UDT)

usage

in

CLI

applications”

on

page

144

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQLColAttribute

function

(CLI)

-

Return

a

column

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CREATE

DISTINCT

TYPE

statement”

in

the

SQL

Reference,

Volume

2

v

“SQL

to

C

data

conversion

in

CLI”

on

page

339

Related

samples:

v

“dtudt.c

--

How

to

create,

use,

and

drop

user-defined

distinct

types.”

©

Copyright

IBM

Corp.

1993

-

2004

143

User-defined

type

(UDT)

usage

in

CLI

applications

User-defined

types

(UDTs)

are

database

types

defined

by

the

user

to

provide

structure

or

strong

typing

not

available

with

conventional

SQL

types.

There

are

three

varieties

of

UDT:

distinct

types,

structured

types,

and

reference

types.

A

CLI

application

may

want

to

determine

whether

a

given

database

column

is

a

UDT,

and

if

so,

the

variety

of

UDT.

The

descriptor

field

SQL_DESC_USER_DEFINED_TYPE_CODE

may

be

used

to

obtain

this

information.

When

SQL_DESC_USER_DEFINED_TYPE_CODE

is

retrieved

using

SQLColAttribute()

or

directly

from

the

IPD

using

SQLGetDescField(),

it

will

have

one

of

the

following

numeric

values:

SQL_TYPE_BASE

(this

is

a

regular

SQL

type,

not

a

UDT)

SQL_TYPE_DISTINCT

(this

value

indicates

that

the

column

is

a

distinct

type)

SQL_TYPE_STRUCTURED

(this

value

indicates

that

the

column

is

a

structured

type)

SQL_TYPE_REFERENCE

(this

value

indicates

that

the

column

is

a

reference

type)

Additionally,

the

following

descriptor

fields

may

be

used

to

obtain

the

type

names:

v

SQL_DESC_REFERENCE_TYPE

contains

the

name

of

the

reference

type,

or

an

empty

string

if

the

column

is

not

a

reference

type.

v

SQL_DESC_STRUCTURED_TYPE

contains

the

name

of

the

structured

type,

or

an

empty

string

if

the

column

is

not

a

structured

type.

v

SQL_DESC_USER_TYPE

or

SQL_DESC_DISTINCT_TYPE

contains

the

name

of

the

distinct

type,

or

an

empty

string

if

the

column

is

not

a

distinct

type.

The

descriptor

fields

listed

above

return

the

schema

as

part

of

the

name.

If

the

schema

is

less

than

8

letters,

it

is

padded

with

blanks.

The

connection

attribute

SQL_ATTR_TRANSFORM_GROUP

allows

an

application

to

set

the

transform

group,

and

is

an

alternative

to

the

SQL

statement

SET

CURRENT

DEFAULT

TRANSFORM

GROUP.

A

CLI

application

may

not

wish

to

repeatedly

obtain

the

value

of

the

SQL_DESC_USER_DEFINED_TYPE_CODE

descriptor

field

to

determine

if

columns

contain

UDTs.

For

this

reason,

there

is

an

attribute

called

SQL_ATTR_RETURN_USER_DEFINED_TYPES

at

both

the

connection

and

the

statement

handle

level.

When

set

to

SQL_TRUE

using

SQLSetConnectAttr(),

CLI

returns

SQL_DESC_USER_DEFINED_TYPE

where

you

would

normally

find

SQL

types

in

results

from

calls

to

SQLColAttribute(),

SQLDescribeCol()

and

SQLGetDescField().

This

allows

the

application

to

check

for

this

special

type,

and

then

do

special

processing

for

UDTs.

The

default

value

for

this

attribute

is

SQL_FALSE.

When

the

SQL_ATTR_RETURN_USER_DEFINED_TYPES

attribute

is

set

to

SQL_TRUE,

the

descriptor

field

SQL_DESC_TYPE

will

no

longer

return

the

″base″

SQL

type

of

the

UDT,

that

is,

the

SQL

type

that

the

UDT

is

based

on

or

transforms

to.

For

this

reason,

the

descriptor

field

SQL_DESC_BASE_TYPE

will

always

return

the

base

type

of

UDTs,

and

the

SQL

type

of

normal

columns.

This

field

simplifies

modules

of

a

program

that

do

not

deal

specifically

with

UDTs

that

would

otherwise

have

to

change

the

connection

attribute.

Note

that

SQLBindParameter()

will

not

allow

you

to

bind

a

parameter

of

the

type

SQL_USER_DEFINED_TYPE.

You

must

still

bind

parameters

using

the

base

SQL

144

CLI

Guide

and

Reference,

Volume

1

type,

which

you

can

obtain

using

the

descriptor

field

SQL_DESC_BASE_TYPE.

For

example,

here

is

the

SQLBindParameter()

call

used

when

binding

to

a

column

with

a

distinct

type

based

on

SQL_VARCHAR:

sqlrc

=

SQLBindParameter

(hstmt,

2,

SQL_PARAM_INPUT,

SQL_C_CHAR,

SQL_VARCHAR,

30,

0,

&c2,

30,

NULL);

Related

concepts:

v

“Distinct

type

usage

in

CLI

applications”

on

page

143

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“SQLColAttribute

function

(CLI)

-

Return

a

column

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CREATE

DISTINCT

TYPE

statement”

in

the

SQL

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dtudt.c

--

How

to

create,

use,

and

drop

user-defined

distinct

types.”

v

“udfcli.c

--

How

to

work

with

different

types

of

user-defined

functions

(UDFs)”

Chapter

13.

User-defined

types

(UDT)

145

146

CLI

Guide

and

Reference,

Volume

1

Chapter

14.

Descriptors

Descriptors

in

CLI

applications

.

.

.

.

.

.

. 147

Consistency

checks

for

descriptors

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Descriptor

allocation

and

freeing

.

.

.

.

.

.

. 151

Descriptor

manipulation

with

descriptor

handles

in

CLI

applications

.

.

.

.

.

.

.

.

.

.

.

. 154

Descriptor

manipulation

without

using

descriptor

handles

in

CLI

applications

.

.

.

.

.

.

.

.

. 156

Descriptors

in

CLI

applications

DB2

CLI

stores

information

(data

types,

size,

pointers,

and

so

on)

about

columns

in

a

result

set,

and

parameters

in

an

SQL

statement.

The

bindings

of

application

buffers

to

columns

and

parameters

must

also

be

stored.

Descriptors

are

a

logical

view

of

this

information,

and

provide

a

way

for

applications

to

query

and

update

this

information.

Many

CLI

functions

make

use

of

descriptors,

but

the

application

itself

does

not

need

to

manipulate

them

directly.

For

instance:

v

When

an

application

binds

column

data

using

SQLBindCol(),

descriptor

fields

are

set

that

completely

describe

the

binding.

v

A

number

of

statement

attributes

correspond

to

the

header

fields

of

a

descriptor.

In

this

case

you

can

achieve

the

same

effect

calling

SQLSetStmtAttr()

as

calling

the

corresponding

function

SQLSetDescField()

that

sets

the

values

in

the

descriptor

directly.

Although

no

database

operations

require

direct

access

to

descriptors,

there

are

situations

where

working

directly

with

the

descriptors

will

be

more

efficient

or

result

in

simpler

code.

For

instance,

a

descriptor

that

describes

a

row

fetched

from

a

table

can

then

be

used

to

describe

a

row

inserted

back

into

the

table.

There

are

four

types

of

descriptors:

Application

Parameter

Descriptor

(APD)

Describes

the

application

buffers

(pointers,

data

types,

scale,

precision,

length,

maximum

buffer

length,

and

so

on)

that

are

bound

to

parameters

in

an

SQL

statement.

If

the

parameters

are

part

of

a

CALL

statement

they

may

be

input,

output,

or

both.

This

information

is

described

using

the

application’s

C

data

types.

Application

Row

Descriptor

(ARD)

Describes

the

application

buffers

bound

to

the

columns.

The

application

may

specify

different

data

types

from

those

in

the

implementation

row

descriptor

(IRD)

to

achieve

data

conversion

of

column

data.

This

descriptor

reflects

any

data

conversion

that

the

application

may

specify.

Implementation

Parameter

Descriptor

(IPD)

Describes

the

parameters

in

the

SQL

statement

(SQL

type,

size,

precision,

and

so

on).

v

If

the

parameter

is

used

as

input,

this

describes

the

SQL

data

that

the

database

server

will

receive

after

DB2

CLI

has

performed

any

required

conversion.

©

Copyright

IBM

Corp.

1993

-

2004

147

v

If

the

parameter

is

used

as

output,

this

describes

the

SQL

data

before

DB2

CLI

performs

any

required

conversion

to

the

application’s

C

data

types.

Implementation

Row

Descriptor

(IRD)

Describes

the

row

of

data

from

the

result

set

before

DB2

CLI

performs

any

required

data

conversion

to

the

application’s

C

data

types.

The

only

difference

between

the

four

types

of

descriptors

described

above

is

how

they

are

used.

One

of

the

benefits

of

descriptors

is

that

a

single

descriptor

can

be

used

to

serve

multiple

purposes.

For

instance,

a

row

descriptor

in

one

statement

can

be

used

as

a

parameter

descriptor

in

another

statement.

As

soon

as

a

descriptor

exists,

it

is

either

an

application

descriptor

or

an

implementation

descriptor.

This

is

the

case

even

if

the

descriptor

has

not

yet

been

used

in

a

database

operation.

If

the

descriptor

is

allocated

by

the

application

using

SQLAllocHandle()

then

it

is

an

application

descriptor.

Values

stored

in

a

descriptor:

Each

descriptor

contains

both

header

fields

and

record

fields.

These

fields

together

completely

describe

the

column

or

parameter.

Header

fields:

Each

header

field

occurs

once

in

each

descriptor.

Changing

one

of

these

fields

affects

all

columns

or

parameters.

Many

of

the

following

header

fields

correspond

to

a

statement

attribute.

Setting

the

header

field

of

the

descriptor

using

SQLSetDescField()

is

the

same

as

setting

the

corresponding

statement

attribute

using

SQLSetStmtAttr().

The

same

holds

true

for

retrieving

the

information

using

SQLGetDescField()

or

SQLGetStmtAttr().

If

your

application

does

not

already

have

a

descriptor

handle

allocated

then

it

is

more

efficient

to

use

the

statement

attribute

calls

instead

of

allocating

the

descriptor

handle,

and

then

using

the

descriptor

calls.

Table

12.

Header

fields

SQL_DESC_ALLOC_TYPE

SQL_DESC_BIND_TYPEa

SQL_DESC_ARRAY_SIZEa

SQL_DESC_COUNT

SQL_DESC_ARRAY_STATUS_PTRa

SQL_DESC_ROWS_PROCESSED_PTRa

SQL_DESC_BIND_OFFSET_PTRa

Note:

a

This

header

field

corresponds

to

a

statement

attribute.

The

descriptor

header

field

SQL_DESC_COUNT

is

the

one-based

index

of

the

highest-numbered

descriptor

record

that

contains

information

(and

not

a

count

of

the

number

of

columns

or

parameters).

DB2

CLI

automatically

updates

this

field

(and

the

physical

size

of

the

descriptor)

as

columns

or

parameters

are

bound

and

unbound.

The

initial

value

of

SQL_DESC_COUNT

is

0

when

a

descriptor

is

first

allocated.

Descriptor

records:

148

CLI

Guide

and

Reference,

Volume

1

Zero

or

more

descriptor

records

are

contained

in

a

single

descriptor.

As

new

columns

or

parameters

are

bound,

new

descriptor

records

are

added

to

the

descriptor.

When

a

column

or

parameter

is

unbound,

the

descriptor

record

is

removed.

Table

13

lists

the

fields

in

a

descriptor

record.

They

describe

a

column

or

parameter,

and

occur

once

in

each

descriptor

record.

Table

13.

Record

fields

SQL_DESC_AUTO_UNIQUE_VALUE

SQL_DESC_LOCAL_TYPE_NAME

SQL_DESC_BASE_COLUMN_NAME

SQL_DESC_NAME

SQL_DESC_BASE_TABLE_NAME

SQL_DESC_NULLABLE

SQL_DESC_CASE_SENSITIVE

SQL_DESC_OCTET_LENGTH

SQL_DESC_CATALOG_NAME

SQL_DESC_OCTET_LENGTH_PTR

SQL_DESC_CONCISE_TYPE

SQL_DESC_PARAMETER_TYPE

SQL_DESC_DATA_PTR

SQL_DESC_PRECISION

SQL_DESC_DATETIME_INTERVAL_CODE

SQL_DESC_SCALE

SQL_DESC_DATETIME_INTERVAL_PRECISION

SQL_DESC_SCHEMA_NAME

SQL_DESC_DISPLAY_SIZE

SQL_DESC_SEARCHABLE

SQL_DESC_FIXED_PREC_SCALE

SQL_DESC_TABLE_NAME

SQL_DESC_INDICATOR_PTR

SQL_DESC_TYPE

SQL_DESC_LABEL

SQL_DESC_TYPE_NAME

SQL_DESC_LENGTH

SQL_DESC_UNNAMED

SQL_DESC_LITERAL_PREFIX

SQL_DESC_UNSIGNED

SQL_DESC_LITERAL_SUFFIX

SQL_DESC_UPDATABLE

Deferred

fields:

Deferred

fields

are

created

when

the

descriptor

header

or

a

descriptor

record

is

created.

The

addresses

of

the

defined

variables

are

stored

but

not

used

until

a

later

point

in

the

application.

The

application

must

not

deallocate

or

discard

these

variables

between

the

time

it

associates

them

with

the

fields

and

the

time

CLI

reads

or

writes

them.

The

following

table

lists

the

deferred

fields

and

the

meaning

or

a

null

pointer

where

applicable:

Table

14.

Deferred

fields

Field

Meaning

of

Null

value

SQL_DESC_DATA_PTR

The

record

is

unbound.

SQL_DESC_INDICATOR_PTR

(none)

SQL_DESC_OCTET_LENGTH_PTR

(ARD

and

APD

only)

v

ARD:

The

length

information

for

that

column

is

not

returned.

v

APD:

If

the

parameter

is

a

character

string,

the

driver

assumes

that

string

is

null-terminated.

For

output

parameters,

a

null

value

in

this

field

prevents

the

driver

from

returning

length

information.

(If

the

SQL_DESC_TYPE

field

does

not

indicate

a

character-string

parameter,

the

SQL_DESC_OCTET_LENGTH_PTR

field

is

ignored.)

SQL_DESC_ARRAY_STATUS_PTR

(multirow

fetch

only)

A

multirow

fetch

failed

to

return

this

component

of

the

per-row

diagnostic

information.

SQL_DESC_ROWS_PROCESSED_PTR

(multirow

fetch

only)

(none)

Bound

descriptor

records:

Chapter

14.

Descriptors

149

The

SQL_DESC_DATA_PTR

field

in

each

descriptor

record

points

to

a

variable

that

contains

the

parameter

value

(for

APDs)

or

the

column

value

(for

ARDs).

This

is

a

deferred

field

that

defaults

to

null.

Once

the

column

or

parameter

is

bound

it

points

to

the

parameter

or

column

value.

At

this

point

the

descriptor

record

is

said

to

be

bound.

Application

Parameter

Descriptors

(APD)

Each

bound

record

constitutes

a

bound

parameter.

The

application

must

bind

a

parameter

for

each

input

and

output

parameter

marker

in

the

SQL

statement

before

the

statement

is

executed.

Application

Row

Descriptors

(ARD)

Each

bound

record

relates

to

a

bound

column.

Related

concepts:

v

“Consistency

checks

for

descriptors

in

CLI

applications”

on

page

150

v

“Descriptor

allocation

and

freeing”

on

page

151

v

“Descriptor

manipulation

with

descriptor

handles

in

CLI

applications”

on

page

154

v

“Descriptor

manipulation

without

using

descriptor

handles

in

CLI

applications”

on

page

156

Related

reference:

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

FieldIdentifier

argument

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

Consistency

checks

for

descriptors

in

CLI

applications

A

consistency

check

is

performed

automatically

whenever

an

application

sets

the

SQL_DESC_DATA_PTR

field

of

the

APD

or

ARD.

The

check

ensures

that

various

fields

are

consistent

with

each

other,

and

that

appropriate

data

types

have

been

specified.

Calling

SQLSetDescRec()

always

prompts

a

consistency

check.

If

any

of

the

fields

is

inconsistent

with

other

fields,

SQLSetDescRec()

will

return

SQLSTATE

HY021,

“Inconsistent

descriptor

information.”

To

force

a

consistency

check

of

IPD

fields,

the

application

can

set

the

SQL_DESC_DATA_PTR

field

of

the

IPD.

This

setting

is

only

used

to

force

the

consistency

check.

The

value

is

not

stored

and

cannot

be

retrieved

by

a

call

to

SQLGetDescField()

or

SQLGetDescRec().

A

consistency

check

cannot

be

performed

on

an

IRD.

Application

descriptors:

150

CLI

Guide

and

Reference,

Volume

1

Whenever

an

application

sets

the

SQL_DESC_DATA_PTR

field

of

an

APD,

ARD,

or

IPD,

DB2

CLI

checks

that

the

value

of

the

SQL_DESC_TYPE

field

and

the

values

applicable

to

that

SQL_DESC_TYPE

field

are

valid

and

consistent.

This

check

is

always

performed

when

SQLBindParameter()

or

SQLBindCol()

is

called,

or

when

SQLSetDescRec()

is

called

for

an

APD,

ARD,

or

IPD.

This

consistency

check

includes

the

following

checks

on

application

descriptor

fields:

v

The

SQL_DESC_TYPE

field

must

be

one

of

the

valid

C

or

SQL

types.

The

SQL_DESC_CONCISE_TYPE

field

must

be

one

of

the

valid

C

or

SQL

types.

v

If

the

SQL_DESC_TYPE

field

indicates

a

numeric

type,

the

SQL_DESC_PRECISION

and

SQL_DESC_SCALE

fields

are

verified

to

be

valid.

v

If

the

SQL_DESC_CONCISE_TYPE

field

is

a

time

data

type

the

SQL_DESC_PRECISION

field

is

verified

to

be

a

valid

seconds

precision.

The

SQL_DESC_DATA_PTR

field

of

an

IPD

is

not

normally

set;

however,

an

application

can

do

so

to

force

a

consistency

check

of

IPD

fields.

A

consistency

check

cannot

be

performed

on

an

IRD.

The

value

that

the

SQL_DESC_DATA_PTR

field

of

the

IPD

is

set

to

is

not

actually

stored,

and

cannot

be

retrieved

by

a

call

to

SQLGetDescField()

or

SQLGetDescRec();

the

setting

is

made

only

to

force

the

consistency

check.

Related

concepts:

v

“Descriptors

in

CLI

applications”

on

page

147

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetDescRec

function

(CLI)

-

Set

multiple

descriptor

fields

for

a

column

or

parameter

data”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

FieldIdentifier

argument

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

Descriptor

allocation

and

freeing

Descriptors

are

allocated

in

one

of

two

ways:

Implicitly

allocated

descriptors

When

a

statement

handle

is

allocated,

a

set

of

four

descriptors

are

implicitly

allocated.

When

the

statement

handle

is

freed,

all

implicitly

allocated

descriptors

on

that

handle

are

freed

as

well.

To

obtain

handles

to

these

implicitly

allocated

descriptors

an

application

can

call

SQLGetStmtAttr(),

passing

the

statement

handle

and

an

Attribute

value

of:

v

SQL_ATTR_APP_PARAM_DESC

(APD)

v

SQL_ATTR_APP_ROW_DESC

(ARD)

v

SQL_ATTR_IMP_PARAM_DESC

(IPD)

v

SQL_ATTR_IMP_ROW_DESC

(IRD)

For

example,

the

following

gives

access

to

the

statement’s

implicitly

allocated

implementation

parameter

descriptor:

Chapter

14.

Descriptors

151

/*

dbuse.

c

*/

/*

...

*/

sqlrc

=

SQLGetStmtAttr

(

hstmt,

SQL_ATTR_IMP_PARAM_DESC,

&hIPD,

SQL_IS_POINTER,

NULL);

Note:

The

descriptors

whose

handles

are

obtained

in

this

manner

will

still

be

freed

when

the

statement

for

which

they

were

allocated

is

freed.

Explicitly

allocated

descriptors

An

application

can

explicitly

allocate

application

descriptors.

It

is

not

possible,

however,

to

allocate

implementation

descriptors.

An

application

descriptor

can

be

explicitly

allocated

any

time

the

application

is

connected

to

the

database.

To

explicitly

allocate

the

application

descriptor,

call

SQLAllocHandle()

with

a

HandleType

of

SQL_HANDLE_DESC.

For

example,

the

following

call

explicitly

allocates

an

application

row

descriptor:

rc

=

SQLAllocHandle(

SQL_HANDLE_DESC,

hdbc,

&hARD

)

;

To

use

an

explicitly

allocated

application

descriptor

instead

of

a

statement’s

implicitly

allocated

descriptor,

call

SQLSetStmtAttr(),

and

pass

the

statement

handle,

the

descriptor

handle,

and

an

Attribute

value

of

either:

v

SQL_ATTR_APP_PARAM_DESC

(APD),

or

v

SQL_ATTR_APP_ROW_DESC

(ARD)

When

there

are

explicitly

and

implicitly

allocated

descriptors,

the

explicitly

specified

one

is

used.

An

explicitly

allocated

descriptor

can

be

associated

with

more

than

one

statement.

Field

initialization:

When

an

application

row

descriptor

is

allocated,

its

fields

are

initialized

to

the

values

listed

in

the

descriptor

header

and

record

field

initialization

values

documentation.

The

SQL_DESC_TYPE

field

is

set

to

SQL_DEFAULT

which

provides

for

a

standard

treatment

of

database

data

for

presentation

to

the

application.

The

application

may

specify

different

treatment

of

the

data

by

setting

fields

of

the

descriptor

record.

The

initial

value

of

the

SQL_DESC_ARRAY_SIZE

header

field

is

1.

To

enable

multirow

fetch,

the

application

can

set

this

value

in

an

ARD

to

the

number

of

rows

in

a

rowset.

There

are

no

default

values

for

the

fields

of

an

IRD.

The

fields

are

set

when

there

is

a

prepared

or

executed

statement.

The

following

fields

of

an

IPD

are

undefined

until

a

call

to

SQLPrepare()

automatically

populates

them:

v

SQL_DESC_CASE_SENSITIVE

v

SQL_DESC_FIXED_PREC_SCALE

v

SQL_DESC_TYPE_NAME

v

SQL_DESC_DESC_UNSIGNED

v

SQL_DESC_LOCAL_TYPE_NAME

Automatic

population

of

the

IPD:

152

CLI

Guide

and

Reference,

Volume

1

There

are

times

when

the

application

will

need

to

discover

information

about

the

parameters

of

a

prepared

SQL

statement.

A

good

example

is

when

a

dynamically

generated

query

is

prepared;

the

application

will

not

know

anything

about

the

parameters

in

advance.

If

the

application

enables

automatic

population

of

the

IPD,

by

setting

the

SQL_ATTR_ENABLE_AUTO_IPD

statement

attribute

to

SQL_TRUE

(using

SQLSetStmtAttr()),

then

the

fields

of

the

IPD

are

automatically

populated

to

describe

the

parameter.

This

includes

the

data

type,

precision,

scale,

and

so

on

(the

same

information

that

SQLDescribeParam()

returns).

The

application

can

use

this

information

to

determine

if

data

conversion

is

required,

and

which

application

buffer

is

the

most

appropriate

to

bind

the

parameter

to.

Automatic

population

of

the

IPD

involves

some

overhead.

If

it

is

not

necessary

for

this

information

to

be

automatically

gathered

by

the

CLI

driver

then

the

SQL_ATTR_ENABLE_AUTO_IPD

statement

attribute

should

be

set

to

SQL_FALSE.

When

automatic

population

of

the

IPD

is

active,

each

call

to

SQLPrepare()

causes

the

fields

of

the

IPD

to

be

updated.

The

resulting

descriptor

information

can

be

retrieved

by

calling

the

following

functions:

v

SQLGetDescField()

v

SQLGetDescRec()

v

SQLDescribeParam()

Freeing

of

descriptors:

Explicitly

allocated

descriptors

When

an

explicitly

allocated

descriptor

is

freed,

all

statement

handles

to

which

the

freed

descriptor

applied

automatically

revert

to

the

original

descriptors

implicitly

allocated

for

them.

Explicitly

allocated

descriptors

can

be

freed

in

one

of

two

ways:

v

by

calling

SQLFreeHandle()with

a

HandleType

of

SQL_HANDLE_DESC

v

by

freeing

the

connection

handle

that

the

descriptor

is

associated

with

Implicitly

allocated

descriptors

An

implicitly

allocated

descriptor

can

be

freed

in

one

of

the

following

ways:

v

by

calling

SQLDisconnect()

which

drops

any

statements

or

descriptors

open

on

the

connection

v

by

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_STMT

to

free

the

statement

handle

and

all

of

the

implicitly

allocated

descriptors

associated

with

the

statement

An

implicitly

allocated

descriptor

cannot

be

freed

by

calling

SQLFreeHandle()

with

a

HandleType

of

SQL_HANDLE_DESC.

Related

concepts:

v

“Descriptors

in

CLI

applications”

on

page

147

Related

reference:

v

“SQLFreeHandle

function

(CLI)

-

Free

handle

resources”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

14.

Descriptors

153

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

FieldIdentifier

argument

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

Descriptor

manipulation

with

descriptor

handles

in

CLI

applications

Descriptors

can

be

manipulated

using

descriptor

handles

or

with

DB2

CLI

functions

that

do

not

use

descriptor

handles.

This

topic

describes

accessing

descriptors

through

descriptor

handles.

The

handle

of

an

explicitly

allocated

descriptor

is

returned

in

the

OutputHandlePtr

argument

when

the

application

calls

SQLAllocHandle()

to

allocate

the

descriptor.

The

handle

of

an

implicitly

allocated

descriptor

is

obtained

by

calling

SQLGetStmtAttr()

with

either

SQL_ATTR_IMP_PARAM_DESC

or

SQL_ATTR_IMP_ROW_DESC.

Retrieval

of

descriptor

field

values:

The

DB2

CLI

function

SQLGetDescField()

can

be

used

to

obtain

a

single

field

of

a

descriptor

record.

SQLGetDescRec()

retrieves

the

settings

of

multiple

descriptor

fields

that

affect

the

data

type

and

storage

of

column

or

parameter

data.

Setting

of

descriptor

field

values:

Two

methods

are

available

for

setting

descriptor

fields:

one

field

at

a

time

or

multiple

fields

at

once.

Setting

of

individual

fields:

Some

fields

of

a

descriptor

are

read-only,

but

others

can

be

set

using

the

function

SQLSetDescField().

Refer

to

the

list

of

header

and

record

fields

in

the

descriptor

FieldIdentifier

values

documentation.

Record

and

header

fields

are

set

differently

using

SQLSetDescField()

as

follows:

Header

fields

The

call

to

SQLSetDescField()

passes

the

header

field

to

be

set

and

a

record

number

of

0.

The

record

number

is

ignored

since

there

is

only

one

header

field

per

descriptor.

In

this

case

the

record

number

of

0

does

not

indicate

the

bookmark

field.

Record

fields

The

call

to

SQLSetDescField()

passes

the

record

field

to

be

set

and

a

record

number

of

1

or

higher,

or

0

to

indicate

the

bookmark

field.

The

application

must

follow

the

sequence

of

setting

descriptor

fields

described

in

the

SQLSetDescField()

documentation

when

setting

individual

fields

of

a

descriptor.

Setting

some

fields

will

cause

DB2

CLI

to

automatically

set

other

fields.

A

consistency

check

will

take

place

after

the

application

follows

the

defined

steps.

This

will

ensure

that

the

values

in

the

descriptor

fields

are

consistent.

If

a

function

call

that

would

set

a

descriptor

fails,

the

content

of

the

descriptor

fields

are

undefined

after

the

failed

function

call.

154

CLI

Guide

and

Reference,

Volume

1

Setting

of

multiple

fields:

A

predefined

set

of

descriptor

fields

can

be

set

with

one

call

rather

than

setting

individual

fields

one

at

a

time.

SQLSetDescRec()

sets

the

following

fields

for

a

single

column

or

parameter:

v

SQL_DESC_TYPE

v

SQL_DESC_OCTET_LENGTH

v

SQL_DESC_PRECISION

v

SQL_DESC_SCALE

v

SQL_DESC_DATA_PTR

v

SQL_DESC_OCTET_LENGTH_PTR

v

SQL_DESC_INDICATOR_PTR

(SQL_DESC_DATETIME_INTERVAL_CODE

is

also

defined

by

ODBC

but

is

not

supported

by

DB2

CLI.)

For

example,

all

of

the

descriptor

fields

listed

above

are

set

with

the

following

call:

/*

dbuse.c

*/

/*

...

*/

rc

=

SQLSetDescRec(hARD,

1,

type,

0,

length,

0,

0,

&id_no,

&datalen,

NULL);

Copying

of

descriptors:

One

benefit

of

descriptors

is

the

fact

that

a

single

descriptor

can

be

used

for

multiple

purposes.

For

instance,

an

ARD

on

one

statement

handle

can

be

used

as

an

APD

on

another

statement

handle.

There

will

be

other

instances,

however,

where

the

application

will

want

to

make

a

copy

of

the

original

descriptor,

then

modify

certain

fields.

In

this

case

SQLCopyDesc()

is

used

to

overwrite

the

fields

of

an

existing

descriptor

with

the

values

from

another

descriptor.

Only

fields

that

are

defined

for

both

the

source

and

target

descriptors

are

copied

(with

the

exception

of

the

SQL_DESC_ALLOC_TYPE

field

which

cannot

be

changed).

Fields

can

be

copied

from

any

type

of

descriptor,

but

can

only

be

copied

to

an

application

descriptor

(APD

or

ARD)

or

an

IPD.

Fields

cannot

be

copied

to

an

IRD.

The

descriptor’s

allocation

type

will

not

be

changed

by

the

copy

procedure

(again,

the

SQL_DESC_ALLOC_TYPE

field

cannot

be

changed).

Related

concepts:

v

“Handles

in

CLI”

on

page

15

v

“Descriptors

in

CLI

applications”

on

page

147

v

“Consistency

checks

for

descriptors

in

CLI

applications”

on

page

150

Related

reference:

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

14.

Descriptors

155

v

“SQLSetDescRec

function

(CLI)

-

Set

multiple

descriptor

fields

for

a

column

or

parameter

data”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

header

and

record

field

initialization

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

FieldIdentifier

argument

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

Descriptor

manipulation

without

using

descriptor

handles

in

CLI

applications

Many

CLI

functions

make

use

of

descriptors,

but

the

application

itself

does

not

need

to

manipulate

them

directly.

Instead,

the

application

can

use

a

different

function

which

will

set

or

retrieve

one

or

more

fields

of

a

descriptor

as

well

as

perform

other

functions.

This

category

of

CLI

functions

is

called

concise

functions.

SQLBindCol()

is

an

example

of

a

concise

function

that

manipulates

descriptor

fields.

In

addition

to

manipulating

multiple

fields,

concise

functions

are

called

without

explicitly

specifying

the

descriptor

handle.

The

application

does

not

even

need

to

retrieve

the

descriptor

handle

to

use

a

concise

function.

The

following

types

of

concise

functions

exist:

v

The

functions

SQLBindCol()

and

SQLBindParameter()

bind

a

column

or

parameter

by

setting

the

descriptor

fields

that

correspond

to

their

arguments.

These

functions

also

perform

other

tasks

unrelated

to

descriptors.

If

required,

an

application

can

also

use

the

descriptor

calls

directly

to

modify

individual

details

of

a

binding.

In

this

case

the

descriptor

handle

must

be

retrieved,

and

the

functions

SQLSetDescField()

or

SQLSetDescRec()

are

called

to

modify

the

binding.

v

The

following

functions

always

retrieve

values

in

descriptor

fields:

–

SQLColAttribute()

–

SQLDescribeCol()

–

SQLDescribeParam()

–

SQLNumParams()

–

SQLNumResultCols()

v

The

functions

SQLSetDescRec()

and

SQLGetDescRec()

set

or

get

the

multiple

descriptor

fields

that

affect

the

data

type

and

storage

of

column

or

parameter

data.

A

single

call

to

SQLSetDescRec()

can

be

used

to

change

the

values

used

in

the

binding

of

a

column

or

parameter.

v

The

functions

SQLSetStmtAttr()

and

SQLGetStmtAttr()

modify

or

return

descriptor

fields

in

some

cases,

depending

on

which

statement

attribute

is

specified.

Refer

to

the

″Values

Stored

in

a

Descriptor″

section

of

the

descriptors

documentation

for

more

information.

Related

concepts:

v

“Handles

in

CLI”

on

page

15

v

“Descriptors

in

CLI

applications”

on

page

147

156

CLI

Guide

and

Reference,

Volume

1

Related

reference:

v

“SQLBindCol

function

(CLI)

-

Bind

a

column

to

an

application

variable

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetStmtAttr

function

(CLI)

-

Get

current

setting

of

a

statement

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetDescField

function

(CLI)

-

Set

a

single

field

of

a

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetDescRec

function

(CLI)

-

Set

multiple

descriptor

fields

for

a

column

or

parameter

data”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

14.

Descriptors

157

158

CLI

Guide

and

Reference,

Volume

1

Chapter

15.

Environment,

connection,

and

statement

attributes

Environment,

connection,

and

statement

attributes

in

CLI

applications

Environments,

connections,

and

statements

each

have

a

defined

set

of

attributes

(or

options).

All

attributes

can

be

queried

by

the

application,

but

only

some

attributes

can

be

changed

from

their

default

values.

By

changing

attribute

values,

the

application

can

change

the

behavior

of

DB2

CLI.

An

environment

handle

has

attributes

which

affect

the

behavior

of

DB2

CLI

functions

under

that

environment.

The

application

can

specify

the

value

of

an

attribute

by

calling

SQLSetEnvAttr()

and

can

obtain

the

current

attribute

value

by

calling

SQLGetEnvAttr().

SQLSetEnvAttr()

can

only

be

called

before

any

connection

handles

have

been

allocated

for

the

environment

handle.

For

details

on

each

environment

attribute,

refer

to

the

list

of

CLI

environment

attributes.

A

connection

handle

has

attributes

which

affect

the

behavior

of

DB2

CLI

functions

under

that

connection.

Of

the

attributes

that

can

be

changed:

v

Some

can

be

set

any

time

once

the

connection

handle

is

allocated.

v

Some

can

be

set

only

before

the

actual

connection

has

been

established.

v

Some

can

be

set

any

time

after

the

connection

has

been

established.

v

Some

can

be

set

after

the

connection

has

been

established,

but

only

while

there

are

no

outstanding

transactions

or

open

cursors.

The

application

can

change

the

value

of

connection

attributes

by

calling

SQLSetConnectAttr()

and

can

obtain

the

current

value

of

an

attribute

by

calling

SQLGetConnectAttr().

An

example

of

a

connection

attribute

which

can

be

set

any

time

after

a

handle

is

allocated

is

the

auto-commit

option

SQL_ATTR_AUTOCOMMIT.

For

details

on

each

connection

attribute,

refer

to

the

list

of

CLI

connection

attributes.

A

statement

handle

has

attributes

which

affect

the

behavior

of

CLI

functions

executed

using

that

statement

handle.

Of

the

statement

attributes

that

can

be

changed:

v

Some

attributes

can

be

set,

but

currently

are

limited

to

only

one

specific

value.

v

Some

attributes

can

be

set

any

time

after

the

statement

handle

has

been

allocated.

v

Some

attributes

can

only

be

set

if

there

is

no

open

cursor

on

that

statement

handle.

The

application

can

specify

the

value

of

any

statement

attribute

that

can

be

set

by

calling

SQLSetStmtAttr()

and

can

obtain

the

current

value

of

an

attribute

by

calling

SQLGetStmtAttr().

For

details

on

each

statement

attribute,

refer

to

the

list

of

CLI

statement

attributes.

The

SQLSetConnectAttr()

function

cannot

be

used

to

set

statement

attributes.

This

was

supported

in

versions

of

DB2

CLI

prior

to

version

5.

Many

applications

just

use

the

default

attribute

settings;

however,

there

may

be

situations

where

some

of

these

defaults

are

not

suitable

for

a

particular

user

of

the

application.

Some

default

values

can

be

changed

by

setting

the

CLI/ODBC

©

Copyright

IBM

Corp.

1993

-

2004

159

|
|
|
|
|
|

configuration

keywords.

DB2

CLI

provides

end

users

with

two

methods

of

setting

some

configuration

keywords.

The

first

method

is

to

specify

the

keyword

and

its

new

default

attribute

value(s)

in

the

connection

string

input

to

the

SQLDriverConnect()

and

SQLBrowseConnect()

functions.

The

second

method

involves

the

specification

of

the

new

default

attribute

value(s)

in

a

DB2

CLI

initialization

file

using

CLI/ODBC

configuration

keywords.

The

DB2

CLI

initialization

file

can

be

used

to

change

default

values

for

all

DB2

CLI

applications

on

that

workstation.

This

may

be

the

end

user’s

only

means

of

changing

the

defaults

if

the

application

does

not

provide

a

means

for

the

user

to

provide

default

attribute

values

in

the

SQLDriverConnect()

connection

string.

Default

attribute

values

that

are

specified

on

SQLDriverConnect()

override

the

values

in

the

DB2

CLI

initialization

file

for

that

particular

connection.

The

mechanisms

for

changing

defaults

are

intended

for

end

user

tuning;

application

developers

must

use

the

appropriate

set-attribute

function.

If

an

application

does

call

a

set-attribute

or

option

function

with

a

value

different

from

the

initialization

file

or

the

connection

string

specification,

then

the

initial

default

value

is

overridden

and

the

new

value

takes

effect.

The

diagram

below

shows

the

addition

of

the

attribute

functions

to

the

basic

connect

scenario.

160

CLI

Guide

and

Reference,

Volume

1

Related

concepts:

v

“Programming

hints

and

tips

for

CLI

applications”

on

page

53

v

“Handles

in

CLI”

on

page

15

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLGetConnectAttr

function

(CLI)

-

Get

current

attribute

setting”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetEnvAttr

function

(CLI)

-

Retrieve

current

environment

attribute

value”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetConnectAttr

function

(CLI)

-

Set

connection

attributes”

in

the

CLI

Guide

and

Reference,

Volume

2

Some options can only
be changed after the connect

Optionally set
keyword values

Environment attributes can
only be set before a
connection is allocated

SQLAllocHandle
(Connection)

SQLAllocHandle
(Environment)

SQLGetStmtAttr
(optional)

SQLSetStmtAttr

SQLSetConnectOption

SQLAllocHandle
(Statement)

SQLDriverConnectSQLConnect

SQLGetConnectAttr

SQLGetEnvAttr

(optional)

(optional)

SQLSetConnectAttr

SQLSetEnvAttr

SQLSetConnectAttr

Figure

12.

Setting

and

retrieving

attributes

(options)

Chapter

15.

Environment,

connection,

and

statement

attributes

161

v

“SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Environment

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Related

samples:

v

“dbuse.c

--

How

to

use

a

database”

v

“spcall.c

--

Call

individual

stored

procedures”

v

“tbread.c

--

How

to

read

data

from

tables”

v

“tut_use.c

--

How

to

execute

SQL

statements,

bind

parameters

to

an

SQL

statement”

162

CLI

Guide

and

Reference,

Volume

1

Chapter

16.

Querying

system

catalog

information

Catalog

functions

for

querying

system

catalog

information

in

CLI

applications

One

of

the

first

tasks

an

application

often

performs

is

to

display

a

list

of

tables

from

which

one

or

more

are

selected

by

the

user.

Although

the

application

can

issue

its

own

queries

against

the

database

system

catalog

to

get

catalog

information

for

such

a

DB2

command,

it

is

best

that

the

application

calls

the

DB2

CLI

catalog

functions

instead.

These

catalog

functions,

also

called

schema

functions,

provide

a

generic

interface

to

issue

queries

and

return

consistent

result

sets

across

the

DB2

family

of

servers.

This

allows

the

application

to

avoid

server-specific

and

release-specific

catalog

queries.

The

catalog

functions

operate

by

returning

to

the

application

a

result

set

through

a

statement

handle.

Calling

these

functions

is

conceptually

equivalent

to

using

SQLExecDirect()

to

execute

a

select

against

the

system

catalog

tables.

After

calling

these

functions,

the

application

can

fetch

individual

rows

of

the

result

set

as

it

would

process

column

data

from

an

ordinary

SQLFetch().

The

DB2

CLI

catalog

functions

are:

v

SQLColumnPrivileges()

v

SQLColumns()

v

SQLForeignKeys()

v

SQLGetTypeInfo()

v

SQLPrimaryKeys()

v

SQLProcedureColumns()

v

SQLProcedures()

v

SQLSpecialColumns()

v

SQLStatistics()

v

SQLTablePrivileges()

v

SQLTables()

The

result

sets

returned

by

these

functions

are

defined

in

the

descriptions

for

each

catalog

function.

The

columns

are

defined

in

a

specified

order.

In

future

releases,

other

columns

may

be

added

to

the

end

of

each

defined

result

set,

therefore

applications

should

be

written

in

a

way

that

would

not

be

affected

by

such

changes.

Some

of

the

catalog

functions

result

in

execution

of

fairly

complex

queries,

and

for

this

reason

should

only

be

called

when

needed.

It

is

recommended

that

the

application

save

the

information

returned

rather

than

making

repeated

calls

to

get

the

same

information.

Related

concepts:

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

on

page

164

Related

reference:

v

“CLI

and

ODBC

function

summary”

in

the

CLI

Guide

and

Reference,

Volume

2

©

Copyright

IBM

Corp.

1993

-

2004

163

Input

arguments

on

catalog

functions

in

CLI

applications

All

of

the

catalog

functions

have

CatalogName

and

SchemaName

(and

their

associated

lengths)

on

their

input

argument

list.

Other

input

arguments

may

also

include

TableName,

ProcedureName,

or

ColumnName

(and

their

associated

lengths).

These

input

arguments

are

used

to

either

identify

or

constrain

the

amount

of

information

to

be

returned.

Input

arguments

to

catalog

functions

may

be

treated

as

ordinary

arguments

or

pattern

value

arguments.

An

ordinary

argument

is

treated

as

a

literal,

and

the

case

of

letters

is

significant.

These

arguments

limit

the

scope

of

the

query

by

identifying

the

object

of

interest.

An

error

results

if

the

application

passes

a

null

pointer

for

the

argument.

Some

catalog

functions

accept

pattern

values

on

some

of

their

input

arguments.

For

example,

SQLColumnPrivileges()

treats

SchemaName

and

TableName

as

ordinary

arguments

and

ColumnName

as

a

pattern

value.

Refer

to

the

″Function

Arguments″

section

of

the

specific

catalog

function

to

see

if

a

particular

input

argument

accepts

pattern

values.

Inputs

treated

as

pattern

values

are

used

to

constrain

the

size

of

the

result

set

by

including

only

matching

rows

as

though

the

underlying

query’s

WHERE

clause

contained

a

LIKE

predicate.

If

the

application

passes

a

null

pointer

for

a

pattern

value

input,

the

argument

is

not

used

to

restrict

the

result

set

(that

is,

there

is

no

corresponding

LIKE

in

the

WHERE

clause).

If

a

catalog

function

has

more

than

one

pattern

value

input

argument,

they

are

treated

as

though

the

LIKE

predicates

of

the

WHERE

clauses

in

the

underlying

query

were

joined

by

AND;

a

row

appears

in

this

result

set

only

if

it

meets

all

the

conditions

of

the

LIKE

predicates.

Each

pattern

value

argument

can

contain:

v

The

underscore

(_)

character

which

stands

for

any

single

character.

v

The

percent

(%)

character

which

stands

for

any

sequence

of

zero

or

more

characters.

Note

that

providing

a

pattern

value

containing

a

single

%

is

equivalent

to

passing

a

null

pointer

for

that

argument.

v

Characters

with

no

special

meaning

which

stand

for

themselves.

The

case

of

a

letter

is

significant.

These

argument

values

are

used

on

conceptual

LIKE

predicate(s)

in

the

WHERE

clause.

To

treat

the

metadata

characters

(_,

%)

as

themselves,

an

escape

character

must

immediately

precede

the

_

or

%.

The

escape

character

itself

can

be

specified

as

part

of

the

pattern

by

including

it

twice

in

succession.

An

application

can

determine

the

escape

character

by

calling

SQLGetInfo()

with

SQL_SEARCH_PATTERN_ESCAPE.

For

example,

the

following

calls

would

retrieve

all

the

tables

that

start

with

’ST’:

/*

tbinfo.c

*/

/*

...

*/

struct

{

SQLINTEGER

ind

;

SQLCHAR

val[129]

;

}

tbQualifier,

tbSchema,

tbName,

tbType;

struct

{

SQLINTEGER

ind

;

SQLCHAR

val[255]

;

}

tbRemarks;

164

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|

|
|
|
|
|

SQLCHAR

tbSchemaPattern[]

=

"%";

SQLCHAR

tbNamePattern[]

=

"ST%";

/*

all

the

tables

starting

with

ST

*/

/*

...

*/

sqlrc

=

SQLTables(

hstmt,

NULL,

0,

tbSchemaPattern,

SQL_NTS,

tbNamePattern,

SQL_NTS,

NULL,

0);

/*

...

*/

/*

bind

columns

to

variables

*/

sqlrc

=

SQLBindCol(

hstmt,

1,

SQL_C_CHAR,

tbQualifier.val,

129,

&tbQualifier.ind

)

;

STMT_HANDLE_CHECK(

hstmt,

sqlrc);

sqlrc

=

SQLBindCol(

hstmt,

2,

SQL_C_CHAR,

tbSchema.val,

129,

&tbSchema.ind

)

;

STMT_HANDLE_CHECK(

hstmt,

sqlrc);

sqlrc

=

SQLBindCol(

hstmt,

3,

SQL_C_CHAR,

tbName.val,

129,

&tbName.ind

)

;

STMT_HANDLE_CHECK(

hstmt,

sqlrc);

sqlrc

=

SQLBindCol(

hstmt,

4,

SQL_C_CHAR,

tbType.val,

129,

&tbType.ind

)

;

STMT_HANDLE_CHECK(

hstmt,

sqlrc);

sqlrc

=

SQLBindCol(

hstmt,

5,

SQL_C_CHAR,

tbRemarks.val,

255,

&tbRemarks.ind

)

;

STMT_HANDLE_CHECK(

hstmt,

sqlrc);

/*

...

*/

sqlrc

=

SQLFetch(

hstmt

);

/*

...

*/

while

(sqlrc

!=

SQL_NO_DATA_FOUND)

{

/*

...

*/

sqlrc

=

SQLFetch(

hstmt

);

/*

...

*/

}

Related

concepts:

v

“Catalog

functions

for

querying

system

catalog

information

in

CLI

applications”

on

page

163

Related

samples:

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

Chapter

16.

Querying

system

catalog

information

165

166

CLI

Guide

and

Reference,

Volume

1

Chapter

17.

Vendor

escape

clauses

Vendor

escape

clauses

in

CLI

applications

The

X/Open

SQL

CAE

specification

defined

an

escape

clause

as:

“a

syntactic

mechanism

for

vendor-specific

SQL

extensions

to

be

implemented

in

the

framework

of

standardized

SQL”.

Both

DB2

CLI

and

ODBC

support

vendor

escape

clauses

as

defined

by

X/Open.

Currently,

escape

clauses

are

used

extensively

by

ODBC

to

define

SQL

extensions.

DB2

CLI

translates

the

ODBC

extensions

into

the

correct

DB2

syntax.

The

SQLNativeSql()

function

can

be

used

to

display

the

resulting

syntax.

If

an

application

is

only

going

to

access

DB2

data

sources,

then

there

is

no

reason

to

use

the

escape

clauses.

If

an

application

is

going

to

access

other

data

sources

that

offer

the

same

support

through

a

different

syntax,

then

the

escape

clauses

increase

the

portability

of

the

application.

DB2

CLI

used

both

the

standard

and

shorthand

syntax

for

escape

clauses.

The

standard

syntax

has

been

deprecated

(although

DB2

CLI

still

supports

it).

An

escape

clause

using

the

standard

syntax

took

the

form:

−−(*vendor(vendor-identifier),

product(product-identifier)

extended

SQL

text*)−−

Applications

should

now

only

use

the

shorthand

syntax,

as

described

below,

to

remain

current

with

the

latest

ODBC

standards.

Shorthand

escape

clause

syntax:

The

format

of

an

escape

clause

definition

is:

{

extended

SQL

text

}

to

define

the

following

SQL

extensions:

v

Extended

date,

time,

timestamp

data

v

Outer

join

v

LIKE

predicate

v

Stored

procedure

call

v

Extended

scalar

functions

–

Numeric™

functions

–

String

functions

–

System

functions

ODBC

date,

time,

timestamp

data:

The

ODBC

escape

clauses

for

date,

time,

and

timestamp

data

are:

{d

’value’}

{t

’value’}

{ts

’value’}

d

indicates

value

is

a

date

in

the

yyyy-mm-dd

format,

t

indicates

value

is

a

time

in

the

hh:mm:ss

format

ts

indicates

value

is

a

timestamp

in

the

yyyy-mm-dd

hh:mm:ss[.f...]

format.

©

Copyright

IBM

Corp.

1993

-

2004

167

For

example,

the

following

statement

can

be

used

to

issue

a

query

against

the

EMPLOYEE

table:

SELECT

*

FROM

EMPLOYEE

WHERE

HIREDATE={d

’1994-03-29’}

DB2

CLI

will

translate

the

above

statement

to

a

DB2

format.

SQLNativeSql()

can

be

used

to

return

the

translated

statement.

The

ODBC

escape

clauses

for

date,

time,

and

timestamp

literals

can

be

used

in

input

parameters

with

a

C

data

type

of

SQL_C_CHAR.

ODBC

outer

join:

The

ODBC

escape

clause

for

outer

join

is:

{oj

outer-join}

where

outer

join

is

table-name

{LEFT

|

RIGHT

|

FULL}

OUTER

JOIN

{table-name

|

outer-join}

ON

search-condition

For

example,

DB2

CLI

will

translate

the

following

statement:

SELECT

*

FROM

{oj

T1

LEFT

OUTER

JOIN

T2

ON

T1.C1=T2.C3}

WHERE

T1.C2>20

to

IBM®’s

format,

which

corresponds

to

the

SQL92

outer

join

syntax:

SELECT

*

FROM

T1

LEFT

OUTER

JOIN

T2

ON

T1.C1=T2.C3

WHERE

T1.C2>20

Note:

Not

all

DB2

servers

support

outer

join.

To

determine

if

the

current

server

supports

outer

joins,

call

SQLGetInfo()

with

the

SQL_SQL92_RELATIONAL_JOIN_OPERATORS

and

SQL_OJ_CAPABILITIES

options.

LIKE

predicate:

In

a

SQL

LIKE

predicate,

the

metacharacter

%

matches

zero

or

more

of

any

character,

and

the

metacharacter

_

matches

any

one

character.

The

SQL

ESCAPE

clause

allows

the

definition

of

patterns

intended

to

match

values

that

contain

the

actual

percent

and

underscore

characters

by

preceding

them

with

an

escape

character.

The

escape

clause

ODBC

uses

to

define

the

LIKE

predicate

escape

character

is:

{escape

’escape-character’}

where

escape-character

is

any

character

supported

by

the

DB2

rules

governing

the

use

of

the

SQL

ESCAPE

clause.

As

an

example

of

how

to

use

an

″escape″

ODBC

escape

clause,

suppose

you

had

a

table

Customers

with

the

columns

Name

and

Growth.

The

Growth

column

contains

data

having

the

metacharacter

’%’.

The

following

statement

would

select

all

of

the

values

from

Name

that

have

values

in

Growth

only

between

10%

and

19%,

excluding

100%

and

above:

SELECT

Name

FROM

Customers

WHERE

Growth

LIKE

’1_\%’{escape

’\’}

Applications

that

are

not

concerned

about

portability

across

different

vendor

DBMS

products

should

pass

an

SQL

ESCAPE

clause

directly

to

the

data

source.

To

determine

when

LIKE

predicate

escape

characters

are

supported

by

a

particular

168

CLI

Guide

and

Reference,

Volume

1

DB2®

data

source,

an

application

should

call

SQLGetInfo()

with

the

SQL_LIKE_ESCAPE_CLAUSE

information

type.

Stored

procedure

call:

The

ODBC

escape

clause

for

calling

a

stored

procedure

is:

{[?=]call

procedure-name[([parameter][,[parameter]]...)]}

where:

v

[?=]

indicates

the

optional

parameter

marker

for

the

return

value

v

procedure-name

specifies

the

name

of

a

procedure

stored

at

the

data

source

v

parameter

specifies

a

procedure

parameter.

A

procedure

may

have

zero

or

more

parameters.

ODBC

specifies

the

optional

parameter

?=

to

represent

the

procedure’s

return

value,

which

if

present,

will

be

stored

in

the

location

specified

by

the

first

parameter

marker

as

defined

via

SQLBindParameter().

DB2

CLI

will

return

the

return

code

as

the

procedure’s

return

value

if

?=

is

present

in

the

escape

clause.

If

?=

is

not

present,

and

if

the

stored

procedure

return

code

is

not

SQL_SUCCESS,

then

the

application

can

retrieve

diagnostics,

including

the

SQLCODE,

using

the

SQLGetDiagRec()

and

SQLGetDiagField()

functions.

DB2

CLI

supports

literals

as

procedure

arguments,

however

vendor

escape

clauses

must

be

used.

For

example,

the

following

statement

would

not

succeed:

CALL

storedproc

(’aaaa’,

1),

but

this

statement

would:

{CALL

storedproc

(’aaaa’,

1)}.

If

a

parameter

is

an

output

parameter,

it

must

be

a

parameter

marker.

For

example,

DB2

CLI

will

translate

the

following

statement:

{CALL

NETB94(?,?,?)}

To

an

internal

CALL

statement

format:

CALL

NEBT94(?,

?,

?)

ODBC

scalar

functions:

Scalar

functions

such

as

string

length,

substring,

or

trim

can

be

used

on

columns

of

a

result

set

and

on

columns

that

restrict

rows

of

a

result

set.

The

ODBC

escape

clause

for

scalar

functions

is:

{fn

scalar-function}

Where,

scalar-function

can

be

any

function

listed

in

the

list

of

extended

scalar

functions.

For

example,

DB2

CLI

will

translate

the

following

statement:

SELECT

{fn

CONCAT(FIRSTNAME,LASTNAME)}

FROM

EMPLOYEE

to:

SELECT

FIRSTNAME

CONCAT

LASTNAME

FROM

EMPLOYEE

SQLNativeSql()

can

be

called

to

obtain

the

translated

SQL

statement.

To

determine

which

scalar

functions

are

supported

by

the

current

server

referenced

by

a

specific

connection

handle,

call

SQLGetInfo()

with

the

options:

Chapter

17.

Vendor

escape

clauses

169

|
|
|
|
|
|
|
|
|
|
|

SQL_NUMERIC_FUNCTIONS,

SQL_STRING_FUNCTIONS,

SQL_SYSTEM_FUNCTIONS,

and

SQL_TIMEDATE_FUNCTIONS.

Related

reference:

v

“SQLGetDiagField

function

(CLI)

-

Get

a

field

of

diagnostic

data”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetInfo

function

(CLI)

-

Get

general

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLNativeSql

function

(CLI)

-

Get

native

SQL

text”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Extended

scalar

functions

for

CLI

applications”

on

page

170

v

“LIKE

predicate”

in

the

SQL

Reference,

Volume

1

v

“CALL

statement”

in

the

SQL

Reference,

Volume

2

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

Related

samples:

v

“dbnative.c

--

How

to

translate

a

statement

that

contains

an

ODBC

escape

clause”

Extended

scalar

functions

for

CLI

applications

The

following

functions

are

defined

by

ODBC

using

vendor

escape

clauses.

Each

function

may

be

called

using

the

escape

clause

syntax,

or

calling

the

equivalent

DB2

function.

These

functions

are

presented

in

the

following

categories:

v

“String

functions”

on

page

171

v

“Numeric

functions”

on

page

172

v

“Date

and

time

functions”

on

page

175

v

“System

functions”

on

page

178

v

“Conversion

function”

on

page

178

The

tables

in

the

following

sections

indicates

for

which

servers

(and

the

earliest

versions)

that

the

function

can

be

accessed,

when

called

from

an

application

using

DB2

CLI

All

errors

detected

by

the

following

functions,

when

connected

to

a

DB2

Version

5

or

later

server,

will

return

SQLSTATE

38552.

The

text

portion

of

the

message

is

of

the

form

SYSFUN:nn

where

nn

is

one

of

the

following

reason

codes:

01

Numeric

value

out

of

range

02

Division

by

zero

03

Arithmetic

overflow

or

underflow

04

Invalid

date

format

05

Invalid

time

format

06

Invalid

timestamp

format

07

Invalid

character

representation

of

a

timestamp

duration

08

Invalid

interval

type

(must

be

one

of

1,

2,

4,

8,

16,

32,

64,

128,

256)

09

String

too

long

10

Length

or

position

in

string

function

out

of

range

11

Invalid

character

representation

of

a

floating

point

number

170

CLI

Guide

and

Reference,

Volume

1

String

functions:

The

string

functions

in

this

section

are

supported

by

DB2

CLI

and

defined

by

ODBC

using

vendor

escape

clauses.

v

Character

string

literals

used

as

arguments

to

scalar

functions

must

be

bounded

by

single

quotes.

v

Arguments

denoted

as

string_exp

can

be

the

name

of

a

column,

a

string

literal,

or

the

result

of

another

scalar

function,

where

the

underlying

data

type

can

be

represented

as

SQL_CHAR,

SQL_VARCHAR,

SQL_LONGVARCHAR,

or

SQL_CLOB.

v

Arguments

denoted

as

start,

length,

code

or

count

can

be

a

numeric

literal

or

the

result

of

another

scalar

function,

where

the

underlying

data

type

is

integer

based

(SQL_SMALLINT,

SQL_INTEGER).

v

The

first

character

in

the

string

is

considered

to

be

at

position

1.

Table

15.

String

scalar

functions

ASCII(

string_exp

)

Returns

the

ASCII

code

value

of

the

leftmost

character

of

string_exp

as

an

integer.

DB2

for

workstation

CHAR(

code

)

Returns

the

character

that

has

the

ASCII

code

value

specified

by

code.

The

value

of

code

should

be

between

0

and

255;

otherwise,

the

return

value

is

null.

DB2

for

workstation

CONCAT(

string_exp1,

string_exp2

)

Returns

a

character

string

that

is

the

result

of

concatenating

string_exp2

to

string_exp1.

DB2

for

workstation

MVS

VM/VSE

AS/400

DIFFERENCE(

string_exp1,

string_exp2

)

Returns

an

integer

value

indicating

the

difference

between

the

values

returned

by

the

SOUNDEX

function

for

string_exp1

and

string_exp2.

DB2

for

workstation

INSERT(

string_exp1,

start,

length,

string_exp2

)

Returns

a

character

string

where

length

number

of

characters

beginning

at

start

has

been

replaced

by

string_exp2

which

contains

length

characters.

DB2

for

workstation

MVS

VM/VSE

AS/400

LCASE(

string_exp

)

Converts

all

upper

case

characters

in

string_exp

to

lower

case.

DB2

for

workstation

VM/VSE

LEFT(

string_exp,count

)

Returns

the

leftmost

count

of

characters

of

string_exp.

DB2

for

workstation

MVS

VM/VSE

AS/400

LENGTH(

string_exp

)

Returns

the

number

of

characters

in

string_exp,

excluding

trailing

blanks

and

the

string

termination

character.

Note:

Trailing

blanks

are

included

for

DB2

for

MVS/ESA.

DB2

for

workstation

MVS

VM/VSE

AS/400

Chapter

17.

Vendor

escape

clauses

171

Table

15.

String

scalar

functions

(continued)

LOCATE(

string_exp1,

string_exp2

[

,start

])

Returns

the

starting

position

of

the

first

occurrence

of

string_exp1

within

string_exp2.

The

search

for

the

first

occurrence

of

string_exp1

begins

with

first

character

position

in

string_exp2

unless

the

optional

argument,

start,

is

specified.

If

start

is

specified,

the

search

begins

with

the

character

position

indicated

by

the

value

of

start.

The

first

character

position

in

string_exp2

is

indicated

by

the

value

1.

If

string_exp1

is

not

found

within

string_exp2,

the

value

0

is

returned.

DB2

for

workstation

LTRIM(

string_exp

)

Returns

the

characters

of

string_exp

with

the

leading

blanks

removed.

DB2

for

workstation

VM/VSE

AS/400

REPEAT(

string_exp,

count

)

Returns

a

character

string

composed

of

string_exp

repeated

count

times.

DB2

for

workstation

MVS

VM/VSE

AS/400

REPLACE(

string_exp1,

string_exp2,

string_exp3

)

Replaces

all

occurrences

of

string_exp2

in

string_exp1

with

string_exp3.

DB2

for

workstation

RIGHT(

string_exp,

count

)

Returns

the

rightmost

count

of

characters

of

string_exp.

DB2

for

workstation

MVS

VM/VSE

AS/400

RTRIM(

string_exp

)

Returns

the

characters

of

string_exp

with

trailing

blanks

removed.

DB2

for

workstation

VM/VSE

AS/400

SOUNDEX(

string_exp1

)

Returns

a

four

character

code

representing

the

sound

of

string_exp1.

Note

that

different

data

sources

use

different

algorithms

to

represent

the

sound

of

string_exp1.

DB2

for

workstation

SPACE(

count

)

Returns

a

character

string

consisting

of

count

spaces.

DB2

for

workstation

SUBSTRING(

string_exp,

start,

length

)

Returns

a

character

string

that

is

derived

from

string_exp

beginning

at

the

character

position

specified

by

start

for

length

characters.

DB2

for

workstation

MVS

VM/VSE

AS/400

UCASE(

string_exp

)

Converts

all

lower

case

characters

in

string_exp

to

upper

case.

DB2

for

workstation

VM/VSE

AS/400

Numeric

functions:

The

numeric

functions

in

this

section

are

supported

by

DB2

CLI

and

defined

by

ODBC

using

vendor

escape

clauses.

v

Arguments

denoted

as

numeric_exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

function,

or

a

numeric

literal,

where

the

underlying

data

type

can

172

CLI

Guide

and

Reference,

Volume

1

be

either

floating

point

based

(

SQL_NUMERIC,

SQL_DECIMAL,

SQL_FLOAT,

SQL_REAL,

SQL_DOUBLE)

or

integer

based

(SQL_SMALLINT,

SQL_INTEGER).

v

Arguments

denoted

as

double_exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

functions,

or

a

numeric

literal

where

the

underlying

data

type

is

floating

point

based.

v

Arguments

denoted

as

integer_exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

functions,

or

a

numeric

literal,

where

the

underlying

data

type

is

integer

based.

Table

16.

Numeric

scalar

functions

ABS(

numeric_exp

)

Returns

the

absolute

value

of

numeric_exp.

DB2

for

workstation

AS/400

ACOS(

double_exp

)

Returns

the

arccosine

of

double_exp

as

an

angle,

expressed

in

radians.

DB2

for

workstation

AS/400

ASIN(

double_exp

)

Returns

the

arcsine

of

double_exp

as

an

angle,

expressed

in

radians.

DB2

for

workstation

AS/400

ATAN(

double_exp

)

Returns

the

arctangent

of

double_exp

as

an

angle,

expressed

in

radians.

DB2

for

workstation

AS/400

ATAN2(

double_exp1,

double_exp2

)

Returns

the

arctangent

of

x

and

y

coordinates

specified

by

double_exp1

and

double_exp2,

respectively,

as

an

angle

expressed

in

radians.

DB2

for

workstation

CEILING(

numeric_exp

)

Returns

the

smallest

integer

greater

than

or

equal

to

numeric_exp.

DB2

for

workstation

COS(

double_exp

)

Returns

the

cosine

of

double_exp,

where

double_exp

is

an

angle

expressed

in

radians.

DB2

for

workstation

AS/400

COT(

double_exp

)

Returns

the

cotangent

of

double_exp,

where

double_exp

is

an

angle

expressed

in

radians.

DB2

for

workstation

AS/400

DEGREES(

numeric_exp

)

Returns

the

number

of

degrees

converted

from

numeric_exp

radians.

DB2

for

workstation

AS/400

3.6

EXP(

double_exp

)

Returns

the

exponential

value

of

double_exp.

DB2

for

workstation

AS/400

FLOOR(

numeric_exp

)

Returns

the

largest

integer

less

than

or

equal

to

numeric_exp.

DB2

for

workstation

AS/400

3.6

Chapter

17.

Vendor

escape

clauses

173

Table

16.

Numeric

scalar

functions

(continued)

LOG(

double_exp

)

Returns

the

natural

logarithm

of

double_exp.

DB2

for

workstation

AS/400

LOG10(

double_exp

)

Returns

the

base

10

logarithm

of

double_exp.

DB2

for

workstation

AS/400

MOD(

integer_exp1,

integer_exp2

)

Returns

the

remainder

(modulus)

of

integer_exp1

divided

by

integer_exp2.

DB2

for

workstation

AS/400

PI()

Returns

the

constant

value

of

pi

as

a

floating

point

value.

DB2

for

workstation

AS/400

POWER(

numeric_exp,

integer_exp

)

Returns

the

value

of

numeric_exp

to

the

power

of

integer_exp.

DB2

for

workstation

AS/400

3.6

RADIANS(

numeric_exp

)

Returns

the

number

of

radians

converted

from

numeric_exp

degrees.

DB2

for

workstation

RAND(

[integer_exp

]

)

Returns

a

random

floating

point

value

using

integer_exp

as

the

optional

seed

value.

DB2

for

workstation

ROUND(

numeric_exp,

integer_exp.

)

Returns

numeric_exp

rounded

to

integer_exp

places

right

of

the

decimal

point.

If

integer_exp

is

negative,

numeric_exp

is

rounded

to

|

integer_exp

|

places

to

the

left

of

the

decimal

point.

DB2

for

workstation

SIGN(

numeric_exp

)

Returns

an

indicator

or

the

sign

of

numeric_exp.

If

numeric_exp

is

less

than

zero,

-1

is

returned.

If

numeric_exp

equals

zero,

0

is

returned.

If

numeric_exp

is

greater

than

zero,

1

is

returned.

DB2

for

workstation

SIN(

double_exp

)

Returns

the

sine

of

double_exp,

where

double_exp

is

an

angle

expressed

in

radians.

DB2

for

workstation

AS/400

SQRT(

double_exp

)

Returns

the

square

root

of

double_exp.

DB2

for

workstation

AS/400

TAN(

double_exp

)

Returns

the

tangent

of

double_exp,

where

double_exp

is

an

angle

expressed

in

radians.

DB2

for

workstation

AS/400

174

CLI

Guide

and

Reference,

Volume

1

Table

16.

Numeric

scalar

functions

(continued)

TRUNCATE(

numeric_exp,

integer_exp

)

Returns

numeric_exp

truncated

to

integer_exp

places

right

of

the

decimal

point.

If

integer_exp

is

negative,

numeric_exp

is

truncated

to

|

integer_exp

|

places

to

the

left

of

the

decimal

point.

DB2

for

workstation

Date

and

time

functions:

The

date

and

time

functions

in

this

section

are

supported

by

DB2

CLI

and

defined

by

ODBC

using

vendor

escape

clauses.

v

Arguments

denoted

as

timestamp_exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

function,

or

a

time,

date,

or

timestamp

literal.

v

Arguments

denoted

as

date_exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

function,

or

a

date

or

timestamp

literal,

where

the

underlying

data

type

can

be

character

based,

or

date

or

timestamp

based.

v

Arguments

denoted

as

time_exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

function,

or

a

time

or

timestamp

literal,

where

the

underlying

data

types

can

be

character

based,

or

time

or

timestamp

based.

Table

17.

Date

and

time

scalar

functions

CURDATE()

Returns

the

current

date

as

a

date

value.

DB2

for

workstation

MVS

VM/VSE

AS/400

CURTIME()

Returns

the

current

local

time

as

a

time

value.

DB2

for

workstation

MVS

VM/VSE

AS/400

DAYNAME(

date_exp

)

Returns

a

character

string

containing

the

name

of

the

day

(Sunday,

Monday,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday

)

for

the

day

portion

of

date_exp.

DB2

for

workstation

DAYOFMONTH

(

date_exp

)

Returns

the

day

of

the

month

in

date_exp

as

an

integer

value

in

the

range

of

1-31.

DB2

for

workstation

MVS

VM/VSE

AS/400

DAYOFWEEK(

date_exp

)

Returns

the

day

of

the

week

in

date_exp

as

an

integer

value

in

the

range

1-7,

where

1

represents

Sunday.

DB2

for

workstation

AS/400

3.6

DAYOFWEEK_ISO(

date_exp

)

Returns

the

day

of

the

week

in

date_exp

as

an

integer

value

in

the

range

1-7,

where

1

represents

Monday.

Note

the

difference

between

this

function

and

the

DAYOFWEEK()

function,

where

1

represents

Sunday.

DB2

for

workstation

DAYOFYEAR(

date_exp

)

Returns

the

day

of

the

year

in

date_exp

as

an

integer

value

in

the

range

1-366.

DB2

for

workstation

AS/400

3.6

Chapter

17.

Vendor

escape

clauses

175

Table

17.

Date

and

time

scalar

functions

(continued)

HOUR(

time_exp

)

Returns

the

hour

in

time_exp

as

an

integer

value

in

the

range

of

0-23.

DB2

for

workstation

MVS

VM/VSE

AS/400

JULIAN_DAY(

date_exp

)

Returns

the

number

of

days

between

date_exp

and

January

1,

4712

B.C.

(the

start

of

the

Julian

date

calendar).

DB2

for

workstation

MINUTE(

time_exp

)

Returns

the

minute

in

time_exp

as

integer

value

in

the

range

of

0-59.

DB2

for

workstation

MVS

VM/VSE

AS/400

MONTH(

date_exp

)

Returns

the

month

in

date_exp

as

an

integer

value

in

the

range

of

1-12.

DB2

for

workstation

MVS

VM/VSE

AS/400

MONTHNAME(

date_exp

)

Returns

a

character

string

containing

the

name

of

month

(January,

February,

March,

April,

May,

June,

July,

August,

September,

October,

November,

December)

for

the

month

portion

of

date_exp.

DB2

for

workstation

NOW()

Returns

the

current

date

and

time

as

a

timestamp

value.

DB2

for

workstation

MVS

VM/VSE

AS/400

QUARTER(

date_exp

)

Returns

the

quarter

in

date_exp

as

an

integer

value

in

the

range

of

1-4.

DB2

for

workstation

AS/400

3.6

SECOND(

time_exp

)

Returns

the

second

in

time_exp

as

an

integer

value

in

the

range

of

0-59.

DB2

for

workstation

MVS

VM/VSE

AS/400

SECONDS_SINCE_MIDNIGHT(

time_exp

)

Returns

the

number

of

seconds

in

time_exp

relative

to

midnight

as

an

integer

value

in

the

range

of

0-86400.

If

time_exp

includes

a

fractional

seconds

component,

the

fractional

seconds

component

will

be

discarded.

DB2

for

workstation

176

CLI

Guide

and

Reference,

Volume

1

Table

17.

Date

and

time

scalar

functions

(continued)

TIMESTAMPADD(

interval,

integer_exp,

timestamp_exp

)

Returns

the

timestamp

calculated

by

adding

integer_exp

intervals

of

type

interval

to

timestamp_exp.

Valid

values

of

interval

are:

v

SQL_TSI_FRAC_SECOND

v

SQL_TSI_SECOND

v

SQL_TSI_MINUTE

v

SQL_TSI_HOUR

v

SQL_TSI_DAY

v

SQL_TSI_WEEK

v

SQL_TSI_MONTH

v

SQL_TSI_QUARTER

v

SQL_TSI_YEAR

where

fractional

seconds

are

expressed

in

billionths

of

a

second.

If

timestamp_exp

specifies

a

time

value

and

interval

specifies

days,

weeks,

months,

quarters,

or

years,

the

date

portion

of

timestamp_exp

is

set

to

the

current

date

before

calculating

the

resulting

timestamp.

If

timestamp_exp

is

a

date

value

and

interval

specifies

fractional

seconds,

seconds,

minutes,

or

hours,

the

time

portion

of

timestamp_exp

is

set

to

00:00:00.000000

before

calculating

the

resulting

timestamp.

An

application

determines

which

intervals

are

supported

by

calling

SQLGetInfo()

with

the

SQL_TIMEDATE_ADD_INTERVALS

option.

DB2

for

workstation

TIMESTAMPDIFF(

interval,

timestamp_exp1,

timestamp_exp2

)

Returns

the

integer

number

of

intervals

of

type

interval

by

which

timestamp_exp2

is

greater

than

timestamp_exp1.

Valid

values

of

interval

are:

v

SQL_TSI_FRAC_SECOND

v

SQL_TSI_SECOND

v

SQL_TSI_MINUTE

v

SQL_TSI_HOUR

v

SQL_TSI_DAY

v

SQL_TSI_WEEK

v

SQL_TSI_MONTH

v

SQL_TSI_QUARTER

v

SQL_TSI_YEAR

where

fractional

seconds

are

expressed

in

billionths

of

a

second.

If

either

timestamp

expression

is

a

time

value

and

interval

specifies

days,

weeks,

months,

quarters,

or

years,

the

date

portion

of

that

timestamp

is

set

to

the

current

date

before

calculating

the

difference

between

the

timestamps.

If

either

timestamp

expression

is

a

date

value

and

interval

specifies

fractional

seconds,

seconds,

minutes,

or

hours,

the

time

portion

of

that

timestamp

is

set

to

0

before

calculating

the

difference

between

the

timestamps.

An

application

determines

which

intervals

are

supported

by

calling

SQLGetInfo()

with

the

SQL_TIMEDATE_DIFF_INTERVALS

option.

DB2

for

workstation

WEEK(

date_exp

)

Returns

the

week

of

the

year

in

date_exp

as

an

integer

value

in

the

range

of

1-54.

DB2

for

workstation

AS/400

3.6

Chapter

17.

Vendor

escape

clauses

177

Table

17.

Date

and

time

scalar

functions

(continued)

WEEK_ISO(

date_exp

)

Returns

the

week

of

the

year

in

date_exp

as

an

integer

value

in

the

range

of

1-53.

Week

1

is

defined

as

the

first

week

of

the

year

to

contain

a

Thursday.

Therefore,

Week1

is

equivalent

to

the

first

week

that

contains

Jan

4,

since

Monday

is

considered

to

be

the

first

day

of

the

week.

Note

that

WEEK_ISO()

differs

from

the

current

definition

of

WEEK(),

which

returns

a

value

up

to

54.

For

the

WEEK()

function,

Week

1

is

the

week

containing

the

first

Saturday.

This

is

equivalent

to

the

week

containing

Jan.

1,

even

if

the

week

contains

only

one

day.

DB2

for

workstation

YEAR(

date_exp

)

Returns

the

year

in

date_exp

as

an

integer

value

in

the

range

of

1-9999.

DB2

for

workstation

MVS

VM/VSE

AS/400

For

those

functions

that

return

a

character

string

containing

the

name

of

the

day

of

week

or

the

name

of

the

month,

these

character

strings

will

be

National

Language

Support

enabled.

DAYOFWEEK_ISO()

and

WEEK_ISO()

are

automatically

available

in

a

database

created

in

DB2

Version

7

or

later.

If

a

database

was

created

prior

to

Version

7,

these

functions

may

not

be

available.

To

make

DAYOFWEEK_ISO()

and

WEEK_ISO()

functions

available

in

such

a

database,

use

the

db2updb

system

command.

System

functions:

The

system

functions

in

this

section

are

supported

by

DB2

CLI

and

defined

by

ODBC

using

vendor

escape

clauses.

v

Arguments

denoted

as

exp

can

be

the

name

of

a

column,

the

result

of

another

scalar

function,

or

a

literal.

v

Arguments

denoted

as

value

can

be

a

literal

constant.

Table

18.

System

scalar

functions

DATABASE()

Returns

the

name

of

the

database

corresponding

to

the

connection

handle

(hdbc).

(The

name

of

the

database

is

also

available

via

SQLGetInfo()

by

specifying

the

information

type

SQL_DATABASE_NAME.)

DB2

for

workstation

MVS

VM/VSE

AS/400

IFNULL(

exp,

value

)

If

exp

is

null,

value

is

returned.

If

exp

is

not

null,

exp

is

returned.

The

possible

data

type(s)

of

value

must

be

compatible

with

the

data

type

of

exp.

DB2

for

workstation

MVS

VM/VSE

AS/400

USER()

Returns

the

user’s

authorization

name.

(The

user’s

authorization

name

is

also

available

via

SQLGetInfo()

by

specifying

the

information

type

SQL_USER_NAME.)

DB2

for

workstation

MVS

VM/VSE

AS/400

Conversion

function:

178

CLI

Guide

and

Reference,

Volume

1

The

conversion

function

is

supported

by

DB2

CLI

and

defined

by

ODBC

using

vendor

escape

clauses.

Each

driver

and

data

source

determines

which

conversions

are

valid

between

the

possible

data

types.

As

the

driver

translates

the

ODBC

syntax

into

native

syntax

it

will

reject

the

conversions

that

are

not

supported

by

the

data

source,

even

if

the

ODBC

syntax

is

valid.

Use

the

function

SQLGetInfo()

with

the

appropriate

convert

function

masks

to

determine

which

conversions

are

supported

by

the

data

source.

Table

19.

Conversion

Function

CONVERT(

expr_value,

data_type

)

v

data_type

indicates

the

data

type

of

the

converted

representation

of

expr_value,

and

can

be

either

SQL_CHAR

or

SQL_DOUBLE.

v

expr_value

is

the

value

to

convert.

It

can

be

of

various

types,

depending

on

the

conversions

supported

by

the

driver

and

data

source.

Use

the

function

SQLGetInfo()

with

the

appropriate

convert

function

masks

to

determine

which

conversions

are

supported

by

the

data

source.

DB2

for

workstation

Related

concepts:

v

“Vendor

escape

clauses

in

CLI

applications”

on

page

167

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

Chapter

17.

Vendor

escape

clauses

179

180

CLI

Guide

and

Reference,

Volume

1

Chapter

18.

Mixing

embedded

SQL

and

DB2

CLI

Considerations

for

mixing

embedded

SQL

and

DB2

CLI

It

is

possible,

and

sometimes

desirable,

to

use

DB2

CLI

in

conjunction

with

embedded

static

SQL

in

an

application.

Consider

the

scenario

where

the

application

developer

wishes

to

take

advantage

of

the

ease

of

use

provided

by

the

DB2

CLI

catalog

functions

and

maximize

the

portion

of

the

application’s

processing

where

performance

is

critical.

In

order

to

mix

the

use

of

DB2

CLI

and

embedded

SQL,

the

application

must

comply

with

the

following

rules:

v

All

connection

management

and

transaction

management

must

be

performed

completely

using

either

DB2

CLI

or

embedded

SQL

-

never

a

mixture

of

the

two.

Two

options

are

available

to

the

application:

–

it

performs

all

connects

and

commits/rollbacks

using

DB2

CLI

calls,

and

then

calls

functions

written

using

embedded

SQL;

–

or

it

performs

all

connects

and

commits/rollbacks

using

embedded

SQL,

and

then

calls

functions

that

use

DB2

CLI

APIs,

notably,

a

null

connection.
v

Query

statement

processing

cannot

straddle

DB2

CLI

and

embedded

SQL

interfaces

for

the

same

statement.

For

example,

the

application

cannot

open

a

cursor

using

embedded

SQL,

and

then

call

the

DB2

CLI

SQLFetch()

function

to

retrieve

row

data.

Since

DB2

CLI

permits

multiple

connections,

the

SQLSetConnection()

function

must

be

called

prior

to

executing

any

embedded

SQL.

This

allows

the

application

to

explicitly

specify

the

connection

under

which

the

embedded

SQL

processing

is

performed.

If

the

DB2

CLI

application

is

multithreaded

and

also

makes

embedded

SQL

calls

or

DB2

API

calls,

then

each

thread

must

have

a

DB2

context.

Related

concepts:

v

“DB2

CLI

versus

Embedded

Dynamic

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“SQLSetConnection

function

(CLI)

-

Set

connection

handle”

in

the

CLI

Guide

and

Reference,

Volume

2

Related

samples:

v

“dbmconx.c

--

How

to

use

multiple

databases

with

embedded

SQL.”

v

“dbusemx.sqc

--

How

to

execute

embedded

SQL

statements

in

CLI”

©

Copyright

IBM

Corp.

1993

-

2004

181

182

CLI

Guide

and

Reference,

Volume

1

Chapter

19.

CLI/ODBC/JDBC

Static

Profiling

Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling

The

CLI/ODBC/JDBC

Static

Profiling

feature

enables

an

application’s

end

users

to

replace

the

use

of

dynamic

SQL

with

static

SQL,

potentially

resulting

in

runtime

performance

improvement

and

better

security

from

the

package-based

authorization

mechanism.

Restrictions:

v

When

executing

an

application

with

pre-bound

static

SQL

statements,

dynamic

registers

that

control

the

dynamic

statement

behavior

will

have

no

effect

on

the

statements

that

are

converted

to

static.

v

If

an

application

issues

DDL

(data

definition

language)

statements

for

objects

that

are

referenced

in

subsequent

DML

(data

manipulation

language)

statements,

you

will

find

all

of

these

statements

in

the

capture

file.

The

CLI/ODBC/JDBC

Static

Profiling

Bind

Tool,

db2cap,

will

attempt

to

bind

them.

The

bind

attempt

will

be

successful

with

DBMSs

that

support

the

VALIDATE(RUN)

bind

option,

but

it

will

fail

with

ones

that

do

not.

In

this

case,

the

application

should

not

use

Static

Profiling.

v

The

database

administrator

(DBA)

may

edit

the

capture

file

to

add,

change,

or

remove

SQL

statements,

based

on

application-specific

requirements.

Before

running

the

application

during

the

profiling

session,

ensure

that

the

following

conditions

have

been

noted:

v

An

SQL

statement

must

have

successfully

executed

(generated

a

positive

SQLCODE)

for

it

to

be

captured

in

a

profiling

session.

In

a

statement

matching

session,

unmatched

dynamic

statements

will

continue

to

execute

as

dynamic

CLI/ODBC/JDBC

calls.

v

An

SQL

statement

must

be

identical

character-by-character

to

the

one

that

was

captured

and

bound

to

be

a

valid

candidate

for

statement

matching.

Spaces

are

significant:

for

example,

″COL

=

1″

is

considered

different

than

″COL=1″.

Use

parameter

markers

in

place

of

literals

to

improve

match

hits.

Be

aware

that

there

are

times

when

not

all

dynamic

CLI/ODBC

calls

can

be

captured

and

grouped

into

a

static

package.

Possible

reasons

are:

v

The

application

does

not

regularly

free

environment

handles.

During

a

capture

session,

statements

captured

under

a

particular

environment

handle

are

only

written

to

the

capture

file

or

files

when

that

environment

handle

is

freed.

v

The

application

has

complex

control

flows

that

make

it

difficult

to

cover

all

runtime

conditions

in

a

single

application

run.

v

The

application

executes

SET

statements

to

change

register

variables.

These

statements

are

not

recorded.

Note

that

there

is

a

limited

capability

in

match

mode

to

detect

dynamic

SET

SQLID

and

SET

SCHEMA

statements,

and

suspend

executing

static

statements

accordingly.

However,

for

other

SET

statements,

subsequent

SQL

statements

which

depend

on

the

register

variables

being

set

may

not

behave

properly.

©

Copyright

IBM

Corp.

1993

-

2004

183

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

v

The

application

issues

DML

(Data

Manipulation

Language)

statements.

Depending

on

application

complexities

and

the

nature

of

these

statements,

either:

(1)

they

may

not

be

matched,

or

(2)

they

may

not

execute

properly

at

runtime.

Since

dynamic

and

static

SQL

are

quite

different,

the

DBA

should

always

verify

the

behaviour

of

the

application

in

static

match

mode

before

making

it

available

to

end

users.

Furthermore,

while

static

SQL

may

offer

improved

runtime

performance

over

dynamic

SQL,

this

is

not

necessarily

true

for

all

statements.

If

testing

shows

that

static

execution

decreases

performance

for

a

particular

statement,

the

DBA

can

force

that

statement

to

be

dynamically

executed

by

removing

the

statement

from

the

capture

file.

In

addition,

static

SQL,

unlike

dynamic

SQL,

may

require

occasional

rebinding

of

packages

to

maintain

performance,

particularly

if

the

database

objects

referred

to

in

the

packages

frequently

change.

If

CLI/ODBC/JDBC

Static

Profiling

does

not

fit

the

type

of

application

you

are

running,

there

are

other

programming

methods

which

allow

you

to

obtain

the

benefits

of

static

SQL,

such

as

embedded

SQL

and

stored

procedures.

Procedure:

To

create

static

SQL

statements

from

existing

dynamic

SQL

statements,

perform

the

following

steps:

1.

Profile

the

application

by

capturing

all

the

dynamic

SQL

statements

issued

by

the

application.

This

process

is

known

as

running

the

application

in

static

capture

mode.

To

turn

on

static

capture

mode,

set

the

following

CLI/ODBC

configuration

keywords

for

the

CLI/ODBC/JDBC

data

source

in

the

db2cli.ini

configuration

file,

before

running

the

application:

v

StaticMode

=

CAPTURE

v

StaticPackage

=

qualified

package

name

v

StaticCapFile

=

capture

file

name

For

example:

[DSN1]

StaticMode

=

CAPTURE

StaticPackage

=

MySchema.MyPkg

StaticCapFile

=

E:\Shared\MyApp.cpt

Attention:

For

the

StaticPackage

keyword,

ensure

that

you

specify

a

schema

name

(MySchema

in

the

sample

above).

If

a

schema

is

not

specified,

the

name

you

provide

will

be

considered

to

be

the

container

name

instead

of

the

package

name,

and

the

package

name

will

be

blank.

The

resulting

static

profile

takes

the

form

of

a

text-based

capture

file,

containing

information

about

the

SQL

statements

captured.

The

above

example

file

yields

the

following

results:

Data

Source

Name

1

(DSN1)

is

set

to

capture

mode;

the

package

will

be

named

MySchema.MyPkg;

and

the

capture

file,

MyApp.cpt,

will

be

saved

in

the

E:\Shared\

directory.

Until

the

StaticMode

keyword

is

changed

to

a

value

other

than

CAPTURE,

such

as

DISABLED

which

is

used

to

turn

off

static

capture

mode,

each

subsequent

run

of

this

application

will

capture

SQL

statements

and

append

them

to

the

capture

file

MyApp.cpt.

Only

unique

SQL

statements

will

be

captured

however,

as

duplicate

executions

are

ignored.

2.

Optional:

Set

the

CLI/ODBC

configuration

keyword

StaticLogFile

to

generate

a

CLI/ODBC/JDBC

Static

Profiling

log

file.

It

contains

useful

information

to

determine

the

state

of

the

statement

capturing

process.

3.

Run

the

application.

184

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

Unique

SQL

statements

will

now

be

captured

in

the

capture

file.

Duplicate

statements

are

ignored.

4.

Disable

static

capture

mode

by

setting

the

CLI/ODBC

configuration

keyword

StaticMode

to

DISABLED,

or

remove

the

keywords

set

in

the

first

step

from

the

db2cli.ini

file.

5.

Issue

the

db2cap

command

from

the

Command

Line

Processor.

The

db2cap

utility

will

generate

a

static

package

based

on

the

capture

file.

If

the

db2cap

utility

does

not

return

a

message

indicating

successful

completion,

then

a

statement

in

the

capture

file

could

not

be

statically

bound.

The

DBA

should

remove

the

failing

statement

from

the

capture

file

and

run

the

db2cap

utility

again.

6.

Distribute

a

copy

of

the

capture

file,

processed

with

db2cap

to

each

end

user

of

the

application.

If

all

users

reside

on

the

same

client

platform,

an

alternative

is

to

place

a

read-only

copy

of

this

capture

file

in

a

network

directory

accessible

to

all

users.

7.

Enable

your

application

for

dynamic-to-static

SQL

statement

mapping,

known

as

static

match

mode.

Do

this

by

setting

the

following

CLI/ODBC

configuration

keywords:

v

StaticMode

=

MATCH

v

StaticCapFile

=

capture

file

name

For

example:

[DSN1]

StaticMode

=

MATCH

StaticCapFile

=

E:\Shared\MyApp.cpt

8.

Optional:

Set

the

CLI/ODBC

configuration

keyword

StaticLogFile

keyword

to

log

useful

information

such

as

how

many

statements

were

matched

(therefore

statically

executed)

and

how

many

statements

were

unmatched

(therefore

dynamically

executed)

during

a

match

session.

The

DBA

should

use

this

information

to

verify

that

static

profiling

in

match

mode

is

yielding

an

acceptable

match

ratio

before

making

static

profiling

available

to

end

users.

9.

Run

the

application.

Related

concepts:

v

“Characteristics

and

Reasons

for

Using

Static

SQL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Capture

file

for

CLI/ODBC/JDBC

Static

Profiling”

on

page

185

Related

reference:

v

“db2cap

-

CLI/ODBC

Static

Package

Binding

Tool

Command”

in

the

Command

Reference

v

“StaticCapFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticLogFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticMode

CLI/ODBC

configuration

keyword”

on

page

315

v

“StaticPackage

CLI/ODBC

configuration

keyword”

on

page

315

Capture

file

for

CLI/ODBC/JDBC

Static

Profiling

The

capture

file

generated

during

static

profiling

is

a

text

file.

It

contains

the

text

of

SQL

statements

and

other

associated

information

obtained

in

static

capture

mode.

As

well,

it

keeps

track

of

a

number

of

configurable

bind

options;

some

already

contain

specific

values

obtained

from

the

capture

run,

and

some

are

left

blank,

in

Chapter

19.

CLI/ODBC/JDBC

Static

Profiling

185

|
|
|
|
|
|

|
|
|
|
|
|

which

case

the

precompiler

will

use

default

values

during

package

binding.

Before

binding

the

package(s),

the

DBA

may

want

to

examine

the

capture

file

and

make

necessary

changes

to

these

bind

options

using

a

text

editor.

To

help

you

understand

how

to

edit

SQL

statements,

here

is

the

description

of

the

fields

in

a

statement:

Field

Description

SQLID

If

present,

indicates

the

SCHEMA

or

SQLID

when

the

statement

was

captured

is

different

from

the

default

QUALIFIER

of

the

package(s).

SECTNO

Section

number

of

the

static

package

that

the

statement

was

bound

to.

ISOLATION

Isolation

level

for

the

statement.

It

determines

which

one

of

the

five

possible

package

the

statement

belongs

to.

STMTTEXT

Statement

string

STMTTYPE

There

are

3

possible

values:

v

SELECT_CURSOR_WITHHOLD:

SELECT

statement

using

a

withhold

cursor

v

SELECT_CURSOR_NOHOLD:

SELECT

statement

using

a

nohold

cursor

v

OTHER:

non-SELECT

statements

CURSOR

Cursor

name

declared

for

the

SELECT

statement

INVARnn

Description

of

the

n-th

input

variable

The

7

comma-separated

fields

refer

to:

1.

SQL

data

type

2.

Length

of

the

data.

For

decimal

or

floating

point

types,

this

is

the

precision.

3.

For

decimal

or

floating

point

types

only,

this

is

the

scale.

4.

TRUE

if

the

character

data

is

a

for-bit-data

type;

otherwise

FALSE.

5.

TRUE

if

the

variable

is

nullable;

otherwise

FALSE.

6.

Column

name

7.

SQL_NAMED

if

this

variable

refers

to

a

real

column

name;

SQL_UNNAMED

if

the

variable

is

a

system-generate

name.

OUTVARn

Description

of

the

n-th

output

variable

for

the

SELECT

statement.

The

comma-separated

fields

follow

the

same

convention

as

in

INVARs.

Related

concepts:

v

“Introduction

to

CLI”

on

page

3

Related

tasks:

v

“Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling”

on

page

183

186

CLI

Guide

and

Reference,

Volume

1

Chapter

20.

CLI/ODBC/JDBC

trace

facility

CLI/ODBC/JDBC

trace

facility

This

topic

discusses

the

following

subjects:

v

“DB2

CLI

and

DB2

JDBC

trace

configuration”

v

“DB2

CLI

trace

options

and

the

db2cli.ini

file”

on

page

188

v

“DB2

JDBC

trace

options

and

the

db2cli.ini

file”

on

page

189

v

“DB2

CLI

driver

trace

versus

ODBC

driver

manager

trace”

on

page

190

v

“DB2

CLI

driver,

CLI-based

Legacy

Type

2

JDBC

Driver,

and

DB2

traces”

on

page

191

v

“DB2

CLI

and

DB2

JDBC

traces

and

CLI

or

Java

stored

procedures”

on

page

191

The

DB2

CLI

and

the

CLI-based

Legacy

Type

2

JDBC

Driver

for

Linux,

UNIX®,

and

Windows®

offer

comprehensive

tracing

facilities.

By

default,

these

facilities

are

disabled

and

use

no

additional

computing

resources.

When

enabled,

the

trace

facilities

generate

one

or

more

text

log

files

whenever

an

application

accesses

the

appropriate

driver

(DB2

CLI

or

CLI-based

Legacy

Type

2

JDBC

Driver).

These

log

files

provide

detailed

information

about:

v

the

order

in

which

CLI

or

JDBC

functions

were

called

by

the

application

v

the

contents

of

input

and

output

parameters

passed

to

and

received

from

CLI

or

JDBC

functions

v

the

return

codes

and

any

error

or

warning

messages

generated

by

CLI

or

JDBC

functions

DB2

CLI

and

DB2®

JDBC

trace

file

analysis

can

benefit

application

developers

in

a

number

of

ways.

First,

subtle

program

logic

and

parameter

initialization

errors

are

often

evident

in

the

traces.

Second,

DB2

CLI

and

DB2

JDBC

traces

may

suggest

ways

of

better

tuning

an

application

or

the

databases

it

accesses.

For

example,

if

a

DB2

CLI

trace

shows

a

table

being

queried

many

times

on

a

particular

set

of

attributes,

an

index

corresponding

to

those

attributes

might

be

created

on

the

table

to

improve

application

performance.

Finally,

analysis

of

DB2

CLI

and

DB2

JDBC

trace

files

can

help

application

developers

understand

how

a

third

party

application

or

interface

is

behaving.

DB2

CLI

and

DB2

JDBC

trace

configuration:

The

configuration

parameters

for

both

DB2

CLI

and

DB2

JDBC

traces

facilities

are

read

from

the

DB2

CLI

configuration

file

db2cli.ini.

By

default,

this

file

is

located

in

the

\sqllib

path

on

the

Windows

platform

and

the

/sqllib/cfg

path

on

UNIX

platforms.

You

can

override

the

default

path

by

setting

the

DB2CLIINIPATH

environment

variable.

On

the

Windows

platform,

an

additional

db2cli.ini

file

may

be

found

in

the

user’s

profile

(or

home)

directory

if

there

are

any

user-defined

data

sources

defined

using

the

ODBC

Driver

Manager.

This

db2cli.ini

file

will

override

the

default

file.

To

view

the

current

db2cli.ini

trace

configuration

parameters

from

the

command

line

processor,

issue

the

following

command:

db2

GET

CLI

CFG

FOR

SECTION

COMMON

©

Copyright

IBM

Corp.

1993

-

2004

187

|
|
|
|
|
|

|

|
|

|
|

There

are

three

ways

to

modify

the

db2cli.ini

file

to

configure

the

DB2

CLI

and

DB2

JDBC

trace

facilities:

v

use

the

DB2

Configuration

Assistant

if

it

is

available

v

manually

edit

the

db2cli.ini

file

using

a

text

editor

v

issue

the

UPDATE

CLI

CFG

command

from

the

command

line

processor

For

example,

the

following

command

issued

from

the

command

line

processor

updates

the

db2cli.ini

file

and

enables

the

JDBC

tracing

facility:

db2

UPDATE

CLI

CFG

FOR

SECTION

COMMON

USING

jdbctrace

1

Notes:

1.

Typically

the

DB2

CLI

and

DB2

JDBC

trace

configuration

options

are

only

read

from

the

db2cli.ini

configuration

file

at

the

time

an

application

is

initialized.

However,

a

special

db2cli.ini

trace

option,

TraceRefreshInterval,

can

be

used

to

indicate

an

interval

at

which

specific

DB2

CLI

trace

options

are

reread

from

the

db2cli.ini

file.

2.

The

DB2

CLI

tracing

facility

can

also

be

configured

dynamically

by

setting

the

SQL_ATTR_TRACE

and

SQL_ATTR_TRACEFILE

environment

attributes.

These

settings

will

override

the

settings

contained

in

the

db2cli.ini

file.

Important:

Disable

the

DB2

CLI

and

DB2

JDBC

trace

facilities

when

they

are

not

needed.

Unnecessary

tracing

can

reduce

application

performance

and

may

generate

unwanted

trace

log

files.

DB2

does

not

delete

any

generated

trace

files

and

will

append

new

trace

information

to

any

existing

trace

files.

DB2

CLI

Trace

options

and

the

db2cli.ini

file:

When

an

application

using

the

DB2

CLI

driver

begins

execution,

the

driver

checks

for

trace

facility

options

in

the

[COMMON]

section

of

the

db2cli.ini

file.

These

trace

options

are

specific

trace

keywords

that

are

set

to

certain

values

in

the

db2cli.ini

file

under

the

[COMMON]

section.

Note:

Because

DB2

CLI

trace

keywords

appear

in

the

[COMMON]

section

of

the

db2cli.ini

file,

their

values

apply

to

all

database

connections

through

the

DB2

CLI

driver.

The

DB2

CLI

trace

keywords

that

can

be

defined

are:

v

Trace

v

TraceComm

v

TraceErrImmediate

v

TraceFileName

v

TraceFlush

v

TraceFlushOnError

v

TraceLocks

v

TracePathName

v

TracePIDList

v

TracePIDTID

v

TraceRefreshInterval

v

TraceStmtOnly

v

TraceTime

v

TraceTimeStamp

188

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Note:

DB2

CLI

trace

keywords

are

only

read

from

the

db2cli.ini

file

once

at

application

initialization

time

unless

the

TraceRefreshInterval

keyword

is

set.

If

this

keyword

is

set,

the

Trace

and

TracePIDList

keywords

are

reread

from

the

db2cli.ini

file

at

the

specified

interval

and

applied,

as

appropriate,

to

the

currently

executing

application.

An

example

db2cli.ini

file

trace

configuration

using

these

DB2

CLI

keywords

and

values

is:

[COMMON]

trace=1

TraceFileName=\temp\clitrace.txt

TraceFlush=1

Notes:

1.

CLI

trace

keywords

are

NOT

case

sensitive.

However,

path

and

file

name

keyword

values

may

be

case-sensitive

on

some

operating

systems

(such

as

UNIX).

2.

If

either

a

DB2

CLI

trace

keyword

or

its

associated

value

in

the

db2cli.ini

file

is

invalid,

the

DB2

CLI

trace

facility

will

ignore

it

and

use

the

default

value

for

that

trace

keyword

instead.

DB2

JDBC

Trace

options

and

the

db2cli.ini

file:

When

an

application

using

the

CLI-based

Legacy

Type

2

JDBC

Driver

begins

execution,

the

driver

also

checks

for

trace

facility

options

in

the

db2cli.ini

file.

As

with

the

DB2

CLI

trace

options,

DB2

JDBC

trace

options

are

specified

as

keyword/value

pairs

located

under

the

[COMMON]

section

of

the

db2cli.ini

file.

Note:

Because

DB2

JDBC

trace

keywords

appear

in

the

[COMMON]

section

of

the

db2cli.ini

file,

their

values

apply

to

all

database

connections

through

the

CLI-based

Legacy

Type

2

JDBC

Driver.

The

DB2

JDBC

trace

keywords

that

can

be

defined

are:

v

JDBCTrace

v

JDBCTracePathName

v

JDBCTraceFlush

JDBCTrace

=

0

|

1

The

JDBCTrace

keyword

controls

whether

or

not

other

DB2

JDBC

tracing

keywords

have

any

effect

on

program

execution.

Setting

JDBCTrace

to

its

default

value

of

0

disables

the

DB2

JDBC

trace

facility.

Setting

JDBCTrace

to

1

enables

it.

By

itself,

the

JDBCTrace

keyword

has

little

effect

and

produces

no

trace

output

unless

the

JDBCTracePathName

keyword

is

also

specified.

JDBCTracePathName

=

<fully_qualified_trace_path_name>

The

value

of

JDBCTracePathName

is

the

fully

qualified

path

of

the

directory

to

which

all

DB2

JDBC

trace

information

is

written.

The

DB2

JDBC

trace

facility

attempts

to

generate

a

new

trace

log

file

each

time

a

JDBC

application

is

executed

using

the

CLI-based

Legacy

Type

2

JDBC

Driver.

If

the

application

is

multithreaded,

a

separate

trace

log

file

will

be

generated

for

each

thread.

A

concatenation

of

the

application

process

ID,

the

thread

sequence

number,

and

a

thread-identifying

string

are

automatically

used

to

name

trace

log

files.

There

is

no

default

path

name

to

which

DB2

JDBC

trace

output

log

files

are

written.

Chapter

20.

CLI/ODBC/JDBC

trace

facility

189

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

JDBCTraceFlush

=

0

|

1

The

JDBCTraceFlush

keyword

specifies

how

often

trace

information

is

written

to

the

DB2

JDBC

trace

log

file.

By

default,

JDBCTraceFlush

is

set

to

0

and

each

DB2

JDBC

trace

log

file

is

kept

open

until

the

traced

application

or

thread

terminates

normally.

If

the

application

terminates

abnormally,

some

trace

information

that

was

not

written

to

the

trace

log

file

may

be

lost.

To

ensure

the

integrity

and

completeness

of

the

trace

information

written

to

the

DB2

JDBC

trace

log

file,

the

JDBCTraceFlush

keyword

can

be

set

to

1.

After

each

trace

entry

has

been

written

to

the

trace

log

file,

the

DB2

JDBC

driver

closes

the

file

and

then

reopens

it,

appending

new

trace

entries

to

the

end

of

the

file.

This

guarantees

that

no

trace

information

will

be

lost.

Note:

Each

DB2

JDBC

log

file

close

and

reopen

operation

incurs

significant

input/output

overhead

and

can

reduce

application

performance

considerably.

An

example

db2cli.ini

file

trace

configuration

using

these

DB2

JDBC

keywords

and

values

is:

[COMMON]

jdbctrace=1

JdbcTracePathName=\temp\jdbctrace\

JDBCTraceFlush=1

Notes:

1.

JDBC

trace

keywords

are

NOT

case

sensitive.

However,

path

and

file

name

keyword

values

may

be

case-sensitive

on

some

operating

systems

(such

as

UNIX).

2.

If

either

a

DB2

JDBC

trace

keyword

or

its

associated

value

in

the

db2cli.ini

file

is

invalid,

the

DB2

JDBC

trace

facility

will

ignore

it

and

use

the

default

value

for

that

trace

keyword

instead.

3.

Enabling

DB2

JDBC

tracing

does

not

enable

DB2

CLI

tracing.

The

CLI-based

Legacy

Type

2

JDBC

Driver

depends

on

the

DB2

CLI

driver

to

access

the

database.

Consequently,

Java™

developers

may

also

want

to

enable

DB2

CLI

tracing

for

additional

information

on

how

their

applications

interact

with

the

database

through

the

various

software

layers.

DB2

JDBC

and

DB2

CLI

trace

options

are

independent

of

each

other

and

can

be

specified

together

in

any

order

under

the

[COMMON]

section

of

the

db2cli.ini

file.

DB2

CLI

Driver

trace

versus

ODBC

driver

manager

trace:

It

is

important

to

understand

the

difference

between

an

ODBC

driver

manager

trace

and

a

DB2

CLI

driver

trace.

An

ODBC

driver

manager

trace

shows

the

ODBC

function

calls

made

by

an

ODBC

application

to

the

ODBC

driver

manager.

In

contrast,

a

DB2

CLI

driver

trace

shows

the

function

calls

made

by

the

ODBC

driver

manager

to

the

DB2

CLI

driver

on

behalf

of

the

application.

An

ODBC

driver

manager

might

forward

some

function

calls

directly

from

the

application

to

the

DB2

CLI

driver.

However,

the

ODBC

driver

manager

might

also

delay

or

avoid

forwarding

some

function

calls

to

the

driver.

The

ODBC

driver

manager

may

also

modify

application

function

arguments

or

map

application

functions

to

other

functions

before

forwarding

the

call

on

to

the

DB2

CLI

driver.

Reasons

for

application

function

call

intervention

by

the

ODBC

driver

manager

include:

190

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|
|

v

Applications

written

using

ODBC

2.0

functions

that

have

been

deprecated

in

ODBC

3.0

will

have

the

old

functions

mapped

to

new

functions.

v

ODBC

2.0

function

arguments

deprecated

in

ODBC

3.0

will

be

mapped

to

equivalent

ODBC

3.0

arguments.

v

The

Microsoft®

cursor

library

will

map

calls

such

as

SQLExtendedFetch()

to

multiple

calls

to

SQLFetch()

and

other

supporting

functions

to

achieve

the

same

end

result.

v

ODBC

driver

manager

connection

pooling

will

usually

defer

SQLDisconnect()

requests

(or

avoid

them

altogether

if

the

connection

gets

reused).

For

these

and

other

reasons,

application

developers

may

find

an

ODBC

driver

manager

trace

to

be

a

useful

complement

to

the

DB2

CLI

driver

trace.

For

more

information

on

capturing

and

interpreting

ODBC

driver

manager

traces,

refer

to

the

ODBC

driver

manager

documentation.

On

the

Windows

platforms,

refer

to

the

Microsoft

ODBC

3.0

Software

Development

Kit

and

Programmer’s

Reference,

also

available

online

at:

http://www.msdn.microsoft.com/.

DB2

CLI

Driver,

CLI-based

Legacy

Type

2

JDBC

Driver,

and

DB2

traces:

Internally,

the

CLI-based

Legacy

Type

2

JDBC

Driver

makes

use

of

the

DB2

CLI

driver

for

database

access.

For

example,

the

Java

getConnection()

method

is

internally

mapped

by

the

CLI-based

Legacy

Type

2

JDBC

Driver

to

the

DB2

CLI

SQLConnect()

function.

As

a

result,

Java

developers

might

find

a

DB2

CLI

trace

to

be

a

useful

complement

to

the

DB2

JDBC

trace.

The

DB2

CLI

driver

makes

use

of

many

internal

and

DB2

specific

functions

to

do

its

work.

These

internal

and

DB2

specific

function

calls

are

logged

in

the

DB2

trace.

Application

developers

will

not

find

DB2

traces

useful,

as

they

are

only

meant

to

assist

IBM®

Service

in

problem

determination

and

resolution.

DB2

CLI

and

DB2

JDBC

traces

and

CLI

or

Java

stored

procedures:

On

all

workstation

platforms,

the

DB2

CLI

and

DB2

JDBC

trace

facilities

can

be

used

to

trace

DB2

CLI

and

DB2

JDBC

stored

procedures.

Most

of

the

DB2

CLI

and

DB2

JDBC

trace

information

and

instructions

given

in

earlier

sections

is

generic

and

applies

to

both

applications

and

stored

procedures

equally.

However,

unlike

applications

which

are

clients

of

a

database

server

(and

typically

execute

on

a

machine

separate

from

the

database

server),

stored

procedures

execute

at

the

database

server.

Therefore,

the

following

additional

steps

must

be

taken

when

tracing

DB2

CLI

or

DB2

JDBC

stored

procedures:

v

Ensure

the

trace

keyword

options

are

specified

in

the

db2cli.ini

file

located

at

the

DB2

server.

v

If

the

TraceRefreshInterval

keyword

is

not

set

to

a

positive,

non-zero

value,

ensure

all

keywords

are

configured

correctly

prior

to

database

startup

time

(that

is,

when

the

db2start

command

is

issued).

Changing

trace

settings

while

the

database

server

is

running

may

have

unpredictable

results.

For

example,

if

the

TracePathName

is

changed

while

the

server

is

running,

then

the

next

time

a

stored

procedure

is

executed,

some

trace

files

may

be

written

to

the

new

path,

while

others

are

written

to

the

original

path.

To

ensure

consistency,

restart

the

server

any

time

a

trace

keyword

other

than

Trace

or

TracePIDList

is

modified.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Chapter

20.

CLI/ODBC/JDBC

trace

facility

191

|
|
|
|
|

v

“CLI

and

JDBC

trace

files”

on

page

192

Related

reference:

v

“SQLSetEnvAttr

function

(CLI)

-

Set

environment

attribute”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“db2trc

-

Trace

Command”

in

the

Command

Reference

v

“GET

CLI

CONFIGURATION

Command”

in

the

Command

Reference

v

“UPDATE

CLI

CONFIGURATION

Command”

in

the

Command

Reference

v

“Miscellaneous

variables”

in

the

Administration

Guide:

Performance

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

CLI

and

JDBC

trace

files

Applications

that

access

the

DB2®

CLI

and

DB2

JDBC

drivers

can

make

use

of

the

DB2

CLI

and

DB2

JDBC

trace

facilities.

These

utilities

record

all

function

calls

made

by

the

DB2

CLI

or

DB2

JDBC

drivers

to

a

log

file

which

is

useful

for

problem

determination.

This

topic

discusses

how

to

access

and

interpret

these

log

files

generated

by

the

tracing

facilities:

v

“CLI

and

JDBC

trace

file

location”

v

“CLI

trace

file

interpretation”

on

page

193

v

“JDBC

trace

file

interpretation”

on

page

197

CLI

and

JDBC

trace

file

location:

If

the

TraceFileName

keyword

was

used

in

the

db2cli.ini

file

to

specify

a

fully

qualified

file

name,

then

the

DB2

CLI

trace

log

file

will

be

in

the

location

specified.

If

a

relative

file

name

was

specified

for

the

DB2

CLI

trace

log

file

name,

the

location

of

that

file

will

depend

on

what

the

operating

system

considers

to

be

the

current

path

of

the

application.

Note:

If

the

user

executing

the

application

does

not

have

sufficient

authority

to

write

to

the

trace

log

file

in

the

specified

path,

no

file

will

be

generated

and

no

warning

or

error

is

given.

If

either

or

both

of

the

TracePathName

and

JDBCTracePathName

keywords

were

used

in

the

db2cli.ini

file

to

specify

fully

qualified

directories,

then

the

DB2

CLI

and

DB2

JDBC

trace

log

files

will

be

in

the

location

specified.

If

a

relative

directory

name

was

specified

for

either

or

both

trace

directories,

the

operating

system

will

determine

its

location

based

on

what

it

considers

to

be

the

current

path

of

the

application.

Note:

If

the

user

executing

the

application

does

not

have

sufficient

authority

to

write

trace

files

in

the

specified

path,

no

file

will

be

generated

and

no

warning

or

error

is

given.

If

the

specified

trace

path

does

not

exist,

it

will

not

be

created.

The

DB2

CLI

and

DB2

JDBC

trace

facilities

automatically

use

the

application’s

process

ID

and

thread

sequence

number

to

name

the

trace

log

files

when

the

TracePathName

and

JDBCTracePathName

keywords

have

been

set.

For

example,

a

DB2

CLI

trace

of

an

application

with

three

threads

might

generate

the

following

DB2

CLI

trace

log

files:

100390.0,

100390.1,

100390.2.

192

CLI

Guide

and

Reference,

Volume

1

Similarly,

a

DB2

JDBC

trace

of

a

Java™

application

with

two

threads

might

generate

the

following

JDBC

trace

log

files:

7960main.trc,

7960Thread-1.trc.

Note:

If

the

trace

directory

contains

both

old

and

new

trace

log

files,

file

date

and

time

stamp

information

can

be

used

to

locate

the

most

recent

trace

files.

If

no

DB2

CLI

or

DB2

JDBC

trace

output

files

appear

to

have

been

created:

v

Verify

that

the

trace

configuration

keywords

are

set

correctly

in

the

db2cli.ini

file.

Issuing

the

db2

GET

CLI

CFG

FOR

SECTION

COMMON

command

from

the

command

line

processor

is

a

quick

way

to

do

this.

v

Ensure

the

application

is

restarted

after

updating

the

db2cli.ini

file.

Specifically,

the

DB2

CLI

and

DB2

JDBC

trace

facilities

are

initialized

during

application

startup.

Once

initialized,

the

DB2

JDBC

trace

facility

cannot

be

reconfigured.

The

DB2

CLI

trace

facility

can

be

reconfigured

at

run

time

but

only

if

the

TraceRefreshInterval

keyword

was

appropriately

specified

prior

to

application

startup.

Note:

Only

the

Trace

and

TracePIDList

DB2

CLI

keywords

can

be

reconfigured

at

run

time.

Changes

made

to

other

DB2

CLI

keywords,

including

TraceRefreshInterval,

have

no

effect

without

an

application

restart.

v

If

the

TraceRefreshInterval

keyword

was

specified

prior

to

application

startup,

and

if

the

Trace

keyword

was

initially

set

to

0,

ensure

that

enough

time

has

elapsed

for

the

DB2

CLI

trace

facility

to

reread

the

Trace

keyword

value.

v

If

either

or

both

the

TracePathName

and

JDBCTracePathName

keywords

are

used

to

specify

trace

directories,

ensure

those

directories

exist

prior

to

starting

the

application.

v

Ensure

the

application

has

write

access

to

the

specified

trace

log

file

or

trace

directory.

v

Check

the

DB2CLIINIPATH

environment

variable.

If

set,

the

DB2

CLI

and

DB2

JDBC

trace

facilities

expect

the

db2cli.ini

file

to

be

at

the

location

specified

by

this

variable.

v

If

the

application

uses

ODBC

to

interface

with

the

DB2

CLI

driver,

verify

that

one

of

the

SQLConnect(),

SQLDriverConnect()

or

SQLBrowseConnect()

functions

have

been

successfully

called.

No

entries

will

be

written

to

the

DB2

CLI

trace

log

files

until

a

database

connection

has

successfully

been

made.

CLI

trace

file

interpretation:

DB2

CLI

traces

always

begin

with

a

header

that

identifies

the

process

ID

and

thread

ID

of

the

application

that

generated

the

trace,

the

time

the

trace

began,

and

product

specific

information

such

as

the

local

DB2

build

level

and

DB2

CLI

driver

version.

For

example:

1

[

Process:

1227,

Thread:

1024

]

2

[

Date,

Time:

01-27-2002

13:46:07.535211

]

3

[

Product:

QDB2/LINUX

7.1.0

]

4

[

Level

Identifier:

02010105

]

5

[

CLI

Driver

Version:

07.01.0000

]

6

[

Informational

Tokens:

"DB2

v7.1.0","n000510",""

]

Note:

Trace

examples

used

in

this

section

have

line

numbers

added

to

the

left

hand

side

of

the

trace.

These

line

numbers

have

been

added

to

aid

the

discussion

and

will

not

appear

in

an

actual

DB2

CLI

trace.

Chapter

20.

CLI/ODBC/JDBC

trace

facility

193

Immediately

following

the

trace

header,

there

are

usually

a

number

of

trace

entries

related

to

environment

and

connection

handle

allocation

and

initialization.

For

example:

7

SQLAllocEnv(

phEnv=&bffff684

)

8

–––>

Time

elapsed

-

+9.200000E-004

seconds

9

SQLAllocEnv(

phEnv=0:1

)

10

<–––

SQL_SUCCESS

Time

elapsed

-

+7.500000E-004

seconds

11

SQLAllocConnect(

hEnv=0:1,

phDbc=&bffff680

)

12

–––>

Time

elapsed

-

+2.334000E-003

seconds

13

SQLAllocConnect(

phDbc=0:1

)

14

<–––

SQL_SUCCESS

Time

elapsed

-

+5.280000E-004

seconds

15

SQLSetConnectOption(

hDbc=0:1,

fOption=SQL_ATTR_AUTOCOMMIT,

vParam=0

)

16

–––>

Time

elapsed

-

+2.301000E-003

seconds

17

SQLSetConnectOption(

)

18

<–––

SQL_SUCCESS

Time

elapsed

-

+3.150000E-004

seconds

19

SQLConnect(

hDbc=0:1,

szDSN="SAMPLE",

cbDSN=-3,

szUID="",

cbUID=-3,

szAuthStr="",

cbAuthStr=-3

)

20

–––>

Time

elapsed

-

+7.000000E-005

seconds

21

(

DBMS

NAME="DB2/LINUX",

Version="07.01.0000",

Fixpack="0x22010105"

)

22

SQLConnect(

)

23

<–––

SQL_SUCCESS

Time

elapsed

-

+5.209880E-001

seconds

24

(

DSN=""SAMPLE""

)

25

(

UID="

"

)

26

(

PWD="*"

)

In

the

above

trace

example,

notice

that

there

are

two

entries

for

each

DB2

CLI

function

call

(for

example,

lines

19-21

and

22-26

for

the

SQLConnect()

function

call).

This

is

always

the

case

in

DB2

CLI

traces.

The

first

entry

shows

the

input

parameter

values

passed

to

the

function

call

while

the

second

entry

shows

the

function

output

parameter

values

and

return

code

returned

to

the

application.

The

above

trace

example

shows

that

the

SQLAllocEnv()

function

successfully

allocated

an

environment

handle

(

phEnv=0:1

)

at

line

9.

That

handle

was

then

passed

to

the

SQLAllocConnect()

function

which

successfully

allocated

a

database

connection

handle

(

phDbc=0:1

)

as

of

line

13.

Next,

the

SQLSetConnectOption()

function

was

used

to

set

the

phDbc=0:1

connection’s

SQL_ATTR_AUTOCOMMIT

attribute

to

SQL_AUTOCOMMIT_OFF

(

vParam=0

)

at

line

15.

Finally,

SQLConnect()

was

called

to

connect

to

the

target

database

(

SAMPLE

)

at

line

19.

Included

in

the

input

trace

entry

of

the

SQLConnect()

function

on

line

21

is

the

build

and

FixPak

level

of

the

target

database

server.

Other

information

that

might

also

appear

in

this

trace

entry

includes

input

connection

string

keywords

and

the

code

pages

of

the

client

and

server.

For

example,

suppose

the

following

information

also

appeared

in

the

SQLConnect()

trace

entry:

(

Application

Codepage=819,

Database

Codepage=819,

Char

Send/Recv

Codepage=819,

Graphic

Send/Recv

Codepage=819,

Application

Char

Codepage=819,

Application

Graphic

Codepage=819

)

This

would

mean

the

application

and

the

database

server

were

using

the

same

code

page

(

819

).

194

CLI

Guide

and

Reference,

Volume

1

The

return

trace

entry

of

the

SQLConnect()

function

also

contains

important

connection

information

(lines

24-26

in

the

above

example

trace).

Additional

information

that

might

be

displayed

in

the

return

entry

includes

any

PATCH1

or

PATCH2

keyword

values

that

apply

to

the

connection.

For

example,

if

PATCH2=27,28

was

specified

in

the

db2cli.ini

file

under

the

COMMON

section,

the

following

line

should

also

appear

in

the

SQLConnect()

return

entry:

(

PATCH2="27,28"

)

Following

the

environment

and

connection

related

trace

entries

are

the

statement

related

trace

entries.

For

example:

27

SQLAllocStmt(

hDbc=0:1,

phStmt=&bffff684

)

28

–––>

Time

elapsed

-

+1.868000E-003

seconds

29

SQLAllocStmt(

phStmt=1:1

)

30

<–––

SQL_SUCCESS

Time

elapsed

-

+6.890000E-004

seconds

31

SQLExecDirect(

hStmt=1:1,

pszSqlStr="CREATE

TABLE

GREETING

(MSG

VARCHAR(10))",

cbSqlStr=-3

)

32

–––>

Time

elapsed

-

+2.863000E-003

seconds

33

(

StmtOut="CREATE

TABLE

GREETING

(MSG

VARCHAR(10))"

)

34

SQLExecDirect(

)

35

<–––

SQL_SUCCESS

Time

elapsed

-

+2.387800E-002

seconds

In

the

above

trace

example,

the

database

connection

handle

(

phDbc=0:1

)

was

used

to

allocate

a

statement

handle

(

phStmt=1:1

)

at

line

29.

An

unprepared

SQL

statement

was

then

executed

on

that

statement

handle

at

line

31.

If

the

TraceComm=1

keyword

had

been

set

in

the

db2cli.ini

file,

the

SQLExecDirect()

function

call

trace

entries

would

have

shown

additional

client-server

communication

information

as

follows:

SQLExecDirect(

hStmt=1:1,

pszSqlStr="CREATE

TABLE

GREETING

(MSG

VARCHAR(10))",

cbSqlStr=-3

)

–––>

Time

elapsed

-

+2.876000E-003

seconds

(

StmtOut="CREATE

TABLE

GREETING

(MSG

VARCHAR(10))"

)

sqlccsend(

ulBytes

-

232

)

sqlccsend(

Handle

-

1084869448

)

sqlccsend(

)

-

rc

-

0,

time

elapsed

-

+1.150000E-004

sqlccrecv(

)

sqlccrecv(

ulBytes

-

163

)

-

rc

-

0,

time

elapsed

-

+2.243800E-002

SQLExecDirect(

)

<–––

SQL_SUCCESS

Time

elapsed

-

+2.384900E-002

seconds

Notice

the

additional

sqlccsend()

and

sqlccrecv()

function

call

information

in

this

trace

entry.

The

sqlccsend()

call

information

reveals

how

much

data

was

sent

from

the

client

to

the

server,

how

long

the

transmission

took,

and

the

success

of

that

transmission

(

0

=

SQL_SUCCESS

).

The

sqlccrecv()

call

information

then

reveals

how

long

the

client

waited

for

a

response

from

the

server

and

the

amount

of

data

included

in

the

response.

Often,

multiple

statement

handles

will

appear

in

the

DB2

CLI

trace.

By

paying

close

attention

to

the

statement

handle

identifier,

one

can

easily

follow

the

execution

path

of

a

statement

handle

independent

of

all

other

statement

handles

appearing

in

the

trace.

Statement

execution

paths

appearing

in

the

DB2

CLI

trace

are

usually

more

complicated

than

the

example

shown

above.

For

example:

Chapter

20.

CLI/ODBC/JDBC

trace

facility

195

36

SQLAllocStmt(

hDbc=0:1,

phStmt=&bffff684

)

37

–––>

Time

elapsed

-

+1.532000E-003

seconds

38

SQLAllocStmt(

phStmt=1:2

)

39

<–––

SQL_SUCCESS

Time

elapsed

-

+6.820000E-004

seconds

40

SQLPrepare(

hStmt=1:2,

pszSqlStr="INSERT

INTO

GREETING

VALUES

(

?

)",

cbSqlStr=-3

)

41

–––>

Time

elapsed

-

+2.733000E-003

seconds

42

(

StmtOut="INSERT

INTO

GREETING

VALUES

(

?

)"

)

43

SQLPrepare(

)

44

<–––

SQL_SUCCESS

Time

elapsed

-

+9.150000E-004

seconds

45

SQLBindParameter(

hStmt=1:2,

iPar=1,

fParamType=SQL_PARAM_INPUT,

fCType=SQL_C_CHAR,

fSQLType=SQL_CHAR,

cbColDef=14,

ibScale=0,

rgbValue=&080eca70,

cbValueMax=15,

pcbValue=&080eca4c

)

46

–––>

Time

elapsed

-

+4.091000E-003

seconds

47

SQLBindParameter(

)

48

<–––

SQL_SUCCESS

Time

elapsed

-

+6.780000E-004

seconds

49

SQLExecute(

hStmt=1:2

)

50

–––>

Time

elapsed

-

+1.337000E-003

seconds

51

(

iPar=1,

fCType=SQL_C_CHAR,

rgbValue="Hello

World!!!",

pcbValue=14,

piIndicatorPtr=14

)

52

SQLExecute(

)

53

<–––

SQL_ERROR

Time

elapsed

-

+5.951000E-003

seconds

In

the

above

trace

example,

the

database

connection

handle

(

phDbc=0:1

)

was

used

to

allocate

a

second

statement

handle

(

phStmt=1:2

)

at

line

38.

An

SQL

statement

with

one

parameter

marker

was

then

prepared

on

that

statement

handle

at

line

40.

Next,

an

input

parameter

(

iPar=1

)

of

the

appropriate

SQL

type

(

SQL_CHAR

)

was

bound

to

the

parameter

marker

at

line

45.

Finally,

the

statement

was

executed

at

line

49.

Notice

that

both

the

contents

and

length

of

the

input

parameter

(

rgbValue=″Hello

World!!!″,

pcbValue=14

)

are

displayed

in

the

trace

on

line

51.

The

SQLExecute()

function

fails

at

line

52.

If

the

application

calls

a

diagnostic

DB2

CLI

function

like

SQLError()

to

diagnose

the

cause

of

the

failure,

then

that

cause

will

appear

in

the

trace.

For

example:

54

SQLError(

hEnv=0:1,

hDbc=0:1,

hStmt=1:2,

pszSqlState=&bffff680,

pfNativeError=&bfffee78,

pszErrorMsg=&bffff280,

cbErrorMsgMax=1024,

pcbErrorMsg=&bfffee76

)

55

–––>

Time

elapsed

-

+1.512000E-003

seconds

56

SQLError(

pszSqlState="22001",

pfNativeError=-302,

pszErrorMsg="[IBM][CLI

Driver][DB2/LINUX]

SQL0302N

The

value

of

a

host

variable

in

the

EXECUTE

or

OPEN

statement

is

too

large

for

its

corresponding

use.

SQLSTATE=22001",

pcbErrorMsg=157

)

57

<–––

SQL_SUCCESS

Time

elapsed

-

+8.060000E-004

seconds

The

error

message

returned

at

line

56

contains

the

DB2

native

error

code

that

was

generated

(

SQL0302N

),

the

sqlstate

that

corresponds

to

that

code

(

SQLSTATE=22001

)

and

a

brief

description

of

the

error.

In

this

example,

the

source

of

the

error

is

evident:

on

line

49,

the

application

is

trying

to

insert

a

string

with

14

characters

into

a

column

defined

as

VARCHAR(10)

on

line

31.

If

the

application

does

not

respond

to

a

DB2

CLI

function

warning

or

error

return

code

by

calling

a

diagnostic

function

like

SQLError(),

the

warning

or

error

message

196

CLI

Guide

and

Reference,

Volume

1

should

still

be

written

to

the

DB2

CLI

trace.

However,

the

location

of

that

message

in

the

trace

may

not

be

close

to

where

the

error

actually

occurred.

Furthermore,

the

trace

will

indicate

that

the

error

or

warning

message

was

not

retrieved

by

the

application.

For

example,

if

not

retrieved,

the

error

message

in

the

above

example

might

not

appear

until

a

later,

seemingly

unrelated

DB2

CLI

function

call

as

follows:

SQLDisconnect(

hDbc=0:1

)

–––>

Time

elapsed

-

+1.501000E-003

seconds

sqlccsend(

ulBytes

-

72

)

sqlccsend(

Handle

-

1084869448

)

sqlccsend(

)

-

rc

-

0,

time

elapsed

-

+1.080000E-004

sqlccrecv(

)

sqlccrecv(

ulBytes

-

27

)

-

rc

-

0,

time

elapsed

-

+1.717950E-001

(

Unretrieved

error

message="SQL0302N

The

value

of

a

host

variable

in

the

EXECUTE

or

OPEN

statement

is

too

large

for

its

corresponding

use.

SQLSTATE=22001"

)

SQLDisconnect(

)

<–––

SQL_SUCCESS

Time

elapsed

-

+1.734130E-001

seconds

The

final

part

of

a

DB2

CLI

trace

should

show

the

application

releasing

the

database

connection

and

environment

handles

that

it

allocated

earlier

in

the

trace.

For

example:

58

SQLTransact(

hEnv=0:1,

hDbc=0:1,

fType=SQL_ROLLBACK

)

59

–––>

Time

elapsed

-

+6.085000E-003

seconds

60

(

ROLLBACK=0

)

61

SQLTransact(

)

<–––

SQL_SUCCESS

Time

elapsed

-

+2.220750E-001

seconds

62

SQLDisconnect(

hDbc=0:1

)

63

–––>

Time

elapsed

-

+1.511000E-003

seconds

64

SQLDisconnect(

)

65

<–––

SQL_SUCCESS

Time

elapsed

-

+1.531340E-001

seconds

66

SQLFreeConnect(

hDbc=0:1

)

67

–––>

Time

elapsed

-

+2.389000E-003

seconds

68

SQLFreeConnect(

)

69

<–––

SQL_SUCCESS

Time

elapsed

-

+3.140000E-004

seconds

70

SQLFreeEnv(

hEnv=0:1

)

71

–––>

Time

elapsed

-

+1.129000E-003

seconds

72

SQLFreeEnv(

)

73

<–––

SQL_SUCCESS

Time

elapsed

-

+2.870000E-004

seconds

JDBC

trace

file

interpretation:

DB2

JDBC

traces

always

begin

with

a

header

that

lists

important

system

information

such

as

key

environment

variable

settings,

the

JDK

or

JRE

level,

the

DB2

JDBC

driver

level,

and

the

DB2

build

level.

For

example:

1

==

2

|

Trace

beginning

on

2002-1-28

7:21:0.19

3

==

4

System

Properties:

5

6

user.language

=

en

7

java.home

=

c:\Program

Files\SQLLIB\java\jdk\bin\..

8

java.vendor.url.bug

=

9

awt.toolkit

=

sun.awt.windows.WToolkit

Chapter

20.

CLI/ODBC/JDBC

trace

facility

197

10

file.encoding.pkg

=

sun.io

11

java.version

=

1.1.8

12

file.separator

=

\

13

line.separator

=

14

user.region

=

US

15

file.encoding

=

Cp1252

16

java.compiler

=

ibmjitc

17

java.vendor

=

IBM®

Corporation

18

user.timezone

=

EST

19

user.name

=

db2user

20

os.arch

=

x86

21

java.fullversion

=

JDK

1.1.8

IBM

build

n118p-19991124

(JIT

ibmjitc

V3.5-IBMJDK1.1-19991124)

22

os.name

=

Windows®

NT

23

java.vendor.url

=

http://www.ibm.com/

24

user.dir

=

c:\Program

Files\SQLLIB\samples\java

25

java.class.path

=

.:C:\Program

Files\SQLLIB\lib;C:\Program

Files\SQLLIB\java;

C:\Program

Files\SQLLIB\java\jdk\bin\

26

java.class.version

=

45.3

27

os.version

=

5.0

28

path.separator

=

;

29

user.home

=

C:\home\db2user

30

--

Note:

Trace

examples

used

in

this

section

have

line

numbers

added

to

the

left

hand

side

of

the

trace.

These

line

numbers

have

been

added

to

aid

the

discussion

and

will

not

appear

in

an

actual

DB2

JDBC

trace.

Immediately

following

the

trace

header,

one

usually

finds

a

number

of

trace

entries

related

to

initialization

of

the

JDBC

environment

and

database

connection

establishment.

For

example:

31

jdbc.app.DB2Driver

–>

DB2Driver()

(2002-1-28

7:21:0.29)

32

|

Loaded

db2jdbc

from

java.library.path

33

jdbc.app.DB2Driver

<–

DB2Driver()

[Time

Elapsed

=

0.01]

34

DB2Driver

-

connect(jdbc:db2:sample)

35

jdbc.app.DB2ConnectionTrace

–>

connect(

sample,

info,

db2driver,

0,

false

)

(2002-1-28

7:21:0.59)

36

|

10:

connectionHandle

=

1

37

jdbc.app.DB2ConnectionTrace

<–

connect()

[Time

Elapsed

=

0.16]

38

jdbc.app.DB2ConnectionTrace

–>

DB2Connection

(2002-1-28

7:21:0.219)

39

|

source

=

sample

40

|

Connection

handle

=

1

41

jdbc.app.DB2ConnectionTrace

<–

DB2Connection

In

the

above

trace

example,

a

request

to

load

the

DB2

JDBC

driver

was

made

on

line

31.

This

request

returned

successfully

as

reported

on

line

33.

The

DB2

JDBC

trace

facility

uses

specific

Java

classes

to

capture

the

trace

information.

In

the

above

trace

example,

one

of

those

trace

classes,

DB2ConnectionTrace,

has

generated

two

trace

entries

numbered

35-37

and

38-41.

Line

35

shows

the

connect()

method

being

invoked

and

the

input

parameters

to

that

method

call.

Line

37

shows

that

the

connect()

method

call

has

returned

successfully

while

line

36

shows

the

output

parameter

of

that

call

(

Connection

handle

=

1

).

Following

the

connection

related

entries,

one

usually

finds

statement

related

entries

in

the

JDBC

trace.

For

example:

198

CLI

Guide

and

Reference,

Volume

1

42

jdbc.app.DB2ConnectionTrace

–>

createStatement()

(2002-1-28

7:21:0.219)

43

|

Connection

handle

=

1

44

|

jdbc.app.DB2StatementTrace

–>

DB2Statement(

con,

1003,

1007

)

(2002-1-28

7:21:0.229)

45

|

jdbc.app.DB2StatementTrace

<–

DB2Statement()

[Time

Elapsed

=

0.0]

46

|

jdbc.app.DB2StatementTrace

–>

DB2Statement

(2002-1-28

7:21:0.229)

47

|

|

Statement

handle

=

1:1

48

|

jdbc.app.DB2StatementTrace

<–

DB2Statement

49

jdbc.app.DB2ConnectionTrace

<–

createStatement

-

Time

Elapsed

=

0.01

50

jdbc.app.DB2StatementTrace

–>

executeQuery(SELECT

*

FROM

EMPLOYEE

WHERE

empno

=

000010)

(2002-1-28

7:21:0.269)

51

|

Statement

handle

=

1:1

52

|

jdbc.app.DB2StatementTrace

–>

execute2(

SELECT

*

FROM

EMPLOYEE

WHERE

empno

=

000010

)

(2002-1-28

7:21:0.269)

52

|

|

jdbc.DB2Exception

–>

DB2Exception()

(2002-1-28

7:21:0.729)

53

|

|

|

10:

SQLError

=

[IBM][CLI

Driver][DB2/NT]

SQL0401N

The

data

types

of

the

operands

for

the

operation

"="

are

not

compatible.

SQLSTATE=42818

54

|

|

|

SQLState

=

42818

55

|

|

|

SQLNativeCode

=

-401

56

|

|

|

LineNumber

=

0

57

|

|

|

SQLerrmc

=

=

58

|

|

jdbc.DB2Exception

<–

DB2Exception()

[Time

Elapsed

=

0.0]

59

|

jdbc.app.DB2StatementTrace

<–

executeQuery

-

Time

Elapsed

=

0.0

On

line

42

and

43,

the

DB2ConnectionTrace

class

reported

that

the

JDBC

createStatement()

method

had

been

called

with

connection

handle

1.

Within

that

method,

the

internal

method

DB2Statement()

was

called

as

reported

by

another

DB2

JDBC

trace

facility

class,

DB2StatementTrace.

Notice

that

this

internal

method

call

appears

’nested’

in

the

trace

entry.

Lines

47-49

show

that

the

methods

returned

successfully

and

that

statement

handle

1:1

was

allocated.

On

line

50,

an

SQL

query

method

call

is

made

on

statement

1:1,

but

the

call

generates

an

exception

at

line

52.

The

error

message

is

reported

on

line

53

and

contains

the

DB2

native

error

code

that

was

generated

(

SQL0401N

),

the

sqlstate

that

corresponds

to

that

code

(

SQLSTATE=42818

)

and

a

brief

description

of

the

error.

In

this

example,

the

error

results

because

the

EMPLOYEE.EMPNO

column

is

defined

as

CHAR(6)

and

not

an

integer

value

as

assumed

in

the

query.

Related

concepts:

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“Miscellaneous

variables”

in

the

Administration

Guide:

Performance

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceComm

CLI/ODBC

configuration

keyword”

on

page

320

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

v

“TracePIDList

CLI/ODBC

configuration

keyword”

on

page

325

v

“TraceRefreshInterval

CLI/ODBC

configuration

keyword”

on

page

327

Chapter

20.

CLI/ODBC/JDBC

trace

facility

199

200

CLI

Guide

and

Reference,

Volume

1

Chapter

21.

CLI

bind

files

and

package

names

DB2

CLI

bind

files

and

package

names

DB2

CLI

packages

are

automatically

bound

to

databases

when

the

databases

are

created

or

migrated.

If

a

FixPak

is

applied

to

either

the

client

or

the

server,

or

a

user

has

intentionally

dropped

a

package,

then

you

must

rebind

db2cli.lst

by

issuing

the

following

command:

UNIX

db2

bind

<BNDPATH>/@db2cli.lst

blocking

all

grant

public

Windows

db2

bind

"%DB2PATH%\bnd\@db2cli.lst"

blocking

all

grant

public

The

db2cli.lst

file

contains

the

names

of

the

required

bind

files

for

DB2

CLI

to

connect

to

DB2

Version

8

servers

(db2clipk.bnd

and

db2clist.bnd).

For

host

and

iSeries

servers

use

one

of

ddcsvm.lst,

ddcsmvs.lst,

ddcsvse.lst,

or

ddcs400.lst

bind

list

files.

Warnings

that

are

generated

when

binding

DB2

Version

8

CLI

packages

(such

as

db2clist.bnd

or

db2cli.lst)

to

workstation

or

host

servers

are

expected.

This

is

because

DB2

uses

generic

bind

files,

but

the

bind

file

packages

for

DB2

Version

8

CLI

packages

contain

sections

that

apply

to

specific

platforms.

Therefore,

DB2

may

generate

warnings

during

the

binding

against

a

server,

when

it

encounters

a

platform-specific

section

that

does

not

apply

to

the

server.

The

following

is

an

example

of

a

warning

that

can

be

ignored

which

may

occur

when

binding

a

Version

8

CLI

package

(such

as

db2clist.bnd

or

db2cli.lst)

to

a

workstation

server:

LINE

MESSAGES

FOR

db2clist.bnd

--

235

SQL0440N

No

authorized

routine

named

"POSSTR"

of

type

"FUNCTION"

having

compatible

arguments

was

found.

SQLSTATE=42884

©

Copyright

IBM

Corp.

1993

-

2004

201

|
|
|
|

|

|

|

|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

Table

20.

DB2

CLI

Bind

files

and

package

names

Bind

file

name

Package

name

Needed

by

DB2

Universal

Database

Needed

by

host

servers

Description

db2clipk.bnd

SYSSHxyy

Yes

Yes

dynamic

placeholders

-

small

package

WITH

HOLD

SYSSNxyy

Yes

Yes

dynamic

placeholders

-

small

Package

NOT

WITH

HOLD

SYSLHxyy

Yes

Yes

dynamic

placeholders

-

large

package

WITH

HOLD

SYSLNxyy

Yes

Yes

dynamic

placeholders

-

large

package

NOT

WITH

HOLD

db2clist.bnd

SYSSTAT

Yes

Yes

common

static

CLI

functions

db2schema.bnd

SQLL9Eyy

Yes

No

catalog

function

support

db2cliws.bnd

SQLL65zz

Server

Version

2

to

7

No

DB2

for

Intel/UNIX

catalog

function

support

db2cliv2.bnd

SQLL95zz

Server

Version

2

to

7

No

common

static

CLI

functions

Note:

v

’S’

represents

a

small

package

and

’L’

represents

a

large

package

v

’H’

represents

WITH

HOLD,

and

’N’

represents

NOT

WITH

HOLD.

v

’x’

is

the

isolation

level:

0=NC,

1=UR,

2=CS,

3=RS,

4=RR

v

’yy’

is

the

package

iteration

00

through

FF

v

’zz’

is

unique

for

each

platform

For

example,

for

the

dynamic

packages:

v

SYSSN100

A

small

package

(65

sections)

where

all

cursor

declarations

are

for

non-held

cursors.

Bound

with

isolation

level

UR.

This

is

the

first

iteration

of

that

package.

v

SYSLH401

A

large

package

(385

sections)

where

all

cursor

declarations

are

for

held

cursors.

Bound

with

isolation

level

RS.

This

is

the

second

iteration

of

that

package.

Previous

versions

of

DB2

servers

do

not

need

all

of

the

bind

files

and

will

therefore

return

errors

at

bind

time.

Use

the

bind

option

SQLERROR(CONTINUE)

so

that

the

same

package

can

be

bound

on

all

platforms

and

errors

will

be

ignored

for

any

statements

not

supported

there.

db2schema.bnd

bind

file:

202

CLI

Guide

and

Reference,

Volume

1

|

|
|
|
|
|

|
|
|
|
|

||

|

|

|

|

|

|

|
|

|
|

|
|
|
|

|

The

db2schema.bnd

bind

file

is

automatically

bound

when

the

database

is

created

or

migrated

on

DB2

Universal

Database

for

Linux,

UNIX

and

Windows,

Version

8

servers,

and

exists

only

on

these

types

of

servers.

This

bind

file

is

located

at

the

server,

and

should

only

need

to

be

bound

manually

if

the

package

was

intentionally

dropped

by

a

user,

or

if

an

SQL1088W

(+1088)

warning

is

received

after

database

creation

or

migration.

The

package

name

is

of

the

form

NULLID.SQLL9Exx

where

xx

is

a

combination

of

two

alpha-numeric

characters

(eg,

NULLID.SQLL9E0L).

Only

the

most

recent

version

of

this

package

is

needed.

If

the

package

is

missing,

it

must

be

rebound

locally

on

the

server.

Do

not

bind

this

package

against

remote

servers

(for

example,

against

a

host

database).

The

bind

file

is

found

in

the

sqllib/bnd

directory

of

the

instance

home

directory,

and

is

rebound

with

the

following

command:

bind

db2schema.bnd

blocking

all

grant

public

If

an

SQL1088W

warning

was

received

after

database

creation

or

migration,

and

the

db2schema.bnd

package

is

missing,

increase

the

APPLHEAPSZ

database

configuration

parameter

to

128

or

greater,

and

attempt

to

rebind.

No

errors

should

be

reported

during

binding.

Related

concepts:

v

“Packages”

in

the

SQL

Reference,

Volume

1

Related

tasks:

v

“Setting

up

the

CLI

environment”

on

page

207

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

Chapter

21.

CLI

bind

files

and

package

names

203

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

204

CLI

Guide

and

Reference,

Volume

1

Part

3.

CLI

environment

and

application

building

©

Copyright

IBM

Corp.

1993

-

2004

205

206

CLI

Guide

and

Reference,

Volume

1

Chapter

22.

CLI

environmental

setup

Setting

up

the

CLI

environment

.

.

.

.

.

.

. 207

Setting

up

the

UNIX

ODBC

environment

.

.

.

. 208

Setting

up

the

unixODBC

Driver

Manager

.

.

.

. 210

Sample

build

scripts

and

configurations

for

the

unixODBC

Driver

Manager

.

.

.

.

.

.

.

.

. 212

Setting

up

the

Windows

CLI

environment

.

.

.

. 214

Before

you

can

run

a

CLI

application,

you

must

set

up

the

CLI

environment.

This

chapter

describes

how

to

set

up

the

CLI

or

ODBC

environment

on

the

UNIX

and

Windows

platforms.

Setting

up

the

CLI

environment

Runtime

support

for

DB2

CLI

applications

is

contained

in

all

DB2

clients.

Support

for

building

and

running

DB2

CLI

applications

is

contained

in

the

DB2

Application

Development

(DB2

AD)

Client.

This

section

describes

the

general

setup

required

for

DB2

CLI

runtime

support.

Prerequisites:

Before

you

set

up

your

CLI

environment,

ensure

you

have

set

up

the

application

development

environment.

Procedure:

In

order

for

a

DB2

CLI

application

to

successfully

access

a

DB2

database:

1.

Ensure

the

DB2

CLI/ODBC

driver

was

installed

during

the

DB2

client

install.

2.

Catalog

the

DB2

database

and

node

if

the

database

is

being

accessed

from

a

remote

client.

On

the

Windows

platform,

you

can

use

the

CLI/ODBC

Settings

GUI

to

catalog

the

DB2

database.

3.

Optional:

Explicitly

bind

the

DB2

CLI/ODBC

bind

files

to

the

database

with

the

command:

db2

bind

~/sqllib/bnd/@db2cli.lst

blocking

all

sqlerror

continue

\

messages

cli.msg

grant

public

On

the

Windows

platform,

you

can

use

the

CLI/ODBC

Settings

GUI

to

bind

the

DB2

CLI/ODBC

bind

files

to

the

database.

4.

Optional:

Change

the

DB2

CLI/ODBC

configuration

keywords

by

editing

the

db2cli.ini

file,

located

in

the

sqllib

directory

on

Windows,

and

in

the

sqllib/cfg

directory

on

UNIX

platforms.

On

the

Windows

platform,

you

can

use

the

CLI/ODBC

Settings

GUI

to

set

the

DB2

CLI/ODBC

configuration

keywords.

Once

you

have

completed

the

above

steps,

proceed

to

setting

up

your

Windows

CLI

environment,

or

setting

up

your

UNIX

ODBC

environment

if

you

are

running

ODBC

applications

on

UNIX.

Related

concepts:

v

“Initialization

and

termination

in

CLI

overview”

on

page

17

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

©

Copyright

IBM

Corp.

1993

-

2004

207

||

|

|

|

v

“Setting

up

the

UNIX

ODBC

environment”

on

page

208

v

“Setting

up

the

Windows

CLI

environment”

on

page

214

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

v

“CATALOG

DATABASE

Command”

in

the

Command

Reference

Setting

up

the

UNIX

ODBC

environment

This

topic

explains

how

to

set

up

UNIX

client

access

to

DB2

for

ODBC

applications.

(If

your

application

is

a

DB2

CLI

application,

your

CLI

environmental

setup

will

be

complete

once

the

task

in

the

Prerequisites

section

is

performed.)

Prerequisites:

Before

setting

up

the

UNIX

ODBC

environment,

ensure

you

have

set

up

the

CLI

environment.

Procedure:

For

ODBC

applications

on

UNIX

that

need

to

access

a

DB2

database,

follow

the

steps

described

below.

1.

Ensure

that

an

ODBC

driver

manager

is

installed

and

that

each

user

that

will

use

ODBC

has

access

to

it.

DB2

does

not

install

an

ODBC

driver

manager,

so

you

must

use

the

ODBC

driver

manager

that

was

supplied

with

your

ODBC

client

application

or

ODBC

SDK

in

order

to

access

DB2

data

using

that

application.

2.

Set

up

.odbc.ini,

the

end-user’s

data

source

configuration.

Each

user

ID

has

a

separate

copy

of

this

file

in

their

home

directory.

Note

that

the

file

starts

with

a

dot.

Although

necessary

files

are

usually

updated

automatically

by

the

tools

on

most

platforms,

users

of

ODBC

on

UNIX

platforms

will

have

to

edit

them

manually.

Using

an

ASCII

editor,

update

the

file

to

reflect

the

appropriate

data

source

configuration

information.

To

register

a

DB2

database

as

an

ODBC

data

source

there

must

be

one

stanza

(section)

for

each

DB2

database.

The

.odbc.ini

file

must

contain

the

following

lines

(examples

refer

to

configuration

of

the

SAMPLE

database

data

source):

v

in

the

[ODBC

Data

Source]

stanza:

SAMPLE=IBM

DB2

ODBC

DRIVER

which

indicates

that

there

is

a

data

source

called

SAMPLE

that

uses

the

IBM

DB2

ODBC

DRIVER;

v

in

the

[SAMPLE]

stanza:

on

AIX,

for

example,

[SAMPLE]

Driver=/u/thisuser/sqllib/lib/libdb2.a

Description=Sample

DB2

ODBC

Database

on

the

Solaris

Operating

Environment,

for

example,

[SAMPLE]

Driver=/u/thisuser/sqllib/lib/libdb2.so

Description=Sample

DB2

ODBC

Database

208

CLI

Guide

and

Reference,

Volume

1

which

indicates

that

the

SAMPLE

database

is

part

of

the

DB2

instance

located

in

the

directory

/u/thisuser.

With

the

introduction

of

the

64-bit

development

environment,

there

have

been

a

number

of

inconsistencies

among

vendors

regarding

the

interpretation

of

the

sizes

of

certain

parameters.

For

example,

the

64-bit

Microsoft

ODBC

Driver

Manager

treats

SQLHANDLE

and

SQLLEN

as

both

64-bits

in

length,

whereas

Data

Direct

Connect

and

open

source

ODBC

driver

managers

treat

SQLHANDLE

as

64-bit,

but

SQLLEN

as

32-bit.

The

developer

must

therefore

pay

careful

attention

to

which

version

of

the

DB2

driver

is

required.

Specify

the

appropriate

DB2

driver

in

the

data

source

stanza,

according

to

the

following

information:

Table

21.

DB2

driver

for

CLI

and

ODBC

applications

Type

of

application

DB2

driver

to

specify

32-bit

CLI

libdb2.*

32-bit

ODBC

libdb2.*

32-bit

Data

Direct

Connect

for

ODBC

db2_36.*

64-bit

CLI

libdb2.*

64-bit

open

source

ODBC

libdb2o.*

64-bit

Data

Direct

Connect

for

ODBC

db2_36.*

Note:

The

file

extension

of

the

DB2

driver

to

specify

depends

on

the

operating

system.

The

extensions

are

as

follows:

–

.a

-

AIX

–

.so

-

Linux,

Solaris

Operating

Environment

–

.sl

-

HPUX
3.

Ensure

that

the

application

execution

environment

has

reference

to

the

ODBC

driver

manager

by

including

libodbc.a

(for

AIX)

or

libodbc.so

(for

UNIX)

in

the

LIBPATH

(for

AIX)

or

LD_LIBRARY_PATH

(for

UNIX)

environment

variables.

4.

Enable

a

system-wide

.odbc.ini

file

to

be

used

by

setting

the

ODBCINI

environment

variable

to

the

fully

qualified

pathname

of

the

.ini

file.

Some

ODBC

driver

managers

support

this

feature

which

allows

for

centralized

control.

The

following

examples

show

how

to

set

ODBCINI:

in

the

C

shell,

setenv

ODBCINI

/opt/odbc/system_odbc.ini

in

the

Bourne

or

Korn

shell,

ODBCINI=/opt/odbc/system_odbc.ini;export

ODBCINI

5.

Once

the

.odbc.ini

file

is

set

up,

you

can

run

your

ODBC

application

and

access

DB2

databases.

Refer

to

the

documentation

that

comes

with

your

ODBC

application

for

additional

help

and

information.

Related

concepts:

v

“Comparison

of

DB2

CLI

and

Microsoft

ODBC”

on

page

9

v

“Initialization

and

termination

in

CLI

overview”

on

page

17

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Setting

up

the

CLI

environment”

on

page

207

Chapter

22.

CLI

environmental

setup

209

|
|
|
|
|
|
|
|
|

||

||

||

||

||

||

||

||
|

|
|

|

|

|

|

v

“Building

CLI

applications

on

UNIX”

on

page

217

v

“Building

CLI

routines

on

UNIX”

on

page

221

Setting

up

the

unixODBC

Driver

Manager

An

ODBC

driver

manager

is

not

supplied

on

UNIX

platforms

as

part

of

the

operating

system.

Using

ODBC

on

UNIX

systems,

therefore,

requires

a

separate

commercial

or

open

source

ODBC

driver

manager.

The

unixODBC

Driver

Manager

is

an

open

source

ODBC

driver

manager

supported

in

DB2

UDB

Version

8.1

and

DB2

Connect

Version

8.1

for

DB2

ODBC

applications

on

all

supported

DB2

UNIX

platforms.

This

topic

describes

how

to

set

up

the

unixODBC

Driver

Manager

to

work

with

DB2.

Please

also

refer

to

the

unixODBC

web

site

(http://www.unixodbc.com),

as

well

as

the

README

files

within

the

unixODBC

distribution

package

for

more

information.

Support

Statement:

If

you

experience

problems

with

the

combination

of

the

unixODBC

Driver

Manager

and

the

DB2

UDB

ODBC

driver

after

they

have

been

properly

installed

and

configured,

you

can

contact

DB2

Service

(http://www.ibm.com/software/data/db2/udb/winos2unix/support)

for

assistance

in

diagnosing

the

problem.

If

the

source

of

the

problem

lies

with

the

unixODBC

Driver

Manager,

then

you

can:

v

Purchase

a

service

contract

for

technical

support

from

Easysoft,

a

commercial

sponsor

of

unixODBC

(http://www.easysoft.com).

v

Participate

in

any

open

source

support

channels

at

http://www.unixodbc.com.

Procedure:

To

set

up

the

unixODBC

Driver

Manager

for

use

with

DB2

CLI

and

ODBC

applications:

1.

Download

the

unixODBC

source

code

from:

http://www.unixodbc.com.

DB2

UDB

Version

8.1

supports

version

2.2.3

of

the

unixODBC

Driver

Manager.

2.

Untar

the

source

files:

gzip

-d

unixODBC-2.2.3.tar.gz

tar

xf

unixODBC-2.2.3.tar

3.

For

AIX

only:

configure

the

C

compiler

to

be

thread-enabled:

export

CC=xlc_r

export

CCC=xlC_r

To

compile

a

64-bit

version

of

the

driver

manager

using

the

xlc_r

compilers,

set

the

environment

variables

OBJECT_MODE

and

CFLAGS:

export

OBJECT_MODE=64

export

CFLAGS=-q64

4.

Install

the

driver

manager

in

either

your

home

directory

or

the

default

/usr/local

prefix:

v

(Home

directory)

Issue

the

following

command

in

the

directory

where

you

untarred

the

source

files:

./configure

--prefix=$HOME

--enable-gui=no

--enable-drivers=no

v

(/usr/local

as

root)

Issue

the

following

command:

./configure

--enable-gui=no

--enable-drivers=no

5.

Optional:

Examine

all

configuration

options

by

issuing

the

following

command:

210

CLI

Guide

and

Reference,

Volume

1

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|

|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|
|

http://www.unixodbc.com/
http://www.ibm.com/software/data/db2/udb/support.html
http://www.easysoft.com/
http://www.unixodbc.com/
http://www.unixodbc.com/

./configure

--help

6.

Build

and

install

the

driver

manager:

make

make

install

Libraries

will

be

copied

to

the

[prefix]/lib

directory,

and

executables

will

be

copied

to

the

[prefix]/bin

directory.

7.

For

AIX

only:

Extract

the

shared

library

from

the

ODBC

driver

for

DB2

to

yield

shr.o

on

32-bit

platforms

and

shr_64.o

on

64-bit

platforms:

v

For

32-bit:

cd

/u/db2inst1/sqllib/lib

ar

-x

libdb2.a

v

For

64-bit:

cd

/u/db2inst1/sqllib/lib

ar

-x

-X

64

libdb2o.a

This

step

is

necessary

on

AIX

because

the

unixODBC

Driver

Manager

loads

the

driver

dynamically.

To

avoid

confusion,

rename

the

resulting

file

as

follows,

and

ensure

your

INI

file

points

to

the

correct

library:

v

For

32-bit:

mv

shr.o

db2.o

v

For

64-bit:

mv

shr_64.o

db2_64.o

8.

For

AIX

only

(optional):

Extract

libodbc.a,

libodbcinst.a,

and

libodbccr.a

if

you

will

be

dynamically

loading

the

driver

manager:

ar

-x

libodbc.a

ar

-x

libodbcinst.a

ar

-x

libodbccr.a

This

produces

libodbc.so.1,

libodbcinst.so.1,

and

libodbccr.so.1

respectively

in

the

[prefix]/lib/so

directory.

9.

Build

the

application

and

ensure

it

is

linked

to

the

unixODBC

Driver

Manager

by

including

the

-L[prefix]/lib

-lodbc

option

in

the

compile

and

link

command.

10.

Specify

the

paths

for

at

least

the

user

INI

file

(odbc.ini)

or

the

system

INI

file

(odbcinst.ini),

and

set

the

ODBCHOME

environment

variable

to

the

directory

where

the

system

INI

file

was

created.

Important:

Provide

absolute

paths

when

specifying

the

paths

of

the

user

and

system

INI

files.

Do

not

use

relative

paths

or

environment

variables.

Related

tasks:

v

“Setting

up

the

UNIX

ODBC

environment”

on

page

208

Related

reference:

v

“AIX

CLI

application

compile

and

link

options”

on

page

223

v

“HP-UX

CLI

application

compile

and

link

options”

on

page

229

v

“Linux

CLI

application

compile

and

link

options”

on

page

233

v

“Solaris

CLI

application

compile

and

link

options”

on

page

237

v

“Sample

build

scripts

and

configurations

for

the

unixODBC

Driver

Manager”

on

page

212

Chapter

22.

CLI

environmental

setup

211

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|
|

|

|

|

|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|
|

Sample

build

scripts

and

configurations

for

the

unixODBC

Driver

Manager

The

unixODBC

Driver

Manager

is

an

open

source

ODBC

driver

manager

for

use

on

UNIX

platforms.

DB2

UDB

Version

8

supports

this

driver

manager

for

ODBC

applications

on

supported

DB2

UDB

UNIX

platforms.

This

topic

presents

some

examples

of

possible

build

scripts

and

configurations

you

may

want

to

use

when

using

the

unixODBC

Driver

Manager

with

DB2.

Support

Statement:

If

you

experience

problems

with

the

combination

of

the

unixODBC

Driver

Manager

and

the

DB2

UDB

ODBC

driver

after

they

have

been

properly

installed

and

configured,

you

can

contact

DB2

Service

(http://www.ibm.com/software/data/db2/udb/winos2unix/support)

for

assistance

in

diagnosing

the

problem.

If

the

source

of

the

problem

lies

with

the

unixODBC

Driver

Manager,

then

you

can:

v

Purchase

a

service

contract

for

technical

support

from

Easysoft,

a

commercial

sponsor

of

unixODBC

(http://www.easysoft.com).

v

Participate

in

any

open

source

support

channels

at

http://www.unixodbc.com.

Sample

build

scripts:

The

following

are

sample

build

scripts

for

setting

up

your

environment

to

use

the

unixODBC

Driver

Manager.

AIX:

#!

/bin/sh

echo

"Unzipping

and

extracting"

gzip

-d

unixODBC-2.2.3.tar.gz

tar

xf

unixODBC-2.2.3.tar

cd

unixODBC-2.2.3

#Comment

this

out

if

not

AIX

export

CC=xlc_r

export

CCC=xlC_r

echo

"Configuring,

compiling

and

installing"

configure

--prefix=$HOME

--enable-gui=no

--enable-drivers=no

make

make

install

echo

"Setting

ini

env

vars."

export

ODBCHOME=~/etc

export

ODBCINI=~/odbc.ini

#Comment

this

out

if

not

AIX

echo

"Extracting

unixODBC

libraries"

cd

~/lib

ar

-x

libodbc.a

ar

-x

libodbcinst.a

ar

-x

libodbccr.a

echo

"\n***Still

need

to

set

up

your

ini

files"

UNIX

(non-AIX):

212

CLI

Guide

and

Reference,

Volume

1

|

|

|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

http://www.ibm.com/software/data/db2/udb/support.html
http://www.easysoft.com/
http://www.unixodbc.com/

#!

/bin/sh

echo

"Unzipping

and

extracting"

gzip

-d

unixODBC-2.2.3.tar.gz

tar

xf

unixODBC-2.2.3.tar

cd

unixODBC-2.2.3

echo

"Configuring,

compiling

and

installing"

configure

--prefix=$HOME

--enable-gui=no

--enable-drivers=no

make

make

install

echo

"Setting

ini

env

vars."

export

ODBCHOME=~/etc

export

ODBCINI=~/odbc.ini

echo

"\n***Still

need

to

set

up

your

ini

files"

Sample

INI

file

configurations:

The

following

are

sample

user

and

system

INI

files

for

using

the

unixODBC

Driver

Manager.

User

INI

file

(odbc.ini):

[DEFAULT]

Driver

=

DB2

[SAMPLE]

DESCRIPTION

=

Connection

to

DB2

DRIVER

=

DB2

System

INI

file

(odbcinst.ini):

[DEFAULT]

Description

=

Default

Driver

Driver

=

/u/db2inst1/sqllib/lib/db2.o

fileusage=1

dontdlclose=1

[DB2]

Description

=

DB2

Driver

Driver

=

/u/db2inst1/sqllib/lib/db2.o

fileusage=1

dontdlclose=1

[ODBC]

Trace

=

yes

Tracefile

=

/u/user1trc.log

This

system

INI

file

has

the

ODBC

trace

enabled,

with

the

trace

log

file

set

to

trc.log.

Note:

If

you

encounter

problems

when

closing

the

driver

manager

(such

as

during

SQLDisconnect()),

set

the

value

dontdlclose=1

in

the

odbcinst.ini

file,

as

shown

in

the

example

above.

Related

concepts:

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

tasks:

v

“Setting

up

the

UNIX

ODBC

environment”

on

page

208

Chapter

22.

CLI

environmental

setup

213

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

|

v

“Setting

up

the

unixODBC

Driver

Manager”

on

page

210

Related

reference:

v

“AIX

CLI

application

compile

and

link

options”

on

page

223

v

“HP-UX

CLI

application

compile

and

link

options”

on

page

229

v

“Linux

CLI

application

compile

and

link

options”

on

page

233

v

“Solaris

CLI

application

compile

and

link

options”

on

page

237

Setting

up

the

Windows

CLI

environment

This

task

tells

you

how

to

perform

Windows

client

access

to

DB2

using

CLI

or

ODBC.

Prerequisites:

Before

setting

up

the

Windows

CLI

environment,

ensure

that

the

CLI

environment

has

been

set

up.

Restrictions:

When

using

the

Configuration

Assistant

on

Windows

64-bit

platforms,

ODBC

Data

Sources

can

be

configured

only

for

64-bit

applications.

ODBC

Data

Sources

for

32-bit

applications

need

to

be

configured

using

the

Microsoft

32-bit

ODBC

Data

Source

Administrator

(32-bit

odbcad32.exe)

that

is

included

with

the

Windows

64-bit

operating

system.

Procedure:

Before

DB2

CLI

and

ODBC

applications

can

successfully

access

a

DB2

database

from

a

Windows

client,

perform

the

following

steps

on

the

client

system:

1.

Verify

that

the

Microsoft

ODBC

Driver

Manager

and

the

DB2

CLI/ODBC

driver

are

installed.

On

Windows

operating

systems

they

are

both

installed

with

DB2

unless

the

ODBC

component

is

manually

unselected

during

the

install.

DB2

will

not

overwrite

a

newer

version

of

the

Microsoft

ODBC

Driver

Manager

if

one

is

found.

To

verify

that

they

both

exist

on

the

machine:

a.

Start

the

Microsoft

ODBC

Data

Sources

icon

in

the

Control

Panel,

or

run

the

odbcad32.exe

command

from

the

command

line.

b.

Click

on

the

″Drivers″

tab.

c.

Verify

that

IBM

DB2

ODBC

DRIVER

is

shown

in

the

list.

If

either

the

Microsoft

ODBC

Driver

Manager

or

the

IBM

DB2

CLI/ODBC

driver

is

not

installed,

then

rerun

the

DB2

install

and

select

the

ODBC

component

on

Windows

operating

systems.

Note:

The

latest

version

of

the

Microsoft

ODBC

Driver

Manager

is

included

as

part

of

the

Microsoft

Data

Access

Components

(MDAC)

and

is

available

for

download

from

http://www.microsoft.com/data/.

2.

Register

the

DB2

database

with

the

ODBC

driver

manager

as

a

data

source.

On

Windows

operating

systems

you

can

make

the

data

source

available

to

all

users

of

the

system

(a

system

data

source),

or

only

the

current

user

(a

user

data

source).

Use

either

of

these

methods

to

add

the

data

source:

v

Using

the

Configuration

Assistant:

a.

Select

the

DB2

database

alias

that

you

want

to

add

as

a

data

source.

214

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|

|

b.

Click

on

the

″Properties″

push

button.

The

Database

Properties

window

opens.

c.

Select

the

″Register

this

database

for

ODBC″

check

box.

d.

Use

the

radio

buttons

to

add

the

data

source

as

either

a

user,

system,

or

file

data

source.
v

Using

the

Microsoft

ODBC

Administration

tool,

which

you

can

access

from

the

icon

in

the

Control

Panel

or

by

running

odbcad32.exe

from

the

command

line:

a.

The

list

of

user

data

sources

appears

by

default.

If

you

want

to

add

a

system

data

source

click

on

the

″System

DSN″

button,

or

the

″System

DSN″

tab

(depending

on

the

platform).

b.

Click

on

the

″Add″

push

button.

c.

Double-click

on

the

IBM

DB2

ODBC

Driver

in

the

list.

d.

Select

the

DB2

database

to

add

and

click

on

OK.
v

Use

the

CATALOG

command

to

register

the

DB2

database

with

the

ODBC

driver

manager

as

a

data

source:

CATALOG

[

user

|

system

]

ODBC

DATA

SOURCE

Using

this

command,

an

administrator

could

create

a

command

line

processor

script

to

register

the

required

databases.

This

script

could

then

be

run

on

all

machines

that

require

access

to

DB2

databases

through

ODBC.
3.

Optional:

Configure

the

DB2

CLI/ODBC

driver

using

the

Configuration

Assistant:

a.

Select

the

DB2

database

alias

you

want

to

configure.

b.

Click

on

the

″Properties″

push

button.

The

Database

Properties

window

opens.

c.

Click

on

the

″Settings″

push

button.

The

CLI/ODBC

Settings

window

opens.

d.

Click

on

the

″Advanced″

push

button.

You

can

set

the

configuration

keywords

in

the

window

that

opens.

These

keywords

are

associated

with

the

database

alias

name,

and

affect

all

DB2

CLI/ODBC

applications

that

access

the

database.
4.

If

you

have

installed

ODBC

access

(as

described

above),

you

can

now

access

DB2

data

using

ODBC

applications.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“Initialization

and

termination

in

CLI

overview”

on

page

17

Related

tasks:

v

“Initializing

CLI

applications”

on

page

18

v

“Setting

up

the

CLI

environment”

on

page

207

v

“Building

CLI

applications

on

Windows”

on

page

240

v

“Building

CLI

routines

on

Windows”

on

page

244

Chapter

22.

CLI

environmental

setup

215

216

CLI

Guide

and

Reference,

Volume

1

Chapter

23.

Building

CLI

applications

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Building

CLI

applications

on

UNIX

.

.

.

.

. 217

Building

CLI

multi-connection

applications

on

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Building

CLI

routines

on

UNIX

.

.

.

.

.

. 221

AIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

Build

script

for

AIX

applications

.

.

.

.

. 222

AIX

CLI

application

compile

and

link

options

223

CLI

applications

and

configuration

files

on

AIX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Build

script

for

AIX

routines

.

.

.

.

.

. 225

AIX

CLI

routine

compile

and

link

options

226

CLI

routines

and

configuration

files

on

AIX

227

HP-UX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

Build

script

for

HP-UX

applications

.

.

.

. 228

HP-UX

CLI

application

compile

and

link

options

.

.

.

.

.

.

.

.

.

.

.

.

. 229

Build

script

for

HP-UX

routines

.

.

.

.

. 230

HP-UX

CLI

routine

compile

and

link

options

231

Linux

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

Build

script

for

Linux

applications

.

.

.

. 232

Linux

CLI

application

compile

and

link

options

.

.

.

.

.

.

.

.

.

.

.

.

. 233

Build

script

for

Linux

routines

.

.

.

.

.

. 234

Linux

CLI

routine

compile

and

link

options

235

Solaris

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Build

script

for

Solaris

applications

.

.

.

. 236

Solaris

CLI

application

compile

and

link

options

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Build

script

for

Solaris

routines

.

.

.

.

. 238

Solaris

CLI

routine

compile

and

link

options

239

Windows

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

Building

CLI

applications

on

Windows

.

.

.

. 240

Building

CLI

multi-connection

applications

on

Windows

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

Building

CLI

routines

on

Windows

.

.

.

.

. 244

Batch

file

for

Windows

applications

.

.

.

.

. 245

Windows

CLI

application

compile

and

link

options

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Batch

file

for

Windows

routines

.

.

.

.

.

. 246

Windows

CLI

routine

compile

and

link

options

247

UNIX

The

following

sections

describe

how

to

build

CLI

applications

and

routines

on

supported

UNIX

operating

systems.

They

also

show

sample

build

scripts

for

each

operating

system

and

descriptions

of

the

compile

and

link

options

used

within

the

build

scripts.

Building

CLI

applications

on

UNIX

DB2

provides

build

scripts

for

compiling

and

linking

CLI

programs.

These

are

located

in

the

sqllib/samples/cli

directory,

along

with

sample

programs

that

can

be

built

with

these

files.

The

script

file

bldapp

contains

the

commands

to

build

a

DB2

CLI

application.

It

takes

up

to

four

parameters,

represented

inside

the

script

file

by

the

variables

$1,

$2,

$3,

and

$4.

The

parameter,

$1,

specifies

the

name

of

your

source

file.

This

is

the

only

required

parameter,

and

the

only

one

needed

for

CLI

applications

that

do

not

contain

embedded

SQL.

Building

embedded

SQL

programs

requires

a

connection

to

the

database

so

three

optional

parameters

are

also

provided:

the

second

parameter,

$2,

specifies

the

name

of

the

database

to

which

you

want

to

connect;

the

third

parameter,

$3,

specifies

the

user

ID

for

the

database,

and

$4

specifies

the

password.

If

the

program

contains

embedded

SQL,

indicated

by

the

.sqc

extension,

then

the

embprep

script

is

called

to

precompile

the

program,

producing

a

program

file

with

a

.c

extension.

Procedure:

The

following

examples

show

you

how

to

build

and

run

CLI

applications.

©

Copyright

IBM

Corp.

1993

-

2004

217

|
||

|

|

|

|
|
|
|

To

build

the

sample

program

tbinfo

from

the

source

file

tbinfo.c,

enter:

bldapp

tbinfo

The

result

is

an

executable

file,

tbinfo.

You

can

run

the

executable

file

by

entering

the

executable

name:

tbinfo

Building

and

Running

Embedded

SQL

Applications

There

are

three

ways

to

build

the

embedded

SQL

application,

dbusemx,

from

the

source

file

dbusemx.sqc:

1.

If

connecting

to

the

sample

database

on

the

same

instance,

enter:

bldapp

dbusemx

2.

If

connecting

to

another

database

on

the

same

instance,

also

enter

the

database

name:

bldapp

dbusemx

database

3.

If

connecting

to

a

database

on

another

instance,

also

enter

the

user

ID

and

password

of

the

database

instance:

bldapp

dbusemx

database

userid

password

The

result

is

an

executable

file,

dbusemx.

There

are

three

ways

to

run

this

embedded

SQL

application:

1.

If

accessing

the

sample

database

on

the

same

instance,

simply

enter

the

executable

name:

dbusemx

2.

If

accessing

another

database

on

the

same

instance,

enter

the

executable

name

and

the

database

name:

dbusemx

database

3.

If

accessing

a

database

on

another

instance,

enter

the

executable

name,

database

name,

and

user

ID

and

password

of

the

database

instance:

dbusemx

database

userid

password

Related

tasks:

v

“Setting

up

the

application

development

environment”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Setting

up

the

UNIX

application

development

environment”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

CLI

routines

on

UNIX”

on

page

221

Related

reference:

v

“AIX

CLI

application

compile

and

link

options”

on

page

223

v

“HP-UX

CLI

application

compile

and

link

options”

on

page

229

v

“Linux

CLI

application

compile

and

link

options”

on

page

233

v

“Solaris

CLI

application

compile

and

link

options”

on

page

237

Related

samples:

v

“bldapp

--

Builds

AIX

CLI

applications”

v

“dbusemx.sqc

--

How

to

execute

embedded

SQL

statements

in

CLI”

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

218

CLI

Guide

and

Reference,

Volume

1

Building

CLI

multi-connection

applications

on

UNIX

DB2

provides

build

scripts

for

compiling

and

linking

CLI

programs.

These

are

located

in

the

sqllib/samples/cli

directory,

along

with

sample

programs

that

can

be

built

with

these

files.

The

build

file,

bldmc,

contains

the

commands

to

build

a

DB2

multi-connection

program,

requiring

two

databases.

The

compile

and

link

options

are

the

same

as

those

used

in

bldapp.

The

first

parameter,

$1,

specifies

the

name

of

your

source

file.

The

second

parameter,

$2,

specifies

the

name

of

the

first

database

to

which

you

want

to

connect.

The

third

parameter,

$3,

specifies

the

second

database

to

which

you

want

to

connect.

These

are

all

required

parameters.

Note:

The

makefile

hardcodes

default

values

of

″sample″

and

″sample2″

for

the

database

names

($2

and

$3,

respectively)

so

if

you

are

using

the

makefile,

and

accept

these

defaults,

you

only

have

to

specify

the

program

name

(the

$1

parameter).

If

you

are

using

the

bldmc

script,

you

must

specify

all

three

parameters.

Optional

parameters

are

not

required

for

a

local

connection,

but

are

required

for

connecting

to

a

server

from

a

remote

client.

These

are:

$4

and

$5

to

specify

the

user

ID

and

password,

respectively,

for

the

first

database;

and

$6

and

$7

to

specify

the

user

ID

and

password,

respectively,

for

the

second

database.

Procedure:

For

the

multi-connection

sample

program,

dbmconx,

you

require

two

databases.

If

the

sample

database

is

not

yet

created,

you

can

create

it

by

entering

db2sampl

on

the

command

line.

The

second

database,

here

called

sample2,

can

be

created

with

one

of

the

following

commands:

If

creating

the

database

locally:

db2

create

db

sample2

If

creating

the

database

remotely:

db2

attach

to

<node_name>

db2

create

db

sample2

db2

detach

db2

catalog

db

sample2

as

sample2

at

node

<node_name>

where

<node_name>

is

the

node

where

the

database

resides.

Multi-connection

also

requires

that

the

TCP/IP

listener

is

running.

To

ensure

it

is,

do

the

following:

1.

Set

the

environment

variable

DB2COMM

to

TCP/IP

as

follows:

db2set

DB2COMM=TCPIP

2.

Update

the

database

manager

configuration

file

with

the

TCP/IP

service

name

as

specified

in

the

services

file:

db2

update

dbm

cfg

using

SVCENAME

<TCP/IP

service

name>

Each

instance

has

a

TCP/IP

service

name

listed

in

the

services

file.

Ask

your

system

administrator

if

you

cannot

locate

it

or

do

not

have

the

file

permission

to

read

the

services

file.

Chapter

23.

Building

CLI

applications

219

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|

|

|
|
|
|

|

|
|

|

|

|
|

|

|
|
|

3.

Stop

and

restart

the

database

manager

in

order

for

these

changes

to

take

effect:

db2stop

db2start

The

dbmconx

program

consists

of

five

files:

dbmconx.c

Main

source

file

for

connecting

to

both

databases.

dbmconx1.sqc

Source

file

for

creating

a

package

bound

to

the

first

database.

dbmconx1.h

Header

file

for

dbmconx1.sqc

included

in

dbmconx.sqc

for

accessing

the

SQL

statements

for

creating

and

dropping

a

table

to

be

bound

to

the

first

database.

dbmconx2.sqc

Source

file

for

creating

a

package

bound

to

the

second

database.

dbmconx2.h

Header

file

for

dbmconx2.sqc

included

in

dbmconx.sqc

for

accessing

the

SQL

statements

for

creating

and

dropping

a

table

to

be

bound

to

the

second

database.

To

build

the

multi-connection

sample

program,

dbmconx,

enter:

bldmc

dbmconx

sample

sample2

The

result

is

an

executable

file,

dbmconx.

To

run

the

executable

file,

enter

the

executable

name:

dbmconx

The

program

demonstrates

a

two-phase

commit

to

two

databases.

Related

concepts:

v

“Multisite

updates

(two

phase

commit)

in

CLI

applications”

on

page

127

Related

reference:

v

“AIX

CLI

application

compile

and

link

options”

on

page

223

v

“HP-UX

CLI

application

compile

and

link

options”

on

page

229

v

“Linux

CLI

application

compile

and

link

options”

on

page

233

v

“Solaris

CLI

application

compile

and

link

options”

on

page

237

Related

samples:

v

“bldmc

--

Builds

AIX

CLI

multi-connection

applications”

v

“bldmc

--

Builds

HP-UX

CLI

multi-connection

applications”

v

“bldmc

--

Builds

Linux

CLI

multi-connection

applications”

v

“bldmc

--

Builds

Solaris

CLI

multi-connection

applications”

v

“dbmconx.c

--

How

to

use

multiple

databases

with

embedded

SQL.”

v

“dbmconx1.h

--

Functions

used

in

dbmconx.c”

v

“dbmconx1.sqc

--

This

file

contains

functions

used

in

dbmconx.c”

v

“dbmconx2.h

--

Functions

used

in

dbmconx.c”

v

“dbmconx2.sqc

--

This

file

contains

functions

used

in

dbmconx.c”

220

CLI

Guide

and

Reference,

Volume

1

|

|
|

|

|
|

|
|

|
|
|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Building

CLI

routines

on

UNIX

DB2

provides

build

scripts

for

compiling

and

linking

CLI

programs.

These

are

located

in

the

sqllib/samples/cli

directory,

along

with

sample

programs

that

can

be

built

with

these

files.

The

script

file

bldrtn

contains

the

commands

to

build

DB2

CLI

routines

(stored

procedures

and

user-defined

functions).

bldrtn

creates

a

shared

library

on

the

server.

It

takes

a

parameter

for

the

source

file

name,

represented

inside

the

script

file

by

the

variable

$1.

Procedure:

To

build

the

sample

program

spserver

from

the

source

file

spserver.c:

1.

Enter

the

build

script

name

and

program

name:

bldrtn

spserver

The

script

file

copies

the

shared

library

to

the

sqllib/function

directory.

2.

Next,

catalog

the

routines

by

running

the

spcat

script

on

the

server:

spcat

This

script

connects

to

the

sample

database,

uncatalogs

the

routines

if

they

were

previously

cataloged

by

calling

spdrop.db2,

then

catalogs

them

by

calling

spcreate.db2,

and

finally

disconnects

from

the

database.

You

can

also

call

the

spdrop.db2

and

spcreate.db2

scripts

individually.

3.

Then,

unless

this

is

the

first

time

the

shared

library

was

built,

stop

and

restart

the

database

to

allow

the

new

version

of

the

shared

library

to

be

recognized.

If

necessary,

set

the

file

mode

for

the

shared

library

so

the

DB2

instance

can

access

it.

Once

you

build

the

shared

library,

spserver,

you

can

build

the

CLI

client

application,

spclient,

that

calls

the

routines

within

the

shared

library.

The

client

application

can

be

built

like

any

other

CLI

client

application

by

using

the

script

file,

bldapp.

To

access

the

shared

library,

run

the

sample

client

application

by

entering:

spclient

database

userid

password

where

database

Is

the

name

of

the

database

to

which

you

want

to

connect.

The

name

could

be

sample,

or

its

alias,

or

another

database

name.

userid

Is

a

valid

user

ID.

password

Is

a

valid

password.

The

client

application

accesses

the

shared

library,

spserver,

and

executes

the

routines

on

the

server

database.

The

output

is

returned

to

the

client

application.

Related

tasks:

Chapter

23.

Building

CLI

applications

221

|
|

v

“Setting

up

the

UNIX

application

development

environment”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

CLI

applications

on

UNIX”

on

page

217

Related

reference:

v

“AIX

CLI

routine

compile

and

link

options”

on

page

226

v

“HP-UX

CLI

routine

compile

and

link

options”

on

page

231

v

“Linux

CLI

routine

compile

and

link

options”

on

page

235

v

“Solaris

CLI

routine

compile

and

link

options”

on

page

239

Related

samples:

v

“bldrtn

--

Builds

AIX

CLI

routines

(stored

procedures

and

UDFs)”

v

“spclient.c

--

Call

various

stored

procedures”

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

v

“spcat

--

To

catalog

stored

procedures

on

UNIX

(C)”

v

“spcreate.db2

--

How

to

catalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

v

“spdrop.db2

--

How

to

uncatalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

AIX

Build

script

for

AIX

applications

The

following

is

the

bldapp

script

for

building

CLI

applications

on

AIX:

#!

/bin/sh

#

SCRIPT:

bldapp

#

Builds

AIX

CLI

applications

#

Usage:

bldapp

<prog_name>

[

<db_name>

[

<userid>

<password>

]]

#

Set

DB2PATH

to

where

DB2

will

be

accessed.

#

The

default

is

the

standard

instance

path.

DB2PATH=$HOME/sqllib

#

Set

lib32

for

32-bit

programs,

lib

for

64-bit,

#

and

set

extra

compile

flag

for

64-bit

programs.

bitwidth=`LANG=C

db2level

|

awk

’/bits/{print

$5}’`

if

[

$bitwidth

=

"\"32\""

];

then

LIB=lib32

EXTRA_CFLAG=

else

LIB=lib

EXTRA_CFLAG=-q64

fi

#

If

an

embedded

SQL

program,

precompile

and

bind

it.

if

[

-f

$1".sqc"

]

then

./embprep

$1

$2

$3

$4

fi

#

Compile

the

error-checking

utility.

xlc

$EXTRA_CFLAG

-I$DB2PATH/include

-c

utilcli.c

#

Compile

the

program.

xlc

$EXTRA_CFLAG

-I$DB2PATH/include

-c

$1.c

#

Link

the

program.

xlc

$EXTRA_CFLAG

-o

$1

$1.o

utilcli.o

-L$DB2PATH/$LIB

-ldb2

222

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

AIX

CLI

application

compile

and

link

options

These

compile

and

link

options

are

recommended

by

DB2

for

building

CLI

applications

with

the

AIX

IBM

C

compiler.

They

are

demonstrated

in

the

sqllib/samples/cli/bldapp

build

script.

Compile

and

link

options

for

bldapp

Compile

options:

xlc

The

IBM

C

compiler.

$EXTRA_CFLAG

Contains

the

value

″-q64″

for

64-bit

environments;

otherwise,

contains

no

value.

-I$DB2PATH/include

Specify

the

location

of

the

DB2

include

files.

For

example:

$HOME/sqllib/include

-c

Perform

compile

only;

no

link.

This

script

has

separate

compile

and

link

steps.

Link

options:

xlc

Use

the

compiler

as

a

front

end

for

the

linker.

$EXTRA_CFLAG

Contains

the

value

″-q64″

for

64-bit

environments;

otherwise,

contains

no

value.

-o

$1

Specify

the

executable

program.

$1.o

Specify

the

object

file.

utilcli.o

Include

the

utility

object

file

for

error

checking.

-L$DB2PATH/$LIB

Specify

the

location

of

the

DB2

runtime

shared

libraries.

For

example:

$HOME/sqllib/$LIB.

If

you

do

not

specify

the

-L

option,

the

compiler

assumes

the

following

path:

/usr/lib:/lib.

-ldb2

Link

with

the

DB2

library.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

applications

on

UNIX”

on

page

217

v

“Building

CLI

applications

with

configuration

files”

on

page

223

Related

reference:

v

“AIX

CLI

routine

compile

and

link

options”

on

page

226

Related

samples:

v

“bldapp

--

Builds

AIX

CLI

applications”

CLI

applications

and

configuration

files

on

AIX

The

following

section

describes

how

to

build

CLI

applications

with

configuration

files.

This

method

of

building

CLI

applications

is

only

available

on

AIX

using

the

VisualAge

C++

compiler.

Building

CLI

applications

with

configuration

files:

The

configuration

file,

cli.icc,

in

sqllib/samples/cli

allows

you

to

build

DB2

CLI

programs.

Procedure:

Chapter

23.

Building

CLI

applications

223

|

|

|

|

|

To

use

the

configuration

file

to

build

the

DB2

CLI

sample

program

tbinfo

from

the

source

file

tbinfo.c,

do

the

following:

1.

Set

the

CLI

environment

variable:

export

CLI=tbinfo

2.

If

you

have

a

cli.ics

file

in

your

working

directory,

produced

by

building

a

different

program

with

the

cli.icc

file,

delete

the

cli.ics

file

with

this

command:

rm

cli.ics

An

existing

cli.ics

file

produced

for

the

same

program

you

are

going

to

build

again

does

not

have

to

be

deleted.

3.

Compile

the

sample

program

by

entering:

vacbld

cli.icc

Note:

The

vacbld

command

is

provided

by

VisualAge

C++.

The

result

is

an

executable

file,

tbinfo.

You

can

run

the

program

by

entering

the

executable

name:

tbinfo

Building

and

running

embedded

SQL

applications

You

use

the

configuration

file

after

the

program

is

precompiled

with

the

embprep

file.

The

embprep

file

precompiles

the

source

file

and

binds

the

program

to

the

database.

You

use

the

cli.icc

configuration

file

to

compile

the

precompiled

file.

There

are

three

ways

to

precompile

the

embedded

SQL

application,

dbusemx,

from

the

source

file

dbusemx.sqc:

1.

If

connecting

to

the

sample

database

on

the

same

instance,

enter:

embprep

dbusemx

2.

If

connecting

to

another

database

on

the

same

instance,

also

enter

the

database

name:

embprep

dbusemx

database

3.

If

connecting

to

a

database

on

another

instance,

also

enter

the

user

ID

and

password

of

the

database

instance:

embprep

dbusemx

database

userid

password

The

result

is

a

precompiled

C

file,

dbusemx.c.

After

it

is

precompiled,

the

C

file

can

be

compiled

with

the

cli.icc

file

as

follows:

1.

Set

the

CLI

environment

variable

to

the

program

name

by

entering:

export

CLI=dbusemx

2.

If

you

have

a

cli.ics

file

in

your

working

directory,

produced

by

building

a

different

program

with

the

cli.icc

or

cliapi.icc

file,

delete

the

cli.ics

file

with

this

command:

rm

cli.ics

An

existing

cli.ics

file

produced

for

the

same

program

you

are

going

to

build

again

does

not

have

to

be

deleted.

3.

Compile

the

sample

program

by

entering:

vacbld

cli.icc

224

CLI

Guide

and

Reference,

Volume

1

There

are

three

ways

to

run

this

embedded

SQL

application:

1.

If

accessing

the

sample

database

on

the

same

instance,

simply

enter

the

executable

name:

dbusemx

2.

If

accessing

another

database

on

the

same

instance,

enter

the

executable

name

and

the

database

name:

dbusemx

database

3.

If

accessing

a

database

on

another

instance,

enter

the

executable

name,

database

name,

and

user

ID

and

password

of

the

database

instance:

dbusemx

database

userid

password

Related

tasks:

v

“Building

CLI

stored

procedures

with

configuration

files”

on

page

227

v

“Building

C++

embedded

SQL

applications

with

configuration

files”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

C++

DB2

API

applications

with

configuration

files”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

C++

stored

procedures

with

configuration

files”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

C++

user-defined

functions

with

configuration

files”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“Building

VisualAge

C++

programs

with

configuration

files”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Related

samples:

v

“dbusemx.sqc

--

How

to

execute

embedded

SQL

statements

in

CLI”

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

Build

script

for

AIX

routines

The

following

is

the

bldrtn

script

for

building

CLI

routines

on

AIX:

#!

/bin/sh

#

SCRIPT:

bldrtn

#

Builds

AIX

CLI

routines

(stored

procedures

and

UDFs)

#

Usage:

bldrtn

<prog_name>

#

Set

DB2PATH

to

where

DB2

will

be

accessed.

#

The

default

is

the

standard

instance

path.

DB2PATH=$HOME/sqllib

#

Set

lib32

for

32-bit

programs,

lib

for

64-bit,

#

and

set

extra

compile

flag

for

64-bit

programs.

bitwidth=`LANG=C

db2level

|

awk

’/bits/{print

$5}’`

if

[

$bitwidth

=

"\"32\""

];

then

LIB=lib32

EXTRA_CFLAG=

else

LIB=lib

EXTRA_CFLAG=-q64

fi

#

Compile

the

error-checking

utility.

xlc_r

$EXTRA_CFLAG

-I$DB2PATH/include

-c

utilcli.c

#

Compile

the

program.

xlc_r

$EXTRA_CFLAG

-I$DB2PATH/include

-c

$1.c

#

Link

the

program.

Chapter

23.

Building

CLI

applications

225

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

xlc_r

$EXTRA_CFLAG

-qmkshrobj

-o

$1

$1.o

utilcli.o

-L$DB2PATH/$LIB

\

-ldb2

-bE:$1.exp

#

Copy

the

shared

library

to

the

sqllib/function

subdirectory.

#

Note:

the

user

must

have

write

permission

to

this

directory.

rm

-f

$DB2PATH/function/$1

cp

$1

$DB2PATH/function

AIX

CLI

routine

compile

and

link

options

These

compile

and

link

options

are

recommended

by

DB2

for

building

CLI

routines

(stored

procedures

and

user-defined

functions)

with

the

AIX

IBM

C

compiler.

They

are

demonstrated

in

the

sqllib/samples/cli/bldrtn

build

script.

Compile

and

link

options

for

bldrtn

Compile

options:

xlc_r

Use

the

multi-threaded

version

of

the

IBM

C

compiler,

needed

as

the

routines

may

run

in

the

same

process

as

other

routines

(THREADSAFE)

or

in

the

engine

itself

(NOT

FENCED).

$EXTRA_CFLAG

Contains

the

value

″-q64″

for

64-bit

environments;

otherwise,

contains

no

value.

-I$DB2PATH/include

Specify

the

location

of

the

DB2

include

files.

For

example:

$HOME/sqllib/include.

-c

Perform

compile

only;

no

link.

Compile

and

link

are

separate

steps.

Link

options:

xlc_r

Use

the

multi-threaded

version

of

the

compiler

as

a

front

end

for

the

linker.

$EXTRA_CFLAG

Contains

the

value

″-q64″

for

64-bit

environments;

otherwise,

contains

no

value.

-qmkshrobj

Create

the

shared

library.

-o

$1

Specify

the

executable

program.

$1.o

Specify

the

object

file.

utilcli.o

Include

the

utility

object

file

for

error

checking.

-L$DB2PATH/$LIB

Specify

the

location

of

the

DB2

runtime

shared

libraries.

For

example:

$HOME/sqllib/$LIB.

If

you

do

not

specify

the

-L

option,

the

compiler

assumes

the

following

path:

/usr/lib:/lib.

-ldb2

Link

with

the

DB2

library.

-bE:$.exp

Specify

an

export

file.

The

export

file

contains

a

list

of

routines.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

routines

on

UNIX”

on

page

221

v

“Building

CLI

stored

procedures

with

configuration

files”

on

page

227

Related

reference:

v

“AIX

CLI

application

compile

and

link

options”

on

page

223

226

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|
|

|

|

|

|

|

Related

samples:

v

“bldrtn

--

Builds

AIX

CLI

routines

(stored

procedures

and

UDFs)”

CLI

routines

and

configuration

files

on

AIX

The

following

section

describes

how

to

build

CLI

routines

with

configuration

files.

This

method

of

building

CLI

routines

is

only

available

on

AIX

using

the

VisualAge

C++

compiler.

Building

CLI

stored

procedures

with

configuration

files:

The

configuration

file,

clis.icc,

in

sqllib/samples/cli,

allows

you

to

build

DB2

CLI

stored

procedures.

Procedure:

To

use

the

configuration

file

to

build

the

DB2

CLI

stored

procedure

spserver

from

the

source

file

spserver.c,

do

the

following:

1.

Set

the

CLIS

environment

variable

to

the

program

name

by

entering:

export

CLIS=spserver

2.

If

you

have

a

clis.ics

file

in

your

working

directory,

produced

by

building

a

different

program

with

the

clis.icc

file,

delete

the

clis.ics

file

with

this

command:

rm

clis.ics

An

existing

clis.ics

file

produced

for

the

same

program

you

are

going

to

build

again

does

not

have

to

be

deleted.

3.

Compile

the

sample

program

by

entering:

vacbld

clis.icc

Note:

The

vacbld

command

is

provided

by

VisualAge

C++.

The

stored

procedure

is

copied

to

the

server

in

the

path

sqllib/function.

Next,

catalog

the

stored

procedures

by

running

the

spcreate.db2

script

on

the

server.

First,

connect

to

the

database

with

the

user

ID

and

password

of

the

instance

where

the

database

is

located:

db2

connect

to

sample

userid

password

If

the

stored

procedures

were

previously

cataloged,

you

can

drop

them

with

this

command:

db2

-td@

-vf

spdrop.db2

Then

catalog

them

with

this

command:

db2

-td@

-vf

spcreate.db2

Then,

stop

and

restart

the

database

to

allow

the

new

shared

library

to

be

recognized.

If

necessary,

set

the

file

mode

for

the

shared

library

so

the

DB2

instance

can

access

it.

Once

you

build

the

stored

procedure

spserver,

you

can

build

the

CLI

client

application

spclient

that

calls

the

stored

procedure.

You

can

build

spclient

by

using

the

configuration

file,

cli.icc.

To

call

the

stored

procedure,

run

the

sample

client

application

by

entering:

spclient

database

userid

password

Chapter

23.

Building

CLI

applications

227

where

database

Is

the

name

of

the

database

to

which

you

want

to

connect.

The

name

could

be

sample,

or

its

remote

alias,

or

some

other

name.

userid

Is

a

valid

user

ID.

password

Is

a

valid

password.

The

client

application

accesses

the

shared

library,

spserver,

and

executes

a

number

of

stored

procedure

functions

on

the

server

database.

The

output

is

returned

to

the

client

application.

Related

tasks:

v

“Building

CLI

routines

on

UNIX”

on

page

221

Related

samples:

v

“spclient.c

--

Call

various

stored

procedures”

v

“spcreate.db2

--

How

to

catalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

v

“spdrop.db2

--

How

to

uncatalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

HP-UX

Build

script

for

HP-UX

applications

The

following

is

the

bldapp

script

for

building

CLI

applications

on

HP-UX:

#!

/bin/sh

#

SCRIPT:

bldapp

#

Builds

HP-UX

CLI

applications

#

Usage:

bldapp

<prog_name>

[

<db_name>

[

<userid>

<password>

]]

#

Set

DB2PATH

to

where

DB2

will

be

accessed.

#

The

default

is

the

standard

instance

path.

DB2PATH=$HOME/sqllib

#

Determine

the

HP

platform

and

set

correct

compile/link

options

hpplat=`uname

-m`

bitwidth=`LANG=C

db2level

|

awk

’/bits/{print

$5}’`

if

[

$hpplat

=

"ia64"

];

then

if

[

$bitwidth

=

"\"64\""

];

then

EXTRA_CFLAG="+DD64"

LIB="lib"

else

EXTRA_CFLAG="+DD32"

LIB="lib32"

fi

else

if

[

$bitwidth

=

"\"64\""

];

then

EXTRA_CFLAG="+DA2.0W"

LIB="lib"

else

EXTRA_CFLAG=

LIB="lib32"

fi

fi

#

The

runtime

path

is

recommended

for

all

applications.

#

If

you

need

to

use

SHLIB_PATH

or

LD_LIBRARY_PATH,

unset

228

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#

the

RUNTIME

variable

by

commenting

out

the

following

line.

RUNTIME=true

if

[

"$RUNTIME"

!=

""

]

then

EXTRA_LFLAG="-Wl,+b$DB2PATH/$LIB"

else

EXTRA_LFLAG=""

fi

#

If

an

embedded

SQL

program,

precompile

and

bind

it.

if

[

-f

$1".sqc"

]

then

./embprep

$1

$2

$3

$4

fi

#

Compile

the

error-checking

utility.

cc

$EXTRA_CFLAG

-Ae

-I$DB2PATH/include

-c

utilcli.c

#

Compile

the

program.

cc

$EXTRA_CFLAG

-Ae

-I$DB2PATH/include

-c

$1.c

#

Link

the

program.

cc

$EXTRA_CFLAG

-o

$1

$1.o

utilcli.o

$EXTRA_LFLAG

-L$DB2PATH/$LIB

-ldb2

HP-UX

CLI

application

compile

and

link

options

These

compile

and

link

options

are

recommended

by

DB2

for

building

CLI

applications

with

the

HP-UX

C

compiler.

They

are

demonstrated

in

the

sqllib/samples/cli/bldapp

build

script.

Compile

and

link

options

for

bldapp

Compile

options:

cc

Use

the

C

compiler.

$EXTRA_CFLAG

If

the

HP-UX

platform

is

IA64

and

64-bit

support

is

enabled,

this

flag

contains

the

value

+DD64;

if

32-bit

support

is

enabled,

it

contains

the

value

+DD32.

If

the

HP-UX

platform

is

PA-RISC

and

64-bit

support

is

enabled,

it

contains

the

value

+DA2.0W.

For

32-bit

support

on

a

PA-RISC

platform,

this

flag

contains

no

value.

+DD64

Must

be

used

to

generate

64-bit

code

for

HP-UX

on

IA64.

+DD32

Must

be

used

to

generate

32-bit

code

for

HP-UX

on

IA64.

+DA2.0W

Must

be

used

to

generate

64-bit

code

for

HP-UX

on

PA-RISC.

-Ae

Enables

HP

ANSI

extended

mode.

-I$DB2PATH/include

Specify

the

location

of

the

DB2

include

files.

For

example:

$HOME/sqllib/include

-c

Perform

compile

only;

no

link.

Compile

and

link

are

separate

steps.

Chapter

23.

Building

CLI

applications

229

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
||
||
|
|

|

Compile

and

link

options

for

bldapp

Link

options:

cc

Use

the

compiler

as

a

front

end

for

the

linker.

$EXTRA_CFLAG

If

the

HP-UX

platform

is

IA64

and

64-bit

support

is

enabled,

this

flag

contains

the

value

+DD64;

if

32-bit

support

is

enabled,

it

contains

the

value

+DD32.

If

the

HP-UX

platform

is

PA-RISC

and

64-bit

support

is

enabled,

it

contains

the

value

+DA2.0W.

For

32-bit

support

on

a

PA-RISC

platform,

this

flag

contains

no

value.

+DD64

Must

be

used

to

generate

64-bit

code

for

HP-UX

on

IA64.

+DD32

Must

be

used

to

generate

32-bit

code

for

HP-UX

on

IA64.

+DA2.0W

Must

be

used

to

generate

64-bit

code

for

HP-UX

on

PA-RISC.

-o

$1

Specify

the

executable

program.

$1.o

Specify

the

object

file.

utilcli.o

Include

the

utility

object

file

for

error

checking.

$EXTRA_LFLAG

Specify

the

runtime

path.

If

set,

for

32-bit

it

contains

the

value

-Wl,+b$HOME/sqllib/lib32,

and

for

64-bit:

-Wl,+b$HOME/sqllib/lib.

If

not

set,

it

contains

no

value.

-L$DB2PATH/$LIB

Specify

the

location

of

the

DB2

runtime

shared

libraries.

For

32-bit:

$HOME/sqllib/lib32;

for

64-bit:

$HOME/sqllib/lib.

-ldb2

Link

with

the

database

manager

library.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

applications

on

UNIX”

on

page

217

Related

reference:

v

“HP-UX

CLI

routine

compile

and

link

options”

on

page

231

Related

samples:

v

“bldapp

--

Builds

HP-UX

C

applications

(C)”

Build

script

for

HP-UX

routines

The

following

is

the

bldrtn

script

for

building

CLI

routines

on

HP-UX:

#!

/bin/sh

#

SCRIPT:

bldrtn

#

Builds

HP-UX

CLI

routines

(stored

procedures

and

UDFs)

#

Usage:

bldrtn

<prog_name>

#

Set

DB2PATH

to

where

DB2

will

be

accessed.

#

The

default

is

the

standard

instance

path.

DB2PATH=$HOME/sqllib

#

Determine

the

HP

platform

and

set

correct

compile/link

options

hpplat=`uname

-m`

bitwidth=`LANG=C

db2level

|

awk

’/bits/{print

$5}’`

if

[

$hpplat

=

"ia64"

];

then

if

[

$bitwidth

=

"\"64\""

];

then

EXTRA_CFLAG="+DD64"

LIB="lib"

230

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
||
||
|
|

|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

else

EXTRA_CFLAG="+DD32"

LIB="lib32"

fi

else

if

[

$bitwidth

=

"\"64\""

];

then

EXTRA_CFLAG="+DA2.0W"

LIB="lib"

else

EXTRA_CFLAG=

LIB="lib32"

fi

fi

#

The

runtime

path

is

recommended

for

all

applications.

#

If

you

need

to

use

SHLIB_PATH

or

LD_LIBRARY_PATH,

unset

#

the

RUNTIME

variable

by

commenting

out

the

following

line.

RUNTIME=true

if

[

"$RUNTIME"

!=

""

]

then

EXTRA_LFLAG="+b$DB2PATH/$LIB"

else

EXTRA_LFLAG=""

fi

#

Compile

the

error-checking

utility.

cc

$EXTRA_CFLAG

+u1

+z

-Ae

-I$DB2PATH/include

\

-D_POSIX_C_SOURCE=199506L

-c

utilcli.c

#

Compile

the

program.

cc

$EXTRA_CFLAG

+u1

+z

-Ae

-I$DB2PATH/include

\

-D_POSIX_C_SOURCE=199506L

-c

$1.c

#

Link

the

program.

ld

-b

-o

$1

$1.o

utilcli.o

$EXTRA_LFLAG

-L$DB2PATH/$LIB

\

-ldb2

-lpthread

#

Copy

the

shared

library

to

the

sqllib/function

subdirectory.

#

Note:

the

user

must

have

write

permission

to

this

directory.

rm

-f

$DB2PATH/function/$1

cp

$1

$DB2PATH/function

HP-UX

CLI

routine

compile

and

link

options

These

compile

and

link

options

are

recommended

by

DB2

for

building

CLI

routines

with

the

HP-UX

C

compiler.

They

are

demonstrated

in

the

sqllib/samples/cli/bldrtn

build

script.

Chapter

23.

Building

CLI

applications

231

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Compile

and

link

options

for

bldrtn

Compile

options:

cc

The

C

compiler.

$EXTRA_CFLAG

If

the

HP-UX

platform

is

IA64

and

64-bit

support

is

enabled,

this

flag

contains

the

value

+DD64;

if

32-bit

support

is

enabled,

it

contains

the

value

+DD32.

If

the

HP-UX

platform

is

PA-RISC

and

64-bit

support

is

enabled,

it

contains

the

value

+DA2.0W.

For

32-bit

support

on

a

PA-RISC

platform,

this

flag

contains

no

value.

+DD64

Must

be

used

to

generate

64-bit

code

for

HP-UX

on

IA64.

+DD32

Must

be

used

to

generate

32-bit

code

for

HP-UX

on

IA64.

+DA2.0W

Must

be

used

to

generate

64-bit

code

for

HP-UX

on

PA-RISC.
+u1

Allow

unaligned

data

access.

Use

only

if

your

application

uses

unaligned

data.

+z

Generate

position-independent

code.

-Ae

Enables

HP

ANSI

extended

mode.

-I$DB2PATH/include

Specify

the

location

of

the

DB2

include

files.

For

example:

$HOME/sqllib/include

-D_POSIX_C_SOURCE=199506L

POSIX

thread

library

option

that

ensures

_REENTRANT

is

defined,

needed

as

the

routines

may

run

in

the

same

process

as

other

routines

(THREADSAFE)

or

in

the

engine

itself

(NOT

FENCED).

-c

Perform

compile

only;

no

link.

Compile

and

link

are

separate

steps.

Link

options:

ld

Use

the

linker

to

link.

-b

Create

a

shared

library

rather

than

a

normal

executable.

-o

$1

Specify

the

executable.

$1.o

Specify

the

object

file.

utilcli.o

Link

in

the

error-checking

utility

object

file.

$EXTRA_LFLAG

Specify

the

runtime

path.

If

set,

for

32-bit

it

contains

the

value

+b$HOME/sqllib/lib32,

and

for

64-bit:

+b$HOME/sqllib/lib.

If

not

set,

it

contains

no

value.

-L$DB2PATH/$LIB

Specify

the

location

of

the

DB2

runtime

shared

libraries.

For

32-bit:

$HOME/sqllib/lib32;

for

64-bit:

$HOME/sqllib/lib.

-ldb2

Link

with

the

DB2

library.

-lpthread

Link

with

the

POSIX

thread

library.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

routines

on

UNIX”

on

page

221

Related

reference:

v

“HP-UX

CLI

application

compile

and

link

options”

on

page

229

Related

samples:

v

“bldrtn

--

Builds

HP-UX

C

routines

(stored

procedures

and

UDFs)

(C)”

Linux

Build

script

for

Linux

applications

The

following

is

the

bldapp

script

for

building

CLI

applications

on

Linux:

232

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
||
||
|
|
|

|
|
|
|
|
|
|

#

SCRIPT:

bldapp

#

Builds

Linux

CLI

applications

#

Usage:

bldapp

<prog_name>

[

<db_name>

[

<userid>

<password>

]]

#

Set

DB2PATH

to

where

DB2

will

be

accessed.

#

The

default

is

the

standard

instance

path.

DB2PATH=$HOME/sqllib

#

Determine

if

we

are

running

with

32-bit,

and

#

if

we

are

running

with

32-bit

on

Linux

AMD64

LIB="lib"

EXTRA_C_FLAGS=""

HARDWAREPLAT=`uname

-m`

bitwidth=`LANG=C

db2level

|

awk

’/bits/{print

$5}’`

if

[

$bitwidth

=

"\"32\""

];

then

LIB="lib32"

if

[

"$HARDWAREPLAT"

=

"x86_64"

];

then

EXTRA_C_FLAGS="-m32"

fi

fi

#

The

runtime

path

is

recommended

for

all

applications.

#

If

you

need

to

use

LD_LIBRARY_PATH,

unset

the

RUNTIME

#

variable

by

commenting

out

the

following

line.

RUNTIME=true

if

[

"$RUNTIME"

!=

""

]

then

EXTRA_LFLAG="-Wl,-rpath,$DB2PATH/$LIB"

else

EXTRA_LFLAG=""

fi

#

If

an

embedded

SQL

program,

precompile

and

bind

it.

if

[

-f

$1".sqc"

]

then

./embprep

$1

$2

$3

$4

fi

#

Compile

the

error-checking

utility.

gcc

$EXTRA_C_FLAGS

-I$DB2PATH/include

-c

utilcli.c

#

Compile

the

program.

gcc

$EXTRA_C_FLAGS

-I$DB2PATH/include

-c

$1.c

#

Link

the

program.

gcc

$EXTRA_C_FLAGS

-o

$1

$1.o

utilcli.o

$EXTRA_LFLAG

-L$DB2PATH/$LIB

-ldb2

Linux

CLI

application

compile

and

link

options

These

are

the

compile

and

link

options

recommended

by

DB2

for

building

CLI

applications

with

the

GNU/Linux

gcc

compiler.

They

are

demonstrated

in

the

sqllib/samples/cli/bldapp

build

script.

Compile

and

link

options

for

bldapp

Compile

options:

gcc

The

C

compiler.

$EXTRA_C_FLAGS

Contains

-m32

for

32-bit

on

Linux

AMD64;

otherwise

contains

no

value.

-I$DB2PATH/include

Specify

the

location

of

the

DB2

include

files.

For

example:

$HOME/sqllib/include

-c

Perform

compile

only;

no

link.

Compile

and

link

are

separate

steps.

Chapter

23.

Building

CLI

applications

233

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

Compile

and

link

options

for

bldapp

Link

options:

gcc

Use

the

compiler

as

a

front

end

for

the

linker.

$EXTRA_C_FLAGS

Contains

-m32

for

32-bit

on

Linux

AMD64;

otherwise

contains

no

value.

-o

$1

Specify

the

executable.

$1.o

Include

the

program

object

file.

utilcli.o

Include

the

utility

object

file

for

error

checking.

$EXTRA_LFLAG

If

’RUNTIME=true’

is

uncommented,

for

32-bit

it

contains

the

value

″-Wl,-rpath,$DB2PATH/lib32″,

and

for

64-bit

it

contains

the

value

″-Wl,-rpath,$DB2PATH/lib″.

Otherwise,

it

contains

no

value.

-L$DB2PATH/$LIB

Specify

the

location

of

the

DB2

static

and

shared

libraries

at

link-time.

For

example,

for

32-bit:

$HOME/sqllib/lib32,

and

for

64-bit:

$HOME/sqllib/lib.

If

you

do

not

specify

the

-L

option,

/usr/lib:/lib

is

assumed.

-ldb2

Link

with

the

DB2

library.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

applications

on

UNIX”

on

page

217

Related

reference:

v

“Linux

CLI

routine

compile

and

link

options”

on

page

235

Related

samples:

v

“bldapp

--

Builds

Linux

C

applications

(C)”

Build

script

for

Linux

routines

The

following

is

the

bldrtn

script

for

building

CLI

routines

on

Linux:

#!

/bin/sh

#

SCRIPT:

bldrtn

#

Builds

Linux

CLI

routines

(stored

procedures

or

UDFs)

#

Usage:

bldrtn

<prog_name>

#

Set

DB2PATH

to

where

DB2

will

be

accessed.

#

The

default

is

the

standard

instance

path.

DB2PATH=$HOME/sqllib

#

Determine

if

we

are

running

with

32-bit,

and

#

if

we

are

running

with

32-bit

on

Linux

AMD64

LIB="lib"

EXTRA_C_FLAGS=""

HARDWAREPLAT=`uname

-m`

bitwidth=`LANG=C

db2level

|

awk

’/bits/{print

$5}’`

if

[

$bitwidth

=

"\"32\""

];

then

LIB="lib32"

if

[

"$HARDWAREPLAT"

=

"x86_64"

];

then

EXTRA_C_FLAGS="-m32"

fi

fi

#

Set

the

runtime

path.

234

CLI

Guide

and

Reference,

Volume

1

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

EXTRA_LFLAG="-Wl,-rpath,$DB2PATH/$LIB"

#

Compile

the

error-checking

utility.

gcc

$EXTRA_C_FLAGS

-fpic

-I$DB2PATH/include

-c

utilcli.c

-D_REENTRANT

#

Compile

the

program.

gcc

$EXTRA_C_FLAGS

-fpic

-I$DB2PATH/include

-c

$1.c

-D_REENTRANT

#

Link

the

program.

gcc

$EXTRA_C_FLAGS

-o

$1

$1.o

utilcli.o

-shared

$EXTRA_LFLAG

\

-L$DB2PATH/$LIB

-ldb2

-lpthread

#

Copy

the

shared

library

to

the

function

subdirectory.

#

The

user

must

have

write

permission

to

this

directory.

rm

-f

$DB2PATH/function/$1

cp

$1

$DB2PATH/function

Linux

CLI

routine

compile

and

link

options

These

are

the

compile

and

link

options

recommended

by

DB2

for

building

CLI

routines

with

the

GNU/Linux

gcc

compiler.

They

are

demonstrated

in

the

sqllib/samples/cli/bldrtn

build

script.

Compile

and

link

options

for

bldrtn

Compile

options:

gcc

The

C

compiler.

$EXTRA_C_FLAGS

Contains

-m32

for

32-bit

on

Linux

AMD64;

otherwise

contains

no

value.

-fpic

Allows

position

independent

code.

-I$DB2PATH/include

Specify

the

location

of

the

DB2

include

files.

For

example:

$HOME/sqllib/include.

-c

Perform

compile

only;

no

link.

Compile

and

link

are

separate

steps.

-D_REENTRANT

Defines

_REENTRANT,

needed

as

the

routines

may

run

in

the

same

process

as

other

routines

(THREADSAFE)

or

in

the

engine

itself

(NOT

FENCED).

Chapter

23.

Building

CLI

applications

235

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

Compile

and

link

options

for

bldrtn

Link

options:

gcc

Use

the

compiler

as

a

front

end

for

the

linker.

$EXTRA_C_FLAGS

Contains

-m32

for

32-bit

on

Linux

AMD64;

otherwise

contains

no

value.

-o

$1

Specify

the

executable.

$1.o

Include

the

program

object

file.

utilcli.o

Include

the

utility

object

file

for

error-checking.

-shared

Generate

a

shared

library.

$EXTRA_LFLAG

Specify

the

location

of

the

DB2

shared

libraries

at

run-time.

For

32-bit

it

contains

the

value

″-Wl,-rpath,$DB2PATH/lib32″.

For

64-bit

it

contains

the

value

″-Wl,-rpath,$DB2PATH/lib″.

-L$DB2PATH/$LIB

Specify

the

location

of

the

DB2

static

and

shared

libraries

at

link-time.

For

example,

for

32-bit:

$HOME/sqllib/lib32,

and

for

64-bit:

$HOME/sqllib/lib.

If

you

do

not

specify

the

-L

option,

/usr/lib:/lib

is

assumed.

-ldb2

Link

with

the

DB2

library.

-lpthread

Link

with

the

POSIX

thread

library.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

routines

on

UNIX”

on

page

221

Related

reference:

v

“Linux

CLI

application

compile

and

link

options”

on

page

233

Related

samples:

v

“bldrtn

--

Builds

Linux

C

routines

(stored

procedures

or

UDFs)

(C)”

Solaris

Build

script

for

Solaris

applications

The

following

is

the

bldapp

script

for

building

CLI

applications

on

Solaris:

#!

/bin/sh

#

SCRIPT:

bldapp

#

Builds

Solaris

CLI

applications

#

Usage:

bldapp

<prog_name>

[

<db_name>

[

<userid>

<password>

]]

#

Set

DB2PATH

to

where

DB2

will

be

accessed.

#

The

default

is

the

standard

instance

path.

DB2PATH=$HOME/sqllib

#

Set

compile

and

link

flags

for

32-bit

and

64-bit

programs.

bitwidth=`LANG=C

db2level

|

awk

’/bits/{print

$5}’`

if

[

$bitwidth

=

"\"64\""

];

then

CFLAG_ARCH=v9

LIB=lib

236

CLI

Guide

and

Reference,

Volume

1

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

else

CFLAG_ARCH=v8plusa

LIB=lib32

fi

#

Set

the

runtime

path.

#

LD_LIBRARY_PATH

will

be

followed

instead

of

the

runtime

path

unless

#

you

unset

LD_LIBRARY_PATH

first

to

allow

the

runtime

path

to

be

used.

EXTRA_LFLAG="-R$DB2PATH/$LIB"

#

If

an

embedded

SQL

program,

precompile

and

bind

it.

if

[

-f

$1".sqc"

]

then

./embprep

$1

$2

$3

$4

fi

#

Compile

the

error-checking

utility.

cc

-xarch=$CFLAG_ARCH

-I$DB2PATH/include

-c

utilcli.c

#

Compile

the

program.

cc

-xarch=$CFLAG_ARCH

-I$DB2PATH/include

-c

$1.c

#

Link

the

program.

cc

-xarch=$CFLAG_ARCH

-mt

-o

$1

$1.o

utilcli.o

\

-L$DB2PATH/$LIB

$EXTRA_LFLAG

-ldb2

Solaris

CLI

application

compile

and

link

options

These

are

the

compile

and

link

options

recommended

by

DB2

for

building

CLI

applications

with

the

Solaris

C

compiler.

They

are

demonstrated

in

the

sqllib/samples/cli/bldapp

build

script.

Compile

and

link

options

for

bldapp

Compile

options:

cc

Use

the

C

compiler.

-xarch=$CFLAG_ARCH

This

option

ensures

that

the

compiler

will

produce

valid

executables

when

linking

with

libdb2.so.

The

value

for

$CFLAG_ARCH

is

set

to

either

″v8plusa″

for

32-bit,

or

″v9″

for

64-bit.

-I$DB2PATH/include

Specify

the

location

of

the

DB2

include

files.

For

example:

$HOME/sqllib/include

-c

Perform

compile

only;

no

link.

This

script

has

separate

compile

and

link

steps.

Chapter

23.

Building

CLI

applications

237

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

Compile

and

link

options

for

bldapp

Link

options:

cc

Use

the

compiler

as

a

front

end

for

the

linker.

-xarch=$CFLAG_ARCH

This

option

ensures

that

the

compiler

will

produce

valid

executables

when

linking

with

libdb2.so.

The

value

for

$CFLAG_ARCH

is

set

to

either

″v8plusa″

for

32-bit,

or

″v9″

for

64-bit.

-mt

Link

in

multi-thread

support

to

prevent

problems

calling

fopen.

Note:

If

POSIX

threads

are

used,

DB2

applications

also

have

to

link

with

-lpthread,

whether

or

not

they

are

threaded.

-o

$1

Specify

the

executable

program.

$1.o

Include

the

program

object

file.

utilcli.o

Include

the

utility

object

file

for

error

checking.

-L$DB2PATH/$LIB

Specify

the

location

of

the

DB2

static

and

shared

libraries

at

link-time.

For

example,

for

32-bit:

$HOME/sqllib/lib32,

and

for

64-bit:

$HOME/sqllib/lib.

$EXTRA_LFLAG

Specify

the

location

of

the

DB2

shared

libraries

at

run-time.

For

32-bit

it

contains

the

value

″-R$DB2PATH/lib32″,

and

for

64-bit

it

contains

the

value

″-R$DB2PATH/lib″.

-ldb2

Link

with

the

DB2

library.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

applications

on

UNIX”

on

page

217

Related

reference:

v

“Solaris

CLI

routine

compile

and

link

options”

on

page

239

Related

samples:

v

“bldapp

--

Builds

Solaris

C

applications

(C)”

Build

script

for

Solaris

routines

The

following

is

the

bldrtn

script

for

building

CLI

routines

on

Solaris:

#!

/bin/sh

#

SCRIPT:

bldrtn

#

Builds

Solaris

CLI

routines

(stored

procedures

or

UDFs)

#

Usage:

bldrtn

<prog_name>

#

Set

DB2PATH

to

where

DB2

will

be

accessed.

#

The

default

is

the

standard

instance

path.

DB2PATH=$HOME/sqllib

#

Set

compile

and

link

flags

for

32-bit

and

64-bit

programs.

bitwidth=`LANG=C

db2level

|

awk

’/bits/{print

$5}’`

if

[

$bitwidth

=

"\"64\""

];

then

CFLAG_ARCH=v9

LIB=lib

else

CFLAG_ARCH=v8plusa

238

CLI

Guide

and

Reference,

Volume

1

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LIB=lib32

fi

#

Set

the

runtime

path.

#

LD_LIBRARY_PATH

will

be

followed

instead

of

the

runtime

path

unless

#

you

unset

LD_LIBRARY_PATH

first

to

allow

the

runtime

path

to

be

used.

EXTRA_LFLAG="-R$DB2PATH/$LIB"

#

Compile

the

error-checking

utility.

cc

-xarch=$CFLAG_ARCH

-mt

-DUSE_UI_THREADS

-Kpic

\

-I$DB2PATH/include

-c

utilcli.c

#

Compile

the

program.

cc

-xarch=$CFLAG_ARCH

-mt

-DUSE_UI_THREADS

-Kpic

\

-I$DB2PATH/include

-c

$1.c

#

Link

the

program.

cc

-xarch=$CFLAG_ARCH

-mt

-G

-o

$1

$1.o

utilcli.o

\

-L$DB2PATH/$LIB

$EXTRA_LFLAG

-ldb2

#

Copy

the

shared

library

to

the

sqllib/function

subdirectory.

#

Note:

the

user

must

have

write

permission

to

this

directory.

rm

-f

$DB2PATH/function/$1

cp

$1

$DB2PATH/function

Solaris

CLI

routine

compile

and

link

options

These

are

the

compile

and

link

options

recommended

by

DB2

for

building

CLI

routines

with

the

Solaris

C

compiler.

They

are

demonstrated

in

the

sqllib/samples/cli/bldrtn

build

script.

Compile

and

link

options

for

bldrtn

Compile

options:

cc

The

C

compiler.

-xarch=$CFLAG_ARCH

This

option

ensures

that

the

compiler

will

produce

valid

executables

when

linking

with

libdb2.so.

The

value

for

$CFLAG_ARCH

is

set

to

either

″v8plusa″

for

32-bit,

or

″v9″

for

64-bit.

-mt

Allow

multi-threaded

support,

needed

as

the

routines

may

run

in

the

same

process

as

other

routines

(THREADSAFE)

or

in

the

engine

itself

(NOT

FENCED).

-DUSE_UI_THREADS

Allows

Sun’s

″UNIX

International″

threads

APIs.

-Kpic

Generate

position-independent

code

for

shared

libraries.

-I$DB2PATH/include

Specify

the

location

of

the

DB2

include

files.

For

example:

$HOME/sqllib/include.

-c

Perform

compile

only;

no

link.

Compile

and

link

are

separate

steps.

Chapter

23.

Building

CLI

applications

239

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

Compile

and

link

options

for

bldrtn

Link

options:

cc

Use

the

compiler

as

a

front

end

for

the

linker.

-xarch=$CFLAG_ARCH

This

option

ensures

that

the

compiler

will

produce

valid

executables

when

linking

with

libdb2.so.

The

value

for

$CFLAG_ARCH

is

set

to

either

″v8plusa″

for

32-bit,

or

″v9″

for

64-bit.

-mt

Allow

multi-threaded

support,

needed

as

the

routines

may

run

in

the

same

process

as

other

routines

(THREADSAFE)

or

in

the

engine

itself

(NOT

FENCED).

-G

Generate

a

shared

library.

-o

$1

Specify

the

executable.

$1.o

Include

the

program

object

file.

utilcli.o

Include

the

utility

object

file

for

error-checking.

-L$DB2PATH/$LIB

Specify

the

location

of

the

DB2

static

and

shared

libraries

at

link-time.

For

example,

for

32-bit:

$HOME/sqllib/lib32,

and

for

64-bit:

$HOME/sqllib/lib.

$EXTRA_LFLAG

Specify

the

location

of

the

DB2

shared

libraries

at

run-time.

For

32-bit

it

contains

the

value

″-R$DB2PATH/lib32″,

and

for

64-bit

it

contains

the

value

″-R$DB2PATH/lib″.

-ldb2

Link

with

the

DB2

library.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

routines

on

UNIX”

on

page

221

Related

reference:

v

“Solaris

CLI

application

compile

and

link

options”

on

page

237

Related

samples:

v

“bldrtn

--

Builds

Solaris

C

routines

(stored

procedures

or

UDFs)

(C)”

Windows

The

following

sections

describe

how

to

build

CLI

applications

and

routines

on

supported

Windows

operating

systems.

They

also

provide

sample

batch

files

for

building

DB2

programs

as

well

as

descriptions

of

the

compile

and

link

options

used

in

the

batch

files.

Building

CLI

applications

on

Windows

DB2

provides

batch

files

for

compiling

and

linking

CLI

programs.

These

are

located

in

the

sqllib\samples\cli

directory,

along

with

sample

programs

that

can

be

built

with

these

files.

The

batch

file

bldapp.bat

contains

the

commands

to

build

a

DB2

CLI

program.

It

takes

up

to

four

parameters,

represented

inside

the

batch

file

by

the

variables

%1,

%2,

%3,

and

%4.

240

CLI

Guide

and

Reference,

Volume

1

|
|
|

|
|
|

|
|
|
|

The

parameter,

%1,

specifies

the

name

of

your

source

file.

This

is

the

only

required

parameter,

and

the

only

one

needed

for

CLI

programs

that

do

not

contain

embedded

SQL.

Building

embedded

SQL

programs

requires

a

connection

to

the

database

so

three

optional

parameters

are

also

provided:

the

second

parameter,

%2,

specifies

the

name

of

the

database

to

which

you

want

to

connect;

the

third

parameter,

%3,

specifies

the

user

ID

for

the

database,

and

%4

specifies

the

password.

If

the

program

contains

embedded

SQL,

indicated

by

the

.sqc

or

.sqx

extension,

then

the

embprep.bat

batch

file

is

called

to

precompile

the

program,

producing

a

program

file

with

either

a

.c

or

a

.cxx

extension,

respectively.

Procedure:

The

following

examples

show

you

how

to

build

and

run

CLI

applications.

To

build

the

sample

program

tbinfo

from

the

source

file

tbinfo.c,

enter:

bldapp

tbinfo

The

result

is

an

executable

file

tbinfo.

You

can

run

the

executable

file

by

entering

the

executable

name:

tbinfo

Building

and

running

embedded

SQL

applications

There

are

three

ways

to

build

the

embedded

SQL

application,

dbusemx,

from

the

source

file

dbusemx.sqc:

1.

If

connecting

to

the

sample

database

on

the

same

instance,

enter:

bldapp

dbusemx

2.

If

connecting

to

another

database

on

the

same

instance,

also

enter

the

database

name:

bldapp

dbusemx

database

3.

If

connecting

to

a

database

on

another

instance,

also

enter

the

user

ID

and

password

of

the

database

instance:

bldapp

dbusemx

database

userid

password

The

result

is

an

executable

file,

dbusemx.

There

are

three

ways

to

run

this

embedded

SQL

application:

1.

If

accessing

the

sample

database

on

the

same

instance,

simply

enter

the

executable

name:

dbusemx

2.

If

accessing

another

database

on

the

same

instance,

enter

the

executable

name

and

the

database

name:

dbusemx

database

3.

If

accessing

a

database

on

another

instance,

enter

the

executable

name,

database

name,

and

user

ID

and

password

of

the

database

instance:

dbusemx

database

userid

password

Related

tasks:

v

“Setting

up

the

CLI

environment”

on

page

207

v

“Setting

up

the

Windows

CLI

environment”

on

page

214

v

“Building

CLI

routines

on

Windows”

on

page

244

Chapter

23.

Building

CLI

applications

241

Related

reference:

v

“Windows

CLI

application

compile

and

link

options”

on

page

246

Related

samples:

v

“bldapp.bat

--

Builds

C

applications

on

Windows”

v

“embprep.bat

--

Prep

and

binds

a

C/C++

or

Micro

Focus

COBOL

embedded

SQL

program

on

Windows”

v

“dbusemx.sqc

--

How

to

execute

embedded

SQL

statements

in

CLI”

v

“tbinfo.c

--

How

to

get

information

about

tables

from

the

system

catalog

tables”

Building

CLI

multi-connection

applications

on

Windows

DB2

provides

batch

files

for

compiling

and

linking

CLI

programs.

These

are

located

in

the

sqllib\samples\cli

directory,

along

with

sample

programs

that

can

be

built

with

these

files.

The

batch

file,

bldmc.bat,

contains

the

commands

to

build

a

DB2

multi-connection

program

requiring

two

databases.

The

compile

and

link

options

are

the

same

as

those

used

in

bldapp.bat.

The

first

parameter,

%1,

specifies

the

name

of

your

source

file.

The

second

parameter,

%2,

specifies

the

name

of

the

first

database

to

which

you

want

to

connect.

The

third

parameter,

%3,

specifies

the

second

database

to

which

you

want

to

connect.

These

are

all

required

parameters.

Note:

The

makefile

hardcodes

default

values

of

″sample″

and

″sample2″

for

the

database

names

(%2

and

%3,

respectively)

so

if

you

are

using

the

makefile,

and

accept

these

defaults,

you

only

have

to

specify

the

program

name

(the

%1

parameter).

If

you

are

using

the

bldmc.bat

file,

you

must

specify

all

three

parameters.

Optional

parameters

are

not

required

for

a

local

connection,

but

are

required

for

connecting

to

a

server

from

a

remote

client.

These

are:

%4

and

%5

to

specify

the

user

ID

and

password,

respectively,

for

the

first

database;

and

%6

and

%7

to

specify

the

user

ID

and

password,

respectively,

for

the

second

database.

Procedure:

For

the

multi-connection

sample

program,

dbmconx,

you

require

two

databases.

If

the

sample

database

is

not

yet

created,

you

can

create

it

by

entering

db2sampl

on

the

command

line.

The

second

database,

here

called

sample2,

can

be

created

with

one

of

the

following

commands:

If

creating

the

database

locally:

db2

create

db

sample2

If

creating

the

database

remotely:

db2

attach

to

<node_name>

db2

create

db

sample2

db2

detach

db2

catalog

db

sample2

as

sample2

at

node

<node_name>

where

<node_name>

is

the

node

where

the

database

resides.

242

CLI

Guide

and

Reference,

Volume

1

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|

|

|
|
|
|

|

Multi-connection

also

requires

that

the

TCP/IP

listener

is

running.

To

ensure

it

is,

do

the

following:

1.

Set

the

environment

variable

DB2COMM

to

TCP/IP

as

follows:

db2set

DB2COMM=TCPIP

2.

Update

the

database

manager

configuration

file

with

the

TCP/IP

service

name

as

specified

in

the

services

file:

db2

update

dbm

cfg

using

SVCENAME

<TCP/IP

service

name>

Each

instance

has

a

TCP/IP

service

name

listed

in

the

services

file.

Ask

your

system

administrator

if

you

cannot

locate

it

or

do

not

have

the

file

permission

to

read

the

services

file.

3.

Stop

and

restart

the

database

manager

in

order

for

these

changes

to

take

effect:

db2stop

db2start

The

dbmconx

program

consists

of

five

files:

dbmconx.c

Main

source

file

for

connecting

to

both

databases.

dbmconx1.sqc

Source

file

for

creating

a

package

bound

to

the

first

database.

dbmconx1.h

Header

file

for

dbmconx1.sqc

included

in

dbmconx.sqc

for

accessing

the

SQL

statements

for

creating

and

dropping

a

table

to

be

bound

to

the

first

database.

dbmconx2.sqc

Source

file

for

creating

a

package

bound

to

the

second

database.

dbmconx2.h

Header

file

for

dbmconx2.sqc

included

in

dbmconx.sqc

for

accessing

the

SQL

statements

for

creating

and

dropping

a

table

to

be

bound

to

the

second

database.

To

build

the

multi-connection

sample

program,

dbmconx,

enter:

bldmc

dbmconx

sample

sample2

The

result

is

an

executable

file,

dbmconx.

To

run

the

executable

file,

enter

the

executable

name:

dbmconx

The

program

demonstrates

a

two-phase

commit

to

two

databases.

Related

concepts:

v

“Multisite

updates

(two

phase

commit)

in

CLI

applications”

on

page

127

Related

reference:

v

“Windows

CLI

application

compile

and

link

options”

on

page

246

Related

samples:

v

“bldmc.bat

--

Builds

Windows

CLI

multi-connection

applications”

v

“dbmconx.c

--

How

to

use

multiple

databases

with

embedded

SQL.”

v

“dbmconx1.h

--

Functions

used

in

dbmconx.c”

Chapter

23.

Building

CLI

applications

243

|
|

|

|

|
|

|

|
|
|

|

|
|

|

|
|

|
|

|
|
|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v

“dbmconx1.sqc

--

This

file

contains

functions

used

in

dbmconx.c”

v

“dbmconx2.h

--

Functions

used

in

dbmconx.c”

v

“dbmconx2.sqc

--

This

file

contains

functions

used

in

dbmconx.c”

Building

CLI

routines

on

Windows

DB2

provides

batch

files

for

compiling

and

linking

CLI

programs.

These

are

located

in

the

sqllib\samples\cli

directory,

along

with

sample

programs

that

can

be

built

with

these

files.

The

batch

file

bldrtn.bat

contains

the

commands

to

build

CLI

routines

(stored

procedures

and

user-defined

functions).

bldrtn.bat

creates

a

DLL

on

the

server.

It

takes

one

parameter,

represented

inside

the

batch

file

by

the

variable

%1,

which

specifies

the

name

of

your

source

file.

The

batch

file

uses

the

source

file

name

for

the

DLL

name.

Procedure:

To

build

the

spserver

DLL

from

the

source

file

spserver.c:

1.

Enter

the

batch

file

name

and

program

name:

bldrtn

spserver

The

batch

file

uses

the

module

definition

file

spserver.def,

contained

in

the

same

directory

as

the

CLI

sample

programs,

to

build

the

DLL.

The

batch

file

then

copies

the

DLL,

spserver.dll,

to

the

server

in

the

path

sqllib\function.

2.

Next,

catalog

the

routines

by

running

the

spcat

script

on

the

server:

spcat

This

script

connects

to

the

sample

database,

uncatalogs

the

routines

if

they

were

previously

cataloged

by

calling

spdrop.db2,

then

catalogs

them

by

calling

spcreate.db2,

and

finally

disconnects

from

the

database.

You

can

also

call

the

spdrop.db2

and

spcreate.db2

scripts

individually.

3.

Then,

unless

this

is

the

first

time

the

shared

library

was

built,

stop

and

restart

the

database

to

allow

the

new

version

of

the

shared

library

to

be

recognized.

If

necessary,

set

the

file

mode

for

the

shared

library

so

the

DB2

instance

can

access

it.

Once

you

build

the

DLL

spserver,

you

can

build

the

CLI

client

application

spclient

that

calls

the

routines

within

it.

You

can

build

spclient

by

using

the

script

file,

bldapp.

To

call

the

routines,

run

the

sample

client

application

by

entering:

spclient

database

userid

password

where

database

Is

the

name

of

the

database

to

which

you

want

to

connect.

The

name

could

be

sample,

or

its

alias,

or

another

database

name.

userid

Is

a

valid

user

ID.

password

Is

a

valid

password.

244

CLI

Guide

and

Reference,

Volume

1

|

|

|

|
|

The

client

application

accesses

the

DLL,

spserver,

which

executes

the

routines

on

the

server

database.

The

output

is

returned

to

the

client

application.

Related

tasks:

v

“Setting

up

the

CLI

environment”

on

page

207

v

“Setting

up

the

Windows

CLI

environment”

on

page

214

v

“Building

CLI

applications

on

Windows”

on

page

240

Related

reference:

v

“Windows

CLI

routine

compile

and

link

options”

on

page

247

Related

samples:

v

“bldapp.bat

--

Builds

C

applications

on

Windows”

v

“bldrtn.bat

--

Builds

C

routines

(stored

procedures

and

UDFs)

on

Windows”

v

“spcat

--

To

catalog

stored

procedures

on

UNIX

(C)”

v

“spcreate.db2

--

How

to

catalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

v

“spdrop.db2

--

How

to

uncatalog

the

stored

procedures

contained

in

spserver.sqc

(C)”

v

“spclient.c

--

Call

various

stored

procedures”

v

“spserver.c

--

Definition

of

various

types

of

stored

procedures”

Batch

file

for

Windows

applications

The

following

is

the

bldapp.bat

batch

file

for

building

CLI

applications

on

Windows:

@echo

off

rem

BATCH

FILE:

bldapp.bat

rem

Builds

Windows

CLI

applications

rem

Usage:

bldapp

prog_name

[

db_name

[

userid

password

]]

rem

Default

compiler

is

set

to

Microsoft

Visual

C++

rem

To

use

a

different

compiler,

comment

out

’set

BLDCOMP=cl’

rem

and

uncomment

’set

BLDCOMP=icl’

or

’set

BLDCOMP=ecl’

rem

Microsoft

C/C++

Compiler

set

BLDCOMP=cl

rem

Intel

C++

Compiler

for

32-bit

applications

rem

set

BLDCOMP=icl

rem

Intel

C++

Compiler

for

Itanium

64-bit

applications

rem

set

BLDCOMP=ecl

if

exist

"%1.sqc"

call

embprep

%1

%2

%3

%4

if

exist

"%1.sqx"

call

embprep

%1

%2

%3

%4

rem

Compile

the

error-checking

utility.

%BLDCOMP%

-Zi

-Od

-c

-W1

-DWIN32

utilcli.c

rem

Compile

the

program.

if

exist

"%1.sqx"

goto

cpp

%BLDCOMP%

-Zi

-Od

-c

-W2

-DWIN32

%1.c

goto

link_step

:cpp

%BLDCOMP%

-Zi

-Od

-c

-W2

-DWIN32

%1.cxx

Chapter

23.

Building

CLI

applications

245

rem

Link

the

program.

:link_step

link

-debug

-out:%1.exe

%1.obj

utilcli.obj

db2api.lib

@echo

on

Windows

CLI

application

compile

and

link

options

These

compile

and

link

options

are

recommended

by

DB2

for

building

CLI

applications

with

the

Microsoft

Visual

C++

compiler.

They

are

demonstrated

in

the

sqllib\samples\cli\bldapp.bat

batch

file.

Compile

and

link

options

for

bldapp

Compile

options:

%BLDCOMP%

Variable

for

the

compiler.

The

default

is

cl,

the

Microsoft

Visual

C++

compiler.

It

can

be

also

set

to

icl,

the

Intel

C++

Compiler

for

32-bit

applications,

or

ecl,

the

Intel

C++

Compiler

for

Itanium

64-bit

applications.

-Zi

Enable

debugging

information.

-Od

Disable

optimizations.

It

is

easier

to

use

a

debugger

with

optimization

off.

-c

Perform

compile

only;

no

link.

-W2

Set

warning

level.

-DWIN32

Compiler

option

necessary

for

Windows

operating

systems.

Link

options:

link

Use

the

32-bit

linker.

-debug

Include

debugging

information.

-out:%1.exe

Specify

the

executable.

%1.obj

Include

the

object

file.

utilcli.obj

Include

the

utility

object

file

for

error

checking.

db2api.lib

Link

with

the

DB2

API

library.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

applications

on

Windows”

on

page

240

v

“Building

CLI

routines

on

Windows”

on

page

244

Related

samples:

v

“bldapp.bat

--

Builds

C

applications

on

Windows”

Batch

file

for

Windows

routines

The

following

is

the

bldrtn.bat

batch

file

for

building

CLI

routines

on

Windows:

@echo

off

rem

BATCH

FILE:

bldrtn.bat

rem

Builds

Windows

CLI

routines

(stored

procedures

and

UDFs)

rem

using

the

Microsoft

Visual

C++

compiler

rem

Usage:

bldrtn

prog_name

246

CLI

Guide

and

Reference,

Volume

1

|
|

|
|
|
|
|

rem

Default

compiler

is

set

to

Microsoft

Visual

C++

rem

To

use

a

different

compiler,

comment

out

’set

BLDCOMP=cl’

rem

and

uncomment

’set

BLDCOMP=icl’

or

’set

BLDCOMP=ecl’

rem

Microsoft

C/C++

Compiler

set

BLDCOMP=cl

rem

Intel

C++

Compiler

for

32-bit

applications

rem

set

BLDCOMP=icl

rem

Intel

C++

Compiler

for

Itanium

64-bit

applications

rem

set

BLDCOMP=ecl

if

"%1"

==

""

goto

error

rem

Compile

the

program.

if

exist

"%1.cxx"

goto

cpp

%BLDCOMP%

-Zi

-Od

-c

-W2

-DWIN32

-MD

%1.c

utilcli.c

goto

link_step

:cpp

%BLDCOMP%

-Zi

-Od

-c

-W2

-DWIN32

-MD

%1.cxx

utilcli.c

rem

Link

the

program.

:link_step

link

-debug

-dll

-out:%1.dll

%1.obj

utilcli.obj

db2api.lib

-def:%1.def

rem

Copy

the

stored

procedure

DLL

to

the

’function’

directory

copy

%1.dll

"%DB2PATH%\function"

goto

exit

:error

echo

Usage:

bldrtn

prog_name

:exit

@echo

on

Windows

CLI

routine

compile

and

link

options

These

compile

and

link

options

are

recommended

by

DB2

for

building

CLI

routines

with

the

Microsoft

Visual

C++

compiler.

They

are

demonstrated

in

the

sqllib\samples\cli\bldrtn.bat

batch

file.

Compile

and

link

options

for

bldrtn

Compile

options:

%BLDCOMP%

Variable

for

the

compiler.

The

default

is

cl,

the

Microsoft

Visual

C++

compiler.

It

can

be

also

set

to

icl,

the

Intel

C++

Compiler

for

32-bit

applications,

or

ecl,

the

Intel

C++

Compiler

for

Itanium

64-bit

applications.

-Zi

Enable

debugging

information

-Od

Disable

optimizations.

It

is

easier

to

use

a

debugger

with

optimization

off.

-c

Perform

compile

only;

no

link.

The

batch

file

has

separate

compile

and

link

steps.

-W2

Set

warning

level.

-DWIN32

Compiler

option

necessary

for

Windows

operating

systems.

-MD

Create

a

multithreaded

DLL,

using

MSVCRT.LIB

Chapter

23.

Building

CLI

applications

247

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||

Compile

and

link

options

for

bldrtn

Link

options:

link

Use

the

32-bit

linker.

-debug

Include

debugging

information.

-out:%1.dll

Build

a

.DLL

file.

%1.obj

Include

the

object

file.

utilcli.obj

Include

the

utility

object

file

for

error-checking.

db2api.lib

Link

with

the

DB2

API

library.

-def:%1.def

Use

the

module

definition

file.

Refer

to

your

compiler

documentation

for

additional

compiler

options.

Related

tasks:

v

“Building

CLI

applications

on

Windows”

on

page

240

v

“Building

CLI

routines

on

Windows”

on

page

244

Related

samples:

v

“bldrtn.bat

--

Builds

C

routines

(stored

procedures

and

UDFs)

on

Windows”

248

CLI

Guide

and

Reference,

Volume

1

|
|

Chapter

24.

CLI

sample

programs

CLI

sample

programs

DB2

CLI

includes

various

sample

applications

located

in

the

following

location:

v

On

Windows®

operating

systems:

%DB2PATH%\sqllib\samples\cli

(where

%DB2PATH%

is

a

variable

that

determines

where

DB2®

is

installed)

v

On

UNIX®:

$HOME/sqllib/samples/cli

(where

$HOME

is

the

home

directory

of

the

instance

owner)

The

README

file

in

the

same

directory

lists

each

sample

along

with

an

explanation,

and

describes

how

to

build

the

samples

using

the

makefile

and

build

files

provided.

Related

tasks:

v

“Setting

up

the

CLI

environment”

on

page

207

v

“Building

CLI

applications

on

UNIX”

on

page

217

v

“Building

CLI

routines

on

UNIX”

on

page

221

v

“Building

CLI

applications

on

Windows”

on

page

240

v

“Building

CLI

routines

on

Windows”

on

page

244

Related

reference:

v

“CLI

samples”

on

page

249

CLI

samples

UNIX

directory:

sqllib/samples/cli.

Windows

directory:

sqllib\samples\cli.

Table

22.

Sample

CLI

program

files

Sample

program

name

Program

description

Tutorial

samples

-

Programs

that

demonstrate

basic

database

operations.

tut_mod.c

How

to

modify

table

data.

tut_read.c

How

to

read

tables.

tut_use.c

How

to

use

a

database.

Installation

image

level

-

Samples

that

deal

with

the

installation

image

level

of

DB2

and

CLI.

ilinfo.c

How

to

get

and

set

installation

level

information

(such

as

the

version

of

the

CLI

driver).

Client

level

-

Samples

that

deal

with

the

client

level

of

DB2.

cli_info.c

How

to

get

and

set

client

level

information.

clihandl.c

How

to

allocate

and

free

handles.

clisqlca.c

How

to

work

with

SQLCA

data.

Instance

level

-

Samples

that

deal

with

the

instance

level

of

DB2.

ininfo.c

How

to

get

and

set

instance

level

information.

Database

level

-

Samples

that

deal

with

database

objects

in

DB2.

©

Copyright

IBM

Corp.

1993

-

2004

249

Table

22.

Sample

CLI

program

files

(continued)

Sample

program

name

Program

description

dbcongui.c

How

to

connect

to

a

database

with

a

Graphical

User

Interface

(GUI).

dbconn.c

How

to

connect

and

disconnect

from

a

database.

dbinfo.c

How

to

get

and

set

information

at

a

database

level.

dbmcon.c

How

to

connect

and

disconnect

from

multiple

databases.

dbmconx.c

How

to

connect

and

disconnect

from

multiple

databases

with

embedded

SQL.

dbmconx1.h

Header

file

for

dbmconx1.sqc.

dbmconx1.sqc

Embedded

SQL

file

for

the

dbmconx

program.

dbmconx2.h

Header

file

for

dbmconx2.sqc.

dbmconx2.sqc

Embedded

SQL

file

for

the

dbmconx

program.

dbnative.c

How

to

translate

a

statement

that

contains

an

ODBC

escape

clause

to

a

data

source

specific

format.

dbuse.c

How

to

use

database

objects.

dbusemx.sqc

How

to

use

database

objects

with

embedded

SQL.

dbxamon.c

How

to

show

and

roll

back

indoubt

transactions.

Table

level

-

Samples

that

deal

with

table

objects

in

DB2.

tbconstr.c

How

to

work

with

table

constraints.

tbcreate.c

How

to

create,

alter,

and

drop

tables.

tbinfo.c

How

to

get

and

set

information

at

a

table

level.

tbload.c

How

to

insert

data

using

the

CLI

LOAD

utility.

tbmod.c

How

to

modify

information

in

a

table.

tbread.c

How

to

read

information

in

a

table.

Data

type

level

-

Samples

that

deal

with

data

types.

dtinfo.c

How

to

get

information

about

data

types.

dtlob.c

How

to

read

and

write

LOB

data.

dtudt.c

How

to

create,

use,

and

drop

user

defined

distinct

types.

Stored

procedure

level

-

Samples

that

demonstrate

stored

procedures.

spcat

Stored

procedure

catalog

script

for

the

spserver

program.

This

script

calls

spdrop.db2

and

spcreate.db2.

spcreate.db2

CLP

script

to

issue

CREATE

PROCEDURE

statements.

spdrop.db2

CLP

script

to

drop

stored

procedures

from

the

catalog.

spclient.c

Client

program

used

to

call

the

server

functions

declared

in

spserver.c.

spserver.c

Stored

procedure

functions

built

and

run

on

the

server.

spclires.c

Client

application

that

demonstrates

the

difference

between

SQLMoreResults

and

SQLNextResults

for

multiple

result

sets.

spcall.c

Client

program

for

calling

any

stored

procedure.

UDF

level

-

Samples

that

demonstrate

user

defined

functions.

udfcli.c

Client

application

which

calls

the

user

defined

function

in

udfsrv.c.

udfsrv.c

User

defined

function

ScalarUDF

called

by

udfcli.c.

Common

utility

files

250

CLI

Guide

and

Reference,

Volume

1

||

||

Table

22.

Sample

CLI

program

files

(continued)

Sample

program

name

Program

description

utilcli.c

Utility

functions

used

in

CLI

samples.

utilcli.h

Header

file

for

utility

functions

used

in

CLI

samples.

For

the

latest

samples

updates,

visit

the

DB2

application

development

samples

Web

page:

http://www.ibm.com/software/data/db2/udb/ad/v8/samples.html

Related

concepts:

v

“Sample

files”

in

the

Application

Development

Guide:

Building

and

Running

Applications

Chapter

24.

CLI

sample

programs

251

http://www.ibm.com/software/data/db2/udb/ad/v8/samples.html

252

CLI

Guide

and

Reference,

Volume

1

Part

4.

CLI/ODBC

configuration

keywords

©

Copyright

IBM

Corp.

1993

-

2004

253

254

CLI

Guide

and

Reference,

Volume

1

Chapter

25.

CLI/ODBC

configuration

keywords

CLI/ODBC

configuration

keywords

allow

you

to

customize

the

behavior

of

the

DB2

CLI

driver.

This

chapter

describes

setting

these

keywords

through

the

db2cli.ini

initialization

file

and

contains

a

listing

of

available

configuration

keywords.

db2cli.ini

initialization

file

The

db2cli.ini

initialization

file

contains

various

keywords

and

values

that

can

be

used

to

configure

the

behavior

of

DB2

CLI

and

the

applications

using

it.

The

keywords

are

associated

with

the

database

alias

name,

and

affect

all

DB2

CLI

and

ODBC

applications

that

access

the

database.

By

default,

the

location

of

the

DB2®

CLI/ODBC

configuration

keyword

file

is

in

the

sqllib

directory

on

Window

platforms,

and

in

the

sqllib/cfg

directory

of

the

database

instance

running

the

CLI/ODBC

applications

on

UNIX®

platforms.

If

the

ODBC

Driver

Manager

is

used

to

configure

a

User

Data

Source

on

the

Windows®

platform,

a

db2cli.ini

may

be

created

in

the

user’s

home

(profile)

directory.

The

environment

variable

DB2CLIINIPATH

can

also

be

used

to

override

the

default

and

specify

a

different

location

for

the

file.

The

configuration

keywords

enable

you

to:

v

Configure

general

features

such

as

data

source

name,

user

name,

and

password.

v

Set

options

that

will

affect

performance.

v

Indicate

query

parameters

such

as

wild

card

characters.

v

Set

patches

or

work-arounds

for

various

ODBC

applications.

v

Set

other,

more

specific

features

associated

with

the

connection,

such

as

code

pages

and

IBM®

GRAPHIC

data

types.

v

Override

default

connection

options

specified

by

an

application.

For

example,

if

an

application

requests

Unicode

support

from

the

CLI

driver

by

setting

the

SQL_ATTR_ANSI_APP

connection

attribute,

then

setting

DisableUnicode=1

in

the

db2cli.ini

file

will

force

the

CLI

driver

not

to

provide

the

application

with

Unicode

support.

Note:

If

the

CLI/ODBC

configuration

keywords

set

in

the

db2cli.ini

file

conflict

with

keywords

in

the

SQLDriverConnect()

connection

string,

then

the

SQLDriverConnect()

keywords

will

take

precedence.

The

db2cli.ini

initialization

file

is

an

ASCII

file

which

stores

values

for

the

DB2

CLI

configuration

options.

A

sample

file

is

shipped

to

help

you

get

started.

There

is

one

section

within

the

file

for

each

database

(data

source)

the

user

wishes

to

configure.

If

needed,

there

is

also

a

common

section

that

affects

all

connections

to

DB2.

Only

the

keywords

that

apply

to

all

connections

to

DB2

through

the

DB2

CLI/ODBC

driver

are

included

in

the

COMMON

section.

This

includes

the

following

keywords:

©

Copyright

IBM

Corp.

1993

-

2004

255

|
|
|
|
|

|
|
|

v

DisableMultiThread

v

JDBCTrace

v

JDBCTraceFlush

v

JDBCTracePathName

v

Trace

v

TraceComm

v

TraceFileName

v

TraceFlush

v

TraceLocks

v

TracePathName

v

TracePIDList

v

TracePIDTID

v

TraceRefreshInterval

v

TraceStmtOnly

v

TraceTime

v

TraceTimeStamp

All

other

keywords

are

to

be

placed

in

the

database

specific

section,

described

below.

Note:

Configuration

keywords

are

valid

in

the

COMMON

section,

however,

they

will

apply

to

all

database

connections.

The

COMMON

section

of

the

db2cli.ini

file

begins

with:

[COMMON]

Before

setting

a

common

keyword

it

is

important

to

evaluate

its

impact

on

all

DB2

CLI/ODBC

connections

from

that

client.

A

keyword

such

as

TRACE,

for

instance,

will

generate

information

on

all

DB2

CLI/ODBC

applications

connecting

to

DB2

on

that

client,

even

if

you

are

intending

to

troubleshoot

only

one

of

those

applications.

Each

database

specific

section

always

begins

with

the

name

of

the

data

source

name

(DSN)

between

square

brackets:

[data

source

name]

This

is

called

the

section

header.

The

parameters

are

set

by

specifying

a

keyword

with

its

associated

keyword

value

in

the

form:

KeywordName

=keywordValue

v

All

the

keywords

and

their

associated

values

for

each

database

must

be

located

below

the

database

section

header.

v

If

the

database-specific

section

does

not

contain

a

DBAlias

keyword,

the

data

source

name

is

used

as

the

database

alias

when

the

connection

is

established.

The

keyword

settings

in

each

section

apply

only

to

the

applicable

database

alias.

v

The

keywords

are

not

case

sensitive;

however,

their

values

can

be

if

the

values

are

character

based.

v

If

a

database

is

not

found

in

the

.INI

file,

the

default

values

for

these

keywords

are

in

effect.

v

Comment

lines

are

introduced

by

having

a

semicolon

in

the

first

position

of

a

new

line.

256

CLI

Guide

and

Reference,

Volume

1

v

Blank

lines

are

permitted.

v

If

duplicate

entries

for

a

keyword

exist,

the

first

entry

is

used

(and

no

warning

is

given).

The

following

is

a

sample

.INI

file

with

2

database

alias

sections:

;

This

is

a

comment

line.

[MYDB22]

AutoCommit=0

TableType="’TABLE’,’SYSTEM

TABLE’"

;

This

is

another

comment

line.

[MYDB2MVS]

CurrentSQLID=SAAID

TableType="’TABLE’"

SchemaList="’USER1’,CURRENT

SQLID,’USER2’"

Although

you

can

edit

the

db2cli.ini

file

manually

on

all

platforms,

it

is

recommended

that

you

use

the

Configuration

Assistant

if

it

is

available

on

your

platform

or

the

UPDATE

CLI

CONFIGURATION

command.

You

must

add

a

blank

line

after

the

last

entry

if

you

manually

edit

the

db2cli.ini

file.

Related

reference:

v

“UPDATE

CLI

CONFIGURATION

Command”

in

the

Command

Reference

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“DBAlias

CLI/ODBC

configuration

keyword”

on

page

282

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

CLI/ODBC

configuration

keywords

listing

by

category

The

CLI/ODBC

configuration

keywords

can

be

divided

into

the

following

categories:

v

“Compatibility

Configuration

Keywords”

v

“Data

Source

Configuration

Keywords”

on

page

258

v

“Data

Type

Configuration

Keywords”

on

page

258

v

“Enterprise

Configuration

Keywords”

on

page

258

v

“Environment

Configuration

Keywords”

on

page

258

v

“File

DSN

Configuration

Keywords”

on

page

259

v

“Optimization

Configuration

Keywords”

on

page

259

v

“Service

Configuration

Keywords”

on

page

259

v

“Static

SQL

Configuration

Keywords”

on

page

260

v

“Transaction

Configuration

Keywords”

on

page

260

Compatibility

Configuration

Keywords:

The

Compatibility

set

of

options

is

used

to

define

DB2

behavior.

They

can

be

set

to

ensure

that

other

applications

are

compatible

with

DB2.

v

“CursorTypes

CLI/ODBC

configuration

keyword”

on

page

277

v

“DeferredPrepare

CLI/ODBC

configuration

keyword”

on

page

283

v

“DescribeParam

CLI/ODBC

configuration

keyword”

on

page

285

v

“DisableKeysetCursor

CLI/ODBC

configuration

keyword”

on

page

285

v

“DisableMultiThread

CLI/ODBC

configuration

keyword”

on

page

286

Chapter

25.

CLI/ODBC

configuration

keywords

257

|

|

v

“DisableUnicode

CLI/ODBC

configuration

keyword”

on

page

286

Data

Source

Configuration

Keywords:

General

keywords.

v

“DBAlias

CLI/ODBC

configuration

keyword”

on

page

282

v

“PWD

CLI/ODBC

configuration

keyword”

on

page

307

v

“UID

CLI/ODBC

configuration

keyword”

on

page

330

Data

Type

Configuration

Keywords:

The

Data

Type

set

of

options

is

used

to

define

how

DB2

reports

and

handles

various

data

types.

v

“BitData

CLI/ODBC

configuration

keyword”

on

page

263

v

“DateTimeStringFormat

CLI/ODBC

configuration

keyword”

on

page

279

v

“FloatPrecRadix

CLI/ODBC

configuration

keyword”

on

page

287

v

“Graphic

CLI/ODBC

configuration

keyword”

on

page

289

v

“LOBMaxColumnSize

CLI/ODBC

configuration

keyword”

on

page

294

v

“LongDataCompat

CLI/ODBC

configuration

keyword”

on

page

296

v

“MapDateCDefault

CLI/ODBC

configuration

keyword”

on

page

296

v

“MapDateDescribe

CLI/ODBC

configuration

keyword”

on

page

297

v

“MapGraphicDescribe

CLI/ODBC

configuration

keyword”

on

page

298

v

“MapTimeCDefault

CLI/ODBC

configuration

keyword”

on

page

299

v

“MapTimeDescribe

CLI/ODBC

configuration

keyword”

on

page

300

v

“MapTimestampCDefault

CLI/ODBC

configuration

keyword”

on

page

301

v

“MapTimestampDescribe

CLI/ODBC

configuration

keyword”

on

page

301

v

“OleDbReturnCharAsWChar

CLI/ODBC

configuration

keyword”

on

page

303

Enterprise

Configuration

Keywords:

The

Enterprise

set

of

options

is

used

to

maximize

the

efficiency

of

connections

to

large

databases.

v

“CLISchema

CLI/ODBC

configuration

keyword”

on

page

270

v

“ConnectNode

CLI/ODBC

configuration

keyword”

on

page

271

v

“CurrentPackagePath

CLI/ODBC

configuration

keyword”

on

page

273

v

“CurrentPackageSet

CLI/ODBC

configuration

keyword”

on

page

274

v

“CurrentRefreshAge

CLI/ODBC

configuration

keyword”

on

page

275

v

“CurrentSchema

CLI/ODBC

configuration

keyword”

on

page

275

v

“CurrentSQLID

CLI/ODBC

configuration

keyword”

on

page

275

v

“DBName

CLI/ODBC

configuration

keyword”

on

page

282

v

“GranteeList

CLI/ODBC

configuration

keyword”

on

page

288

v

“GrantorList

CLI/ODBC

configuration

keyword”

on

page

289

v

“ReportPublicPrivileges

CLI/ODBC

configuration

keyword”

on

page

310

v

“SchemaList

CLI/ODBC

configuration

keyword”

on

page

311

v

“TableType

CLI/ODBC

configuration

keyword”

on

page

317

Environment

Configuration

Keywords:

258

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

The

Environment

set

of

options

is

used

to

define

environment-specific

settings,

such

as

the

location

of

various

files

on

the

server

and

client

machines.

v

“CurrentFunctionPath

CLI/ODBC

configuration

keyword”

on

page

272

v

“DefaultProcLibrary

CLI/ODBC

configuration

keyword”

on

page

283

v

“QueryTimeoutInterval

CLI/ODBC

configuration

keyword”

on

page

308

v

“TempDir

CLI/ODBC

configuration

keyword”

on

page

318

File

DSN

Configuration

Keywords:

The

File

DSN

set

of

options

is

used

to

set

the

TCP/IP

settings

for

a

file

DSN

connection.

v

“Database

CLI/ODBC

configuration

keyword”

on

page

278

v

“Hostname

CLI/ODBC

configuration

keyword”

on

page

290

v

“Port

CLI/ODBC

configuration

keyword”

on

page

305

v

“Protocol

CLI/ODBC

configuration

keyword”

on

page

307

v

“ServiceName

CLI/ODBC

configuration

keyword”

on

page

312

Optimization

Configuration

Keywords:

The

Optimization

set

of

options

is

used

to

speed

up

and

reduce

the

amount

of

network

flow

between

the

CLI/ODBC

Driver

and

the

server.

v

“BlockForNRows

CLI/ODBC

configuration

keyword”

on

page

264

v

“BlockLobs

CLI/ODBC

configuration

keyword”

on

page

265

v

“ClientBuffersUnboundLOBS

CLI/ODBC

configuration

keyword”

on

page

267

v

“CurrentMaintainedTableTypesForOpt

CLI/ODBC

configuration

keyword”

on

page

273

v

“DB2Degree

CLI/ODBC

configuration

keyword”

on

page

280

v

“DB2Explain

CLI/ODBC

configuration

keyword”

on

page

280

v

“DB2Optimization

CLI/ODBC

configuration

keyword”

on

page

281

v

“DescribeInputOnPrepare

CLI/ODBC

configuration

keyword”

on

page

284

v

“KeepDynamic

CLI/ODBC

configuration

keyword”

on

page

292

v

“KeepStatement

CLI/ODBC

configuration

keyword”

on

page

293

v

“LOBCacheSize

CLI/ODBC

configuration

keyword”

on

page

293

v

“LOBFileThreshold

CLI/ODBC

configuration

keyword”

on

page

294

v

“LockTimeout

CLI/ODBC

configuration

keyword”

on

page

295

v

“OptimizeForNRows

CLI/ODBC

configuration

keyword”

on

page

304

v

“SkipTrace

CLI/ODBC

configuration

keyword”

on

page

312

v

“StreamPutData

CLI/ODBC

configuration

keyword”

on

page

316

v

“Underscore

CLI/ODBC

configuration

keyword”

on

page

331

Service

Configuration

Keywords:

The

Service

set

of

options

is

used

to

help

in

troubleshooting

problems

with

CLI/ODBC

connections.

Some

options

can

also

be

used

by

programmers

to

gain

a

better

understanding

of

how

their

CLI

programs

are

translated

into

calls

to

the

server.

v

“AppendAPIName

CLI/ODBC

configuration

keyword”

on

page

261

v

“IgnoreWarnings

CLI/ODBC

configuration

keyword”

on

page

291

v

“IgnoreWarnList

CLI/ODBC

configuration

keyword”

on

page

291

Chapter

25.

CLI/ODBC

configuration

keywords

259

|

|

|

|
|

|

|

|

|

|

|

v

“LoadXAInterceptor

CLI/ODBC

configuration

keyword”

on

page

293

v

“Patch1

CLI/ODBC

configuration

keyword”

on

page

304

v

“Patch2

CLI/ODBC

configuration

keyword”

on

page

305

v

“ReportRetryErrorsAsWarnings

CLI/ODBC

configuration

keyword”

on

page

309

v

“RetryOnError

CLI/ODBC

configuration

keyword”

on

page

310

v

“ProgramName

CLI/ODBC

configuration

keyword”

on

page

306

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceComm

CLI/ODBC

configuration

keyword”

on

page

320

v

“TraceErrImmediate

CLI/ODBC

configuration

keyword”

on

page

320

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TraceFlushOnError

CLI/ODBC

configuration

keyword”

on

page

323

v

“TraceLocks

CLI/ODBC

configuration

keyword”

on

page

324

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

v

“TracePIDList

CLI/ODBC

configuration

keyword”

on

page

325

v

“TracePIDTID

CLI/ODBC

configuration

keyword”

on

page

326

v

“TraceRefreshInterval

CLI/ODBC

configuration

keyword”

on

page

327

v

“TraceStmtOnly

CLI/ODBC

configuration

keyword”

on

page

327

v

“TraceTime

CLI/ODBC

configuration

keyword”

on

page

328

v

“TraceTimestamp

CLI/ODBC

configuration

keyword”

on

page

329

v

“WarningList

CLI/ODBC

configuration

keyword”

on

page

332

Static

SQL

Configuration

Keywords:

The

Static

SQL

set

of

options

is

used

when

running

static

SQL

statements

in

CLI/ODBC

applications.

v

“StaticCapFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticLogFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticMode

CLI/ODBC

configuration

keyword”

on

page

315

v

“StaticPackage

CLI/ODBC

configuration

keyword”

on

page

315

Transaction

Configuration

Keywords:

The

Transaction

set

of

options

is

used

to

control

and

speed

up

SQL

statements

used

in

the

application.

v

“ArrayInputChain

CLI/ODBC

configuration

keyword”

on

page

261

v

“AsyncEnable

CLI/ODBC

configuration

keyword”

on

page

262

v

“AutoCommit

CLI/ODBC

configuration

keyword”

on

page

263

v

“ClientAcctStr

CLI/ODBC

configuration

keyword”

on

page

266

v

“ClientApplName

CLI/ODBC

configuration

keyword”

on

page

266

v

“ClientUserID

CLI/ODBC

configuration

keyword”

on

page

268

v

“ClientWrkStnName

CLI/ODBC

configuration

keyword”

on

page

269

v

“ConnectType

CLI/ODBC

configuration

keyword”

on

page

272

v

“CursorHold

CLI/ODBC

configuration

keyword”

on

page

276

v

“Mode

CLI/ODBC

configuration

keyword”

on

page

302

v

“SQLOverrideFileName

CLI/ODBC

configuration

keyword”

on

page

313

v

“SyncPoint

CLI/ODBC

configuration

keyword”

on

page

317

260

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|

|

|

|

|

|

|

|

v

“TxnIsolation

CLI/ODBC

configuration

keyword”

on

page

330

v

“UseOldStpCall

CLI/ODBC

configuration

keyword”

on

page

332

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“Introduction

to

CLI”

on

page

3

AppendAPIName

CLI/ODBC

configuration

keyword

Keyword

description:

Append

the

CLI/ODBC

function

name

which

generated

an

error

to

the

error

message

text.

db2cli.ini

keyword

syntax:

AppendAPIName

=

0

|

1

Default

setting:

Do

NOT

display

DB2

CLI

function

name.

Usage

notes:

The

DB2

CLI

function

(API)

name

that

generated

an

error

is

appended

to

the

error

message

retrieved

using

SQLGetDiagRec()

or

SQLError().

The

function

name

is

enclosed

in

curly

braces

{

}.

For

example,

[IBM][CLI

Driver]"

CLIxxxx:

<

text

>

SQLSTATE=XXXXX

{SQLGetData}"

0

=

do

NOT

append

DB2

CLI

function

name

(default)

1

=

append

the

DB2

CLI

function

name

This

keyword

is

only

useful

for

debugging.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLError

function

(CLI)

-

Retrieve

error

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDiagRec

function

(CLI)

-

Get

multiple

fields

settings

of

diagnostic

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

ArrayInputChain

CLI/ODBC

configuration

keyword

Keyword

description:

Enable

array

input

without

needing

pre-specified

size

and

memory

allocation

requirements

of

normal

array

input.

db2cli.ini

keyword

syntax:

ArrayInputChain

=

-1

|

0

|

<positive

integer>

Default

setting:

Normal

input

array

is

enabled,

where

the

array

and

its

size

must

be

specified

before

the

corresponding

SQLExecute()

call

is

made.

Chapter

25.

CLI/ODBC

configuration

keywords

261

|

|
|
|

|
|

|
|
|

Usage

notes:

By

default,

array

input

(where

an

array

of

values

is

bound

to

an

input

parameter)

requires

the

array

and

its

size

to

be

specified

before

the

corresponding

SQLExecute()

function

is

called.

An

application,

however,

may

not

know

the

array

size

in

advance,

or

the

array

size

may

be

too

large

for

the

application

to

allocate

from

its

pool

of

available

memory.

Under

these

circumstances,

the

application

can

set

ArrayInputChain=-1

and

use

the

SQL_ATTR_CHAINING_BEGIN

and

SQL_ATTR_CHAINING_END

statement

attributes

to

enable

chaining,

which

allows

array

input

without

the

pre-specified

size

and

memory

requirements

of

normal

array

input.

To

enable

chaining:

1.

Set

the

keyword

ArrayInputChain

=

-1.

2.

Prepare

and

bind

input

parameters

to

the

SQL

statement.

3.

Set

the

SQL_ATTR_CHAINING_BEGIN

statement

attribute

with

SQLSetStmtAttr().

4.

Update

the

bound

parameters

with

input

data

and

call

SQLExecute().

5.

Repeat

Step

4

for

as

many

rows

as

there

are

in

the

input

array.

6.

Set

the

SQL_ATTR_CHAINING_END

statement

attribute

with

SQLSetStmtAttr()

after

the

last

row

in

the

array

has

been

processed

according

to

Step

4.

The

effect

of

completing

these

steps

will

be

the

same

as

if

normal

array

input

had

been

used.

Setting

ArrayInputChain=0

(the

default

value)

turns

this

array

input

feature

off.

ArrayInputChain

can

also

be

set

to

any

positive

integer

which

sets

the

array

size

to

use

for

the

input

array.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“Reduction

of

network

flows

with

CLI

array

input

chaining”

on

page

60

Related

reference:

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

AsyncEnable

CLI/ODBC

configuration

keyword

Note:

This

keyword

is

not

supported

in

DB2

Version

8,

but

is

available

for

backward

compatibility

only.

Refer

to

the

documentation

for

previous

versions

of

DB2

for

information

on

this

keyword

at:

http://www.ibm.com/software/data/db2/library.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

262

CLI

Guide

and

Reference,

Volume

1

|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|

|

|
|
|

|
|

|
|
|

|

|

|

|

|
|

|

|

http://www.ibm.com/software/data/db2/library/

AutoCommit

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

whether

the

application

commits

each

statement

by

default.

db2cli.ini

keyword

syntax:

AutoCommit

=

1

|

0

Default

setting:

Each

statement

is

treated

as

a

single,

complete

transaction.

Equivalent

connection

attribute:

SQL_ATTR_AUTOCOMMIT

Usage

notes:

To

be

consistent

with

ODBC,

DB2

CLI

defaults

with

AutoCommit

on,

which

means

each

statement

is

treated

as

a

single,

complete

transaction.

This

keyword

can

provide

an

alternative

default,

but

will

only

be

used

if

the

application

does

not

specify

a

value

for

SQL_ATTR_AUTOCOMMIT.

1

=

SQL_ATTR_AUTOCOMMIT_ON

(default)

0

=

SQL_ATTR_AUTOCOMMIT_OFF

Note:

Most

ODBC

applications

assume

the

default

of

AutoCommit

to

be

on.

Extreme

care

must

be

used

when

overriding

this

default

during

runtime

as

the

application

may

depend

on

this

default

to

operate

properly.

This

keyword

also

allows

you

to

specify

whether

autocommit

should

be

enabled

in

a

Distributed

Unit

of

Work

(DUOW)

environment.

If

a

connection

is

part

of

a

coordinated

Distributed

Unit

of

Work,

and

AutoCommit

is

not

set,

the

default

does

not

apply;

implicit

commits

arising

from

autocommit

processing

are

suppressed.

If

AutoCommit

is

set

to

1,

and

the

connection

is

part

of

a

coordinated

Distributed

Unit

of

Work,

the

implicit

commits

are

processed.

This

may

result

in

severe

performance

degradation,

and

possibly

other

unexpected

results

elsewhere

in

the

DUOW

system.

However,

some

applications

may

not

work

at

all

unless

this

is

enabled.

A

thorough

understanding

of

the

transaction

processing

of

an

application

is

necessary,

especially

applications

written

by

a

third

party,

before

applying

it

to

a

DUOW

environment.

Related

concepts:

v

“Multisite

updates

(two

phase

commit)

in

CLI

applications”

on

page

127

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

BitData

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

whether

binary

data

types

are

reported

as

binary

or

character

data

types.

Chapter

25.

CLI/ODBC

configuration

keywords

263

db2cli.ini

keyword

syntax:

BitData

=

1

|

0

Default

setting:

Report

FOR

BIT

DATA

and

BLOB

data

types

as

binary

data

types.

Usage

notes:

This

option

allows

you

to

specify

whether

ODBC

binary

data

types

(SQL_BINARY,

SQL_VARBINARY,

SQL_LONGVARBINARY,

and

SQL_BLOB),

are

reported

as

binary

type

data.

IBM

DBMSs

support

columns

with

binary

data

types

by

defining

CHAR,

VARCHAR,

and

LONG

VARCHAR

columns

with

the

FOR

BIT

DATA

attribute.

DB2

Universal

Database

will

also

support

binary

data

via

the

BLOB

data

type

(in

this

case

it

is

mapped

to

a

CLOB

data

type).

Only

set

BitData

=

0

if

you

are

sure

that

all

columns

defined

as

FOR

BIT

DATA

or

BLOB

contain

only

character

data,

and

the

application

is

incapable

of

displaying

binary

data

columns.

1

=

report

FOR

BIT

DATA

and

BLOB

data

types

as

binary

data

types

(default).

0

=

report

FOR

BIT

DATA

and

BLOB

data

types

as

character

data

types.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

BlockForNRows

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

number

of

rows

of

data

to

be

returned

in

a

single

fetch.

db2cli.ini

keyword

syntax:

BlockForNRows

=

<positive

integer>

Default

setting:

The

server

returns

as

many

rows

as

can

fit

in

a

query

block

in

a

single

fetch

request.

Usage

notes:

The

BlockForNRows

keyword

controls

the

number

of

rows

of

data

that

are

returned

to

the

client

in

a

single

fetch

request.

If

BlockForNRows

is

not

specified

(the

default

setting),

then

as

many

rows

of

non-LOB

data

as

can

fit

in

a

query

block

are

returned

from

the

server.

If

the

result

set

contains

LOB

data,

then

the

behavior

BlockForNRows

yields

can

be

affected

by

the

BlockLobs

CLI/ODBC

configuration

keyword

and

the

server’s

support

for

LOB

blocking.

If

BlockForNRows

is

not

specified,

BlockLobs

is

set

to

1,

and

the

server

supports

LOB

blocking,

then

all

LOB

data

associated

with

rows

that

fit

completely

within

a

single

query

block

are

returned

in

a

single

fetch

request.

LOB

data

is

described

here

as

being

associated

with

a

row,

because

the

LOB

data

of

a

result

set

is

itself

not

contained

in

the

row.

Instead,

the

row

contains

a

reference

to

the

actual

LOB

data.

264

CLI

Guide

and

Reference,

Volume

1

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

If

BlockForNRows

is

set

to

a

positive

integer

n,

then

n

rows

of

data

will

be

returned

in

a

single

fetch

request.

If

the

result

set

contains

LOB

data

and

the

server

supports

LOB

blocking,

then

the

LOB

data

that

corresponds

to

the

n

rows

of

data

will

also

be

returned

in

the

single

fetch

request.

If

the

result

set

contains

LOB

data,

but

the

server

does

not

support

LOB

blocking,

then

only

one

row

of

data,

including

the

LOB

data,

will

be

returned

in

a

single

fetch

request.

Related

concepts:

v

“Large

object

usage”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Large

object

usage

in

CLI

applications”

on

page

95

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“BlockLobs

CLI/ODBC

configuration

keyword”

on

page

265

BlockLobs

CLI/ODBC

configuration

keyword

Keyword

description:

Enable

LOB

blocking

fetch

against

servers

that

support

LOB

blocking.

db2cli.ini

keyword

syntax:

BlockLobs

=

0

|

1

Default

setting:

LOB

blocking

fetch

is

disabled.

Equivalent

statement

attribute:

SQL_ATTR_BLOCK_LOBS

Usage

notes:

Setting

BlockLobs

to

1

enables

all

of

the

LOB

data

associated

with

rows

that

fit

completely

within

a

single

query

block

to

be

returned

in

a

single

fetch

request,

if

the

server

supports

LOB

blocking.

LOB

data

is

described

here

as

being

associated

with

a

row,

because

the

LOB

data

of

a

result

set

is

itself

not

contained

in

the

row.

Instead,

the

row

contains

a

reference

to

the

actual

LOB

data.

Therefore,

with

LOB

blocking

fetch,

any

rows

of

the

result

set

that

fit

completely

within

the

query

block

(where

each

row

consists

of

non-LOB

data,

since

LOB

data

is

not

stored

directly

in

the

row),

will

have

their

associated

LOB

data

returned

from

the

server,

if

the

server

supports

LOB

blocking.

If

the

server

does

not

support

LOB

blocking

and

the

result

set

contains

LOB

data,

then

only

one

row

of

data,

including

the

LOB,

will

be

returned

in

a

single

fetch

request,

irrespective

of

the

value

BlockLobs

is

set

to.

Related

concepts:

v

“Large

object

usage”

in

the

Application

Development

Guide:

Programming

Server

Applications

v

“Large

object

usage

in

CLI

applications”

on

page

95

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

25.

CLI/ODBC

configuration

keywords

265

|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|

|

|

|

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“BlockForNRows

CLI/ODBC

configuration

keyword”

on

page

264

ClientAcctStr

CLI/ODBC

configuration

keyword

Keyword

description:

Set

client

accounting

string

sent

to

host

database.

db2cli.ini

keyword

syntax:

ClientAcctStr

=

accounting

string

Default

setting:

None

Only

applicable

when:

Connected

to

a

host

database

using

DB2

Connect

Equivalent

connection

attribute:

SQL_ATTR_INFO_ACCTSTR

Usage

notes:

This

option

allows

the

CLI

application

to

set

the

client

accounting

string

that

is

sent

to

the

host

database

through

DB2

Connect.

Applications

that

do

not

offer

the

accounting

string

by

default

can

take

advantage

of

this

keyword

to

provide

this

information.

Note

the

following

conditions:

v

When

the

value

is

being

set,

some

servers

may

not

handle

the

entire

length

provided

and

may

truncate

the

value.

v

DB2

for

z/OS

and

OS/390

servers

support

up

to

a

length

of

200

characters.

v

To

ensure

that

the

data

is

converted

correctly

when

transmitted

to

a

host

system,

use

only

the

characters

A

to

Z,

0

to

9,

and

the

underscore

(_)

or

period

(.).

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“ClientApplName

CLI/ODBC

configuration

keyword”

on

page

266

v

“ClientUserID

CLI/ODBC

configuration

keyword”

on

page

268

v

“ClientWrkStnName

CLI/ODBC

configuration

keyword”

on

page

269

ClientApplName

CLI/ODBC

configuration

keyword

Keyword

description:

Set

client

application

name

sent

to

host

database.

db2cli.ini

keyword

syntax:

ClientApplName

=

application

name

Default

setting:

None

266

CLI

Guide

and

Reference,

Volume

1

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

Only

applicable

when:

Connected

to

a

host

database

using

DB2

Connect

Equivalent

connection

attribute:

SQL_ATTR_INFO_APPLNAME

Usage

notes:

This

option

allows

the

CLI

application

to

set

the

client

application

name

that

is

sent

to

the

host

database

through

DB2

Connect.

Applications

that

do

not

offer

the

application

name

by

default

can

take

advantage

of

this

keyword

to

provide

this

information.

Note

the

following

conditions:

v

When

the

value

is

being

set,

some

servers

may

not

handle

the

entire

length

provided

and

may

truncate

the

value.

v

DB2

for

z/OS

and

OS/390

servers

support

up

to

a

length

of

32

characters.

v

To

ensure

that

the

data

is

converted

correctly

when

transmitted

to

a

host

system,

use

only

the

characters

A

to

Z,

0

to

9,

and

the

underscore

(_)

or

period

(.).

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“ClientAcctStr

CLI/ODBC

configuration

keyword”

on

page

266

v

“ClientUserID

CLI/ODBC

configuration

keyword”

on

page

268

v

“ClientWrkStnName

CLI/ODBC

configuration

keyword”

on

page

269

ClientBuffersUnboundLOBS

CLI/ODBC

configuration

keyword

Keyword

description:

Fetch

LOB

data

instead

of

the

LOB

locator

for

LOB

columns

that

have

not

been

bound

to

application

parameters.

db2cli.ini

keyword

syntax:

ClientBuffersUnboundLOBS

=

0

|

1

Default

setting:

A

LOB

locator

is

retrieved

instead

of

the

actual

LOB

data

for

LOB

columns

that

have

not

been

bound

to

application

parameters.

Usage

notes:

By

default,

when

a

result

set

contains

a

LOB

column

that

has

not

been

bound

to

an

application

parameter,

DB2

CLI

will

fetch

the

corresponding

LOB

locator

rather

than

the

LOB

data

itself.

The

application

must

then

use

the

SQLGetLength(),

SQLGetPosition(),

and

SQLGetSubString()

CLI

functions

to

retrieve

the

LOB

data.

If

the

application

regularly

wants

to

retrieve

the

LOB

data,

then

this

default

two-step

process

is

unnecessary

and

could

decrease

performance.

In

this

case,

set

ClientBuffersUnboundLOBS

=

1

to

force

DB2

CLI

to

fetch

the

LOB

data

instead

of

the

LOB

locator.

Chapter

25.

CLI/ODBC

configuration

keywords

267

|
|

|
|

|
|

|
|
|
|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

Related

concepts:

v

“LOB

locators

in

CLI

applications”

on

page

97

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLGetLength

function

(CLI)

-

Retrieve

length

of

a

string

value”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetPosition

function

(CLI)

-

Return

starting

position

of

string”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetSubString

function

(CLI)

-

Retrieve

portion

of

a

string

value”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

ClientUserID

CLI/ODBC

configuration

keyword

Keyword

description:

Set

client

user

ID

sent

to

host

database.

db2cli.ini

keyword

syntax:

ClientUserID

=

userid

Default

setting:

None

Only

applicable

when:

Connected

to

a

host

database

using

DB2

Connect

Equivalent

connection

attribute:

SQL_ATTR_INFO_USERID

Usage

notes:

This

option

allows

the

CLI

application

to

set

the

client

user

ID

(accounting

user

ID)

that

is

sent

to

the

host

database

through

DB2

Connect.

Applications

that

do

not

offer

the

user

ID

by

default

can

take

advantage

of

this

keyword

to

provide

this

information.

Note

the

following

conditions:

v

When

the

value

is

being

set,

some

servers

may

not

handle

the

entire

length

provided

and

may

truncate

the

value.

v

DB2

for

z/OS

and

OS/390

servers

support

up

to

a

length

of

16

characters.

v

This

user

ID

is

not

to

be

confused

with

the

authentication

user

ID.

This

user

ID

is

for

identification

purposes

only

and

is

not

used

for

any

authorization.

v

To

ensure

that

the

data

is

converted

correctly

when

transmitted

to

a

host

system,

use

only

the

characters

A

to

Z,

0

to

9,

and

the

underscore

(_)

or

period

(.).

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“ClientAcctStr

CLI/ODBC

configuration

keyword”

on

page

266

v

“ClientApplName

CLI/ODBC

configuration

keyword”

on

page

266

268

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

|

|
|

|
|

|

|

|

|

|

|

|

v

“ClientWrkStnName

CLI/ODBC

configuration

keyword”

on

page

269

ClientWrkStnName

CLI/ODBC

configuration

keyword

Keyword

description:

Set

client

workstation

name

sent

to

host

database.

db2cli.ini

keyword

syntax:

ClientWrkStnName

=

workstation

name

Default

setting:

None

Only

applicable

when:

Connected

to

a

host

database

using

DB2

Connect

Equivalent

connection

attribute:

SQL_ATTR_INFO_WRKSTNNAME

Usage

notes:

This

option

allows

the

CLI

application

to

set

the

client

workstation

name

that

is

sent

to

the

host

database

through

DB2

Connect.

Applications

that

do

not

offer

the

client

workstation

name

by

default

can

take

advantage

of

this

keyword

to

provide

this

information.

Note

the

following

conditions:

v

When

the

value

is

being

set,

some

servers

may

not

handle

the

entire

length

provided

and

may

truncate

the

value.

v

DB2

for

z/OS

and

OS/390

servers

support

up

to

a

length

of

18

characters.

v

To

ensure

that

the

data

is

converted

correctly

when

transmitted

to

a

host

system,

use

only

the

characters

A

to

Z,

0

to

9,

and

the

underscore

(_)

or

period

(.).

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“ClientAcctStr

CLI/ODBC

configuration

keyword”

on

page

266

v

“ClientApplName

CLI/ODBC

configuration

keyword”

on

page

266

v

“ClientUserID

CLI/ODBC

configuration

keyword”

on

page

268

CLIPkg

CLI/ODBC

configuration

keyword

Keyword

description:

Specifies

the

number

of

large

packages

to

be

generated.

db2cli.ini

keyword

syntax:

CLIPkg

=

3

|

4

|

...

|

30

Default

setting:

Three

large

packages

are

generated.

Usage

notes:

Chapter

25.

CLI/ODBC

configuration

keywords

269

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

This

keyword

is

used

to

increase

the

number

of

sections

for

SQL

statements

in

CLI/ODBC

applications.

If

it

is

used,

the

administrator

should

explicitly

bind

the

required

bind

files

with

the

CLIPkg

bind

option.

For

client

applications,

the

db2cli.ini

file

on

the

client

must

be

updated

with

this

value

of

CLIPkg.

For

CLI/JDBC

stored

procedures,

the

db2cli.ini

file

on

the

server

(DB2

UDB

Version

6.1

or

later

on

UNIX

or

Intel

platforms)

must

be

updated

with

the

same

value

of

CLIPkg.

If

the

value

is

NOT

an

integer

between

3

and

30,

the

default

will

be

used

without

error

or

warning.

This

setting

only

applies

to

large

packages

(containing

384

sections).

The

number

of

small

packages

(containing

64

sections)

is

3

and

cannot

be

changed.

It

is

recommended

that

you

only

increase

the

number

of

sections

enough

to

run

your

application

as

the

packages

take

up

space

in

the

database.

Related

concepts:

v

“Handles

in

CLI”

on

page

15

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“BIND

Command”

in

the

Command

Reference

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

CLISchema

CLI/ODBC

configuration

keyword

Keyword

description:

Set

the

DB2

ODBC

catalog

view

to

use.

db2cli.ini

keyword

syntax:

CLISchema

=

ODBC

catalog

view

Default

setting:

None

-

No

ODBC

catalog

view

is

used

Equivalent

connection

attribute:

SQL_ATTR_CLISCHEMA

Usage

notes:

The

DB2

ODBC

catalog

is

designed

to

improve

the

performance

of

schema

calls

for

lists

of

tables

in

ODBC

applications

that

connect

to

host

DBMSs

through

DB2

Connect.

The

DB2

ODBC

catalog,

created

and

maintained

on

the

host

DBMS,

contains

rows

representing

objects

defined

in

the

real

DB2

catalog,

but

these

rows

include

only

the

columns

necessary

to

support

ODBC

operations.

The

tables

in

the

DB2

ODBC

catalog

are

pre-joined

and

specifically

indexed

to

support

fast

catalog

access

for

ODBC

applications.

System

administrators

can

create

multiple

DB2

ODBC

catalog

views,

each

containing

only

the

rows

that

are

needed

by

a

particular

user

group.

Each

end

user

can

then

select

the

DB2

ODBC

catalog

view

they

wish

to

use

(by

setting

this

keyword).

270

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|

Use

of

the

CLISchema

setting

is

completely

transparent

to

the

ODBC

application;

you

can

use

this

option

with

any

ODBC

application.

CLISchema

improves

data

access

efficiency:

the

user-defined

tables

used

with

SYSSCHEMA

are

mirror

images

of

the

DB2

catalog

tables,

and

the

CLI/ODBC

driver

still

needs

to

join

rows

from

multiple

tables

to

produce

the

information

required

by

the

CLI/ODBC

application.

Using

CLISchema

also

results

in

less

lock

contention

on

the

catalog

tables.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

ConnectNode

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

database

partition

server

to

which

a

connection

is

to

be

made.

db2cli.ini

keyword

syntax:

ConnectNode

=

integer

value

from

0

to

999

|

SQL_CONN_CATALOG_NODE

Default

setting:

Database

partition

server

which

is

defined

with

port

0

on

the

machine

is

used.

Only

applicable

when:

Connecting

to

a

partitioned

database

environment.

Equivalent

connection

attribute:

SQL_ATTR_CONNECT_NODE

Usage

notes:

Used

to

specify

the

target

database

partition

server

that

you

want

to

connect

to.

This

keyword

(or

attribute

setting)

overrides

the

value

of

the

environment

variable

DB2NODE.

Can

be

set

to:

v

an

integer

between

0

and

999

v

SQL_CONN_CATALOG_NODE

If

this

variable

is

not

set,

the

target

defaults

to

the

database

partition

server

that

is

defined

with

port

0

on

the

machine.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

tasks:

v

“Setting

environment

variables

on

Windows”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

25.

CLI/ODBC

configuration

keywords

271

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

ConnectType

CLI/ODBC

configuration

keyword

Note:

This

keyword

is

not

supported

in

DB2

Version

8,

but

is

available

for

backward

compatibility

only.

Refer

to

the

documentation

for

previous

versions

of

DB2

for

information

on

this

keyword

at:

http://www.ibm.com/software/data/db2/library.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

CurrentFunctionPath

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

schema

used

to

resolve

function

references

and

data

type

references

in

dynamic

SQL

statements.

db2cli.ini

keyword

syntax:

CurrentFunctionPath

=

current_function_path

Default

setting:

See

description

below.

Usage

notes:

This

keyword

defines

the

path

used

to

resolve

function

references

and

data

type

references

that

are

used

in

dynamic

SQL

statements.

It

contains

a

list

of

one

or

more

schema-names,

where

schema-names

are

enclosed

in

double

quotes

and

separated

by

commas.

The

default

value

is

″SYSIBM″,″SYSFUN″,X

where

X

is

the

value

of

the

USER

special

register

delimited

by

double

quotes.

The

schema

SYSIBM

does

not

need

to

be

specified.

If

it

is

not

included

in

the

function

path,

then

it

is

implicitly

assumed

as

the

first

schema.

This

keyword

is

used

as

part

of

the

process

for

resolving

unqualified

function

and

stored

procedure

references

that

may

have

been

defined

in

a

schema

name

other

than

the

current

user’s

schema.

The

order

of

the

schema

names

determines

the

order

in

which

the

function

and

procedure

names

will

be

resolved.

Related

concepts:

v

“Schemas”

in

the

SQL

Reference,

Volume

1

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“USER

special

register”

in

the

SQL

Reference,

Volume

1

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

272

CLI

Guide

and

Reference,

Volume

1

http://www.ibm.com/software/data/db2/library/

CurrentMaintainedTableTypesForOpt

CLI/ODBC

configuration

keyword

Keyword

description:

Set

the

value

of

the

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

special

register.

db2cli.ini

keyword

syntax:

CurrentMaintainedTableTypesForOpt

=

ALL

|

FEDERATED_TOOL

|

NONE

|

SYSTEM

|

USER

|

<list>

Default

setting:

System-maintained

refresh-deferred

materialized

query

tables

are

considered

in

the

optimization

of

a

query.

Usage

notes:

This

keyword

defines

the

default

value

for

the

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

special

register.

The

value

of

the

special

register

affects

the

types

of

tables

which

are

considered

in

the

optimization

of

a

query.

Refer

to

the

SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

SQL

statement

for

details

on

the

supported

settings

of

ALL,

FEDERATED_TOOL,

NONE,

SYSTEM,

or

USER.

The

<list>

option

represents

a

combination

of

the

supported

settings,

however,

ALL

and

NONE

cannot

be

specified

with

any

other

value,

and

the

same

value

cannot

be

specified

more

than

once.

Separate

each

value

in

the

list

with

a

comma,

for

example:

CurrentMaintainedTableTypesForOpt

=

SYSTEM,USER

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SET

CURRENT

MAINTAINED

TABLE

TYPES

FOR

OPTIMIZATION

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“dft_mttb_types

-

Default

maintained

table

types

for

optimization

configuration

parameter”

in

the

Administration

Guide:

Performance

CurrentPackagePath

CLI/ODBC

configuration

keyword

Keyword

description:

Issue

’SET

CURRENT

PACKAGE

PATH

=

schema1,

schema2,

...’

after

every

connection.

db2cli.ini

keyword

syntax:

CurrentPackagePath

=

schema1,

schema2,

...

Default

setting:

The

clause

is

not

appended.

Equivalent

connection

attribute:

SQL_ATTR_CURRENT_PACKAGE_PATH

Usage

notes:

Chapter

25.

CLI/ODBC

configuration

keywords

273

|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|

|

|

|

|
|

|

|
|

|

|
|
|

|
|

|
|

|
|

|
|

When

set,

this

option

issues

the

command

″SET

CURRENT

PACKAGE

PATH

=

schema1,

schema2,

...″

after

every

connection

to

the

database.

This

setting

specifies

the

list

of

schema

names

(collection

identifiers)

that

will

be

searched

when

there

is

a

package

from

a

different

schema.

This

keyword

is

best

suited

for

use

with

ODBC

static

processing

applications,

rather

than

CLI

applications.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

CurrentPackageSet

CLI/ODBC

configuration

keyword

Keyword

description:

Issue

’SET

CURRENT

PACKAGESET

schema’

after

every

connection.

db2cli.ini

keyword

syntax:

CurrentPackageSet

=

schema

name

Default

setting:

The

clause

is

not

appended.

Equivalent

connection

attribute:

SQL_ATTR_CURRENT_PACKAGE_SET

Usage

notes:

This

option

will

issue

the

command

″SET

CURRENT

PACKAGESET

schema″

after

every

connection

to

a

database.

By

default

this

clause

is

not

appended.

This

statement

sets

the

schema

name

(collection

identifier)

that

will

be

used

to

select

the

package

to

use

for

subsequent

SQL

statements.

CLI/ODBC

applications

issue

dynamic

SQL

statements.

Using

this

option

you

can

control

the

privileges

used

to

run

these

statements:

v

Choose

a

schema

to

use

when

running

SQL

statements

from

CLI/ODBC

applications.

v

Ensure

the

objects

in

the

schema

have

the

desired

privileges

and

then

rebind

accordingly.

v

Set

the

CurrentPackageSet

option

to

this

schema.

The

SQL

statements

from

the

CLI/ODBC

applications

will

now

run

under

the

specified

schema

and

use

the

privileges

defined

there.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SET

CURRENT

PACKAGESET

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

274

CLI

Guide

and

Reference,

Volume

1

|
|
|
|

|
|

|

|

|

|

|

CurrentRefreshAge

CLI/ODBC

configuration

keyword

Keyword

description:

Set

the

value

of

the

CURRENT

REFRESH

AGE

special

register.

db2cli.ini

keyword

syntax:

CurrentRefreshAge

=

0

|

ANY

|

positive

integer

Default

setting:

Only

materialized

query

tables

defined

with

REFRESH

IMMEDIATE

may

be

used

to

optimize

the

processing

of

a

query.

Usage

notes:

Setting

this

keyword

sets

the

value

of

the

CURRENT

REFRESH

AGE

special

register.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SET

CURRENT

REFRESH

AGE

statement”

in

the

SQL

Reference,

Volume

2

v

“CURRENT

REFRESH

AGE

special

register”

in

the

SQL

Reference,

Volume

1

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

CurrentSchema

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

schema

used

in

a

SET

CURRENT

SCHEMA

statement

upon

a

successful

connection.

db2cli.ini

keyword

syntax:

CurrentSchema

=

schema

name

Default

setting:

No

statement

is

issued.

Usage

notes:

Upon

a

successful

connect,

if

this

option

is

set,

a

SET

CURRENT

SCHEMA

statement

is

sent

to

the

DBMS.

This

allows

the

end

user

or

application

to

name

SQL

objects

without

having

to

qualify

them

by

schema

name.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SET

SCHEMA

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

CurrentSQLID

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

ID

used

in

a

SET

CURRENT

SQLID

statement

sent

to

the

DBMS

upon

a

successful

connection.

Chapter

25.

CLI/ODBC

configuration

keywords

275

|

|
|

|
|

|
|
|

|
|

|
|

|

|

|

|

|

|

db2cli.ini

keyword

syntax:

CurrentSQLID

=

current_sqlid

Default

setting:

No

statement

is

issued.

Only

applicable

when:

connecting

to

those

DB2

DBMS’s

where

SET

CURRENT

SQLID

is

supported.

Usage

notes:

Upon

a

successful

connection,

if

this

option

is

set,

a

SET

CURRENT

SQLID

statement

is

sent

to

the

DBMS.

This

allows

the

end

user

and

the

application

to

name

SQL

objects

without

having

to

qualify

them

by

schema

name.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SET

SCHEMA

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

CursorHold

CLI/ODBC

configuration

keyword

Keyword

description:

Effect

of

a

transaction

completion

on

open

cursors.

db2cli.ini

keyword

syntax:

CursorHold

=

1

|

0

Default

setting:

Selected--Cursors

are

not

destroyed.

Equivalent

statement

attribute:

SQL_ATTR_CURSOR_HOLD

Usage

notes:

This

option

controls

the

effect

of

a

transaction

completion

on

open

cursors.

1

=

SQL_CURSOR_HOLD_ON,

the

cursors

are

not

destroyed

when

the

transaction

is

committed

(default).

0

=

SQL_CURSOR_HOLD_OFF,

the

cursors

are

destroyed

when

the

transaction

is

committed.

Note:

Cursors

are

always

closed

when

transactions

are

rolled

back.

This

option

affects

the

result

returned

by

SQLGetInfo()

when

called

with

SQL_CURSOR_COMMIT_BEHAVIOR

or

SQL_CURSOR_ROLLBACK_BEHAVIOR.

The

value

of

CursorHold

is

ignored

if

connecting

to

DB2

Server

for

VSE

&

VM

where

cursor

with

hold

is

not

supported.

You

can

use

this

option

to

tune

performance.

It

can

be

set

to

SQL_CURSOR_HOLD_OFF

(0)

if

you

are

sure

that

your

application:

276

CLI

Guide

and

Reference,

Volume

1

1.

Does

not

have

behavior

that

is

dependent

on

the

SQL_CURSOR_COMMIT_BEHAVIOR

or

the

SQL_CURSOR_ROLLBACK_BEHAVIOR

information

returned

via

SQLGetInfo(),

and

2.

Does

not

require

cursors

to

be

preserved

from

one

transaction

to

the

next.

The

DBMS

will

operate

more

efficiently

with

CursorHold

disabled,

as

resources

no

longer

need

to

be

maintained

after

the

end

of

a

transaction.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLGetInfo

function

(CLI)

-

Get

general

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

CursorTypes

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

which

cursor

types

are

permitted.

db2cli.ini

keyword

syntax:

CursorTypes

=

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

Default

setting:

Forward-only,

static,

keyset-driven,

and

dynamic

cursors

are

supported

if

the

server

supports

them.

Usage

notes:

The

CursorTypes

keyword

is

a

bitmask

that

indicates

what

types

of

cursors

an

application

can

open:

v

0x0

-

forward-only

(can

always

be

opened)

v

0x1

-

static

v

0x2

-

keyset-driven

v

0x4

-

dynamic

For

example,

v

to

prevent

applications

from

opening

dynamic

scrollable

cursors,

set

CursorTypes

to

3.

v

to

allow

applications

to

open

only

non-scrollable

cursors,

set

CursorTypes

to

0.

This

keyword

only

affects

calls

made

to

the

following

DB2

CLI

functions:

v

SQLBulkOperations()

v

SQLExecDirect()

v

SQLExecute()

v

SQLFetchScroll()

v

SQLPrepare()

v

SQLSetPos()

Related

concepts:

Chapter

25.

CLI/ODBC

configuration

keywords

277

|
|

|
|

|
|
|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

v

“Cursors

in

CLI

applications”

on

page

63

v

“Cursor

considerations

for

CLI

applications”

on

page

66

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLExecDirect

function

(CLI)

-

Execute

a

statement

directly”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLExecute

function

(CLI)

-

Execute

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLFetchScroll

function

(CLI)

-

Fetch

rowset

and

return

data

for

all

bound

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPrepare

function

(CLI)

-

Prepare

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSetPos

function

(CLI)

-

Set

the

cursor

position

in

a

rowset”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLBulkOperations

function

(CLI)

-

Add,

update,

delete

or

fetch

a

set

of

rows”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Database

CLI/ODBC

configuration

keyword

Keyword

description:

Database

on

the

server

to

connect

to

when

using

a

File

DSN.

db2cli.ini

keyword

syntax:

Database

=

database

name

Default

setting:

None

Only

applicable

when:

Protocol

set

to

TCPIP

Usage

notes:

When

using

a

File

DSN

you

must

use

this

option

to

specify

the

database

on

the

server

to

connect

to.

This

value

has

nothing

to

do

with

any

database

alias

name

specified

on

the

client,

it

must

be

set

to

the

database

name

on

the

server

itself.

This

setting

is

only

considered

when

the

Protocol

option

is

set

to

TCPIP.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Hostname

CLI/ODBC

configuration

keyword”

on

page

290

v

“Protocol

CLI/ODBC

configuration

keyword”

on

page

307

v

“ServiceName

CLI/ODBC

configuration

keyword”

on

page

312

278

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

DateTimeStringFormat

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

format

to

use

when

inserting

date

or

time

data

into

character

columns.

db2cli.ini

keyword

syntax:

DateTimeStringFormat

=

JIS

|

ISO

|

EUR

|

USA

Default

setting:

The

JIS

format

is

used

when

date

or

time

data

is

inserted

into

character

columns.

Usage

notes:

The

DateTimeStringFormat

keyword

controls

the

format

in

which

date

or

time

data

is

inserted

into

character

columns.

This

setting

affects

the

insertion

of

SQL_C_DATE,

SQL_C_TIME,

or

SQL_C_TIMESTAMP

data

into

the

following

column

types:

v

SQL_CHAR

v

SQL_VARCHAR

v

SQL_LONGVARCHAR

v

SQL_CLOB

The

four

setting

values

are

as

follows:

Format

Date

Time

Timestamp

JIS

yyyy-mm-dd

hh:mm:ss

yyyy-mm-dd

hh:mm:ss.ffffff

ISO

yyyy-mm-dd

hh.mm.ss

yyyy-mm-dd-
hh.mm.ss.ffffff

EUR

dd.mm.yyyy

hh.mm.ss

yyyy-mm-dd

hh:mm:ss.ffffff*

USA

mm/dd/yyyy

hh:mm

AM

or

PM

yyyy-mm-dd

hh:mm:ss.ffffff*

*Timestamps

will

take

the

default

format

if

EUR

or

USA

is

specified.

The

default

format

in

DB2

UDB

Version

8

is

JIS.

Important:

This

keyword

does

not

affect

the

format

of

date

or

time

columns

that

are

retrieved

into

character

strings.

For

example,

retrieving

data

from

an

SQL_TIMESTAMP

column

into

an

SQL_C_CHAR

string

will

not

be

affected

by

the

setting

of

this

keyword.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Datetime

values”

in

the

SQL

Reference,

Volume

1

Chapter

25.

CLI/ODBC

configuration

keywords

279

|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

|

|

|

|

|

|||||

||||
|

||||
|

||||
|

||||
|

|
|
|

|
|
|
|

|

|

|

|

|

|

DB2Degree

CLI/ODBC

configuration

keyword

Keyword

description:

Set

the

degree

of

parallelism

for

the

execution

of

SQL

statements.

db2cli.ini

keyword

syntax:

DB2Degree

=

0

|

integer

value

from

1

to

32767

|

ANY

Default

setting:

No

SET

CURRENT

DEGREE

statement

is

issued.

Only

applicable

when:

connecting

to

a

cluster

database

system.

Usage

notes:

If

the

value

specified

is

anything

other

than

0

(the

default)

then

DB2

CLI

will

issue

the

following

SQL

statement

after

a

successful

connection:

SET

CURRENT

DEGREE

value

This

specifies

the

degree

of

parallelism

for

the

execution

of

the

SQL

statements.

The

database

manager

will

determine

the

degree

of

parallelism

if

you

specify

ANY.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SET

CURRENT

DEGREE

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

DB2Explain

CLI/ODBC

configuration

keyword

Keyword

description:

Determines

whether

Explain

snapshot

and/or

Explain

table

information

will

be

generated

by

the

server.

db2cli.ini

keyword

syntax:

DB2Explain

=

0

|

1

|

2

|

3

Default

setting:

Neither

Explain

snapshot

nor

Explain

table

information

will

be

generated

by

the

server.

Equivalent

connection

attribute:

SQL_ATTR_DB2EXPLAIN

Usage

notes:

This

keyword

determines

whether

Explain

snapshot

and/or

Explain

table

information

will

be

generated

by

the

server.

v

0

=

both

off

(default)

A

’SET

CURRENT

EXPLAIN

SNAPSHOT=NO’

and

a

’SET

CURRENT

EXPLAIN

MODE=NO’

statement

will

be

sent

to

the

server

to

disable

both

the

Explain

snapshot

and

the

Explain

table

information

capture

facilities.

v

1

=

Only

Explain

snapshot

facility

on

280

CLI

Guide

and

Reference,

Volume

1

A

’SET

CURRENT

EXPLAIN

SNAPSHOT=YES’

and

a

’SET

CURRENT

EXPLAIN

MODE=NO’

statement

will

be

sent

to

the

server

to

enable

the

Explain

snapshot

facility,

and

disable

the

Explain

table

information

capture

facility.

v

2

=

Only

Explain

table

information

capture

facility

on

A

’SET

CURRENT

EXPLAIN

MODE=YES’

and

a

’SET

CURRENT

EXPLAIN

SNAPSHOT=NO’

will

be

sent

to

the

server

to

enable

the

Explain

table

information

capture

facility

and

disable

the

Explain

snapshot

facility.

v

3

=

Both

on

A

’SET

CURRENT

EXPLAIN

MODE=YES’

and

a

’SET

CURRENT

EXPLAIN

SNAPSHOT=YES’

will

be

sent

to

the

server

to

enable

both

the

Explain

snapshot

and

the

Explain

table

information

capture

facilities.

Explain

information

is

inserted

into

Explain

tables,

which

must

be

created

before

the

Explain

information

can

be

generated.

The

current

authorization

ID

must

have

INSERT

privilege

for

the

Explain

tables.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI

and

ODBC

function

summary”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“EXPLAIN

statement”

in

the

SQL

Reference,

Volume

2

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

DB2Optimization

CLI/ODBC

configuration

keyword

Keyword

description:

Set

the

query

optimization

level.

db2cli.ini

keyword

syntax:

DB2Optimization

=

integer

value

from

0

to

9

Default

setting:

No

SET

CURRENT

QUERY

OPTIMIZATION

statement

issued.

Usage

notes:

If

this

option

is

set

then

DB2

CLI

will

issue

the

following

SQL

statement

after

a

successful

connection:

SET

CURRENT

QUERY

OPTIMIZATION

positive

number

This

specifies

the

query

optimization

level

at

which

the

optimizer

should

operate

the

SQL

queries.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SET

CURRENT

QUERY

OPTIMIZATION

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Chapter

25.

CLI/ODBC

configuration

keywords

281

DBAlias

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

database

alias

for

a

Data

Source

Name

greater

than

8

characters.

db2cli.ini

keyword

syntax:

DBAlias

=

dbalias

Default

setting:

Use

the

DB2

database

alias

as

the

ODBC

Data

Source

Name.

Usage

notes:

This

keyword

allows

for

Data

Source

Names

of

greater

than

8

single

byte

characters.

The

Data

Source

Name

(DSN)

is

the

name,

enclosed

in

square

brackets,

that

denotes

the

section

header

in

the

db2cli.ini.

Typically,

this

section

header

is

the

database

alias

name

which

has

a

maximum

length

of

8

bytes.

A

user

who

wishes

to

refer

to

the

data

source

with

a

longer,

more

meaningful

name,

can

place

the

longer

name

in

the

section

header,

and

set

this

keyword

value

to

the

database

alias

used

on

the

CATALOG

command.

Here

is

an

example:

;

The

much

longer

name

maps

to

an

8

single

byte

character

dbalias

[MyMeaningfulName]

DBAlias=DB2DBT10

The

end

user

can

specify

[MyMeaningfulName]

as

the

name

of

the

data

source

on

connect

while

the

actual

database

alias

is

DB2DBT10.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CATALOG

DATABASE

Command”

in

the

Command

Reference

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

DBName

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

database

name

to

reduce

the

time

it

takes

for

the

application

to

query

z/OS

or

OS/390

table

information.

db2cli.ini

keyword

syntax:

DBName

=

dbname

Default

setting:

Do

not

filter

on

the

DBNAME

column.

Only

applicable

when:

connecting

to

DB2

for

z/OS

and

OS/390.

Usage

notes:

This

option

is

only

used

when

connecting

to

DB2

for

z/OS

and

OS/390,

and

only

if

(base)

table

catalog

information

is

requested

by

the

application.

If

a

large

number

of

tables

exist

in

the

z/OS

or

OS/390

subsystem,

a

dbname

can

be

specified

to

282

CLI

Guide

and

Reference,

Volume

1

reduce

the

time

it

takes

for

the

application

to

query

table

information,

and

reduce

the

number

of

tables

listed

by

the

application.

If

this

option

is

set

then

the

statement

IN

DATABASE

dbname

will

be

appended

to

various

statements

such

as

CREATE

TABLE.

This

value

maps

to

the

DBNAME

column

in

the

z/OS

or

OS/390

system

catalog

tables.

If

no

value

is

specified,

or

if

views,

synonyms,

system

tables,

or

aliases

are

also

specified

via

TableType,

only

table

information

will

be

restricted;

views,

aliases,

and

synonyms

are

not

restricted

with

DBName.

It

can

be

used

in

conjunction

with

SchemaList,

and

TableType

to

further

limit

the

number

of

tables

for

which

information

will

be

returned.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“SchemaList

CLI/ODBC

configuration

keyword”

on

page

311

v

“TableType

CLI/ODBC

configuration

keyword”

on

page

317

DefaultProcLibrary

CLI/ODBC

configuration

keyword

Note:

This

keyword

is

not

supported

in

DB2

Version

8,

but

is

available

for

backward

compatibility

only.

Refer

to

the

documentation

for

previous

versions

of

DB2

for

information

on

this

keyword

at:

http://www.ibm.com/software/data/db2/library.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

DeferredPrepare

CLI/ODBC

configuration

keyword

Keyword

description:

Minimize

network

flow

by

combining

the

PREPARE

request

with

the

corresponding

execute

request.

db2cli.ini

keyword

syntax:

DeferredPrepare

=

0

|

1

Default

setting:

The

prepare

request

will

be

delayed

until

the

execute

request

is

sent.

Equivalent

statement

attribute:

SQL_ATTR_DEFERRED_PREPARE

Usage

notes:

Defers

sending

the

PREPARE

request

until

the

corresponding

execute

request

is

issued.

The

two

requests

are

then

combined

into

one

command/reply

flow

(instead

of

two)

to

minimize

network

flow

and

to

improve

performance.

Chapter

25.

CLI/ODBC

configuration

keywords

283

http://www.ibm.com/software/data/db2/library/

v

0

=

SQL_DEFERRED_PREPARE_OFF.

The

PREPARE

request

will

be

executed

the

moment

it

is

issued.

v

1

=

SQL_DEFERRED_PREPARE_ON

(default).

Defer

the

execution

of

the

PREPARE

request

until

the

corresponding

execute

request

is

issued.

If

the

target

DBMS

does

not

support

deferred

prepare,

the

client

disables

deferred

prepare

for

that

connection.

Note:

When

deferred

prepare

is

enabled,

the

row

and

cost

estimates

normally

returned

in

the

SQLERRD(3)

and

SQLERRD(4)

of

the

SQLCA

of

a

PREPARE

statement

may

become

zeros.

This

may

be

of

concern

to

users

who

want

to

use

these

values

to

decide

whether

or

not

to

continue

the

SQL

statement.

Related

concepts:

v

“Deferred

prepare

in

CLI

applications”

on

page

25

v

“db2cli.ini

initialization

file”

on

page

255

Related

tasks:

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

Related

reference:

v

“PREPARE

statement”

in

the

SQL

Reference,

Volume

2

v

“SQLCA

(SQL

communications

area)”

in

the

SQL

Reference,

Volume

1

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

DescribeInputOnPrepare

CLI/ODBC

configuration

keyword

Keyword

description:

Enable

or

disable

the

request

for

describe

information

when

an

SQL

statement

is

prepared.

db2cli.ini

keyword

syntax:

DescribeInputOnPrepare

=

0

|

1

Default

setting:

Do

not

request

describe

information

when

preparing

an

SQL

statement.

Usage

notes:

By

default,

DB2

CLI

does

not

request

input

parameter

describe

information

when

it

prepares

an

SQL

statement.

If

an

application

has

correctly

bound

parameters

to

a

statement,

then

this

describe

information

is

unnecessary

and

not

requesting

it

improves

performance.

If,

however,

parameters

have

not

been

correctly

bound,

then

statement

execution

will

fail

and

cause

the

CLI

error

recovery

retry

logic

to

request

input

parameter

describe

information.

The

result

is

an

additional

server

request

and

reduced

performance,

compared

to

if

the

describe

information

had

been

requested

with

the

prepare.

Setting

DescribeInputOnPrepare

to

1

causes

the

input

describe

information

to

be

requested

with

the

prepare.

This

setting

may

improve

performance

for

applications

which

rely

heavily

on

the

CLI

retry

logic

to

recover

from

application

binding

errors.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

284

CLI

Guide

and

Reference,

Volume

1

|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

Related

tasks:

v

“Preparing

and

executing

SQL

statements

in

CLI

applications”

on

page

24

v

“Binding

parameter

markers

in

CLI

applications”

on

page

28

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

DescribeParam

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

if

SQLDescribeParam()

is

supported.

db2cli.ini

keyword

syntax:

DescribeParam

=

0

|

1

Default

setting:

The

SQLDescribeParam()

function

is

enabled.

Usage

notes:

This

keyword

enables

or

disables

the

SQLDescribeParam()

function.

When

set

to

1

(default),

SQLDescribeParam()

is

enabled

and

SQLGetFunctions()

will

return

SQLDescribeParam()

as

supported.

When

set

to

0,

SQLDescribeParam()

is

disabled.

If

SQLDescribeParam()

is

called,

CLI0150E

″Driver

not

capable″

will

be

returned.

SQLGetFunctions()

will

return

SQLDescribeParam()

as

not

supported.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLDescribeParam

function

(CLI)

-

Return

description

of

a

parameter

marker”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetFunctions

function

(CLI)

-

Get

functions”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“CLI

messages”

in

the

Message

Reference

Volume

1

DisableKeysetCursor

CLI/ODBC

configuration

keyword

Keyword

description:

Disables

keyset-driven

scrollable

cursors.

db2cli.ini

keyword

syntax:

DisableKeysetCursor

=

0

|

1

Default

setting:

Keyset-driven

scrollable

cursors

are

returned

when

requested.

Usage

notes:

When

set

to

1,

this

keyword

forces

the

CLI

driver

to

return

a

static

cursor

to

the

application,

even

if

the

application

has

requested

a

keyset-driven

scrollable

cursor.

Chapter

25.

CLI/ODBC

configuration

keywords

285

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|

|
|

|
|
|

|

|

|

|
|

|
|

|

|

The

default

setting

(0)

causes

keyset-driven

cursors

to

be

returned

when

the

application

requests

them.

This

keyword

can

be

used

to

restore

behavior

before

scrollable

cursors

were

supported.

Related

concepts:

v

“Cursors

in

CLI

applications”

on

page

63

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

DisableMultiThread

CLI/ODBC

configuration

keyword

Keyword

description:

Disable

multithreading.

db2cli.ini

keyword

syntax:

DisableMultiThread

=

0

|

1

Default

setting:

Multithreading

is

enabled.

Usage

notes:

The

CLI/ODBC

driver

is

capable

of

supporting

multiple

concurrent

threads.

This

option

is

used

to

enable

or

disable

multi-thread

support.

v

0

=

Multithreading

is

enabled

(default).

v

1

=

Disable

multithreading.

If

multithreading

is

disabled

then

all

calls

for

all

threads

will

be

serialized

at

the

process

level.

Use

this

setting

for

multithreaded

applications

that

require

serialized

behavior.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“Multithreaded

CLI

applications”

on

page

121

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

DisableUnicode

CLI/ODBC

configuration

keyword

Keyword

description:

Disable

underlying

Unicode

support.

db2cli.ini

keyword

syntax:

DisableUnicode

=

<not

set>

|

0

|

1

Default

setting:

Unicode

support

is

enabled.

286

CLI

Guide

and

Reference,

Volume

1

|

Usage

notes:

With

Unicode

support

enabled,

and

when

called

by

a

Unicode

application,

CLI

will

attempt

to

connect

to

the

database

using

the

best

client

code

page

possible

to

ensure

there

is

no

unnecessary

data

loss

due

to

code

page

conversion.

This

may

increase

the

connection

time

as

code

pages

are

exchanged,

or

may

cause

code

page

conversions

on

the

client

that

did

not

occur

before

this

support

was

added.

If

an

application

is

Unicode

(the

SQL_ATTR_ANSI_APP

connection

attribute

is

set

to

SQL_AA_FALSE,

or

the

connection

occurred

with

SQLConnectW()),

then

the

DisableUnicode

keyword

can

be

used

to

effect

three

different

connection

behaviors:

v

DisableUnicode

is

not

set

in

the

db2cli.ini

file:

If

the

target

database

supports

Unicode,

DB2

CLI

will

connect

in

Unicode

code

pages

(1208

and

1200).

Otherwise,

DB2

CLI

will

connect

in

the

application

code

page.

v

DisableUnicode=0

is

set:

DB2

CLI

always

connects

in

Unicode,

whether

or

not

the

target

database

supports

Unicode.

v

DisableUnicode=1

is

set:

DB2

CLI

always

connects

in

the

application

code

page,

whether

or

not

the

target

database

supports

Unicode.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“Unicode

CLI

applications”

on

page

139

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

FloatPrecRadix

CLI/ODBC

configuration

keyword

Keyword

description:

Force

the

NUM_PREC_RADIX

value

of

a

floating

point

type

to

be

2

or

10.

db2cli.ini

keyword

syntax:

FloatPrecRadix

=

2

|

10

Default

setting:

Report

the

NUM_PREC_RADIX

as

2

for

floating

point

types,

as

they

have

a

base

of

2,

not

10.

Usage

notes:

The

NUM_PREC_RADIX

value

represents

a

data

type’s

base.

Binary

numbers,

such

as

floating

point

numbers,

have

a

base

of

2,

and

integers

have

a

base

of

10.

An

application

may

expect

all

values

in

the

COLUMN_SIZE

field

to

represent

the

maximum

number

of

digits,

which

assumes

a

NUM_PREC_RADIX

value

of

10.

However,

for

floating

point

numeric

types,

the

NUM_PREC_RADIX

is

2,

in

which

case

the

COLUMN_SIZE

will

report

the

number

of

bits

in

the

data

type’s

representation,

rather

than

the

maximum

number

of

digits.

FloatPrecRadix

can

force

the

NUM_PREC_RADIX

to

be

reported

as

10

for

floating

point

data

types,

in

which

case

the

COLUMN_SIZE

will

report

the

maximum

number

of

digits.

Chapter

25.

CLI/ODBC

configuration

keywords

287

|
|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

The

FloatPrecRadix

keyword

affects

SQLColumns(),

SQLGetDescField()

(for

the

SQL_DESC_NUM_PREC_RADIX

field),

SQLGetTypeInfo(),

SQLProcedureColumns(),

and

SQLSpecialColumns().

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLColumns

function

(CLI)

-

Get

column

information

for

a

table”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetTypeInfo

function

(CLI)

-

Get

data

type

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLProcedureColumns

function

(CLI)

-

Get

input/output

parameter

information

for

a

procedure”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLSpecialColumns

function

(CLI)

-

Get

special

(row

identifier)

columns”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Descriptor

FieldIdentifier

argument

values

(CLI)”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

GranteeList

CLI/ODBC

configuration

keyword

Keyword

description:

Reduce

the

amount

of

information

returned

when

the

application

gets

a

list

of

table

or

column

privileges.

db2cli.ini

keyword

syntax:

GranteeList

=

″

’userID1’,

’userID2’,...

’userIDn’

″

Default

setting:

Do

not

filter

the

results.

Usage

notes:

This

option

can

be

used

to

reduce

the

amount

of

information

returned

when

the

application

gets

a

list

of

privileges

for

tables

in

a

database,

or

columns

in

a

table.

The

list

of

authorization

IDs

specified

is

used

as

a

filter;

the

only

tables

or

columns

that

are

returned

are

those

with

privileges

that

have

been

granted

TO

those

IDs.

Set

this

option

to

a

list

of

one

or

more

authorization

IDs

that

have

been

granted

privileges,

delimited

with

single

quotes,

and

separated

by

commas.

The

entire

string

must

also

be

enclosed

in

double

quotes.

For

example:

GranteeList="

’USER1’,

’USER2’,

’USER8’

"

In

the

above

example,

if

the

application

gets

a

list

of

privileges

for

a

specific

table,

only

those

columns

that

have

a

privilege

granted

TO

USER1,

USER2,

or

USER8

would

be

returned.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

288

CLI

Guide

and

Reference,

Volume

1

|
|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“GrantorList

CLI/ODBC

configuration

keyword”

on

page

289

GrantorList

CLI/ODBC

configuration

keyword

Keyword

description:

Reduce

the

amount

of

information

returned

when

the

application

gets

a

list

of

table

or

column

privileges.

db2cli.ini

keyword

syntax:

GrantorList

=

″

’userID1’,

’userID2’,...

’userIDn’

″

Default

setting:

Do

not

filter

the

results.

Usage

notes:

This

option

can

be

used

to

reduce

the

amount

of

information

returned

when

the

application

gets

a

list

of

privileges

for

tables

in

a

database,

or

columns

in

a

table.

The

list

of

authorization

IDs

specified

is

used

as

a

filter;

the

only

tables

or

columns

that

are

returned

are

those

with

privileges

that

have

been

granted

BY

those

IDs.

Set

this

option

to

a

list

of

one

or

more

authorization

IDs

that

have

granted

privileges,

delimited

with

single

quotes,

and

separated

by

commas.

The

entire

string

must

also

be

enclosed

in

double

quotes.

For

example:

GrantorList="

’USER1’,

’USER2’,

’USER8’

"

In

the

above

example,

if

the

application

gets

a

list

of

privileges

for

a

specific

table,

only

those

columns

that

have

a

privilege

granted

BY

USER1,

USER2,

or

USER8

would

be

returned.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“GranteeList

CLI/ODBC

configuration

keyword”

on

page

288

Graphic

CLI/ODBC

configuration

keyword

Keyword

description:

Specifies

if

DB2

CLI

returns

SQL_GRAPHIC

(double-byte

character)

as

a

supported

SQL

data

type

and

what

unit

is

used

to

report

GRAPHIC

column

length.

db2cli.ini

keyword

syntax:

Graphic

=

0

|

1

|

2

|

3

Default

setting:

The

SQL_GRAPHIC

data

type

is

not

returned

as

a

supported

SQL

data

type,

and

the

length

of

GRAPHIC

columns

equals

the

maximum

number

of

DBCS

characters

in

the

column.

Chapter

25.

CLI/ODBC

configuration

keywords

289

|
|
|
|

|
|

|
|
|
|

Usage

Notes:

The

Graphic

keyword

controls

whether

the

SQL_GRAPHIC

(double-byte

character)

data

type

is

reported

as

a

supported

SQL

data

type

when

SQLGetTypeInfo()

is

called,

as

well

as

what

unit

is

used

to

report

the

length

of

GRAPHIC

columns

for

all

DB2

CLI

functions

that

return

length

or

precision

as

either

output

arguments

or

as

part

of

a

result

set.

Set

the

Graphic

keyword

as

follows:

v

0

-

SQL_GRAPHIC

is

not

returned

as

a

supported

SQL

data

type,

and

the

reported

length

of

GRAPHIC

columns

equals

the

maximum

number

of

DBCS

characters

in

the

column.

v

1

-

SQL_GRAPHIC

is

returned

as

a

supported

SQL

data

type,

and

the

reported

length

of

GRAPHIC

columns

equals

the

maximum

number

of

DBCS

characters

in

the

column.

v

2

-

SQL_GRAPHIC

is

not

returned

as

a

supported

SQL

data

type,

and

the

reported

length

of

GRAPHIC

columns

equals

the

maximum

number

of

bytes

in

the

column.

v

3

-

SQL_GRAPHIC

is

returned

as

a

supported

SQL

data

type,

and

the

reported

length

of

GRAPHIC

columns

equals

the

maximum

number

of

bytes

in

the

column.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLGetTypeInfo

function

(CLI)

-

Get

data

type

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Hostname

CLI/ODBC

configuration

keyword

Keyword

description:

The

server

system’s

host

name

or

IP

address,

used

with

file

DSN

or

in

a

DSN-less

connection.

db2cli.ini

keyword

syntax:

Hostname

=

host

name

|

IP

Address

Default

setting:

None

Only

applicable

when:

Protocol

set

to

TCPIP

Usage

notes:

Use

this

option

in

conjunction

with

the

ServiceName

option

to

specify

the

required

attributes

for

a

TCP/IP

connection

from

this

client

machine

to

a

server

running

DB2.

These

two

values

are

only

considered

when

the

Protocol

option

is

set

to

TCPIP.

Specify

either

the

server

system’s

host

name

or

its

IP

address.

290

CLI

Guide

and

Reference,

Volume

1

|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|
|

|

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Protocol

CLI/ODBC

configuration

keyword”

on

page

307

v

“ServiceName

CLI/ODBC

configuration

keyword”

on

page

312

IgnoreWarnings

CLI/ODBC

configuration

keyword

Keyword

description:

Ignore

database

manager

warnings.

db2cli.ini

keyword

syntax:

IgnoreWarnings

=

0

|

1

Default

setting:

Warnings

are

returned

as

normal.

Usage

notes:

On

rare

occasions,

an

application

will

not

correctly

handle

warning

messages.

This

keyword

can

be

used

to

indicate

that

warnings

from

the

database

manager

are

not

to

be

passed

to

the

application.

The

possible

settings

are:

v

0

-

Warnings

are

reported

as

usual

(default)

v

1

-

Database

manager

warnings

are

ignored

and

SQL_SUCCESS

is

returned.

Warnings

from

the

DB2

CLI/ODBC

driver

are

still

returned;

many

are

required

for

normal

operation.

Although

this

keyword

can

be

used

on

its

own,

it

can

also

be

used

with

the

WarningList

CLI/ODBC

configuration

keyword.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“IgnoreWarnList

CLI/ODBC

configuration

keyword”

on

page

291

v

“WarningList

CLI/ODBC

configuration

keyword”

on

page

332

IgnoreWarnList

CLI/ODBC

configuration

keyword

Keyword

description:

Ignore

specified

sqlstates.

db2cli.ini

keyword

syntax:

IgnoreWarnList

=

“’sqlstate1’,

’sqlstate2’,

...”

Default

setting:

Warnings

are

returned

as

normal

Usage

notes:

On

rare

occasions

an

application

may

not

correctly

handle

some

warning

messages,

but

does

not

want

to

ignore

all

warning

messages.

This

keyword

can

be

Chapter

25.

CLI/ODBC

configuration

keywords

291

|

|
|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|

|

|

|

|

|

|
|

used

to

indicate

which

warnings

are

not

to

be

passed

on

to

the

application.

The

IgnoreWarnings

keyword

should

be

used

if

all

database

manager

warnings

are

to

be

ignored.

If

an

sqlstate

is

included

in

both

IgnoreWarnList

and

WarningList,

it

will

be

ignored

altogether.

Each

sqlstate

must

be

in

uppercase,

delimited

with

single

quotes

and

separated

by

commas.

The

entire

string

must

also

be

enclosed

in

double

quotes.

For

example:

IgnoreWarnList="’01000’,

’01004’,’01504’"

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“IgnoreWarnings

CLI/ODBC

configuration

keyword”

on

page

291

v

“WarningList

CLI/ODBC

configuration

keyword”

on

page

332

KeepDynamic

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

if

KEEPDYNAMIC

functionality

is

available

to

DB2

CLI

applications.

db2cli.ini

keyword

syntax:

KeepDynamic

=

0

|

1

Default

setting:

KEEPDYNAMIC

functionality

is

not

available

to

DB2

CLI

applications.

Equivalent

connection

attribute:

SQL_ATTR_KEEP_DYNAMIC

Usage

notes:

The

KeepDynamic

CLI/ODBC

configuration

keyword

should

be

set

according

to

how

the

CLI

packages

were

bound

on

the

DB2

UDB

for

z/OS

and

OS/390

server.

Set

KeepDynamic

as

follows:

v

0

-

if

the

CLI

packages

on

the

server

were

bound

with

the

KEEPDYNAMIC

NO

option

v

1

-

if

the

CLI

packages

on

the

server

were

bound

with

the

KEEPDYNAMIC

YES

option

It

is

recommended

that

when

KeepDynamic

is

used,

the

CurrentPackageSet

CLI/ODBC

keyword

also

be

set.

Refer

to

the

documentation

about

enabling

KEEPDYNAMIC

support

for

details

on

how

these

keywords

can

be

used

together.

Related

concepts:

v

“Programming

hints

and

tips

for

CLI

applications”

on

page

53

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

292

CLI

Guide

and

Reference,

Volume

1

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|

|

|

|

|

|

v

“CurrentPackageSet

CLI/ODBC

configuration

keyword”

on

page

274

KeepStatement

CLI/ODBC

configuration

keyword

Note:

This

keyword

is

not

supported

in

DB2

Version

8,

but

is

available

for

backward

compatibility

only.

Refer

to

the

documentation

for

previous

versions

of

DB2

for

information

on

this

keyword

at:

http://www.ibm.com/software/data/db2/library.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

LoadXAInterceptor

CLI/ODBC

configuration

keyword

Keyword

description:

Load

XA

Interceptor

for

debugging.

db2cli.ini

keyword

syntax:

LoadXAInterceptor

=

0

|

1

Default

setting:

The

XA

Interceptor

is

not

loaded.

Usage

notes:

This

keyword

loads

the

XA

Interceptor

for

debugging

purposes

in

MTS.

Related

concepts:

v

“Enablement

of

MTS

Support

in

DB2

Universal

Database

for

C/C++

Applications”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

LOBCacheSize

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

maximum

cache

size

for

LOBs.

db2cli.ini

keyword

syntax:

LOBCacheSize

=

positive

integer

Default

setting:

LOBs

are

not

cached.

Usage

notes:

This

option

specifies

the

maximum

defined

size

of

a

LOB

that

DB2

CLI

will

buffer

in

memory.

If

the

defined

size

of

a

LOB

exceeds

the

value

LOBCacheSize

is

set

to,

then

the

LOB

will

not

be

cached.

For

example,

consider

a

table

that

is

created

with

Chapter

25.

CLI/ODBC

configuration

keywords

293

|

|

|
|

|
|

|
|

|
|

|

|

|
|
|

|

|

|

|

|
|

|
|

|
|

|
|

|
|
|

http://www.ibm.com/software/data/db2/library/

a

CLOB

column

of

100MB

currently

holding

20MB

of

data,

with

LOBCacheSize

set

to

50MB.

In

this

case,

even

though

the

size

of

the

LOB

itself

(20MB)

is

less

than

the

value

set

through

LOBCacheSize,

the

CLOB

column

will

not

be

cached

because

the

defined

CLOB

size

(100MB)

exceeds

the

maximum

cache

size

set

through

LOBCacheSize

(50MB).

The

use

of

LOB

locators

when

retrieving

unbound

LOB

data

can

be

avoided

by

setting

this

keyword.

For

example,

if

an

application

does

not

bind

a

column

prior

to

calling

SQLFetch()

and

then

calls

SQLGetData()

to

fetch

the

LOB,

if

LOBCacheSize

was

set

to

a

value

large

enough

to

contain

the

entire

LOB

being

fetched,

then

the

LOB

is

retrieved

from

the

LOB

cache

rather

than

from

a

LOB

locator.

Using

the

LOB

cache

instead

of

the

LOB

locator

in

this

case

improves

performance.

Related

concepts:

v

“Large

object

usage

in

CLI

applications”

on

page

95

v

“LOB

locators

in

CLI

applications”

on

page

97

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

LOBFileThreshold

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

maximum

number

of

bytes

of

LOB

data

buffered

when

SQLPutData()

is

used.

db2cli.ini

keyword

syntax:

LOBFileThreshold

=

positive

integer

Default

setting:

25

MB

Usage

notes:

This

option

specifies

the

maximum

number

of

bytes

of

LOB

data

that

DB2

CLI

will

buffer

in

memory

on

calls

to

SQLPutData().

If

the

specified

cache

size

is

exceeded,

a

temporary

file

will

be

created

on

disk

to

hold

the

LOB

data

before

it

is

sent

to

the

server.

Related

concepts:

v

“Large

object

usage

in

CLI

applications”

on

page

95

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

LOBMaxColumnSize

CLI/ODBC

configuration

keyword

Keyword

description:

Override

default

COLUMN_SIZE

for

LOB

data

types.

294

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|
|

|
|

|
|

|
|
|
|

|

|

|

|

|
|

|

db2cli.ini

keyword

syntax:

LOBMaxColumnSize

=

integer

greater

than

zero

Default

setting:

2

Gigabytes

(1G

for

DBCLOB)

Only

applicable

when:

LongDataCompat

option

is

used.

Usage

notes:

This

will

override

the

2

Gigabyte

(1G

for

DBCLOB)

value

that

is

returned

by

SQLGetTypeInfo()

for

the

COLUMN_SIZE

column

for

SQL_CLOB,

SQL_BLOB,

and

SQL_DBCLOB

SQL

data

types.

Subsequent

CREATE

TABLE

statements

that

contain

LOB

columns

will

use

the

column

size

value

you

set

here

instead

of

the

default.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“LongDataCompat

CLI/ODBC

configuration

keyword”

on

page

296

LockTimeout

CLI/ODBC

configuration

keyword

Keyword

description:

Set

the

default

value

of

the

LOCKTIMEOUT

configuration

parameter.

db2cli.ini

keyword

syntax:

LockTimeout

=

-1

|

0

|

positive

integer

≤

32767

Default

setting:

Timeout

is

turned

off

(-1),

with

the

application

waiting

for

a

lock

until

either

the

lock

is

granted

or

deadlock

occurs.

Usage

notes:

The

LockTimeout

keyword

specifies

the

number

of

seconds

a

DB2

CLI

application

will

wait

to

obtain

locks.

If

the

keyword

is

set

to

0,

locks

will

not

be

waited

for.

The

-1

setting

causes

the

application

to

wait

indefinitely

until

either

the

lock

is

granted

or

deadlock

occurs.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“locktimeout

-

Lock

timeout

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Chapter

25.

CLI/ODBC

configuration

keywords

295

|
|

|
|

|
|
|

|
|

|
|
|
|

|

|

|

|
|

|

LongDataCompat

CLI/ODBC

configuration

keyword

Keyword

description:

Report

LOBs

as

long

data

types

or

as

large

object

types.

db2cli.ini

keyword

syntax:

LongDataCompat

=

0

|

1

Default

setting:

Reference

LOB

data

types

as

large

object

types.

Equivalent

connection

attribute:

SQL_ATTR_LONGDATA_COMPAT

Usage

notes:

This

option

indicates

to

DB2

CLI

what

data

type

the

application

expects

when

working

with

a

database

with

large

object

(LOB)

columns.

Table

23.

Corresponding

large

object

and

long

data

types

for

LOB

data

Database

data

type

Large

objects

(0

-

Default)

Long

data

types

(1)

CLOB

SQL_CLOB

SQL_LONGVARCHAR

BLOB

SQL_BLOB

SQL_LONGVARBINARY

DBCLOB

SQL_DBCLOB

SQL_LONGVARGRAPHIC*

*

If

the

MapGraphicDescribe

keyword

is

set

in

conjunction

with

LongDataCompat,

DBCLOB

columns

will

return

an

SQL

type

of

SQL_LONGVARCHAR

if

MapGraphicDescribe

is

1

and

SQL_WLONGVARCHAR

if

MapGraphicDescribe

is

2.

This

option

is

useful

when

running

ODBC

applications

that

cannot

handle

the

large

object

data

types.

The

DB2

CLI/ODBC

option

LOBMAXCOLUMNSIZE

can

be

used

in

conjunction

with

this

option

to

reduce

the

default

size

declared

for

the

data.

Related

concepts:

v

“Large

object

usage

in

CLI

applications”

on

page

95

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“LOBMaxColumnSize

CLI/ODBC

configuration

keyword”

on

page

294

v

“MapGraphicDescribe

CLI/ODBC

configuration

keyword”

on

page

298

MapDateCDefault

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

default

C

type

of

DATE

columns

and

parameter

markers.

db2cli.ini

keyword

syntax:

MapDateCDefault

=

0

|

1

|

2

Default

setting:

The

default

C

type

representation

for

DATE

data

is

SQL_C_TYPE_DATE.

296

CLI

Guide

and

Reference,

Volume

1

|
|
|
|

|

|
|

|
|

|
|

Usage

notes:

MapDateCDefault

controls

the

C

type

that

is

used

when

SQL_C_DEFAULT

is

specified

for

DATE

columns

and

parameter

markers.

This

keyword

should

be

used

primarily

with

Microsoft

applications,

such

as

Microsoft

Access,

which

assume

SQL_C_CHAR

as

the

default

C

type

for

datetime

values.

Set

MapDateCDefault

as

follows:

v

0

-

for

the

default

SQL_C_TYPE_DATE

C

type

representation:

a

struct

containing

numeric

members

for

year,

month

and

day

v

1

-

for

an

SQL_C_CHAR

C

type

representation:

″2004-01-01″

v

2

-

for

an

SQL_C_WCHAR

C

type

representation:

″2004-01-01″

in

UTF-16.

This

keyword

affects

the

behavior

of

CLI

functions

where

SQL_C_DEFAULT

may

be

specified

as

a

C

type,

such

as

SQLBindParameter(),

SQLBindCol(),

and

SQLGetData().

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI

and

ODBC

function

summary”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“MapTimeCDefault

CLI/ODBC

configuration

keyword”

on

page

299

v

“MapTimestampCDefault

CLI/ODBC

configuration

keyword”

on

page

301

MapDateDescribe

CLI/ODBC

configuration

keyword

Keyword

description:

Controls

the

SQL

data

type

returned

when

DATE

columns

and

parameter

markers

are

described.

db2cli.ini

keyword

syntax:

MapDateDescribe

=

0

|

1

|

2

Default

setting:

The

default

SQL

data

type

for

DATE

data

is

returned:

SQL_DATE

for

ODBC

2.0

or

SQL_TYPE_DATE

for

ODBC

3.0.

Usage

notes:

To

control

the

SQL

data

type

that

is

returned

when

DATE

columns

and

parameter

markers

are

described,

set

MapDateDescribe

as

follows:

v

0

-

to

return

the

default

SQL

data

type:

SQL_DATE

for

ODBC

2.0

or

SQL_TYPE_DATE

for

ODBC

3.0

v

1

-

to

return

the

SQL_CHAR

SQL

data

type

v

2

-

to

return

the

SQL_WCHAR

SQL

data

type

Only

the

following

DB2

CLI

functions

are

affected

by

setting

MapDateDescribe:

v

SQLDescribeCol()

v

SQLDescribeParam()

v

SQLGetDescField()

Chapter

25.

CLI/ODBC

configuration

keywords

297

|
|

|
|
|
|
|

|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|

|

|

|

|

|

v

SQLGetDescRec()

The

DB2

CLI

catalog

functions

are

not

affected

by

this

keyword.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeParam

function

(CLI)

-

Return

description

of

a

parameter

marker”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“MapTimeDescribe

CLI/ODBC

configuration

keyword”

on

page

300

v

“MapTimestampDescribe

CLI/ODBC

configuration

keyword”

on

page

301

v

“MapGraphicDescribe

CLI/ODBC

configuration

keyword”

on

page

298

MapGraphicDescribe

CLI/ODBC

configuration

keyword

Keyword

description:

Controls

the

SQL

data

type

returned

when

GRAPHIC,

VARGRAPHIC,

and

LONGVARGRAPHIC

columns

and

parameter

markers

are

described.

db2cli.ini

keyword

syntax:

MapGraphicDescribe

=

0

|

1

|

2

Default

setting:

The

default

SQL

data

types

are

returned:

SQL_GRAPHIC

for

GRAPHIC

columns,

SQL_VARGRAPHIC

for

VARGRAPHIC

columns,

and

SQL_LONGVARGRAPHIC

for

LONG

VARGRAPHIC

columns.

Usage

notes:

To

control

the

SQL

data

type

that

is

returned

when

GRAPHIC-based

columns

and

parameter

markers

are

described,

set

MapGraphicDescribe

as

follows:

v

0

-

to

return

the

default

SQL

data

types

v

1

-

to

return

the

CHAR-based

SQL

data

types:

SQL_CHAR

for

GRAPHIC

columns,

SQL_VARCHAR

for

VARGRAPHIC

columns,

and

SQL_LONGVARCHAR

for

LONG

VARGRAPHIC

columns

v

2

-

to

return

the

WCHAR-based

SQL

data

types:

SQL_WCHAR

for

GRAPHIC

columns,

SQL_WVARCHAR

for

VARGRAPHIC

columns,

and

SQL_WLONGVARCHAR

for

LONG

VARGRAPHIC

columns

Only

the

following

DB2

CLI

functions

are

affected

by

setting

MapGraphicDescribe:

v

SQLDescribeCol()

v

SQLDescribeParam()

v

SQLGetDescField()

v

SQLGetDescRec()

298

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|

|

|

|

|

|
|
|

|
|

|
|
|
|

|
|

|
|

|

|
|
|

|
|
|

|

|

|

|

|

The

DB2

CLI

catalog

functions

are

not

affected

by

this

keyword.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeParam

function

(CLI)

-

Return

description

of

a

parameter

marker”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“MapTimeDescribe

CLI/ODBC

configuration

keyword”

on

page

300

v

“MapTimestampDescribe

CLI/ODBC

configuration

keyword”

on

page

301

v

“MapDateDescribe

CLI/ODBC

configuration

keyword”

on

page

297

MapTimeCDefault

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

default

C

type

of

TIME

columns

and

parameter

markers.

db2cli.ini

keyword

syntax:

MapTimeCDefault

=

0

|

1

|

2

Default

setting:

The

default

C

type

representation

for

TIME

data

is

SQL_C_TYPE_TIME.

Usage

notes:

MapTimeCDefault

controls

the

C

type

that

is

used

when

SQL_C_DEFAULT

is

specified

for

TIME

columns

and

parameter

markers.

This

keyword

should

be

used

primarily

with

Microsoft

applications,

such

as

Microsoft

Access,

which

assume

SQL_C_CHAR

as

the

default

C

type

for

datetime

values.

Set

MapTimeCDefault

as

follows:

v

0

-

for

the

default

SQL_C_TYPE_TIME

C

type

representation:

a

struct

containing

numeric

members

for

hour,

minute,

and

second

v

1

-

for

an

SQL_C_CHAR

C

type

representation:

″12:34:56″

v

2

-

for

an

SQL_C_WCHAR

C

type

representation:

″12:34:56″

in

UTF-16.

This

keyword

affects

the

behavior

of

CLI

functions

where

SQL_C_DEFAULT

may

be

specified

as

a

C

type,

such

as

SQLBindParameter(),

SQLBindCol(),

and

SQLGetData().

Note:

MapTimeCDefault

supersedes

Patch2=24.

If

both

MapTimeCDefault

and

Patch2=24

are

set,

the

MapTimeCDefault

value

takes

precedence.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“db2cli.ini

initialization

file”

on

page

255

Chapter

25.

CLI/ODBC

configuration

keywords

299

|

|

|

|

|

|
|

|
|

|
|

|
|

|

|

|

|

|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|

|

|
|
|

|
|

|

|

|

Related

reference:

v

“CLI

and

ODBC

function

summary”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Patch2

CLI/ODBC

configuration

keyword”

on

page

305

v

“MapDateCDefault

CLI/ODBC

configuration

keyword”

on

page

296

v

“MapTimestampCDefault

CLI/ODBC

configuration

keyword”

on

page

301

MapTimeDescribe

CLI/ODBC

configuration

keyword

Keyword

description:

Controls

the

SQL

data

type

returned

when

TIME

columns

and

parameter

markers

are

described.

db2cli.ini

keyword

syntax:

MapTimeDescribe

=

0

|

1

|

2

Default

setting:

The

default

SQL

data

type

for

TIME

data

is

returned:

SQL_TIME

for

ODBC

2.0

or

SQL_TYPE_TIME

for

ODBC

3.0

Usage

notes:

To

control

the

SQL

data

type

that

is

returned

when

TIME

columns

and

parameter

markers

are

described,

set

MapTimeDescribe

as

follows:

v

0

-

to

return

the

default

SQL

data

type:

SQL_TIME

for

ODBC

2.0

or

SQL_TYPE_TIME

for

ODBC

3.0

v

1

-

to

return

the

SQL_CHAR

SQL

data

type

v

2

-

to

return

the

SQL_WCHAR

SQL

data

type

Only

the

following

DB2

CLI

functions

are

affected

by

setting

MapTimeStampDescribe:

v

SQLDescribeCol()

v

SQLDescribeParam()

v

SQLGetDescField()

v

SQLGetDescRec()

The

DB2

CLI

catalog

functions

are

not

affected

by

this

keyword.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeParam

function

(CLI)

-

Return

description

of

a

parameter

marker”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

300

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|

|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|

v

“MapTimestampDescribe

CLI/ODBC

configuration

keyword”

on

page

301

v

“MapDateDescribe

CLI/ODBC

configuration

keyword”

on

page

297

v

“MapGraphicDescribe

CLI/ODBC

configuration

keyword”

on

page

298

MapTimestampCDefault

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

default

C

type

of

TIMESTAMP

columns

and

parameter

markers.

db2cli.ini

keyword

syntax:

MapTimestampCDefault

=

0

|

1

|

2

Default

setting:

The

default

C

type

representation

for

TIMESTAMP

data

is

SQL_C_TYPE_TIMESTAMP.

Usage

notes:

MapTimestampCDefault

controls

the

C

type

that

is

used

when

SQL_C_DEFAULT

is

specified

for

TIMESTAMP

columns

and

parameter

markers.

This

keyword

should

be

used

primarily

with

Microsoft

applications,

such

as

Microsoft

Access,

which

assume

SQL_C_CHAR

as

the

default

C

type

for

datetime

values.

Set

MapTimestampCDefault

as

follows:

v

0

-

for

the

default

SQL_C_TYPE_TIMESTAMP

C

type

representation:

a

struct

containing

numeric

members

for

year,

month,

day,

hour,

minute,

second,

and

fraction

of

a

second

v

1

-

for

an

SQL_C_CHAR

C

type

representation:

″2004-01-01

12:34:56.123456″

v

2

-

for

an

SQL_C_WCHAR

C

type

representation:

″2004-01-01

12:34:56.123456″

in

UTF-16.

This

keyword

affects

the

behavior

of

CLI

functions

where

SQL_C_DEFAULT

may

be

specified

as

a

C

type,

such

as

SQLBindParameter(),

SQLBindCol(),

and

SQLGetData().

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI

and

ODBC

function

summary”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“MapTimeCDefault

CLI/ODBC

configuration

keyword”

on

page

299

v

“MapDateCDefault

CLI/ODBC

configuration

keyword”

on

page

296

MapTimestampDescribe

CLI/ODBC

configuration

keyword

Keyword

description:

Controls

the

SQL

data

type

returned

when

TIMESTAMP

columns

and

parameter

markers

are

described.

db2cli.ini

keyword

syntax:

MapTimestampDescribe

=

0

|

1

|

2

Chapter

25.

CLI/ODBC

configuration

keywords

301

|

|

|

|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|

|
|

Default

setting:

The

default

SQL

data

type

for

TIMESTAMP

data

is

returned:

SQL_TIMESTAMP

for

ODBC

2.0

or

SQL_TYPE_TIMESTAMP

for

ODBC

3.0.

Usage

notes:

To

control

the

SQL

data

type

that

is

returned

when

TIMESTAMP

columns

and

parameter

markers

are

described,

set

MapTimestampDescribe

as

follows:

v

0

-

to

return

the

default

SQL

data

type:

SQL_TIMESTAMP

for

ODBC

2.0

or

SQL_TYPE_TIMESTAMP

for

ODBC

3.0

v

1

-

to

return

the

SQL_CHAR

SQL

data

type

v

2

-

to

return

the

SQL_WCHAR

SQL

data

type

Only

the

following

DB2

CLI

functions

are

affected

by

setting

MapTimeStampDescribe:

v

SQLDescribeCol()

v

SQLDescribeParam()

v

SQLGetDescField()

v

SQLGetDescRec()

The

DB2

CLI

catalog

functions

are

not

affected

by

this

keyword.

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLDescribeCol

function

(CLI)

-

Return

a

set

of

attributes

for

a

column”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLDescribeParam

function

(CLI)

-

Return

description

of

a

parameter

marker”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescField

function

(CLI)

-

Get

single

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLGetDescRec

function

(CLI)

-

Get

multiple

field

settings

of

descriptor

record”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“MapTimeDescribe

CLI/ODBC

configuration

keyword”

on

page

300

v

“MapDateDescribe

CLI/ODBC

configuration

keyword”

on

page

297

v

“MapGraphicDescribe

CLI/ODBC

configuration

keyword”

on

page

298

Mode

CLI/ODBC

configuration

keyword

Keyword

description:

Default

connection

mode.

db2cli.ini

keyword

syntax:

Mode

=

SHARE

|

EXCLUSIVE

Default

setting:

SHARE

302

CLI

Guide

and

Reference,

Volume

1

|
|
|
|

|
|

|
|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|

|

|

|

Not

applicable

when:

connecting

to

a

host

or

iSeries

server.

Usage

notes:

Sets

the

CONNECT

mode

to

either

SHARE

or

EXCLUSIVE.

If

a

mode

is

set

by

the

application

at

connect

time,

this

value

is

ignored.

The

default

is

SHARE.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

OleDbReturnCharAsWChar

CLI/ODBC

configuration

keyword

Keyword

description:

Controls

how

the

IBM

DB2

OLE

DB

Provider

describes

CHAR,

VARCHAR,

LONG

VARCHAR,

and

CLOB

data.

db2cli.ini

keyword

syntax:

OleDbReturnCharAsWChar

=

0

|

1

Default

setting:

The

IBM

DB2

OLE

DB

Provider

describes

CHAR,

VARCHAR,

LONG

VARCHAR,

and

CLOB

data

as

DBTYPE_WSTR.

Usage

notes:

The

IBM

DB2

OLE

DB

Provider

describes

CHAR,

VARCHAR,

LONG

VARCHAR,

and

CLOB

data

as

DBTYPE_WSTR

by

default

as

of

DB2

UDB

Version

8.1.2.

The

CLI/ODBC

configuration

keyword

OleDbReturnCharAsWChar

allows

you

to

change

this

default

to

have

the

previously

stated

character

data

types

reported

as

DBTYPE_STR.

The

available

settings

are:

v

0

-

CHAR,

VARCHAR,

LONG

VARCHAR,

and

CLOB

data

are

described

as

DBTYPE_STR,

and

the

code

page

of

data

in

ISequentialStream

is

the

local

code

page

of

the

client

v

1

-

CHAR,

VARCHAR,

LONG

VARCHAR,

and

CLOB

data

are

reported

as

DBTYPE_WSTR,

and

the

code

page

of

data

in

ISequentialStream

is

UCS-2

Related

concepts:

v

“Purpose

of

the

IBM

OLE

DB

Provider

for

DB2”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Data

Type

Mappings

between

DB2

and

OLE

DB”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Chapter

25.

CLI/ODBC

configuration

keywords

303

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|

|
|
|

|
|

|

|
|

|

|

|
|

|

OptimizeForNRows

CLI/ODBC

configuration

keyword

Keyword

description:

Append

’OPTIMIZE

FOR

n

ROWS’

clause

to

every

select

statement.

db2cli.ini

keyword

syntax:

OptimizeForNRows

=

integer

Default

setting:

The

clause

is

not

appended.

Equivalent

statement

attribute:

SQL_ATTR_OPTIMIZE_FOR_NROWS

Usage

notes:

This

option

will

append

the

″OPTIMIZE

FOR

n

ROWS″

clause

to

every

select

statement,

where

n

is

an

integer

larger

than

0.

If

set

to

0

(the

default)

this

clause

will

not

be

appended.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SELECT

statement”

in

the

SQL

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Patch1

CLI/ODBC

configuration

keyword

Keyword

description:

Use

work-arounds

for

known

CLI/ODBC

application

problems.

db2cli.ini

keyword

syntax:

Patch1

=

{

0

|

1

|

2

|

4

|

8

|

16

|

...

}

Default

setting:

Use

no

work-arounds.

Usage

notes:

This

keyword

is

used

to

specify

a

work-around

for

known

problems

with

ODBC

applications.

The

value

specified

can

be

for

none,

one,

or

multiple

work-arounds.

The

patch

values

specified

here

are

used

in

conjunction

with

any

Patch2

values

that

may

also

be

set.

Using

the

DB2

CLI/ODBC

Settings

notebook

you

can

select

one

or

more

patches

to

use.

If

you

set

the

values

in

the

db2cli.ini

file

itself

and

want

to

use

multiple

patch

values

then

simply

add

the

values

together

to

form

the

keyword

value.

For

example,

if

you

want

the

patches

1,

4,

and

8,

then

specify

Patch1=13.

v

0

=

No

work

around

(default)

Refer

to

the

DB2

application

development

Web

site

for

the

current

list

of

Patch1

values:

http://www.ibm.com/software/data/db2/udb/ad

304

CLI

Guide

and

Reference,

Volume

1

|
|

|

http://www.ibm.com/software/data/db2/udb/ad

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Patch2

CLI/ODBC

configuration

keyword”

on

page

305

Patch2

CLI/ODBC

configuration

keyword

Keyword

description:

Use

work-arounds

for

known

CLI/ODBC

application

problems.

db2cli.ini

keyword

syntax:

Patch2

=

″patch

value

1,

patch

value

2,

patch

value

3,

...″

Default

setting:

Use

no

work-arounds

Usage

notes:

This

keyword

is

used

to

specify

a

work-around

for

known

problems

with

CLI/ODBC

applications.

The

value

specified

can

be

for

none,

one,

or

multiple

work-arounds.

The

patch

values

specified

here

may

be

used

in

conjunction

with

any

Patch1

values

that

may

also

be

set.

When

specifying

multiple

patches,

the

values

are

specified

in

a

comma

delimited

string

(unlike

the

Patch1

option

where

the

values

are

added

together

and

the

sum

is

used).

v

0

=

No

work

around

(default)

To

set

Patch2

values

3,

4

and

8

you

would

specify:

Patch2="3,

4,

8"

Refer

to

the

DB2

application

development

Web

site

for

the

current

list

of

Patch2

values:

http://www.ibm.com/software/data/db2/udb/ad

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Patch1

CLI/ODBC

configuration

keyword”

on

page

304

Port

CLI/ODBC

configuration

keyword

Keyword

description:

The

server

system’s

service

name

or

port

number,

used

with

a

file

DSN

or

in

a

DSN-less

connection.

db2cli.ini

keyword

syntax:

Port

=

service

name

|

port

number

Chapter

25.

CLI/ODBC

configuration

keywords

305

|
|

|

http://www.ibm.com/software/data/db2/udb/ad

Default

setting:

None

Only

applicable

when:

Protocol

set

to

TCPIP

Usage

notes:

Use

this

option

in

conjunction

with

the

Hostname

option

to

specify

the

required

attributes

for

a

TCP/IP

connection

from

this

client

machine

to

a

server

running

DB2.

These

two

values

are

only

considered

when

the

Protocol

option

is

set

to

TCPIP.

Specify

either

the

server

system’s

service

name

or

its

port

number.

The

service

name

must

be

available

for

lookup

at

the

client

machine

if

it

is

used.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Hostname

CLI/ODBC

configuration

keyword”

on

page

290

v

“Protocol

CLI/ODBC

configuration

keyword”

on

page

307

v

“ServiceName

CLI/ODBC

configuration

keyword”

on

page

312

ProgramName

CLI/ODBC

configuration

keyword

Keyword

description:

Change

the

default

client

application

name

to

a

user-defined

name

which

is

used

to

identify

the

application

at

the

server

when

monitoring.

db2cli.ini

keyword

syntax:

ProgramName

=

<string>

|

PID

Default

setting:

No

user-defined

name

is

used.

The

application

is

identified

by

the

name

DB2

assigns

by

default.

Equivalent

connection

attribute:

SQL_ATTR_INFO_PROGRAMNAME

Usage

notes:

When

monitoring

a

CLI

application,

it

may

be

useful

to

identify

the

application

by

a

user-defined

string,

instead

of

by

the

default

identifier

that

DB2

assigns.

ProgramName

allows

the

user

to

specify

the

identifier

as

either

a

string

up

to

20

bytes

in

length

or

the

string

″PID″

(without

the

quotation

marks).

If

ProgramName

is

set

to

″PID″

for

a

CLI

application,

the

application’s

name

will

consist

of

the

prefix

″CLI″

along

with

the

application’s

process

ID

and

the

current

active

connection

handle,

as

follows:

CLI<pid>:<connectionHandle#>.

The

″PID″

setting

is

useful

when

monitoring

application

servers

that

run

multiple

applications

with

numerous

connections

to

the

same

database.

306

CLI

Guide

and

Reference,

Volume

1

|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

(When

the

ProgramName

keyword

is

set

to

″PID″

for

other

types

of

applications,

the

″CLI″

prefix

is

replaced

with

the

following

values

corresponding

to

the

type

of

application:

″JDBC″

for

JDBC

applications,

″OLEDB″

for

OLE

DB

applications,

and

″ADONET″

for

.NET

applications.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Protocol

CLI/ODBC

configuration

keyword

Keyword

description:

Communications

protocol

used

for

File

DSN

or

in

a

DSN-less

connection.

db2cli.ini

keyword

syntax:

Protocol

=

TCPIP

Default

setting:

none

Usage

notes:

TCP/IP

is

the

only

protocol

supported

when

using

a

File

DSN.

Set

the

option

to

the

string

TCPIP

(without

the

slash).

When

this

option

is

set

then

the

following

options

must

also

be

set:

v

Database

v

ServiceName

v

Hostname

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Database

CLI/ODBC

configuration

keyword”

on

page

278

v

“Hostname

CLI/ODBC

configuration

keyword”

on

page

290

v

“ServiceName

CLI/ODBC

configuration

keyword”

on

page

312

PWD

CLI/ODBC

configuration

keyword

Keyword

description:

Define

default

password.

db2cli.ini

keyword

syntax:

PWD

=

password

Default

setting:

None

Usage

notes:

Chapter

25.

CLI/ODBC

configuration

keywords

307

|
|
|
|

|

|

|

|

|

This

password

value

is

used

if

a

password

is

not

provided

by

the

application

at

connect

time.

It

is

stored

as

plain

text

in

the

db2cli.ini

file

and

is

therefore

not

secure.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“UID

CLI/ODBC

configuration

keyword”

on

page

330

QueryTimeoutInterval

CLI/ODBC

configuration

keyword

Keyword

Description:

Delay

(in

seconds)

between

checks

for

a

query

timeout.

db2cli.ini

Keyword

Syntax:

QueryTimeoutInterval

=

0

|

5

|

positive

integer

Default

Setting:

5

seconds

Usage

Notes:

An

application

can

use

the

SQLSetStmtAttr()

function

to

set

the

SQL_ATTR_QUERY_TIMEOUT

statement

attribute.

This

attribute

indicates

the

number

of

seconds

to

wait

for

an

SQL

statement

to

complete

executing

before

attempting

to

cancel

the

execution

and

returning

to

the

application.

The

QueryTimeoutInterval

configuration

keyword

is

used

to

indicate

how

long

the

CLI

driver

should

wait

between

checks

to

see

if

the

query

has

completed.

For

instance,

suppose

SQL_ATTR_QUERY_TIMEOUT

is

set

to

25

seconds

(timeout

after

waiting

for

25

seconds),

and

QueryTimeoutInterval

is

set

to

10

seconds

(check

the

query

every

10

seconds).

The

query

will

not

time

out

until

30

seconds

(the

first

check

AFTER

the

25

second

limit).

Note:

DB2

CLI

implements

query

timeout

by

starting

a

thread

that

periodically

queries

the

status

of

each

executing

query.

The

QueryTimeoutInterval

value

specifies

how

long

the

query

timeout

thread

waits

between

checks

for

expired

queries.

Because

this

is

an

asynchronous

operation

to

the

queries

being

executed,

it

is

possible

that

a

given

query

may

not

be

timed

out

until

SQL_ATTR_QUERY_TIMEOUT

+

QueryTimeoutInterval

seconds.

In

the

example

above,

the

best-case

timeout

would

be

at

26

seconds,

and

the

worst-case

timeout

would

be

at

35

seconds.

There

may

be

cases

where

the

SQL_ATTR_QUERY_TIMEOUT

is

set

to

a

value

which

is

too

low,

and

the

query

should

NOT

be

timed-out.

If

the

application

cannot

be

modified

(that

is,

a

third

party

ODBC

application),

then

the

QueryTimeoutInterval

can

be

set

to

0,

and

the

CLI

driver

will

ignore

the

SQL_ATTR_QUERY_TIMEOUT

setting,

and

therefore

wait

for

SQL

statements

to

complete

execution

before

returning

to

the

application.

308

CLI

Guide

and

Reference,

Volume

1

Note:

If

QueryTimeoutInterval

is

set

to

0,

any

attempt

by

the

application

to

set

SQL_ATTR_QUERY_TIMEOUT

will

result

in

SQLSTATE

01S02

(Option

Value

Changed).

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Alternatively,

QueryTimeoutInterval

can

be

set

to

a

value

that

is

larger

than

the

SQL_ATTR_QUERY_TIMEOUT

setting,

thus

preventing

timeouts

from

occurring

at

the

specified

interval.

For

example,

if

the

application

sets

a

15

second

SQL_ATTR_QUERY_TIMEOUT

value,

but

the

server

requires

at

least

30

seconds

to

execute

the

query,

the

QueryTimeoutInterval

can

be

set

to

a

value

of

30

seconds

or

so

to

prevent

this

query

from

timing

out

after

15

seconds.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLSetStmtAttr

function

(CLI)

-

Set

options

related

to

a

statement”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

ReportRetryErrorsAsWarnings

CLI/ODBC

configuration

keyword

Keyword

description:

Return

errors

that

were

uncovered

during

DB2

CLI

error

recovery

as

warnings.

db2cli.ini

keyword

syntax:

ReportRetryErrorsAsWarnings

=

0

|

1

Only

applicable

when:

RetryOnError

keyword

is

set

to

1.

Default

setting:

Do

not

return

errors

uncovered

during

DB2

CLI

error

recovery

to

the

application.

Usage

notes:

By

default,

when

the

DB2

CLI

retry

logic

is

able

to

recover

successfully

from

a

non-fatal

error,

it

masks

that

error

from

the

application

by

returning

SQL_SUCCESS.

Because

application

binding

errors

can

be

hidden

this

way,

for

debugging

purposes,

you

may

want

to

set

ReportRetryErrorsAsWarnings

to

1.

This

setting

keeps

the

error

recovery

on,

but

forces

DB2

CLI

to

return

to

the

application,

any

errors

that

were

uncovered

as

warnings.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI

function

return

codes”

on

page

48

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“RetryOnError

CLI/ODBC

configuration

keyword”

on

page

310

Chapter

25.

CLI/ODBC

configuration

keywords

309

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|

|

ReportPublicPrivileges

CLI/ODBC

configuration

keyword

Keyword

description:

Report

PUBLIC

privileges

in

SQLColumnPrivileges()

and

SQLTablePrivileges()

results.

db2cli.ini

keyword

syntax:

ReportPublicPrivileges

=

0

|

1

Default

setting:

PUBLIC

privileges

are

not

reported.

Usage

notes:

This

keyword

specifies

if

privileges

assigned

to

the

PUBLIC

group

are

to

be

reported

as

if

PUBLIC

was

a

user

in

the

SQLColumnPrivileges()

and

SQLTablePrivileges()

results.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLColumnPrivileges

function

(CLI)

-

Get

privileges

associated

with

the

columns

of

a

table”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLTablePrivileges

function

(CLI)

-

Get

privileges

associated

with

a

table”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

RetryOnError

CLI/ODBC

configuration

keyword

Keyword

description:

Turn

on

or

off

the

DB2

CLI

driver’s

error

recovery

behavior.

db2cli.ini

keyword

syntax:

RetryOnError

=

0

|

1

Default

setting:

Allow

the

DB2

CLI

driver

to

attempt

error

recovery

on

non-fatal

errors.

Usage

notes:

By

default,

DB2

CLI

will

attempt

to

recover

from

non-fatal

errors,

such

as

incorrect

binding

of

application

parameters,

by

retrieving

additional

information

on

the

failing

SQL

statement

and

then

executing

the

statement

again.

The

additional

information

retrieved

includes

input

parameter

information

from

the

database

catalog

tables.

If

DB2

CLI

is

able

to

recover

successfully

from

the

error,

by

default,

it

does

not

report

the

error

to

the

application.

The

CLI/ODBC

configuration

keyword

ReportRetryErrorsAsWarnings

allows

you

to

set

whether

error

recovery

warnings

are

returned

to

the

application

or

not.

Important:

Once

DB2

CLI

has

successfully

completed

the

error

recovery,

the

application

may

behave

differently,

because

DB2

CLI

will

use

the

catalog

information

gathered

during

the

recovery

for

subsequent

executions

of

that

particular

SQL

statement,

rather

than

the

information

provided

in

the

original

SQLBindParameter()

function

calls.

If

you

do

not

want

this

behavior,

set

RetryOnError

to

0,

forcing

DB2

CLI

not

to

310

CLI

Guide

and

Reference,

Volume

1

|

|
|
|

|
|

|
|

|
|

|
|
|

|

|

|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

attempt

recovery.

You

should,

however,

modify

the

application

to

correctly

bind

statement

parameters.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

tasks:

v

“Binding

parameter

markers

in

CLI

applications”

on

page

28

Related

reference:

v

“SQLBindParameter

function

(CLI)

-

Bind

a

parameter

marker

to

a

buffer

or

LOB

locator”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“ReportRetryErrorsAsWarnings

CLI/ODBC

configuration

keyword”

on

page

309

SchemaList

CLI/ODBC

configuration

keyword

Keyword

description:

Restrict

schemas

used

to

query

table

information.

db2cli.ini

keyword

syntax:

SchemaList

=

″

’schema1’,

’schema2’,...

’schemaN’

″

Default

setting:

None

Usage

notes:

SchemaList

is

used

to

provide

a

more

restrictive

default,

and

therefore

improve

performance,

for

those

applications

that

list

every

table

in

the

DBMS.

If

there

are

a

large

number

of

tables

defined

in

the

database,

a

schema

list

can

be

specified

to

reduce

the

time

it

takes

for

the

application

to

query

table

information,

and

reduce

the

number

of

tables

listed

by

the

application.

Each

schema

name

is

case-sensitive,

must

be

delimited

with

single

quotes,

and

separated

by

commas.

The

entire

string

must

also

be

enclosed

in

double

quotes.

For

example:

SchemaList="’USER1’,’USER2’,’USER3’"

For

DB2

for

z/OS,

CURRENT

SQLID

can

also

be

included

in

this

list,

but

without

the

single

quotes,

for

example:

SchemaList="’USER1’,CURRENT

SQLID,’USER3’"

The

maximum

length

of

the

string

is

256

characters.

This

option

can

be

used

in

conjunction

with

DBName

and

TableType

to

further

limit

the

number

of

tables

for

which

information

will

be

returned.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Chapter

25.

CLI/ODBC

configuration

keywords

311

|
|

|

|

|

|

|

|
|

|

|

v

“DBName

CLI/ODBC

configuration

keyword”

on

page

282

v

“TableType

CLI/ODBC

configuration

keyword”

on

page

317

ServiceName

CLI/ODBC

configuration

keyword

Keyword

description:

The

server

system’s

service

name

or

port

number,

used

with

file

DSN

or

in

a

DSN-less

connection.

db2cli.ini

keyword

syntax:

ServiceName

=

service

name

|

port

number

Default

setting:

None

Only

applicable

when:

Protocol

set

to

TCPIP

Usage

notes:

Use

this

option

in

conjunction

with

the

Hostname

option

to

specify

the

required

attributes

for

a

TCP/IP

connection

from

this

client

machine

to

a

server

running

DB2.

These

two

values

are

only

considered

when

the

PROTOCOL

option

is

set

to

TCPIP.

Specify

either

the

server

system’s

service

name

or

its

port

number.

The

service

name

must

be

available

for

lookup

at

the

client

machine

if

it

is

used.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Hostname

CLI/ODBC

configuration

keyword”

on

page

290

v

“Protocol

CLI/ODBC

configuration

keyword”

on

page

307

SkipTrace

CLI/ODBC

configuration

keyword

Keyword

description:

Excludes

CLI

trace

information

from

the

DB2

trace.

db2cli.ini

keyword

syntax:

SkipTrace

=

0

|

1

Default

setting:

Do

not

skip

the

trace

function.

Usage

notes:

This

keyword

can

improve

performance

by

allowing

the

DB2

trace

function

to

bypass

CLI

applications.

Therefore,

if

the

DB2

trace

facility

db2trc

is

turned

on

and

this

keyword

is

set

to

1,

the

trace

will

not

contain

information

from

the

execution

of

the

CLI

application.

Turning

SkipTrace

on

is

recommended

for

production

environments

on

the

UNIX

platform

where

trace

information

is

not

required.

Test

environments

may

benefit,

312

CLI

Guide

and

Reference,

Volume

1

however,

from

having

trace

output,

so

this

keyword

can

be

turned

off

(or

left

at

its

Default

setting)

when

detailed

execution

information

is

desired.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“db2trc

-

Trace

Command”

in

the

Command

Reference

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

SQLOverrideFileName

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

location

of

the

override

file,

which

lists

CLI

statement

attribute

settings

for

particular

SQL

statements.

db2cli.ini

keyword

syntax:

SQLOverrideFileName

=

<absolute

or

relative

path

name>

Default

setting:

No

override

file

is

used.

Usage

notes:

The

SQLOverrideFileName

keyword

specifies

the

location

of

the

override

file

to

be

read

by

the

DB2

CLI

driver.

An

override

file

contains

values

for

CLI

statement

attributes

that

apply

to

particular

SQL

statements.

Any

of

the

supported

statement

attributes

can

be

specified.

The

following

is

an

example

of

an

override

file

containing

attribute

settings

specific

to

two

SQL

statements:

[Common]

Stmts=2

[1]

StmtIn=SELECT

*

FROM

Employee

StmtAttr=SQL_ATTR_BLOCK_FOR_NROWS=50;SQL_ATTR_OPTIMIZE_FOR_NROWS=1;

[2]

StmtIn=SELECT

*

FROM

Sales

StmtAttr=SQL_ATTR_MAX_ROWS=25;

The

number

specified

by

″Stmts″

in

the

″[Common]″

section

of

the

override

file

equals

the

number

of

SQL

statements

contained

in

the

override

file.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Chapter

25.

CLI/ODBC

configuration

keywords

313

|

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

StaticCapFile

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

Capture

File

name

and

optionally

the

path

where

it

will

be

saved.

db2cli.ini

keyword

syntax:

StaticCapFile

=

<

Full

file

name

>

Default

setting:

None

-

you

must

specify

a

capture

file.

Only

applicable

when:

StaticMode

is

set

to

Capture

or

Match

Usage

notes:

This

keyword

is

used

to

specify

the

Capture

File

name

and

optionally

the

directory

where

it

will

be

saved.

Related

concepts:

v

“Capture

file

for

CLI/ODBC/JDBC

Static

Profiling”

on

page

185

v

“db2cli.ini

initialization

file”

on

page

255

Related

tasks:

v

“Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling”

on

page

183

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“StaticLogFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticMode

CLI/ODBC

configuration

keyword”

on

page

315

v

“StaticPackage

CLI/ODBC

configuration

keyword”

on

page

315

StaticLogFile

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

Static

Profiling

Log

File

name

and

optionally

the

directory

where

it

will

be

saved.

db2cli.ini

keyword

syntax:

StaticLogFile

=

<

Full

file

name

>

Default

setting:

No

Static

Profiling

Log

is

created.

If

a

filename

is

specified

without

a

pathname

then

the

current

path

will

be

used.

Only

applicable

when:

StaticMode

is

set

to

Capture

or

Match

Usage

notes:

This

keyword

is

used

to

specify

the

Static

Profiling

Log

File

name

and

optionally

the

directory

where

it

will

be

saved.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

314

CLI

Guide

and

Reference,

Volume

1

Related

tasks:

v

“Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling”

on

page

183

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“StaticCapFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticMode

CLI/ODBC

configuration

keyword”

on

page

315

v

“StaticPackage

CLI/ODBC

configuration

keyword”

on

page

315

StaticMode

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

whether

the

CLI/ODBC

application

will

capture

SQL

or

use

a

static

SQL

Package

for

this

DSN.

db2cli.ini

keyword

syntax:

StaticMode

=

DISABLED

|

CAPTURE

|

MATCH

Default

setting:

Disabled

-

SQL

statements

are

not

captured

and

no

static

SQL

package

is

used.

Usage

notes:

This

option

allows

you

to

specify

how

the

SQL

issued

by

the

CLI/ODBC

application

for

this

DSN

will

be

processed:

v

DISABLED

=

Static

mode

disabled.

No

special

processing.

The

CLI/ODBC

statements

will

be

executed

as

dynamic

SQL

with

no

change.

This

is

the

default.

v

CAPTURE

=

Capture

Mode.

Execute

the

CLI/ODBC

statements

as

dynamic

SQL.

If

the

SQL

statements

are

successful,

they

will

be

captured

into

a

file

(known

as

the

Capture

File)

to

be

bound

by

the

DB2CAP

command

later.

v

MATCH

=

Match

mode.

Execute

the

CLI/ODBC

statements

as

static

SQL

statements

if

a

matching

statement

is

found

in

the

Capture

Files

specified

in

StaticPackage.

The

Capture

File

must

first

be

bound

by

the

DB2CAP

command.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

tasks:

v

“Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling”

on

page

183

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“StaticCapFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticLogFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticPackage

CLI/ODBC

configuration

keyword”

on

page

315

StaticPackage

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

the

package

to

be

used

with

the

static

profiling

feature.

Chapter

25.

CLI/ODBC

configuration

keywords

315

db2cli.ini

keyword

syntax:

StaticPackage

=

collection_id.package_name

Default

setting:

None

-

you

must

specify

a

package

name.

Only

applicable

when:

STATICMODE

is

set

to

CAPTURE

Usage

notes:

This

keyword

is

used

to

specify

the

package

to

be

used

when

the

application

runs

in

Match

Mode.

You

first

need

to

use

Capture

Mode

to

create

the

Capture

File.

Only

the

first

7

characters

of

the

indicated

package

name

will

be

used.

A

one-byte

suffix

will

be

added

to

represent

each

isolation

level,

as

follows:

v

0

for

Uncommitted

Read

(UR)

v

1

for

Cursor

Stability

(CS)

v

2

for

Read

Stability

(RS)

v

3

for

Repeatable

Read

(RR)

v

4

for

No

Commit

(NC)

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

v

“db2cli.ini

initialization

file”

on

page

255

Related

tasks:

v

“Creating

static

SQL

with

CLI/ODBC/JDBC

Static

Profiling”

on

page

183

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“StaticCapFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticLogFile

CLI/ODBC

configuration

keyword”

on

page

314

v

“StaticMode

CLI/ODBC

configuration

keyword”

on

page

315

StreamPutData

CLI/ODBC

configuration

keyword

Keyword

description:

Improve

performance

for

data

passed

through

SQLPutData()

function

calls

on

one

statement

handle,

by

writing

data

directly

to

the

internal

connection-level

communication

buffer.

db2cli.ini

keyword

syntax:

StreamPutData

=

0

|

1

Default

setting:

Do

not

write

data

directly

to

the

connection-level

buffer;

write

to

the

default

statement-level

buffer

instead.

Usage

notes:

By

default,

DB2

CLI

writes

data

passed

in

through

SQLPutData()

function

calls

to

an

internal

statement-level

buffer.

On

the

subsequent

SQLParamData()

call,

the

contents

of

the

buffer

are

then

written

to

an

internal

connection-level

316

CLI

Guide

and

Reference,

Volume

1

|

|
|
|
|

|
|

|
|
|

|
|

|
|
|

communication

buffer

and

sent

to

the

server.

If

only

one

statement

handle

is

used

to

insert

data

into

a

target

database

on

a

particular

connection

at

a

given

point

in

time,

then

you

can

improve

performance

by

setting

StreamPutData=1.

This

causes

DB2

CLI

to

write

the

put

data

directly

to

the

connection-level

buffer.

If,

however,

multiple

statements

concurrently

insert

data

into

a

target

database

on

a

particular

connection,

then

setting

StreamPutData=1

may

decrease

performance

and

result

in

unexpected

application

errors,

as

the

statements

in

the

shared

connection-level

communication

buffer

will

be

prone

to

serialization.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLParamData

function

(CLI)

-

Get

next

parameter

for

which

a

data

value

is

needed”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLPutData

function

(CLI)

-

Passing

data

value

for

a

parameter”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

SyncPoint

CLI/ODBC

configuration

keyword

Note:

This

keyword

is

not

supported

in

DB2

Version

8,

but

is

available

for

backward

compatibility

only.

Refer

to

the

documentation

for

previous

versions

of

DB2

for

information

on

this

keyword

at:

http://www.ibm.com/software/data/db2/library.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

TableType

CLI/ODBC

configuration

keyword

Keyword

description:

Define

a

default

list

of

TABLETYPES

returned

when

querying

table

information.

db2cli.ini

keyword

syntax:

TableType

=

″

’TABLE’

|

,’ALIAS’

|

,’VIEW’

|

,

’INOPERATIVE

VIEW’

|

,

’SYSTEM

TABLE’

|

,’SYNONYM’

″

Default

setting:

No

default

list

of

TABLETYPES

is

defined.

Usage

notes:

If

there

is

a

large

number

of

tables

defined

in

the

database,

a

tabletype

string

can

be

specified

to

reduce

the

time

it

takes

for

the

application

to

query

table

information,

and

reduce

the

number

of

tables

listed

by

the

application.

Any

number

of

the

values

can

be

specified.

Each

type

must

be

delimited

with

single

quotes,

separated

by

commas,

and

in

uppercase.

The

entire

string

must

also

be

enclosed

in

double

quotes.

For

example:

Chapter

25.

CLI/ODBC

configuration

keywords

317

|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

http://www.ibm.com/software/data/db2/library/

TableType="’TABLE’,’VIEW’"

This

option

can

be

used

in

conjunction

with

DBNAME

and

SCHEMALIST

to

further

limit

the

number

of

tables

for

which

information

will

be

returned.

TableType

is

used

to

provide

a

default

for

the

DB2

CLI

function

that

retrieves

the

list

of

tables,

views,

aliases,

and

synonyms

in

the

database.

If

the

application

does

not

specify

a

table

type

on

the

function

call,

and

this

keyword

is

not

used,

information

about

all

table

types

is

returned.

If

the

application

does

supply

a

value

for

the

tabletype

on

the

function

call,

then

that

argument

value

will

override

this

keyword

value.

If

TableType

includes

any

value

other

than

TABLE,

then

the

DBName

keyword

setting

cannot

be

used

to

restrict

information

to

a

particular

DB2

for

z/OS

database.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“DBName

CLI/ODBC

configuration

keyword”

on

page

282

v

“SchemaList

CLI/ODBC

configuration

keyword”

on

page

311

TempDir

CLI/ODBC

configuration

keyword

Keyword

description:

Define

the

directory

used

for

temporary

files.

db2cli.ini

keyword

syntax:

TempDir

=

<

full

path

name

>

Default

setting:

Use

the

system

temporary

directory

specified

by

the

TEMP

or

TMP

environment

variables.

Usage

notes:

When

working

with

Large

Objects

(CLOBS,

BLOBS,

etc...),

when

data

conversion

occurs,

or

when

data

is

sent

to

the

server

in

pieces,

a

temporary

file

is

often

created

on

the

client

machine

to

store

the

information.

Using

this

option

you

can

specify

a

location

for

these

temporary

files.

The

system

temporary

directory

will

be

used

if

nothing

is

specified.

The

keyword

is

placed

in

the

data

source

specific

section

of

the

db2cli.ini

file,

and

has

the

following

syntax:

v

TempDir=

F:\DB2TEMP

The

path

specified

must

already

exist

and

the

user

executing

the

application

must

have

the

appropriate

authorities

to

write

files

to

it.

When

the

DB2

CLI

Driver

attempts

to

create

temporary

files,

an

SQLSTATE

of

HY507

will

be

returned

if

the

path

name

is

invalid,

or

if

the

temporary

files

cannot

be

created

in

the

directory

specified.

Related

concepts:

318

CLI

Guide

and

Reference,

Volume

1

v

“Large

object

usage

in

CLI

applications”

on

page

95

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

Trace

CLI/ODBC

configuration

keyword

Keyword

description:

Turn

on

the

DB2

CLI/ODBC

trace

facility.

db2cli.ini

keyword

syntax:

Trace

=

0

|

1

Default

setting:

No

trace

information

is

captured.

Equivalent

connection

attribute:

SQL_ATTR_TRACE

Usage

notes:

When

this

option

is

on

(1),

CLI/ODBC

trace

records

are

appended

to

the

file

indicated

by

the

TraceFileName

configuration

parameter

or

to

files

in

the

subdirectory

indicated

by

the

TracePathName

configuration

parameter.

Trace

will

have

no

effect

if

neither

TraceFileName

or

TracePathName

is

set.

The

TraceRefreshInterval

keyword

sets

the

interval

in

seconds

at

which

the

Trace

keyword

is

read

from

the

db2cli.ini

file.

This

allows

you

to

dynamically

turn

off

the

CLI/ODBC

trace

within

n

seconds.

For

example,

to

set

up

a

CLI/ODBC

trace

file

that

is

written

to

disk

after

each

trace

entry:

[COMMON]

Trace=1

TraceFileName=E:\TRACES\CLI\MONDAY.CLI

TraceFlush=1

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

v

“TraceRefreshInterval

CLI/ODBC

configuration

keyword”

on

page

327

Chapter

25.

CLI/ODBC

configuration

keywords

319

TraceComm

CLI/ODBC

configuration

keyword

Keyword

description:

Include

information

about

each

network

request

in

the

trace

file.

db2cli.ini

keyword

syntax:

TraceComm

=

0

|

1

Default

setting:

0

-

No

network

request

information

is

captured.

Only

applicable

when:

the

CLI/ODBC

Trace

option

is

turned

on.

Usage

notes:

When

TraceComm

is

set

on

(1)

then

the

following

information

about

each

network

request

will

be

included

in

the

trace

file:

v

which

DB2

CLI

functions

are

processed

completely

on

the

client

and

which

DB2

CLI

functions

involve

communication

with

the

server

v

the

number

of

bytes

sent

and

received

in

each

communication

with

the

server

v

the

time

spent

communicating

data

between

the

client

and

server

This

option

is

only

used

when

the

Trace

CLI/ODBC

option

is

turned

on.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

TraceErrImmediate

CLI/ODBC

configuration

keyword

Keyword

description:

Write

diagnostic

records

to

the

CLI/ODBC

trace

when

they

are

generated.

db2cli.ini

keyword

syntax:

TraceErrImmediate

=

0

|

1

Default

setting:

Diagnostic

records

are

only

written

to

the

trace

file

when

SQLGetDiagField()

or

SQLGetDiagRec()

is

called;

or

″Unretrieved

Error

Message″

is

written

to

the

trace

file

for

handles

which

had

diagnostic

records

that

were

left

unretreived.

Only

applicable

when:

the

CLI/ODBC

Trace

option

is

turned

on.

320

CLI

Guide

and

Reference,

Volume

1

|
|

|
|

|

|

|

|
|

|
|

|
|
|
|
|

|
|

Usage

notes:

Setting

TraceErrImmediate=1

helps

in

determining

when

errors

occur

during

application

execution

by

writing

diagnostic

records

to

the

CLI/ODBC

trace

file

at

the

time

the

records

are

generated.

This

is

especially

useful

for

applications

that

do

not

retrieve

diagnostic

information

using

SQLGetDiagField()

and

SQLGetDiagRec(),

because

the

diagnostic

records

that

were

generated

on

a

handle

will

be

lost

if

they

are

not

retrieved

or

written

to

the

trace

file

before

the

next

function

is

called

on

the

handle.

If

TraceErrImmediate=0

(the

default

setting),

then

diagnostic

records

will

only

be

written

to

the

trace

file

if

an

application

calls

SQLGetDiagField()

or

SQLGetDiagRec()

to

retrieve

diagnostic

information.

If

the

application

does

not

retrieve

diagnostic

information

through

function

calls

and

this

keyword

is

set

to

0,

then

the

″Unretrieved

Error

Message″

entry

will

be

written

to

the

trace

file

if

a

diagnostic

record

exists,

when

a

function

is

next

called

on

the

handle.

This

option

is

only

used

when

the

Trace

CLI/ODBC

option

is

turned

on.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFlushOnError

CLI/ODBC

configuration

keyword”

on

page

323

TraceFileName

CLI/ODBC

configuration

keyword

Keyword

description:

File

to

which

all

DB2

CLI/ODBC

trace

information

is

written.

db2cli.ini

keyword

syntax:

TraceFileName

=

<

fully

qualified

file

name

>

Default

setting:

None

Only

applicable

when:

the

Trace

option

is

turned

on.

Equivalent

connection

attribute:

SQL_ATTR_TRACEFILE

Usage

notes:

If

the

file

specified

does

not

exist,

then

it

will

be

created;

otherwise,

the

new

trace

information

will

be

appended

to

the

end

of

the

file.

However,

the

path

the

file

is

expected

in

must

exist.

Chapter

25.

CLI/ODBC

configuration

keywords

321

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

If

the

filename

given

is

invalid

or

if

the

file

cannot

be

created

or

written

to,

no

trace

will

occur

and

no

error

message

will

be

returned.

This

option

is

only

used

when

the

Trace

option

is

turned

on.

This

will

be

done

automatically

when

you

set

this

option

in

the

CLI/ODBC

Configuration

utility.

The

TracePathName

option

will

be

ignored

if

this

option

is

set.

DB2

CLI

trace

should

only

be

used

for

debugging

purposes.

It

will

slow

down

the

execution

of

the

CLI/ODBC

driver,

and

the

trace

information

can

grow

quite

large

if

it

is

left

on

for

extended

periods

of

time.

The

TraceFileName

keyword

option

should

not

be

used

with

multi-process

or

multithreaded

applications

as

the

trace

output

for

all

threads

or

processes

will

be

written

to

the

same

log

file,

and

the

output

for

each

thread

or

process

will

be

difficult

to

decipher.

Furthermore,

semaphores

are

used

to

control

access

to

the

shared

trace

file

which

could

change

the

behavior

of

multithreaded

applications.

There

is

no

default

DB2

CLI

trace

output

log

file

name.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“Connection

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

TraceFlush

CLI/ODBC

configuration

keyword

Keyword

description:

Force

a

write

to

disk

after

n

CLI/ODBC

trace

entries.

db2cli.ini

keyword

syntax:

TraceFlush

=

0

|

positive

integer

Default

setting:

Do

not

write

after

every

entry.

Only

applicable

when:

the

CLI/ODBC

Trace

option

is

turned

on.

Usage

notes:

TraceFlush

specifies

how

often

trace

information

is

written

to

the

CLI

trace

file.

By

default,

TraceFlush

is

set

to

0

and

each

DB2

CLI

trace

file

is

kept

open

until

the

traced

application

or

thread

terminates

normally.

If

the

application

terminates

abnormally,

some

trace

information

that

was

not

written

to

the

trace

log

file

may

be

lost.

322

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|

|
|
|
|
|

Set

this

keyword

to

a

positive

integer

to

force

the

DB2

CLI

driver

to

close

and

re-open

the

appropriate

trace

file

after

the

specified

number

of

trace

entries.

The

smaller

the

value

of

the

TraceFlush

keyword,

the

greater

the

impact

DB2

CLI

tracing

has

on

the

performance

of

the

application.

Setting

TraceFlush=1

has

the

most

impact

on

performance,

but

will

ensure

that

each

entry

is

written

to

disk

before

the

application

continues

to

the

next

statement.

This

option

is

only

used

when

the

Trace

CLI/ODBC

option

is

turned

on.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

TraceFlushOnError

CLI/ODBC

configuration

keyword

Keyword

description:

Write

all

CLI/ODBC

trace

entries

to

disk

when

an

error

occurs.

db2cli.ini

keyword

syntax:

TraceFlushOnError

=

0

|

1

Default

setting:

Do

not

write

CLI/ODBC

trace

entries

as

soon

as

an

error

occurs.

Only

applicable

when:

the

CLI/ODBC

Trace

option

is

turned

on.

Usage

notes:

Setting

TraceFlushOnError=1

forces

the

DB2

CLI

driver

to

close

and

re-open

the

trace

file

each

time

an

error

is

encountered.

If

TraceFlushOnError

is

left

at

its

default

value

of

0,

then

trace

file

will

only

be

closed

when

the

application

terminates

normally

or

the

interval

specified

by

the

TraceFlush

keyword

is

reached.

If

the

application

process

were

to

terminate

abnormally

when

TraceFlushOnError=0,

then

valuable

trace

information

may

be

lost.

Setting

TraceFlushOnError=1

may

impact

performance,

but

will

ensure

that

trace

entries

associated

with

errors

are

written

to

disk.

This

option

is

only

used

when

the

Trace

CLI/ODBC

option

is

turned

on.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Chapter

25.

CLI/ODBC

configuration

keywords

323

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|

|

|

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TraceErrImmediate

CLI/ODBC

configuration

keyword”

on

page

320

TraceLocks

CLI/ODBC

configuration

keyword

Keyword

description:

Only

trace

lock

timeouts

in

the

CLI/ODBC

trace.

db2cli.ini

keyword

syntax:

TraceLocks

=

0

|

1

Default

setting:

Trace

information

is

not

limited

to

only

lock

timeouts.

Only

applicable

when:

the

Trace

option

is

turned

on.

Usage

notes:

When

TraceLocks

is

set

to

1,

lock

timeouts

will

be

recorded

in

the

trace

file.

This

option

is

only

used

when

the

CLI/ODBC

TRACE

option

is

turned

on.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

TracePathName

CLI/ODBC

configuration

keyword

Keyword

description:

Subdirectory

used

to

store

individual

DB2

CLI/ODBC

trace

files.

db2cli.ini

keyword

syntax:

TracePathName

=

<

fully

qualified

subdirectory

name

>

Default

setting:

None

Only

applicable

when:

the

Trace

option

is

turned

on.

Not

applicable

when:

the

TraceFileName

option

is

turned

on.

324

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|

Usage

notes:

Each

thread

or

process

that

uses

the

same

DLL

or

shared

library

will

have

a

separate

DB2

CLI/ODBC

trace

file

created

in

the

specified

directory.

A

concatenation

of

the

application

process

ID

and

the

thread

sequence

number

is

automatically

used

to

name

trace

files.

No

trace

will

occur,

and

no

error

message

will

be

returned,

if

the

subdirectory

given

is

invalid

or

if

it

cannot

be

written

to.

This

option

is

only

used

when

the

Trace

option

is

turned

on.

This

will

be

done

automatically

when

you

set

this

option

in

the

CLI/ODBC

Configuration

utility.

It

will

be

ignored

if

the

DB2

CLI/ODBC

option

TraceFileName

is

used.

DB2

CLI

trace

should

only

be

used

for

debugging

purposes.

It

will

slow

down

the

execution

of

the

CLI/ODBC

driver,

and

the

trace

information

can

grow

quite

large

if

it

is

left

on

for

extended

periods

of

time.

If

both

TraceFileName

and

TracePathName

are

specified,

the

TraceFileName

keyword

takes

precedence

and

TracePathName

will

be

ignored.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

TracePIDList

CLI/ODBC

configuration

keyword

Keyword

description:

Restrict

the

process

IDs

for

which

the

CLI/ODBC

trace

will

be

enabled.

db2cli.ini

keyword

syntax:

TracePIDList

=

<no

value

specified>

|

<comma-delimited

list

of

process

IDs>

Default

setting:

Any

process

ID

will

be

traced

when

the

CLI/ODBC

trace

is

run.

Usage

notes:

If

no

value

is

specified

for

this

keyword,

all

process

IDs

will

be

traced.

Otherwise,

specify

a

comma-delimited

list

of

process

IDs

which

you

want

to

be

traced

when

the

CLI/ODBC

trace

runs.

Chapter

25.

CLI/ODBC

configuration

keywords

325

|
|
|
|

|
|

For

this

keyword

to

be

most

effective,

set

the

TraceRefreshInterval

keyword

to

some

value

before

initializing

your

application.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceRefreshInterval

CLI/ODBC

configuration

keyword”

on

page

327

v

“TracePIDTID

CLI/ODBC

configuration

keyword”

on

page

326

TracePIDTID

CLI/ODBC

configuration

keyword

Keyword

description:

Capture

the

process

ID

and

thread

ID

for

each

item

being

traced.

db2cli.ini

keyword

syntax:

TracePIDTID

=

0

|

1

Default

setting:

The

process

ID

and

thread

ID

for

the

trace

entries

are

not

captured.

Only

applicable

when:

the

Trace

option

is

turned

on.

Usage

notes:

When

TracePIDTID

is

set

to

1,

the

process

ID

and

thread

ID

for

each

captured

item

will

be

recorded

in

the

trace

file.

This

effect

is

helpful

when

the

Trace

keyword

is

enabled

and

multiple

applications

are

executing.

This

is

because

Trace

writes

trace

information

for

all

executing

applications

to

a

single

file.

Enabling

TracePIDTID

differentiates

the

recorded

information

by

process

and

thread.

This

option

is

only

used

when

the

CLI/ODBC

Trace

option

is

turned

on.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

326

CLI

Guide

and

Reference,

Volume

1

v

“TracePIDList

CLI/ODBC

configuration

keyword”

on

page

325

TraceRefreshInterval

CLI/ODBC

configuration

keyword

Keyword

description:

Set

the

interval

(in

seconds)

at

which

the

Trace

and

TracePIDList

keywords

are

read

from

the

Common

section

of

the

db2cli.ini

file.

db2cli.ini

keyword

syntax:

TraceRefreshInterval

=

0

|

positive

integer

Default

setting:

The

Trace

and

TracePIDList

keywords

will

only

be

read

from

the

db2cli.ini

file

when

the

application

is

initialized.

Usage

notes:

Setting

this

keyword

before

an

application

is

initialized

allows

you

to

turn

off

dynamically

the

CLI/ODBC

trace

within

n

seconds.

Note:

Setting

TraceRefreshInterval

while

the

application

is

running

will

no

effect.

For

this

keyword

to

take

effect,

it

must

be

set

before

the

application

is

initialized.

Only

the

Trace

and

TracePIDList

keywords

will

be

refreshed

from

the

db2cli.ini

file

if

this

keyword

is

set.

No

other

CLI/ODBC

configuration

keywords

will

be

re-read.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TracePIDList

CLI/ODBC

configuration

keyword”

on

page

325

TraceStmtOnly

CLI/ODBC

configuration

keyword

Keyword

description:

Only

trace

dynamic

SQL

statements

in

the

CLI/ODBC

trace.

db2cli.ini

keyword

syntax:

TraceStmtOnly

=

0

|

1

Default

setting:

Trace

information

is

not

limited

to

only

dynamic

SQL

statements.

Only

applicable

when:

the

Trace

option

is

turned

on.

Usage

notes:

Chapter

25.

CLI/ODBC

configuration

keywords

327

When

TraceStmtOnly

is

set

to

1,

only

dynamic

SQL

statements

will

be

recorded

in

the

trace

file.

This

option

is

only

used

when

the

CLI/ODBC

Trace

option

is

turned

on.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

TraceTime

CLI/ODBC

configuration

keyword

Keyword

description:

Capture

elapsed

time

counters

in

the

trace

file.

db2cli.ini

keyword

syntax:

TraceTime

=

1

|

0

Default

setting:

Elapsed

time

counters

are

included

in

the

trace

file.

Only

applicable

when:

the

Trace

option

is

turned

on.

Usage

notes:

When

TraceTime

is

set

to

1,

elapsed

time

counters

will

be

captured

in

the

trace

file.

For

example:

SQLPrepare(

hStmt=1:1,

pszSqlStr="SELECT

*

FROM

ORG",

cbSqlStr=−3

)

–––>

Time

elapsed

–

+6.785751E+000

seconds

(

StmtOut="SELECT

*

FROM

ORG"

)

SQLPrepare(

)

<–––

SQL_SUCCESS

Time

elapsed

–

+2.527400E–002

seconds

Turn

TraceTime

off,

by

setting

it

to

0,

to

improve

performance

or

to

generate

smaller

trace

files.

For

example:

SQLPrepare(

hStmt=1:1,

pszSqlStr="SELECT

*

FROM

ORG",

cbSqlStr=−3

)

(

StmtOut="SELECT

*

FROM

ORG"

)

SQLPrepare(

)

<–––

SQL_SUCCESS

This

option

is

only

used

when

the

CLI/ODBC

Trace

option

is

turned

on.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

328

CLI

Guide

and

Reference,

Volume

1

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

v

“TraceTimestamp

CLI/ODBC

configuration

keyword”

on

page

329

TraceTimestamp

CLI/ODBC

configuration

keyword

Keyword

description:

Capture

different

types

of

timestamp

information

in

the

CLI/ODBC

trace.

db2cli.ini

keyword

syntax:

TraceTimestamp

=

0

|

1

|

2

|

3

Default

setting:

No

timestamp

information

is

written

to

the

trace

file.

Only

applicable

when:

the

Trace

option

is

turned

on.

Usage

notes:

Setting

TraceTimeStamp

to

a

value

other

than

the

default

of

0

means

the

current

timestamp

or

absolute

execution

time

is

added

to

the

beginning

of

each

line

of

trace

information

as

it

is

being

written

to

the

DB2

CLI

trace

file.

The

following

settings

indicate

what

type

of

timestamp

information

is

captured

in

the

trace

file:

v

0

=

no

timestamp

information

v

1

=

processor

ticks

and

ISO

timestamp

(absolute

execution

time

in

seconds

and

milliseconds,

followed

by

a

timestamp)

v

2

=

processor

ticks

(absolute

execution

time

in

seconds

and

milliseconds)

v

3

=

ISO

timestamp

This

option

is

only

used

when

the

CLI/ODBC

Trace

option

is

turned

on.

(This

option

is

contained

in

the

Common

section

of

the

initialization

file

and

therefore

applies

to

all

connections

to

DB2.)

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

v

“CLI/ODBC/JDBC

trace

facility”

on

page

187

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“Trace

CLI/ODBC

configuration

keyword”

on

page

319

v

“TraceFileName

CLI/ODBC

configuration

keyword”

on

page

321

v

“TraceFlush

CLI/ODBC

configuration

keyword”

on

page

322

v

“TracePathName

CLI/ODBC

configuration

keyword”

on

page

324

v

“TraceTime

CLI/ODBC

configuration

keyword”

on

page

328

Chapter

25.

CLI/ODBC

configuration

keywords

329

|
|
|
|
|
|
|
|
|

TxnIsolation

CLI/ODBC

configuration

keyword

Keyword

description:

Set

the

default

isolation

level.

db2cli.ini

keyword

syntax:

TxnIsolation

=

1

|

2

|

4

|

8

|

32

Default

setting:

Read

Committed

(Cursor

Stability)

Only

applicable

when:

the

default

isolation

level

is

used.

This

keyword

will

have

no

effect

if

the

application

has

specifically

set

the

isolation

level.

Equivalent

statement

attribute:

SQL_ATTR_TXN_ISOLATION

Usage

notes:

Sets

the

isolation

level

to:

v

1

=

SQL_TXN_READ_UNCOMMITTED

-

Read

Uncommitted

(Uncommitted

read)

v

2

=

SQL_TXN_READ_COMMITTED

(default)

-

Read

Committed

(Cursor

stability)

v

4

=

SQL_TXN_REPEATABLE_READ

-

Repeatable

Read

(Read

Stability)

v

8

=

SQL_TXN_SERIALIZABLE

-

Serializable

(Repeatable

read)

v

32

=

SQL_TXN_NOCOMMIT

-

(No

Commit,

DB2

Universal

Database

for

AS/400

only;

this

is

similar

to

autocommit)

The

words

in

parentheses

are

IBM’s

terminology

for

the

equivalent

SQL92

isolation

levels.

Note

that

no

commit

is

not

an

SQL92

isolation

level

and

is

supported

only

on

DB2

Universal

Database

for

AS/400.

This

keyword

is

only

applicable

if

the

default

isolation

level

is

used.

If

the

application

specifically

sets

the

isolation

level

for

a

connection

or

statement

handle,

then

this

keyword

will

have

no

effect

on

that

handle.

Related

concepts:

v

“Isolation

levels”

in

the

SQL

Reference,

Volume

1

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“Statement

attributes

(CLI)

list”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

UID

CLI/ODBC

configuration

keyword

Keyword

description:

Define

default

user

ID.

db2cli.ini

keyword

syntax:

UID

=

userid

Default

setting:

None

330

CLI

Guide

and

Reference,

Volume

1

Usage

notes:

The

specified

userid

value

is

used

if

a

userid

is

not

provided

by

the

application

at

connect

time.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“PWD

CLI/ODBC

configuration

keyword”

on

page

307

Underscore

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

whether

the

underscore

character

’_’

is

treated

as

a

wildcard.

db2cli.ini

keyword

syntax:

Underscore

=

0

|

1

Default

setting:

The

underscore

character

matches

any

single

character

or

no

character.

Usage

notes:

This

keyword

specifies

if

the

underscore

character

’_’

will

be

recognized

as

a

wildcard

or

only

as

the

underscore

character.

The

possible

settings

are

as

follows:

v

0

-

The

underscore

character

is

treated

only

as

the

underscore

character.

v

1

-

The

underscore

character

is

treated

as

a

wildcard

that

matches

any

single

character,

including

no

character.

Setting

Underscore

to

0

can

improve

performance

when

there

are

database

objects

with

names

that

contain

underscores.

This

keyword

applies

only

to

the

following

catalog

functions

that

accept

search

patterns

as

arguments:

v

SQLColumnPrivileges()

v

SQLColumns()

v

SQLProcedureColumns()

v

SQLProcedures()

v

SQLTablePrivileges()

v

SQLTables()

Note

that

catalog

functions

may

only

accept

search

patterns

on

particular

arguments.

Refer

to

the

documentation

of

the

specific

function

for

details.

Related

concepts:

v

“Input

arguments

on

catalog

functions

in

CLI

applications”

on

page

164

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“SQLColumnPrivileges

function

(CLI)

-

Get

privileges

associated

with

the

columns

of

a

table”

in

the

CLI

Guide

and

Reference,

Volume

2

Chapter

25.

CLI/ODBC

configuration

keywords

331

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

v

“SQLColumns

function

(CLI)

-

Get

column

information

for

a

table”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLProcedureColumns

function

(CLI)

-

Get

input/output

parameter

information

for

a

procedure”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLProcedures

function

(CLI)

-

Get

list

of

procedure

names”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLTablePrivileges

function

(CLI)

-

Get

privileges

associated

with

a

table”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“SQLTables

function

(CLI)

-

Get

table

information”

in

the

CLI

Guide

and

Reference,

Volume

2

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

UseOldStpCall

CLI/ODBC

configuration

keyword

Keyword

description:

Controls

how

cataloged

procedures

are

invoked.

db2cli.ini

keyword

syntax:

UseOldStpCall

=

0

|

1

Default

setting:

Invokes

procedures

using

the

new

CALL

method

where

GRANT

EXECUTE

must

be

granted

on

the

procedure.

Usage

notes:

Prior

to

Version

8,

the

invoker

of

a

procedure

had

to

have

EXECUTE

privilege

on

any

package

invoked

from

the

procedure.

Now,

the

invoker

must

have

EXECUTE

privilege

on

the

procedure

and

only

the

definer

of

the

procedure

has

to

have

EXECUTE

privilege

on

any

required

packages.

This

keyword

controls

which

method

is

used

to

invoke

the

procedure.

Setting

UseOldStpCall

on

causes

the

procedure

to

be

invoked

using

the

deprecated

sqleproc()

API

when

the

precompiler

fails

to

resolve

a

procedure

on

a

CALL

statement.

Turning

this

keyword

off

will

invoke

procedures

where

GRANT

EXECUTE

must

be

granted

on

the

procedure.

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

tasks:

v

“Calling

stored

procedures

from

CLI

applications”

on

page

113

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

WarningList

CLI/ODBC

configuration

keyword

Keyword

description:

Specify

which

errors

to

downgrade

to

warnings.

db2cli.ini

keyword

syntax:

WarningList

=

″

’xxxxx’,

’yyyyy’,

...″

332

CLI

Guide

and

Reference,

Volume

1

|
|

|
|

|
|

|
|

|
|

|

Default

setting:

Do

not

downgrade

any

SQLSTATEs.

Usage

notes:

Any

number

of

SQLSTATEs

returned

as

errors

can

be

downgraded

to

warnings.

Each

must

be

delimited

with

single

quotes,

separated

by

commas,

and

in

uppercase.

The

entire

string

must

also

be

enclosed

in

double

quotes.

For

example:

WarningList="

’01S02’,

’HY090’

"

Related

concepts:

v

“db2cli.ini

initialization

file”

on

page

255

Related

reference:

v

“CLI/ODBC

configuration

keywords

listing

by

category”

on

page

257

v

“IgnoreWarnList

CLI/ODBC

configuration

keyword”

on

page

291

Chapter

25.

CLI/ODBC

configuration

keywords

333

334

CLI

Guide

and

Reference,

Volume

1

Part

5.

Data

conversion

©

Copyright

IBM

Corp.

1993

-

2004

335

336

CLI

Guide

and

Reference,

Volume

1

Chapter

26.

Data

conversion

Data

conversions

supported

in

CLI

.

.

.

.

.

. 337

SQL

to

C

data

conversion

in

CLI

.

.

.

.

.

.

. 339

C

to

SQL

data

conversion

in

CLI

.

.

.

.

.

.

. 345

This

chapter

describes

the

data

conversions

supported

in

CLI,

along

with

the

details

of

SQL

to

C

and

C

to

SQL

data

type

conversions.

Data

conversions

supported

in

CLI

The

table

below

shows

which

data

type

conversions

are

supported

by

DB2

CLI.

The

first

column

contains

the

data

type

of

the

SQL

data

type.

The

remaining

columns

represent

the

C

data

types.

If

the

C

data

type

columns

contain:

D

The

conversion

is

supported

and

this

is

the

default

conversion

for

the

SQL

data

type.

X

all

IBM

DBMSs

support

the

conversion.

blank

no

IBM

DBMS

supports

the

conversion.

As

an

example,

the

table

indicates

that

an

SQLCHAR

(or

a

C

character)

string

can

be

converted

into

an

SQL_C_LONG

(a

signed

long).

In

contrast,

an

SQLINTEGER

cannot

be

converted

to

an

SQL_C_DBCHAR.

Refer

to

the

tables

of

data

type

attributes

(precision,

scale,

length,

and

display)

for

more

information

on

the

data

type

formats.

Table

24.

Supported

data

conversions

SQL

data

type

S

Q

L

_

C

_

C

H

A

R

S

Q

L

_

C

_

B

I

N

A

R

Y

S

Q

L

_

C

_

W

C

H

A

R

S

Q

L

_

C

_

D

B

C

H

A

R

S

Q

L

_

C

_

S

H

O

R

T

S

Q

L

_

C

_

U

S

H

O

R

T

S

Q

L

_

C

_

L

O

N

G

S

Q

L

_

C

_

U

L

O

N

G

S

Q

L

_

C

_

S

B

I

G

I

N

T

S

Q

L

_

C

_

U

B

I

G

I

N

T

S

Q

L

_

C

_

T

I

N

Y

I

N

T

S

Q

L

_

C

_

U

T

I

N

Y

I

N

T

S

Q

L

_

C

_

B

I

T

S

Q

L

_

C

_

F

L

O

A

T

S

Q

L

_

C

_

D

O

U

B

L

E

S

Q

L

_

C

_

N

U

M

E

R

I

C

S

Q

L

_

C

_

T

Y

P

E

_

D

A

T

E

S

Q

L

_

C

_

T

Y

P

E

_

T

I

M

E

S

Q

L

_

C

_

T

Y

P

E

_

T

I

M

E

S

T

A

M

P

S

Q

L

_

C

_

D

E

C

I

M

A

L

_

I

B

M

S

Q

L

_

C

_

D

A

T

A

L

I

N

K

S

Q

L

_

C

_

C

L

O

B

_

L

O

C

A

T

O

R

S

Q

L

_

C

_

B

L

O

B

_

L

O

C

A

T

O

R

S

Q

L

_

C

_

D

B

C

L

O

B

_

L

O

C

A

T

O

R

SQL_CHAR

D

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SQL_

VARCHAR

D

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SQL_

LONG

VARCHAR

D

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SQL_

BINARY

X

D

X

SQL_

VARBINARY

X

D

X

©

Copyright

IBM

Corp.

1993

-

2004

337

|
|
|

|||||||||||||||||||||||||
|
|
||||||||||||||||||||||||

|
|
|

||||||||||||||||||||||||

|
|
||||||||||||||||||||||||

|
|
||||||||||||||||||||||||

Table

24.

Supported

data

conversions

(continued)

SQL

data

type

S

Q

L

_

C

_

C

H

A

R

S

Q

L

_

C

_

B

I

N

A

R

Y

S

Q

L

_

C

_

W

C

H

A

R

S

Q

L

_

C

_

D

B

C

H

A

R

S

Q

L

_

C

_

S

H

O

R

T

S

Q

L

_

C

_

U

S

H

O

R

T

S

Q

L

_

C

_

L

O

N

G

S

Q

L

_

C

_

U

L

O

N

G

S

Q

L

_

C

_

S

B

I

G

I

N

T

S

Q

L

_

C

_

U

B

I

G

I

N

T

S

Q

L

_

C

_

T

I

N

Y

I

N

T

S

Q

L

_

C

_

U

T

I

N

Y

I

N

T

S

Q

L

_

C

_

B

I

T

S

Q

L

_

C

_

F

L

O

A

T

S

Q

L

_

C

_

D

O

U

B

L

E

S

Q

L

_

C

_

N

U

M

E

R

I

C

S

Q

L

_

C

_

T

Y

P

E

_

D

A

T

E

S

Q

L

_

C

_

T

Y

P

E

_

T

I

M

E

S

Q

L

_

C

_

T

Y

P

E

_

T

I

M

E

S

T

A

M

P

S

Q

L

_

C

_

D

E

C

I

M

A

L

_

I

B

M

S

Q

L

_

C

_

D

A

T

A

L

I

N

K

S

Q

L

_

C

_

C

L

O

B

_

L

O

C

A

T

O

R

S

Q

L

_

C

_

B

L

O

B

_

L

O

C

A

T

O

R

S

Q

L

_

C

_

D

B

C

L

O

B

_

L

O

C

A

T

O

R

SQL_

LONG

VARBINARY

X

D

X

SQL_

GRAPHIC

X

X

X

D

SQL_

VARGRAPHIC

X

X

X

D

SQL_

LONG

VARGRAPHIC

X

X

X

D

SQL_CLOB

D

X

X

X

SQL_BLOB

X

D

X

X

SQL_DBCLOB

X

X

X

D

X

SQL_

CLOB_

LOCATOR

D

SQL_

BLOB_

LOCATOR

D

SQL_

DBCLOB_

LOCATOR

D

SQL_NUMERIC

D

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SQL_DECIMAL

D

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SQL_INTEGER

X

X

X

X

X

D

X

X

X

X

X

X

X

X

X

SQL_

SMALLINT

X

X

X

D

X

X

X

X

X

X

X

X

X

X

X

SQL_FLOAT

X

X

X

X

X

X

X

X

X

X

X

X

X

D

X

SQL_DOUBLE

X

X

X

X

X

X

X

X

X

X

X

X

X

D

X

SQL_REAL

X

X

X

X

X

X

X

X

X

X

X

X

D

X

X

SQL_BIGINT

X

X

X

X

X

X

X

D

X

X

X

X

X

X

X

SQL_TINYINT

X

X

X

X

X

X

X

X

X

D

X

X

X

X

X

SQL_BIT

X

X

X

D

SQL_

TYPE_DATE

X

X

D

X

SQL_

TYPE_TIME

X

X

D

X

SQL_

TYPE_

TIMESTAMP

X

X

X

X

D

SQL_

DATALINK

D

X

X

338

CLI

Guide

and

Reference,

Volume

1

|
|
|

||||||||||||||||||||||||

|
|
||||||||||||||||||||||||

|
|
||||||||||||||||||||||||

|
|
|

||||||||||||||||||||||||

|||||||||||||||||||||||||
|||||||||||||||||||||||||

|
|
||||||||||||||||||||||||

|
|
|

||||||||||||||||||||||||

|
|
||||||||||||||||||||||||

Related

concepts:

v

“Data

types

and

data

conversion

in

CLI

applications”

on

page

39

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“C

data

types

for

CLI

applications”

on

page

42

v

“SQL

to

C

data

conversion

in

CLI”

on

page

339

v

“C

to

SQL

data

conversion

in

CLI”

on

page

345

SQL

to

C

data

conversion

in

CLI

For

a

given

SQL

data

type:

v

the

first

column

of

the

table

lists

the

legal

input

values

of

the

fCType

argument

in

SQLBindCol()

and

SQLGetData().

v

the

second

column

lists

the

outcomes

of

a

test,

often

using

the

cbValueMax

argument

specified

in

SQLBindCol()

or

SQLGetData(),

which

the

driver

performs

to

determine

if

it

can

convert

the

data.

v

the

third

and

fourth

columns

list

the

values

(for

each

outcome)

of

the

rgbValue

and

pcbValue

arguments

specified

in

the

SQLBindCol()

or

SQLGetData()

after

the

driver

has

attempted

to

convert

the

data.

v

the

last

column

lists

the

SQLSTATE

returned

for

each

outcome

by

SQLFetch(),

SQLExtendedFetch(),

SQLGetData()

or

SQLGetSubString().

The

tables

list

the

conversions

defined

by

ODBC

to

be

valid

for

a

given

SQL

data

type.

If

the

fCType

argument

in

SQLBindCol()

or

SQLGetData()

contains

a

value

not

shown

in

the

table

for

a

given

SQL

data

type,

SQLFetch(),

or

SQLGetData()

returns

the

SQLSTATE

07006

(Restricted

data

type

attribute

violation).

If

the

fCType

argument

contains

a

value

shown

in

the

table

but

which

specifies

a

conversion

not

supported

by

the

driver,

SQLFetch(),

or

SQLGetData()

returns

SQLSTATE

HYC00

(Driver

not

capable).

Though

it

is

not

shown

in

the

tables,

the

pcbValue

argument

contains

SQL_NULL_DATA

when

the

SQL

data

value

is

NULL.

For

an

explanation

of

the

use

of

pcbValue

when

multiple

calls

are

made

to

retrieve

data,

see

SQLGetData().

When

SQL

data

is

converted

to

character

C

data,

the

character

count

returned

in

pcbValue

does

not

include

the

null

termination

byte.

If

rgbValue

is

a

null

pointer,

SQLBindCol()

or

SQLGetData()

returns

SQLSTATE

HY009

(Invalid

argument

value).

In

the

following

tables:

Length

of

data

the

total

length

of

the

data

after

it

has

been

converted

to

the

specified

C

data

type

(excluding

the

null

termination

byte

if

the

data

was

converted

to

a

string).

This

is

true

even

if

data

is

truncated

before

it

is

returned

to

the

application.

Significant

digits

the

minus

sign

(if

needed)

and

the

digits

to

the

left

of

the

decimal

point.

Display

size

the

total

number

of

bytes

needed

to

display

data

in

the

character

format.

Chapter

26.

Data

conversion

339

Converting

character

SQL

data

to

C

data:

The

character

SQL

data

types

are:

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Table

25.

Converting

character

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

Length

of

data

<

cbValueMax

Data

Length

of

data

00000

Length

of

data

>=

cbValueMax

Truncated

data

Length

of

data

01004

SQL_C_BINARY

Length

of

data

<=

cbValueMax

Data

Length

of

data

00000

Length

of

data

>

cbValueMax

Truncated

data

Length

of

data

01004

SQL_C_SHORT

SQL_C_LONG

SQL_C_FLOAT

SQL_C_FLOAT

SQL_C_TINYINT

SQL_C_BIT

SQL_C_UBIGINT

SQL_C_SBIGINT

SQL_C_NUMERIC

c

Data

converted

without

truncation

a

Data

Size

of

the

C

data

type

00000

Data

converted

with

truncation,

but

without

loss

of

significant

digits

a

Data

Size

of

the

C

data

type

01004

Conversion

of

data

would

result

in

loss

of

significant

digitsa

Untouched

Size

of

the

C

data

type

22003

Data

is

not

a

number

a

Untouched

Size

of

the

C

data

type

22005

SQL_C_DATE

Data

value

is

a

valid

date

a

Data

6

b

00000

Data

value

is

not

a

valid

date

a

Untouched

6

b

22007

SQL_C_TIME

Data

value

is

a

valid

time

a

Data

6

b

00000

Data

value

is

not

a

valid

time

a

Untouched

6

b

22007

SQL_C_TIMESTAMP

Data

value

is

a

valid

timestamp

a

Data

16

b

00000

Data

value

is

not

a

valid

timestamp

a

Untouched

16

b

22007

Note:

a

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

b

This

is

the

size

of

the

corresponding

C

data

type.

c

SQL_C_NUMERIC

is

only

supported

on

Windows

platforms.

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

Converting

graphic

SQL

data

to

C

data:

340

CLI

Guide

and

Reference,

Volume

1

The

graphic

SQL

data

types

are:

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_LONGVARGRAPHIC

SQL_DBCLOB

Table

26.

Converting

GRAPHIC

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

Number

of

double

byte

characters

*

2

<=

cbValueMax

Data

Length

of

data(octects)

00000

Number

of

double

byte

characters

*

2

>

cbValueMax

Truncated

data,

to

the

nearest

even

byte

that

is

less

than

cbValueMax.

Length

of

data(octects)

01004

SQL_C_DBCHAR

Number

of

double

byte

characters

*

2

<

cbValueMax

Data

Length

of

data(octects)

00000

Number

of

double

byte

characters

*

2

>=

cbValueMax

Truncated

data,

to

the

nearest

even

byte

that

is

less

than

cbValueMax.

Length

of

data(octects)

01004

Note:

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

When

converting

to

floating

point

values,

SQLSTATE

22003

will

not

be

returned

if

non-significant

digits

of

the

resulting

value

are

lost.

Converting

numeric

SQL

data

to

C

data:

The

numeric

SQL

data

types

are:

SQL_DECIMAL

SQL_NUMERIC

SQL_SMALLINT

SQL_INTEGER

SQL_BIGINT

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

Table

27.

Converting

numeric

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

Display

size

<

cbValueMax

Data

Length

of

data

00000

Number

of

significant

digits

<

cbValueMax

Truncated

data

Length

of

data

01004

Number

of

significant

digits

>=

cbValueMax

Untouched

Length

of

data

22003

Chapter

26.

Data

conversion

341

Table

27.

Converting

numeric

SQL

data

to

C

data

(continued)

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_SHORT

SQL_C_LONG

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TINYINT

SQL_C_BIT

SQL_C_UBIGINT

SQL_C_SBIGINT

SQL_C_NUMERIC

b

Data

converted

without

truncation

a

Data

Size

of

the

C

data

type

00000

Data

converted

with

truncation,

but

without

loss

of

significant

digits

a

Truncated

data

Size

of

the

C

data

type

01004

Conversion

of

data

would

result

in

loss

of

significant

digits

a

Untouched

Size

of

the

C

data

type

22003

Note:

a

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

b

SQL_C_NUMERIC

is

only

supported

on

Windows

platforms.

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

Converting

binary

SQL

data

to

C

data:

The

binary

SQL

data

types

are:

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Table

28.

Converting

binary

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

(Length

of

data)

<

cbValueMax

Data

Length

of

data

N/A

(Length

of

data)

>=

cbValueMax

Truncated

data

Length

of

data

01004

SQL_C_BINARY

Length

of

data

<=

cbValueMax

Data

Length

of

data

N/A

Length

of

data

>

cbValueMax

Truncated

data

Length

of

data

01004

Converting

date

SQL

data

to

C

data:

The

date

SQL

data

type

is:

SQL_DATE

Table

29.

Converting

date

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

cbValueMax

>=

11

Data

10

00000

cbValueMax

<

11

Untouched

10

22003

SQL_C_DATE

None

a

Data

6

b

00000

SQL_C_TIMESTAMP

None

a

Data

c

16

b

00000

342

CLI

Guide

and

Reference,

Volume

1

Table

29.

Converting

date

SQL

data

to

C

data

(continued)

fCType

Test

rgbValue

pcbValue

SQLSTATE

Note:

a

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

b

This

is

the

size

of

the

corresponding

C

data

type.

c

The

time

fields

of

the

TIMESTAMP_STRUCT

structure

are

set

to

zero.

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

When

the

date

SQL

data

type

is

converted

to

the

character

C

data

type,

the

resulting

string

is

in

the

"yyyy-mm-dd”

format.

Converting

Time

SQL

Data

to

C

Data:

The

time

SQL

data

type

is:

SQL_TIME

Table

30.

Converting

time

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

cbValueMax

>=

9

Data

8

00000

cbValueMax

<

9

Untouched

8

22003

SQL_C_TIME

None

a

Data

6

b

00000

SQL_C_TIMESTAMP

None

a

Data

c

16

b

00000

Note:

a

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

b

This

is

the

size

of

the

corresponding

C

data

type.

c

The

date

fields

of

the

TIMESTAMP_STRUCT

structure

are

set

to

the

current

system

date

of

the

machine

that

the

application

is

running,

and

the

time

fraction

is

set

to

zero.

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

When

the

time

SQL

data

type

is

converted

to

the

character

C

data

type,

the

resulting

string

is

in

the

"hh:mm:ss”

format.

Converting

timestamp

SQL

data

to

C

data:

The

timestamp

SQL

data

type

is:

SQL_TIMESTAMP

Table

31.

Converting

timestamp

SQL

data

to

C

data

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_CHAR

Display

size

<

cbValueMax

Data

Length

of

data

00000

19

<=

cbValueMax

<=

Display

size

Truncated

Data

b

Length

of

data

01004

cbValueMax

<

19

Untouched

Length

of

data

22003

Chapter

26.

Data

conversion

343

Table

31.

Converting

timestamp

SQL

data

to

C

data

(continued)

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_DATE

None

a

Truncated

data

c

6

e

01004

SQL_C_TIME

None

a

Truncated

data

d

6

e

01004

SQL_C_TIMESTAMP

None

a

Data

16

e

00000

Note:

a

The

value

of

cbValueMax

is

ignored

for

this

conversion.

The

driver

assumes

that

the

size

of

rgbValue

is

the

size

of

the

C

data

type.

b

The

fractional

seconds

of

the

timestamp

are

truncated.

c

The

time

portion

of

the

timestamp

is

deleted.

d

The

date

portion

of

the

timestamp

is

deleted.

e

This

is

the

size

of

the

corresponding

C

data

type.

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

When

the

timestamp

SQL

data

type

is

converted

to

the

character

C

data

type,

the

resulting

string

is

in

the

"yyyy-mm-dd

hh:mm:ss.ffffff”

format

(regardless

of

the

precision

of

the

timestamp

SQL

data

type).

If

an

application

requires

the

ISO

format,

set

the

CLI/ODBC

configuration

keyword

PATCH2=33.

SQL

to

C

data

conversion

examples:

Table

32.

SQL

to

C

data

conversion

examples

SQL

data

type

SQL

data

value

C

data

type

cbValue

max

rgbValue

SQL

STATE

SQL_CHAR

abcdef

SQL_C_CHAR

7

abcdef\0

a

00000

SQL_CHAR

abcdef

SQL_C_CHAR

6

abcde\0

a

01004

SQL_DECIMAL

1234.56

SQL_C_CHAR

8

1234.56\0

a

00000

SQL_DECIMAL

1234.56

SQL_C_CHAR

5

1234\0

a

01004

SQL_DECIMAL

1234.56

SQL_C_CHAR

4

22003

SQL_DECIMAL

1234.56

SQL_C_FLOAT

ignored

1234.56

00000

SQL_DECIMAL

1234.56

SQL_C_SHORT

ignored

1234

01004

SQL_DATE

1992-12-31

SQL_C_CHAR

11

1992-12-31\0

a

00000

SQL_DATE

1992-12-31

SQL_C_CHAR

10

22003

SQL_DATE

1992-12-31

SQL_C_

TIMESTAMP

ignored

1992,12,31,

0,0,0,0

b

00000

SQL_TIMESTAMP

1992-12-31

23:45:55.12

SQL_C_CHAR

23

1992-12-31

23:45:55.12\0

a

00000

SQL_TIMESTAMP

1992-12-31

23:45:55.12

SQL_C_CHAR

22

1992-12-31

23:45:55.1\0

a

01004

SQL_TIMESTAMP

1992-12-31

23:45:55.12

SQL_C_CHAR

18

22003

Note:

a

″\0″

represents

a

null

termination

character.

b

The

numbers

in

this

list

are

the

numbers

stored

in

the

fields

of

the

TIMESTAMP_STRUCT

structure.

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

344

CLI

Guide

and

Reference,

Volume

1

|
|
|
|

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“C

data

types

for

CLI

applications”

on

page

42

v

“Data

conversions

supported

in

CLI”

on

page

337

v

“C

to

SQL

data

conversion

in

CLI”

on

page

345

v

“Patch2

CLI/ODBC

configuration

keyword”

on

page

305

C

to

SQL

data

conversion

in

CLI

For

a

given

C

data

type:

v

the

first

column

of

the

table

lists

the

legal

input

values

of

the

fSqlType

argument

in

SQLBindParameter()

or

SQLSetParam().

v

the

second

column

lists

the

outcomes

of

a

test,

often

using

the

length

of

the

parameter

data

as

specified

in

the

pcbValue

argument

in

SQLBindParameter()

or

SQLSetParam(),

which

the

driver

performs

to

determine

if

it

can

convert

the

data.

v

the

third

column

lists

the

SQLSTATE

returned

for

each

outcome

by

SQLExecDirect()

or

SQLExecute().

The

tables

list

the

conversions

defined

by

ODBC

to

be

valid

for

a

given

SQL

data

type.

If

the

fSqlType

argument

in

SQLBindParameter()

or

SQLSetParam()

contains

a

value

not

shown

in

the

table

for

a

given

C

data

type,

SQLSTATE

07006

is

returned

(Restricted

data

type

attribute

violation).

If

the

fSqlType

argument

contains

a

value

shown

in

the

table

but

which

specifies

a

conversion

not

supported

by

the

driver,

SQLBindParameter()

or

SQLSetParam()

returns

SQLSTATE

HYC00

(Driver

not

capable).

If

the

rgbValue

and

pcbValue

arguments

specified

in

SQLBindParameter()

or

SQLSetParam()

are

both

null

pointers,

that

function

returns

SQLSTATE

HY009

(Invalid

argument

value).

Length

of

data

the

total

length

of

the

data

after

it

has

been

converted

to

the

specified

SQL

data

type

(excluding

the

null

termination

byte

if

the

data

was

converted

to

a

string).

This

is

true

even

if

data

is

truncated

before

it

is

sent

to

the

data

source.

Column

length

the

maximum

number

of

bytes

returned

to

the

application

when

data

is

transferred

to

its

default

C

data

type.

For

character

data,

the

length

does

not

include

the

null

termination

byte.

Display

size

the

maximum

number

of

bytes

needed

to

display

data

in

character

form.

Significant

digits

the

minus

sign

(if

needed)

and

the

digits

to

the

left

of

the

decimal

point.

Converting

character

C

data

to

SQL

data:

The

character

C

data

type

is:

SQL_C_CHAR

Chapter

26.

Data

conversion

345

Table

33.

Converting

character

C

data

to

SQL

data

fSQLType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Length

of

data

<=

Column

length

N/A

Length

of

data

>

Column

length

22001

SQL_DECIMAL

SQL_NUMERIC

SQL_SMALLINT

SQL_INTEGER

SQL_BIGINT

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

Data

converted

without

truncation

N/A

Data

converted

with

truncation,

but

without

loss

of

significant

digits

22001

Conversion

of

data

would

result

in

loss

of

significant

digits

22003

Data

value

is

not

a

numeric

value

22005

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

(Length

of

data)

<

Column

length

N/A

(Length

of

data)

>=

Column

length

22001

Data

value

is

not

a

hexadecimal

value

22005

SQL_DATE

Data

value

is

a

valid

date

N/A

Data

value

is

not

a

valid

date

22007

SQL_TIME

Data

value

is

a

valid

time

N/A

Data

value

is

not

a

valid

time

22007

SQL_TIMESTAMP

Data

value

is

a

valid

timestamp

N/A

Data

value

is

not

a

valid

timestamp

22007

SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_LONGVARGRAPHIC

SQL_DBCLOB

Length

of

data

/

2

<=

Column

length

N/A

Length

of

data

/

2

<

Column

length

22001

Note:

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

Converting

numeric

C

data

to

SQL

data:

The

numeric

C

data

types

are:

SQL_C_SHORT

SQL_C_LONG

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TINYINT

SQL_C_SBIGINT

SQL_C_BIT

Table

34.

Converting

numeric

C

data

to

SQL

data

fSQLType

Test

SQLSTATE

SQL_DECIMAL

SQL_NUMERIC

SQL_SMALLINT

SQL_INTEGER

SQL_BIGINT

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

Data

converted

without

truncation

N/A

Data

converted

with

truncation,

but

without

loss

of

significant

digits

22001

Conversion

of

data

would

result

in

loss

of

significant

digits

22003

SQL_CHAR

SQL_VARCHAR

Data

converted

without

truncation.

N/A

Conversion

of

data

would

result

in

loss

of

significant

digits.

22003

346

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

Table

34.

Converting

numeric

C

data

to

SQL

data

(continued)

fSQLType

Test

SQLSTATE

Note:

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

When

converting

to

floating

point

values,

SQLSTATE

22003

will

not

be

returned

if

non-significant

digits

of

the

resulting

value

are

lost.

Converting

binary

C

data

to

SQL

data:

The

binary

C

data

type

is:

SQL_C_BINARY

Table

35.

Converting

binary

C

data

to

SQL

data

fSQLType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Length

of

data

<=

Column

length

N/A

Length

of

data

>

Column

length

22001

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Length

of

data

<=

Column

length

N/A

Length

of

data

>

Column

length

22001

Converting

DBCHAR

C

data

to

SQL

data:

The

double

byte

C

data

type

is:

SQL_C_DBCHAR

Table

36.

Converting

DBCHAR

C

data

to

SQL

data

fSQLType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Length

of

data

<=

Column

length

x

2

N/A

Length

of

data

>

Column

length

x

2

22001

SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Length

of

data

<=

Column

length

x

2

N/A

Length

of

data

>

Column

length

x

2

22001

Converting

date

C

data

to

SQL

data:

The

date

C

data

type

is:

SQL_C_DATE

Table

37.

Converting

date

C

data

to

SQL

data

fSQLType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

Column

length

>=

10

N/A

Column

length

<

10

22003

SQL_DATE

Data

value

is

a

valid

date

N/A

Data

value

is

not

a

valid

date

22007

Chapter

26.

Data

conversion

347

Table

37.

Converting

date

C

data

to

SQL

data

(continued)

fSQLType

Test

SQLSTATE

SQL_TIMESTAMP

a

Data

value

is

a

valid

date

N/A

Data

value

is

not

a

valid

date

22007

Note:

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

Note:

a,

the

time

component

of

TIMESTAMP

is

set

to

zero.

Converting

time

C

data

to

SQL

data:

The

time

C

data

type

is:

SQL_C_TIME

Table

38.

Converting

time

C

data

to

SQL

data

fSQLType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

Column

length

>=

8

N/A

Column

length

<

8

22003

SQL_TIME

Data

value

is

a

valid

time

N/A

Data

value

is

not

a

valid

time

22007

SQL_TIMESTAMP

a

Data

value

is

a

valid

time

N/A

Data

value

is

not

a

valid

time

22007

Note:

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

Note:

a

The

date

component

of

TIMESTAMP

is

set

to

the

system

date

of

the

machine

at

which

the

application

is

running.

Converting

timestamp

C

data

to

SQL

data:

The

timestamp

C

data

type

is:

SQL_C_TIMESTAMP

Table

39.

Converting

timestamp

C

data

to

SQL

data

fSQLType

Test

SQLSTATE

SQL_CHAR

SQL_VARCHAR

Column

length

>=

Display

size

N/A

19

<=

Column

length

<

Display

size

a

22001

Column

length

<

19

22003

SQL_DATE

Time

fields

are

zero

N/A

Time

fields

are

non-zero

22008

Data

value

does

not

contain

a

valid

date

b

22007

SQL_TIME

Fractional

seconds

fields

are

zero

N/A

Fractional

seconds

fields

are

non-zero

22008

Data

value

does

not

contain

a

valid

time

22007

SQL_TIMESTAMP

Data

value

is

a

valid

timestamp

N/A

Data

value

is

not

a

valid

timestamp

22007

348

CLI

Guide

and

Reference,

Volume

1

||

||

Table

39.

Converting

timestamp

C

data

to

SQL

data

(continued)

fSQLType

Test

SQLSTATE

Note:

a

The

fractional

seconds

of

the

timestamp

are

truncated.

b

The

timestamp_struct

must

reset

the

hour,

minute,

second,

and

fraction

to

0,

otherwise

SQLSTATE

22007

will

be

returned.

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

C

to

SQL

data

conversion

examples:

Table

40.

C

to

SQL

data

conversion

examples

C

data

type

C

data

value

SQL

data

type

Column

length

SQL

data

value

SQL

STATE

SQL_C_CHAR

abcdef\0

SQL_CHAR

6

abcdef

N/A

SQL_C_CHAR

abcdef\0

SQL_CHAR

5

abcde

22001

SQL_C_CHAR

1234.56\0

SQL_DECIMAL

6

1234.56

N/A

SQL_C_CHAR

1234.56\0

SQL_DECIMAL

5

1234.5

22001

SQL_C_CHAR

1234.56\0

SQL_DECIMAL

3

22003

SQL_C_CHAR

4.46.32

SQL_TIME

6

4.46.32

N/A

SQL_C_CHAR

4-46-32

SQL_TIME

6

not

applicable

22007

SQL_C_DOUBLE

123.45

SQL_CHAR

22

1.23450000

000000e+02

N/A

SQL_C_FLOAT

1234.56

SQL_FLOAT

not

applicable

1234.56

N/A

SQL_C_FLOAT

1234.56

SQL_INTEGER

not

applicable

1234

22001

SQL_C_

TIMESTAMP

1992-12-31

23:45:55.

123456

SQL_DATE

6

1992-12-31

01004

Note:

SQLSTATE

00000

is

not

returned

by

SQLError(),

rather

it

is

indicated

when

the

function

returns

SQL_SUCCESS.

Related

reference:

v

“SQL

symbolic

and

default

data

types

for

CLI

applications”

on

page

41

v

“C

data

types

for

CLI

applications”

on

page

42

v

“Data

conversions

supported

in

CLI”

on

page

337

v

“SQL

to

C

data

conversion

in

CLI”

on

page

339

Chapter

26.

Data

conversion

349

||
|

350

CLI

Guide

and

Reference,

Volume

1

Part

6.

Appendixes

©

Copyright

IBM

Corp.

1993

-

2004

351

352

CLI

Guide

and

Reference,

Volume

1

Appendix

A.

DB2

Universal

Database

technical

information

DB2

documentation

and

help

DB2®

technical

information

is

available

through

the

following

tools

and

methods:

v

DB2

Information

Center

–

Topics

–

Help

for

DB2

tools

–

Sample

programs

–

Tutorials
v

Downloadable

PDF

files,

PDF

files

on

CD,

and

printed

books

–

Guides

–

Reference

manuals
v

Command

line

help

–

Command

help

–

Message

help

–

SQL

state

help
v

Installed

source

code

–

Sample

programs

You

can

access

additional

DB2

Universal

Database™

technical

information

such

as

technotes,

white

papers,

and

Redbooks™

online

at

ibm.com®.

Access

the

DB2

Information

Management

software

library

site

at

www.ibm.com/software/data/pubs/.

DB2

documentation

updates

IBM®

may

periodically

make

documentation

FixPaks

and

other

documentation

updates

to

the

DB2

Information

Center

available.

If

you

access

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/,

you

will

always

be

viewing

the

most

up-to-date

information.

If

you

have

installed

the

DB2

Information

Center

locally,

then

you

need

to

install

any

updates

manually

before

you

can

view

them.

Documentation

updates

allow

you

to

update

the

information

that

you

installed

from

the

DB2

Information

Center

CD

when

new

information

becomes

available.

The

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books.

To

get

the

most

current

DB2

technical

information,

install

the

documentation

updates

as

they

become

available

or

go

to

the

DB2

Information

Center

at

the

www.ibm.com

site.

Related

concepts:

v

“CLI

sample

programs”

on

page

249

v

“Java

sample

programs”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“DB2

Information

Center”

on

page

354

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

371

©

Copyright

IBM

Corp.

1993

-

2004

353

|

|
|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/software/data/pubs/
http://publib.boulder.ibm.com/infocenter/db2help/

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

363

v

“Invoking

message

help

from

the

command

line

processor”

on

page

372

v

“Invoking

command

help

from

the

command

line

processor”

on

page

372

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

373

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

365

DB2

Information

Center

The

DB2®

Information

Center

gives

you

access

to

all

of

the

information

you

need

to

take

full

advantage

of

DB2

family

products,

including

DB2

Universal

Database™,

DB2

Connect™,

DB2

Information

Integrator

and

DB2

Query

Patroller™.

The

DB2

Information

Center

also

contains

information

for

major

DB2

features

and

components

including

replication,

data

warehousing,

and

the

DB2

extenders.

The

DB2

Information

Center

has

the

following

features

if

you

view

it

in

Mozilla

1.0

or

later

or

Microsoft®

Internet

Explorer

5.5

or

later.

Some

features

require

you

to

enable

support

for

JavaScript™:

Flexible

installation

options

You

can

choose

to

view

the

DB2

documentation

using

the

option

that

best

meets

your

needs:

v

To

effortlessly

ensure

that

your

documentation

is

always

up

to

date,

you

can

access

all

of

your

documentation

directly

from

the

DB2

Information

Center

hosted

on

the

IBM®

Web

site

at

http://publib.boulder.ibm.com/infocenter/db2help/

v

To

minimize

your

update

efforts

and

keep

your

network

traffic

within

your

intranet,

you

can

install

the

DB2

documentation

on

a

single

server

on

your

intranet

v

To

maximize

your

flexibility

and

reduce

your

dependence

on

network

connections,

you

can

install

the

DB2

documentation

on

your

own

computer

Search

You

can

search

all

of

the

topics

in

the

DB2

Information

Center

by

entering

a

search

term

in

the

Search

text

field.

You

can

retrieve

exact

matches

by

enclosing

terms

in

quotation

marks,

and

you

can

refine

your

search

with

wildcard

operators

(*,

?)

and

Boolean

operators

(AND,

NOT,

OR).

Task-oriented

table

of

contents

You

can

locate

topics

in

the

DB2

documentation

from

a

single

table

of

contents.

The

table

of

contents

is

organized

primarily

by

the

kind

of

tasks

you

may

want

to

perform,

but

also

includes

entries

for

product

overviews,

goals,

reference

information,

an

index,

and

a

glossary.

v

Product

overviews

describe

the

relationship

between

the

available

products

in

the

DB2

family,

the

features

offered

by

each

of

those

products,

and

up

to

date

release

information

for

each

of

these

products.

v

Goal

categories

such

as

installing,

administering,

and

developing

include

topics

that

enable

you

to

quickly

complete

tasks

and

develop

a

deeper

understanding

of

the

background

information

for

completing

those

tasks.

354

CLI

Guide

and

Reference,

Volume

1

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/

v

Reference

topics

provide

detailed

information

about

a

subject,

including

statement

and

command

syntax,

message

help,

and

configuration

parameters.

Show

current

topic

in

table

of

contents

You

can

show

where

the

current

topic

fits

into

the

table

of

contents

by

clicking

the

Refresh

/

Show

Current

Topic

button

in

the

table

of

contents

frame

or

by

clicking

the

Show

in

Table

of

Contents

button

in

the

content

frame.

This

feature

is

helpful

if

you

have

followed

several

links

to

related

topics

in

several

files

or

arrived

at

a

topic

from

search

results.

Index

You

can

access

all

of

the

documentation

from

the

index.

The

index

is

organized

in

alphabetical

order

by

index

term.

Glossary

You

can

use

the

glossary

to

look

up

definitions

of

terms

used

in

the

DB2

documentation.

The

glossary

is

organized

in

alphabetical

order

by

glossary

term.

Integrated

localized

information

The

DB2

Information

Center

displays

information

in

the

preferred

language

set

in

your

browser

preferences.

If

a

topic

is

not

available

in

your

preferred

language,

the

DB2

Information

Center

displays

the

English

version

of

that

topic.

For

iSeries™

technical

information,

refer

to

the

IBM

eServer™

iSeries

information

center

at

www.ibm.com/eserver/iseries/infocenter/.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

355

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

363

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

364

v

“Invoking

the

DB2

Information

Center”

on

page

362

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

358

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

360

DB2

Information

Center

installation

scenarios

Different

working

environments

can

pose

different

requirements

for

how

to

access

DB2®

information.

The

DB2

Information

Center

can

be

accessed

on

the

IBM®

Web

site,

on

a

server

on

your

organization’s

network,

or

on

a

version

installed

on

your

computer.

In

all

three

cases,

the

documentation

is

contained

in

the

DB2

Information

Center,

which

is

an

architected

web

of

topic-based

information

that

you

view

with

a

browser.

By

default,

DB2

products

access

the

DB2

Information

Center

on

the

IBM

Web

site.

However,

if

you

want

to

access

the

DB2

Information

Center

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

Information

Center

using

the

DB2

Information

Center

CD

found

in

your

product

Media

Pack.

Refer

to

the

summary

of

options

for

accessing

DB2

documentation

which

follows,

along

with

the

three

installation

scenarios,

to

help

determine

which

Appendix

A.

DB2

Universal

Database

technical

information

355

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/eserver/iseries/infocenter/

method

of

accessing

the

DB2

Information

Center

works

best

for

you

and

your

work

environment,

and

what

installation

issues

you

might

need

to

consider.

Summary

of

options

for

accessing

DB2

documentation:

The

following

table

provides

recommendations

on

which

options

are

possible

in

your

work

environment

for

accessing

the

DB2

product

documentation

in

the

DB2

Information

Center.

Internet

access

Intranet

access

Recommendation

Yes

Yes

Access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

access

the

DB2

Information

Center

installed

on

an

intranet

server.

Yes

No

Access

the

DB2

Information

Center

on

the

IBM

Web

site.

No

Yes

Access

the

DB2

Information

Center

installed

on

an

intranet

server.

No

No

Access

the

DB2

Information

Center

on

a

local

computer.

Scenario:

Accessing

the

DB2

Information

Center

on

your

computer:

Tsu-Chen

owns

a

factory

in

a

small

town

that

does

not

have

a

local

ISP

to

provide

him

with

Internet

access.

He

purchased

DB2

Universal

Database™

to

manage

his

inventory,

his

product

orders,

his

banking

account

information,

and

his

business

expenses.

Never

having

used

a

DB2

product

before,

Tsu-Chen

needs

to

learn

how

to

do

so

from

the

DB2

product

documentation.

After

installing

DB2

Universal

Database

on

his

computer

using

the

typical

installation

option,

Tsu-Chen

tries

to

access

the

DB2

documentation.

However,

his

browser

gives

him

an

error

message

that

the

page

he

tried

to

open

cannot

be

found.

Tsu-Chen

checks

the

installation

manual

for

his

DB2

product

and

discovers

that

he

has

to

install

the

DB2

Information

Center

if

he

wants

to

access

DB2

documentation

on

his

computer.

He

finds

the

DB2

Information

Center

CD

in

the

media

pack

and

installs

it.

From

the

application

launcher

for

his

operating

system,

Tsu-Chen

now

has

access

to

the

DB2

Information

Center

and

can

learn

how

to

use

his

DB2

product

to

increase

the

success

of

his

business.

Scenario:

Accessing

the

DB2

Information

Center

on

the

IBM

Web

site:

Colin

is

an

information

technology

consultant

with

a

training

firm.

He

specializes

in

database

technology

and

SQL

and

gives

seminars

on

these

subjects

to

businesses

all

over

North

America

using

DB2

Universal

Database.

Part

of

Colin’s

seminars

includes

using

DB2

documentation

as

a

teaching

tool.

For

example,

while

teaching

courses

on

SQL,

Colin

uses

the

DB2

documentation

on

SQL

as

a

way

to

teach

basic

and

advanced

syntax

for

database

queries.

Most

of

the

businesses

at

which

Colin

teaches

have

Internet

access.

This

situation

influenced

Colin’s

decision

to

configure

his

mobile

computer

to

access

the

DB2

Information

Center

on

the

IBM

Web

site

when

he

installed

the

latest

version

of

DB2

Universal

Database.

This

configuration

allows

Colin

to

have

online

access

to

the

latest

DB2

documentation

during

his

seminars.

356

CLI

Guide

and

Reference,

Volume

1

|
|

|

|
|
|

||||

|||
|
|

|||
|

|||
|

|||
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

However,

sometimes

while

travelling

Colin

does

not

have

Internet

access.

This

posed

a

problem

for

him,

especially

when

he

needed

to

access

to

DB2

documentation

to

prepare

for

seminars.

To

avoid

situations

like

this,

Colin

installed

a

copy

of

the

DB2

Information

Center

on

his

mobile

computer.

Colin

enjoys

the

flexibility

of

always

having

a

copy

of

DB2

documentation

at

his

disposal.

Using

the

db2set

command,

he

can

easily

configure

the

registry

variables

on

his

mobile

computer

to

access

the

DB2

Information

Center

on

either

the

IBM

Web

site,

or

his

mobile

computer,

depending

on

his

situation.

Scenario:

Accessing

the

DB2

Information

Center

on

an

intranet

server:

Eva

works

as

a

senior

database

administrator

for

a

life

insurance

company.

Her

administration

responsibilities

include

installing

and

configuring

the

latest

version

of

DB2

Universal

Database

on

the

company’s

UNIX®

database

servers.

Her

company

recently

informed

its

employees

that,

for

security

reasons,

it

would

not

provide

them

with

Internet

access

at

work.

Because

her

company

has

a

networked

environment,

Eva

decides

to

install

a

copy

of

the

DB2

Information

Center

on

an

intranet

server

so

that

all

employees

in

the

company

who

use

the

company’s

data

warehouse

on

a

regular

basis

(sales

representatives,

sales

managers,

and

business

analysts)

have

access

to

DB2

documentation.

Eva

instructs

her

database

team

to

install

the

latest

version

of

DB2

Universal

Database

on

all

of

the

employee’s

computers

using

a

response

file,

to

ensure

that

each

computer

is

configured

to

access

the

DB2

Information

Center

using

the

host

name

and

the

port

number

of

the

intranet

server.

However,

through

a

misunderstanding

Migual,

a

junior

database

administrator

on

Eva’s

team,

installs

a

copy

of

the

DB2

Information

Center

on

several

of

the

employee

computers,

rather

than

configuring

DB2

Universal

Database

to

access

the

DB2

Information

Center

on

the

intranet

server.

To

correct

this

situation

Eva

tells

Migual

to

use

the

db2set

command

to

change

the

DB2

Information

Center

registry

variables

(DB2_DOCHOST

for

the

host

name,

and

DB2_DOCPORT

for

the

port

number)

on

each

of

these

computers.

Now

all

of

the

appropriate

computers

on

the

network

have

access

to

the

DB2

Information

Center,

and

employees

can

find

answers

to

their

DB2

questions

in

the

DB2

documentation.

Related

concepts:

v

“DB2

Information

Center”

on

page

354

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

363

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

358

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

360

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

Appendix

A.

DB2

Universal

Database

technical

information

357

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|

|

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

UNIX

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

UNIX

computers.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

PowerPC

(AIX)

–

HP

9000

(HP-UX)

–

Intel

32–bit

(Linux)

–

Solaris

UltraSPARC

computers

(Solaris

Operating

Environment)
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

IBM

AIX

5.1

(on

PowerPC)

–

HP-UX

11i

(on

HP

9000)

–

Red

Hat

Linux

8.0

(on

Intel

32–bit)

–

SuSE

Linux

8.1

(on

Intel

32–bit)

–

Sun

Solaris

Version

8

(on

Solaris

Operating

Environment

UltraSPARC

computers)

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

UNIX

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

from

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browser

is

supported:

-

Mozilla

Version

1.0

or

greater
v

The

DB2

Setup

wizard

is

a

graphical

installer.

You

must

have

an

implementation

of

the

X

Window

System

software

capable

of

rendering

a

graphical

user

interface

for

the

DB2

Setup

wizard

to

run

on

your

computer.

Before

you

can

run

the

DB2

Setup

wizard

you

must

ensure

that

you

have

properly

exported

your

display.

For

example,

enter

the

following

command

at

the

command

prompt:

export

DISPLAY=9.26.163.144:0.

v

Communication

requirements

–

TCP/IP

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

358

CLI

Guide

and

Reference,

Volume

1

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|

1.

Log

on

to

the

system.

2.

Insert

and

mount

the

DB2

Information

Center

product

CD

on

your

system.

3.

Change

to

the

directory

where

the

CD

is

mounted

by

entering

the

following

command:

cd

/cd

where

/cd

represents

the

mount

point

of

the

CD.

4.

Enter

the

./db2setup

command

to

start

the

DB2

Setup

wizard.

5.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

6.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

7.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

8.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

9.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

10.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

11.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

12.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

also

install

the

DB2

Information

Center

using

a

response

file.

The

installation

logs

db2setup.his,

db2setup.log,

and

db2setup.err

are

located,

by

default,

in

the

/tmp

directory.

The

db2setup.log

file

captures

all

DB2

product

installation

information,

including

errors.

The

db2setup.his

file

records

all

DB2

product

installations

on

your

computer.

DB2

appends

the

db2setup.log

file

to

the

db2setup.his

file.

The

db2setup.err

file

captures

any

error

output

that

is

returned

by

Java,

for

example,

exceptions

and

trap

information.

When

the

installation

is

complete,

the

DB2

Information

Center

will

be

installed

in

one

of

the

following

directories,

depending

upon

your

UNIX

operating

system:

v

AIX:

/usr/opt/db2_08_01

v

HP-UX:

/opt/IBM/db2/V8.1

v

Linux:

/opt/IBM/db2/V8.1

v

Solaris

Operating

Environment:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

Information

Center”

on

page

354

v

“DB2

Information

Center

installation

scenarios”

on

page

355

Appendix

A.

DB2

Universal

Database

technical

information

359

|

|

|
|

|

|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

Related

tasks:

v

“Installing

DB2

using

a

response

file

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

363

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

364

v

“Invoking

the

DB2

Information

Center”

on

page

362

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

360

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

Windows

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

Windows.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

32-bit

computers:

a

Pentium

or

Pentium

compatible

CPU
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

Windows

2000

–

Windows

XP

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

Windows

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browsers

are

supported:

-

Mozilla

1.0

or

greater

-

Internet

Explorer

Version

5.5

or

6.0

(Version

6.0

for

Windows

XP)
v

Communication

requirements

–

TCP/IP

Restrictions:

v

You

require

an

account

with

administrative

privileges

to

install

the

DB2

Information

Center.

360

CLI

Guide

and

Reference,

Volume

1

|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

1.

Log

on

to

the

system

with

the

account

that

you

have

defined

for

the

DB2

Information

Center

installation.

2.

Insert

the

CD

into

the

drive.

If

enabled,

the

auto-run

feature

starts

the

IBM

DB2

Setup

Launchpad.

3.

The

DB2

Setup

wizard

determines

the

system

language

and

launches

the

setup

program

for

that

language.

If

you

want

to

run

the

setup

program

in

a

language

other

than

English,

or

the

setup

program

fails

to

auto-start,

you

can

start

the

DB2

Setup

wizard

manually.

To

start

the

DB2

Setup

wizard

manually:

a.

Click

Start

and

select

Run.

b.

In

the

Open

field,

type

the

following

command:

x:\setup.exe

/i

2-letter

language

identifier

where

x:

represents

your

CD

drive,

and

2-letter

language

identifier

represents

the

language

in

which

the

setup

program

will

be

run.

c.

Click

OK.

4.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

5.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

6.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

7.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

8.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

9.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

10.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

11.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

install

the

DB2

Information

Center

using

a

response

file.

You

can

also

use

the

db2rspgn

command

to

generate

a

response

file

based

on

an

existing

installation.

For

information

on

errors

encountered

during

installation,

see

the

db2.log

and

db2wi.log

files

located

in

the

’My

Documents’\DB2LOG\

directory.

The

location

of

the

’My

Documents’

directory

will

depend

on

the

settings

on

your

computer.

The

db2wi.log

file

captures

the

most

recent

DB2

installation

information.

The

db2.log

captures

the

history

of

DB2

product

installations.

Appendix

A.

DB2

Universal

Database

technical

information

361

|

|

|
|

|
|

|
|
|
|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

Related

concepts:

v

“DB2

Information

Center”

on

page

354

v

“DB2

Information

Center

installation

scenarios”

on

page

355

Related

tasks:

v

“Installing

a

DB2

product

using

a

response

file

(Windows)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

363

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

364

v

“Invoking

the

DB2

Information

Center”

on

page

362

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

358

Related

reference:

v

“db2rspgn

-

Response

File

Generator

Command

(Windows)”

in

the

Command

Reference

Invoking

the

DB2

Information

Center

The

DB2

Information

Center

gives

you

access

to

all

of

the

information

that

you

need

to

use

DB2

products

for

Linux,

UNIX,

and

Windows

operating

systems

such

as

DB2

Universal

Database,

DB2

Connect,

DB2

Information

Integrator,

and

DB2

Query

Patroller.

You

can

invoke

the

DB2

Information

Center

from

one

of

the

following

places:

v

Computers

on

which

a

DB2

UDB

client

or

server

is

installed

v

An

intranet

server

or

local

computer

on

which

the

DB2

Information

Center

installed

v

The

IBM

Web

site

Prerequisites:

Before

you

invoke

the

DB2

Information

Center:

v

Optional:

Configure

your

browser

to

display

topics

in

your

preferred

language

v

Optional:

Configure

your

DB2

client

to

use

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

Procedure:

To

invoke

the

DB2

Information

Center

on

a

computer

on

which

a

DB2

UDB

client

or

server

is

installed:

v

From

the

Start

Menu

(Windows

operating

system):

Click

Start

—�

Programs

—�

IBM

DB2

—�

Information

—�

Information

Center.

v

From

the

command

line

prompt:

–

For

Linux

and

UNIX

operating

systems,

issue

the

db2icdocs

command.

–

For

the

Windows

operating

system,

issue

the

db2icdocs.exe

command.

To

open

the

DB2

Information

Center

installed

on

an

intranet

server

or

local

computer

in

a

Web

browser:

362

CLI

Guide

and

Reference,

Volume

1

|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|
|
|

|

|
|

v

Open

the

Web

page

at

http://<host-name>:<port-number>/,

where

<host-name>

represents

the

host

name

and

<port-number>

represents

the

port

number

on

which

the

DB2

Information

Center

is

available.

To

open

the

DB2

Information

Center

on

the

IBM

Web

site

in

a

Web

browser:

v

Open

the

Web

page

at

publib.boulder.ibm.com/infocenter/db2help/.

Related

concepts:

v

“DB2

Information

Center”

on

page

354

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

371

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

363

v

“Invoking

message

help

from

the

command

line

processor”

on

page

372

v

“Invoking

command

help

from

the

command

line

processor”

on

page

372

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

373

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

The

DB2

Information

Center

available

from

http://publib.boulder.ibm.com/infocenter/db2help/

will

be

periodically

updated

with

new

or

changed

documentation.

IBM

may

also

make

DB2

Information

Center

updates

available

to

download

and

install

on

your

computer

or

intranet

server.

Updating

the

DB2

Information

Center

does

not

update

DB2

client

or

server

products.

Prerequisites:

You

must

have

access

to

a

computer

that

is

connected

to

the

Internet.

Procedure:

To

update

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server:

1.

Open

the

DB2

Information

Center

hosted

on

the

IBM

Web

site

at:

http://publib.boulder.ibm.com/infocenter/db2help/

2.

In

the

Downloads

section

of

the

welcome

page

under

the

Service

and

Support

heading,

click

the

DB2

Universal

Database

documentation

link.

3.

Determine

if

the

version

of

your

DB2

Information

Center

is

out

of

date

by

comparing

the

latest

refreshed

documentation

image

level

to

the

documentation

level

you

have

installed.

The

documentation

level

you

have

installed

is

listed

on

the

DB2

Information

Center

welcome

page.

4.

If

a

more

recent

version

of

the

DB2

Information

Center

is

available,

download

the

latest

refreshed

DB2

Information

Center

image

applicable

to

your

operating

system.

5.

To

install

the

refreshed

DB2

Information

Center

image,

follow

the

instructions

provided

on

the

Web

page.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

355

Appendix

A.

DB2

Universal

Database

technical

information

363

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

362

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

358

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

360

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

The

DB2

Information

Center

attempts

to

display

topics

in

the

language

specified

in

your

browser

preferences.

If

a

topic

has

not

been

translated

into

your

preferred

language,

the

DB2

Information

Center

displays

the

topic

in

English.

Procedure:

To

display

topics

in

your

preferred

language

in

the

Internet

Explorer

browser:

1.

In

Internet

Explorer,

click

the

Tools

—>

Internet

Options

—>

Languages...

button.

The

Language

Preferences

window

opens.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button.

Note:

Adding

a

language

does

not

guarantee

that

the

computer

has

the

fonts

required

to

display

the

topics

in

the

preferred

language.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

To

display

topics

in

your

preferred

language

in

the

Mozilla

browser:

1.

In

Mozilla,

select

the

Edit

—>

Preferences

—>

Languages

button.

The

Languages

panel

is

displayed

in

the

Preferences

window.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button

to

select

a

language

from

the

Add

Languages

window.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

Related

concepts:

v

“DB2

Information

Center”

on

page

354

364

CLI

Guide

and

Reference,

Volume

1

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

DB2

PDF

and

printed

documentation

The

following

tables

provide

official

book

names,

form

numbers,

and

PDF

file

names.

To

order

hardcopy

books,

you

must

know

the

official

book

name.

To

print

a

PDF

file,

you

must

know

the

PDF

file

name.

The

DB2

documentation

is

categorized

by

the

following

headings:

v

Core

DB2

information

v

Administration

information

v

Application

development

information

v

Business

intelligence

information

v

DB2

Connect

information

v

Getting

started

information

v

Tutorial

information

v

Optional

component

information

v

Release

notes

The

following

tables

describe,

for

each

book

in

the

DB2

library,

the

information

needed

to

order

the

hard

copy,

or

to

print

or

view

the

PDF

for

that

book.

A

full

description

of

each

of

the

books

in

the

DB2

library

is

available

from

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

Core

DB2

information

The

information

in

these

books

is

fundamental

to

all

DB2

users;

you

will

find

this

information

useful

whether

you

are

a

programmer,

a

database

administrator,

or

someone

who

works

with

DB2

Connect,

DB2

Warehouse

Manager,

or

other

DB2

products.

Table

41.

Core

DB2

information

Name

Form

Number

PDF

File

Name

IBM

DB2

Universal

Database

Command

Reference

SC09-4828

db2n0x81

IBM

DB2

Universal

Database

Glossary

No

form

number

db2t0x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

1

GC09-4840,

not

available

in

hardcopy

db2m1x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

2

GC09-4841,

not

available

in

hardcopy

db2m2x81

IBM

DB2

Universal

Database

What’s

New

SC09-4848

db2q0x81

Administration

information

The

information

in

these

books

covers

those

topics

required

to

effectively

design,

implement,

and

maintain

DB2

databases,

data

warehouses,

and

federated

systems.

Table

42.

Administration

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Planning

SC09-4822

db2d1x81

Appendix

A.

DB2

Universal

Database

technical

information

365

|

|
|
|
|

||

|||

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|

|
|
||

|

|

http://www.ibm.com/shop/publications/order

Table

42.

Administration

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Implementation

SC09-4820

db2d2x81

IBM

DB2

Universal

Database

Administration

Guide:

Performance

SC09-4821

db2d3x81

IBM

DB2

Universal

Database

Administrative

API

Reference

SC09-4824

db2b0x81

IBM

DB2

Universal

Database

Data

Movement

Utilities

Guide

and

Reference

SC09-4830

db2dmx81

IBM

DB2

Universal

Database

Data

Recovery

and

High

Availability

Guide

and

Reference

SC09-4831

db2hax81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Administration

Guide

SC27-1123

db2ddx81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

1

SC09-4844

db2s1x81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

2

SC09-4845

db2s2x81

IBM

DB2

Universal

Database

System

Monitor

Guide

and

Reference

SC09-4847

db2f0x81

Application

development

information

The

information

in

these

books

is

of

special

interest

to

application

developers

or

programmers

working

with

DB2

Universal

Database

(DB2

UDB).

You

will

find

information

about

supported

languages

and

compilers,

as

well

as

the

documentation

required

to

access

DB2

UDB

using

the

various

supported

programming

interfaces,

such

as

embedded

SQL,

ODBC,

JDBC,

SQLJ,

and

CLI.

If

you

are

using

the

DB2

Information

Center,

you

can

also

access

HTML

versions

of

the

source

code

for

the

sample

programs.

Table

43.

Application

development

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications

SC09-4825

db2axx81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Client

Applications

SC09-4826

db2a1x81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Server

Applications

SC09-4827

db2a2x81

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

1

SC09-4849

db2l1x81

366

CLI

Guide

and

Reference,

Volume

1

Table

43.

Application

development

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

2

SC09-4850

db2l2x81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Application

Integration

Guide

SC27-1124

db2adx81

IBM

DB2

XML

Extender

Administration

and

Programming

SC27-1234

db2sxx81

Business

intelligence

information

The

information

in

these

books

describes

how

to

use

components

that

enhance

the

data

warehousing

and

analytical

capabilities

of

DB2

Universal

Database.

Table

44.

Business

intelligence

information

Name

Form

number

PDF

file

name

IBM

DB2

Warehouse

Manager

Standard

Edition

Information

Catalog

Center

Administration

Guide

SC27-1125

db2dix81

IBM

DB2

Warehouse

Manager

Standard

Edition

Installation

Guide

GC27-1122

db2idx81

IBM

DB2

Warehouse

Manager

Standard

Edition

Managing

ETI

Solution

Conversion

Programs

with

DB2

Warehouse

Manager

SC18-7727

iwhe1mstx80

DB2

Connect

information

The

information

in

this

category

describes

how

to

access

data

on

mainframe

and

midrange

servers

using

DB2

Connect

Enterprise

Edition

or

DB2

Connect

Personal

Edition.

Table

45.

DB2

Connect

information

Name

Form

number

PDF

file

name

IBM

Connectivity

Supplement

No

form

number

db2h1x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition

GC09-4833

db2c6x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition

GC09-4834

db2c1x81

IBM

DB2

Connect

User’s

Guide

SC09-4835

db2c0x81

Getting

started

information

The

information

in

this

category

is

useful

when

you

are

installing

and

configuring

servers,

clients,

and

other

DB2

products.

Appendix

A.

DB2

Universal

Database

technical

information

367

Table

46.

Getting

started

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Clients

GC09-4832,

not

available

in

hardcopy

db2itx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Servers

GC09-4836

db2isx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Personal

Edition

GC09-4838

db2i1x81

IBM

DB2

Universal

Database

Installation

and

Configuration

Supplement

GC09-4837,

not

available

in

hardcopy

db2iyx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Data

Links

Manager

GC09-4829

db2z6x81

Tutorial

information

Tutorial

information

introduces

DB2

features

and

teaches

how

to

perform

various

tasks.

Table

47.

Tutorial

information

Name

Form

number

PDF

file

name

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

No

form

number

db2tux81

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

No

form

number

db2tax81

Information

Catalog

Center

Tutorial

No

form

number

db2aix81

Video

Central

for

e-business

Tutorial

No

form

number

db2twx81

Visual

Explain

Tutorial

No

form

number

db2tvx81

Optional

component

information

The

information

in

this

category

describes

how

to

work

with

optional

DB2

components.

Table

48.

Optional

component

information

Name

Form

number

PDF

file

name

IBM

DB2

Cube

Views

Guide

and

Reference

SC18–7298

db2aax81

IBM

DB2

Query

Patroller

Guide:

Installation,

Administration

and

Usage

Guide

GC09–7658

db2dwx81

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SC27-1226

db2sbx81

368

CLI

Guide

and

Reference,

Volume

1

Table

48.

Optional

component

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Data

Links

Manager

Administration

Guide

and

Reference

SC27-1221

db2z0x82

DB2

Net

Search

Extender

Administration

and

User’s

Guide

Note:

HTML

for

this

document

is

not

installed

from

the

HTML

documentation

CD.

SH12-6740

N/A

Release

notes

The

release

notes

provide

additional

information

specific

to

your

product’s

release

and

FixPak

level.

The

release

notes

also

provide

summaries

of

the

documentation

updates

incorporated

in

each

release,

update,

and

FixPak.

Table

49.

Release

notes

Name

Form

number

PDF

file

name

DB2

Release

Notes

See

note.

See

note.

DB2

Installation

Notes

Available

on

product

CD-ROM

only.

Not

available.

Note:

The

Release

Notes

are

available

in:

v

XHTML

and

Text

format,

on

the

product

CDs

v

PDF

format,

on

the

PDF

Documentation

CD

In

addition

the

portions

of

the

Release

Notes

that

discuss

Known

Problems

and

Workarounds

and

Incompatibilities

Between

Releases

also

appear

in

the

DB2

Information

Center.

To

view

the

Release

Notes

in

text

format

on

UNIX-based

platforms,

see

the

Release.Notes

file.

This

file

is

located

in

the

DB2DIR/Readme/%L

directory,

where

%L

represents

the

locale

name

and

DB2DIR

represents:

v

For

AIX

operating

systems:

/usr/opt/db2_08_01

v

For

all

other

UNIX-based

operating

systems:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

documentation

and

help”

on

page

353

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

370

v

“Ordering

printed

DB2

books”

on

page

370

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

371

Appendix

A.

DB2

Universal

Database

technical

information

369

Printing

DB2

books

from

PDF

files

You

can

print

DB2

books

from

the

PDF

files

on

the

DB2

PDF

Documentation

CD.

Using

Adobe

Acrobat

Reader,

you

can

print

either

the

entire

book

or

a

specific

range

of

pages.

Prerequisites:

Ensure

that

you

have

Adobe

Acrobat

Reader

installed.

If

you

need

to

install

Adobe

Acrobat

Reader,

it

is

available

from

the

Adobe

Web

site

at

www.adobe.com

Procedure:

To

print

a

DB2

book

from

a

PDF

file:

1.

Insert

the

DB2

PDF

Documentation

CD.

On

UNIX

operating

systems,

mount

the

DB2

PDF

Documentation

CD.

Refer

to

your

Quick

Beginnings

book

for

details

on

how

to

mount

a

CD

on

UNIX

operating

systems.

2.

Open

index.htm.

The

file

opens

in

a

browser

window.

3.

Click

on

the

title

of

the

PDF

you

want

to

see.

The

PDF

will

open

in

Acrobat

Reader.

4.

Select

File

→

Print

to

print

any

portions

of

the

book

that

you

want.

Related

concepts:

v

“DB2

Information

Center”

on

page

354

Related

tasks:

v

“Mounting

the

CD-ROM

(AIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(HP-UX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(Linux)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Ordering

printed

DB2

books”

on

page

370

v

“Mounting

the

CD-ROM

(Solaris

Operating

Environment)”

in

the

Quick

Beginnings

for

DB2

Servers

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

365

Ordering

printed

DB2

books

If

you

prefer

to

use

hardcopy

books,

you

can

order

them

in

one

of

three

ways.

Procedure:

Printed

books

can

be

ordered

in

some

countries

or

regions.

Check

the

IBM

Publications

website

for

your

country

or

region

to

see

if

this

service

is

available

in

your

country

or

region.

When

the

publications

are

available

for

ordering,

you

can:

v

Contact

your

IBM

authorized

dealer

or

marketing

representative.

To

find

a

local

IBM

representative,

check

the

IBM

Worldwide

Directory

of

Contacts

at

www.ibm.com/planetwide

v

Phone

1-800-879-2755

in

the

United

States

or

1-800-IBM-4YOU

in

Canada.

370

CLI

Guide

and

Reference,

Volume

1

|
|
|

|
|
|

|

http://www.adobe.com/
http://www.ibm.com/planetwide

v

Visit

the

IBM

Publications

Center

at

http://www.ibm.com/shop/publications/order.

The

ability

to

order

books

from

the

IBM

Publications

Center

may

not

be

available

in

all

countries.

At

the

time

the

DB2

product

becomes

available,

the

printed

books

are

the

same

as

those

that

are

available

in

PDF

format

on

the

DB2

PDF

Documentation

CD.

Content

in

the

printed

books

that

appears

in

the

DB2

Information

Center

CD

is

also

the

same.

However,

there

is

some

additional

content

available

in

DB2

Information

Center

CD

that

does

not

appear

anywhere

in

the

PDF

books

(for

example,

SQL

Administration

routines

and

HTML

samples).

Not

all

books

available

on

the

DB2

PDF

Documentation

CD

are

available

for

ordering

in

hardcopy.

Note:

The

DB2

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books;

install

documentation

updates

as

they

become

available

or

refer

to

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/

to

get

the

most

current

information.

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

370

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

365

Invoking

contextual

help

from

a

DB2

tool

Contextual

help

provides

information

about

the

tasks

or

controls

that

are

associated

with

a

particular

window,

notebook,

wizard,

or

advisor.

Contextual

help

is

available

from

DB2

administration

and

development

tools

that

have

graphical

user

interfaces.

There

are

two

types

of

contextual

help:

v

Help

accessed

through

the

Help

button

that

is

located

on

each

window

or

notebook

v

Infopops,

which

are

pop-up

information

windows

displayed

when

the

mouse

cursor

is

placed

over

a

field

or

control,

or

when

a

field

or

control

is

selected

in

a

window,

notebook,

wizard,

or

advisor

and

F1

is

pressed.

The

Help

button

gives

you

access

to

overview,

prerequisite,

and

task

information.

The

infopops

describe

the

individual

fields

and

controls.

Procedure:

To

invoke

contextual

help:

v

For

window

and

notebook

help,

start

one

of

the

DB2

tools,

then

open

any

window

or

notebook.

Click

the

Help

button

at

the

bottom

right

corner

of

the

window

or

notebook

to

invoke

the

contextual

help.

You

can

also

access

the

contextual

help

from

the

Help

menu

item

at

the

top

of

each

of

the

DB2

tools

centers.

Within

wizards

and

advisors,

click

on

the

Task

Overview

link

on

the

first

page

to

view

contextual

help.

v

For

infopop

help

about

individual

controls

on

a

window

or

notebook,

click

the

control,

then

click

F1.

Pop-up

information

containing

details

about

the

control

is

displayed

in

a

yellow

window.

Appendix

A.

DB2

Universal

Database

technical

information

371

|
|
|

|
|
|
|

|
|

|
|
|

|
|

http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2help/

Note:

To

display

infopops

simply

by

holding

the

mouse

cursor

over

a

field

or

control,

select

the

Automatically

display

infopops

check

box

on

the

Documentation

page

of

the

Tool

Settings

notebook.

Similar

to

infopops,

diagnosis

pop-up

information

is

another

form

of

context-sensitive

help;

they

contain

data

entry

rules.

Diagnosis

pop-up

information

is

displayed

in

a

purple

window

that

appears

when

data

that

is

not

valid

or

that

is

insufficient

is

entered.

Diagnosis

pop-up

information

can

appear

for:

–

Compulsory

fields.

–

Fields

whose

data

follows

a

precise

format,

such

as

a

date

field.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

362

v

“Invoking

message

help

from

the

command

line

processor”

on

page

372

v

“Invoking

command

help

from

the

command

line

processor”

on

page

372

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

373

v

“How

to

use

the

DB2

UDB

help:

Common

GUI

help”

v

“Setting

up

access

to

DB2

contextual

help

and

documentation:

Common

GUI

help”

Invoking

message

help

from

the

command

line

processor

Message

help

describes

the

cause

of

a

message

and

describes

any

action

you

should

take

in

response

to

the

error.

Procedure:

To

invoke

message

help,

open

the

command

line

processor

and

enter:

?

XXXnnnnn

where

XXXnnnnn

represents

a

valid

message

identifier.

For

example,

?

SQL30081

displays

help

about

the

SQL30081

message.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

command

help

from

the

command

line

processor

Command

help

explains

the

syntax

of

commands

in

the

command

line

processor.

Procedure:

To

invoke

command

help,

open

the

command

line

processor

and

enter:

?

command

where

command

represents

a

keyword

or

the

entire

command.

372

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

For

example,

?

catalog

displays

help

for

all

of

the

CATALOG

commands,

while

?

catalog

database

displays

help

only

for

the

CATALOG

DATABASE

command.

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

371

v

“Invoking

the

DB2

Information

Center”

on

page

362

v

“Invoking

message

help

from

the

command

line

processor”

on

page

372

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

373

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

SQL

state

help

from

the

command

line

processor

DB2

Univerrsal

Database

returns

an

SQLSTATE

value

for

conditions

that

could

be

the

result

of

an

SQL

statement.

SQLSTATE

help

explains

the

meanings

of

SQL

states

and

SQL

state

class

codes.

Procedure:

To

invoke

SQL

state

help,

open

the

command

line

processor

and

enter:

?

sqlstate

or

?

class

code

where

sqlstate

represents

a

valid

five-digit

SQL

state

and

class

code

represents

the

first

two

digits

of

the

SQL

state.

For

example,

?

08003

displays

help

for

the

08003

SQL

state,

and

?

08

displays

help

for

the

08

class

code.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

362

v

“Invoking

message

help

from

the

command

line

processor”

on

page

372

v

“Invoking

command

help

from

the

command

line

processor”

on

page

372

DB2

tutorials

The

DB2®

tutorials

help

you

learn

about

various

aspects

of

DB2

Universal

Database.

The

tutorials

provide

lessons

with

step-by-step

instructions

in

the

areas

of

developing

applications,

tuning

SQL

query

performance,

working

with

data

warehouses,

managing

metadata,

and

developing

Web

services

using

DB2.

Before

you

begin:

You

can

view

the

XHTML

versions

of

the

tutorials

from

the

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some

tutorial

lessons

use

sample

data

or

code.

See

each

tutorial

for

a

description

of

any

prerequisites

for

its

specific

tasks.

DB2

Universal

Database

tutorials:

Appendix

A.

DB2

Universal

Database

technical

information

373

|
|

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/db2help/

Click

on

a

tutorial

title

in

the

following

list

to

view

that

tutorial.

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

Center

Perform

introductory

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

Perform

advanced

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Information

Catalog

Center

Tutorial

Create

and

manage

an

information

catalog

to

locate

and

use

metadata

using

the

Information

Catalog

Center.

Visual

Explain

Tutorial

Analyze,

optimize,

and

tune

SQL

statements

for

better

performance

using

Visual

Explain.

DB2

troubleshooting

information

A

wide

variety

of

troubleshooting

and

problem

determination

information

is

available

to

assist

you

in

using

DB2®

products.

DB2

documentation

Troubleshooting

information

can

be

found

throughout

the

DB2

Information

Center,

as

well

as

throughout

the

PDF

books

that

make

up

the

DB2

library.

You

can

refer

to

the

″Support

and

troubleshooting″

branch

of

the

DB2

Information

Center

navigation

tree

(in

the

left

pane

of

your

browser

window)

to

see

a

complete

listing

of

the

DB2

troubleshooting

documentation.

DB2

Technical

Support

Web

site

Refer

to

the

DB2

Technical

Support

Web

site

if

you

are

experiencing

problems

and

want

help

finding

possible

causes

and

solutions.

The

Technical

Support

site

has

links

to

the

latest

DB2

publications,

TechNotes,

Authorized

Program

Analysis

Reports

(APARs),

FixPaks

and

the

latest

listing

of

internal

DB2

error

codes,

and

other

resources.

You

can

search

through

this

knowledge

base

to

find

possible

solutions

to

your

problems.

Access

the

DB2

Technical

Support

Web

site

at

http://www.ibm.com/software/data/db2/udb/winos2unix/support

DB2

Problem

Determination

Tutorial

Series

Refer

to

the

DB2

Problem

Determination

Tutorial

Series

Web

site

to

find

information

on

how

to

quickly

identify

and

resolve

problems

you

might

encounter

while

working

with

DB2

products.

One

tutorial

introduces

you

to

the

DB2

problem

determination

facilities

and

tools

available,

and

helps

you

decide

when

to

use

them.

Other

tutorials

deal

with

related

topics,

such

as

″Database

Engine

Problem

Determination″,

″Performance

Problem

Determination″,

and

″Application

Problem

Determination″.

See

the

full

set

of

DB2

problem

determination

tutorials

on

the

DB2

Technical

Support

site

at

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Related

concepts:

v

“DB2

Information

Center”

on

page

354

v

“Introduction

to

problem

determination

-

DB2

Technical

Support

tutorial”

in

the

Troubleshooting

Guide

374

CLI

Guide

and

Reference,

Volume

1

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display.”

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

376.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

376.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Appendix

A.

DB2

Universal

Database

technical

information

375

|
|
|
|

|
|

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

on

page

376

Dotted

decimal

syntax

diagrams

Syntax

diagrams

are

provided

in

dotted

decimal

format

for

users

accessing

the

Information

Center

using

a

screen

reader.

In

dotted

decimal

format,

each

syntax

element

is

written

on

a

separate

line.

If

two

or

more

syntax

elements

are

always

present

together

(or

always

absent

together),

they

can

appear

on

the

same

line,

because

they

can

be

considered

as

a

single

compound

syntax

element.

Each

line

starts

with

a

dotted

decimal

number;

for

example,

3

or

3.1

or

3.1.1.

To

hear

these

numbers

correctly,

make

sure

that

your

screen

reader

is

set

to

read

out

punctuation.

All

the

syntax

elements

that

have

the

same

dotted

decimal

number

(for

example,

all

the

syntax

elements

that

have

the

number

3.1)

are

mutually

exclusive

alternatives.

If

you

hear

the

lines

3.1

USERID

and

3.1

SYSTEMID,

you

know

that

your

syntax

can

include

either

USERID

or

SYSTEMID,

but

not

both.

The

dotted

decimal

numbering

level

denotes

the

level

of

nesting.

For

example,

if

a

syntax

element

with

dotted

decimal

number

3

is

followed

by

a

series

of

syntax

elements

with

dotted

decimal

number

3.1,

all

the

syntax

elements

numbered

3.1

are

subordinate

to

the

syntax

element

numbered

3.

Certain

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers

to

add

information

about

the

syntax

elements.

Occasionally,

these

words

and

symbols

might

occur

at

the

beginning

of

the

element

itself.

For

ease

of

identification,

if

the

word

or

symbol

is

a

part

of

the

syntax

element,

it

is

preceded

by

the

backslash

(\)

character.

The

*

symbol

can

be

used

next

to

a

dotted

decimal

number

to

indicate

that

the

syntax

element

repeats.

For

example,

syntax

element

*FILE

with

dotted

decimal

number

3

is

given

the

format

3

*

FILE.

Format

3*

FILE

indicates

that

syntax

element

FILE

repeats.

Format

3*

*

FILE

indicates

that

syntax

element

*

FILE

repeats.

Characters

such

as

commas,

which

are

used

to

separate

a

string

of

syntax

elements,

are

shown

in

the

syntax

just

before

the

items

they

separate.

These

characters

can

appear

on

the

same

line

as

each

item,

or

on

a

separate

line

with

the

same

dotted

decimal

number

as

the

relevant

items.

The

line

can

also

show

another

symbol

giving

information

about

the

syntax

elements.

For

example,

the

lines

5.1*,

5.1

LASTRUN,

and

5.1

DELETE

mean

that

if

you

use

more

than

one

of

the

376

CLI

Guide

and

Reference,

Volume

1

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

LASTRUN

and

DELETE

syntax

elements,

the

elements

must

be

separated

by

a

comma.

If

no

separator

is

given,

assume

that

you

use

a

blank

to

separate

each

syntax

element.

If

a

syntax

element

is

preceded

by

the

%

symbol,

this

indicates

a

reference

that

is

defined

elsewhere.

The

string

following

the

%

symbol

is

the

name

of

a

syntax

fragment

rather

than

a

literal.

For

example,

the

line

2.1

%OP1

means

that

you

should

refer

to

separate

syntax

fragment

OP1.

The

following

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers:

v

?

means

an

optional

syntax

element.

A

dotted

decimal

number

followed

by

the

?

symbol

indicates

that

all

the

syntax

elements

with

a

corresponding

dotted

decimal

number,

and

any

subordinate

syntax

elements,

are

optional.

If

there

is

only

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

the

same

line

as

the

syntax

element,

(for

example

5?

NOTIFY).

If

there

is

more

than

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

a

line

by

itself,

followed

by

the

syntax

elements

that

are

optional.

For

example,

if

you

hear

the

lines

5

?,

5

NOTIFY,

and

5

UPDATE,

you

know

that

syntax

elements

NOTIFY

and

UPDATE

are

optional;

that

is,

you

can

choose

one

or

none

of

them.

The

?

symbol

is

equivalent

to

a

bypass

line

in

a

railroad

diagram.

v

!

means

a

default

syntax

element.

A

dotted

decimal

number

followed

by

the

!

symbol

and

a

syntax

element

indicates

that

the

syntax

element

is

the

default

option

for

all

syntax

elements

that

share

the

same

dotted

decimal

number.

Only

one

of

the

syntax

elements

that

share

the

same

dotted

decimal

number

can

specify

a

!

symbol.

For

example,

if

you

hear

the

lines

2?

FILE,

2.1!

(KEEP),

and

2.1

(DELETE),

you

know

that

(KEEP)

is

the

default

option

for

the

FILE

keyword.

In

this

example,

if

you

include

the

FILE

keyword

but

do

not

specify

an

option,

default

option

KEEP

will

be

applied.

A

default

option

also

applies

to

the

next

higher

dotted

decimal

number.

In

this

example,

if

the

FILE

keyword

is

omitted,

default

FILE(KEEP)

is

used.

However,

if

you

hear

the

lines

2?

FILE,

2.1,

2.1.1!

(KEEP),

and

2.1.1

(DELETE),

the

default

option

KEEP

only

applies

to

the

next

higher

dotted

decimal

number,

2.1

(which

does

not

have

an

associated

keyword),

and

does

not

apply

to

2?

FILE.

Nothing

is

used

if

the

keyword

FILE

is

omitted.

v

*

means

a

syntax

element

that

can

be

repeated

0

or

more

times.

A

dotted

decimal

number

followed

by

the

*

symbol

indicates

that

this

syntax

element

can

be

used

zero

or

more

times;

that

is,

it

is

optional

and

can

be

repeated.

For

example,

if

you

hear

the

line

5.1*

data

area,

you

know

that

you

can

include

one

data

area,

more

than

one

data

area,

or

no

data

area.

If

you

hear

the

lines

3*,

3

HOST,

and

3

STATE,

you

know

that

you

can

include

HOST,

STATE,

both

together,

or

nothing.

Notes:

1.

If

a

dotted

decimal

number

has

an

asterisk

(*)

next

to

it

and

there

is

only

one

item

with

that

dotted

decimal

number,

you

can

repeat

that

same

item

more

than

once.

2.

If

a

dotted

decimal

number

has

an

asterisk

next

to

it

and

several

items

have

that

dotted

decimal

number,

you

can

use

more

than

one

item

from

the

list,

but

you

cannot

use

the

items

more

than

once

each.

In

the

previous

example,

you

could

write

HOST

STATE,

but

you

could

not

write

HOST

HOST.

3.

The

*

symbol

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.
v

+

means

a

syntax

element

that

must

be

included

one

or

more

times.

A

dotted

decimal

number

followed

by

the

+

symbol

indicates

that

this

syntax

element

must

be

included

one

or

more

times;

that

is,

it

must

be

included

at

least

once

Appendix

A.

DB2

Universal

Database

technical

information

377

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

and

can

be

repeated.

For

example,

if

you

hear

the

line

6.1+

data

area,

you

must

include

at

least

one

data

area.

If

you

hear

the

lines

2+,

2

HOST,

and

2

STATE,

you

know

that

you

must

include

HOST,

STATE,

or

both.

Similar

to

the

*

symbol,

the

+

symbol

can

only

repeat

a

particular

item

if

it

is

the

only

item

with

that

dotted

decimal

number.

The

+

symbol,

like

the

*

symbol,

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.

Related

concepts:

v

“Accessibility”

on

page

375

Related

tasks:

v

“Contents

:

Common

help”

Related

reference:

v

“How

to

read

the

syntax

diagrams”

in

the

SQL

Reference,

Volume

2

Common

Criteria

certification

of

DB2

Universal

Database

products

DB2

Universal

Database

is

being

evaluated

for

certification

under

the

Common

Criteria

at

evaluation

assurance

level

4

(EAL4).

For

more

information

about

Common

Criteria,

see

the

Common

Criteria

web

site

at:

http://niap.nist.gov/cc-
scheme/.

378

CLI

Guide

and

Reference,

Volume

1

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

http://niap.nist.gov/cc-scheme/
http://niap.nist.gov/cc-scheme/

Appendix

B.

Notices

for

the

DB2

Call

Level

Interface

Guide

and

Reference

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1993

-

2004

379

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

380

CLI

Guide

and

Reference,

Volume

1

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

This

book

incorporates

text

which

is

copyright

The

X/Open

Company

Limited.

The

text

was

taken

by

permission

from:

X/Open

CAE

Specification,

March

1995,

Data

Management:

SQL

Call

Level

Interface

(CLI)

(ISBN:

1-85912-081-4,

C451).

X/Open

Preliminary

Specification,

March

1995,

Data

Management:

Structured

Query

Language

(SQL),

Version

2

(ISBN:

1-85912-093-8,

P446).

This

book

incorporates

text

which

is

copyright

1992,

1993,

1994,

1997

by

Microsoft

Corporation.

The

text

was

taken

by

permission

from

Microsoft’s

ODBC

2.0

Programmer’s

Reference

and

SDK

Guide

ISBN

1-55615-658-8,

and

from

Microsoft’s

ODBC

3.0

Software

Development

Kit

and

Programmer’s

Reference

ISBN

1-57231-516-4.

Appendix

B.

Notices

for

the

DB2

Call

Level

Interface

Guide

and

Reference

381

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

382

CLI

Guide

and

Reference,

Volume

1

Index

Special

characters
(percent)

in

input

to

catalog

functions

164

in

LIKE

predicates

164

(underscore)
in

input

to

catalog

functions

164

in

LIKE

predicates

164

A
ABS

scalar

function

170

absolute

value

scalar

function

170

accessibility
dotted

decimal

syntax

diagrams

376

features

375

ACOS

scalar

function
in

vendor

escape

clause

170

ADO

applications
connection

pooling,

with

MTS

and

COM+

135

allocating

CLI

handles
transaction

processing

22

APD

descriptor

147

AppendAPIName

CLI/ODBC

keyword

261

application

parameter

descriptor

(APD)

147

application

row

descriptor

(ARD)

147

ARD

descriptor

147

array

input
column-wise

79

row-wise

80

array

output

85

ArrayInputChain

CLI/ODBC

keyword

261

ASCII

scalar

function
for

vendor

escape

clauses

170

ASIN

scalar

function
for

vendor

escape

clauses

170

AsyncEnable

CLI/ODBC

keyword

262

ATAN

scalar

function
in

vendor

escape

clauses

170

ATAN2

scalar

function
in

vendor

escape

clauses

170

attributes
connection

159

environment

159

querying

and

setting

159

statement

159

AutoCommit

CLI/ODBC

keyword

263

B
BIGINT

SQL

data

type
conversion

to

C

339

BINARY

SQL

data

type
conversion

to

C

339

bind

files
and

package

names

201

binding
application

variables

26,

89

columns

89

columns

in

CLI

83

parameter

markers

26

column-wise

79

row-wise

80

BitData

CLI/ODBC

keyword

263

bldapp
AIX

222

HP-UX

228

Linux

232

Solaris

236

Windows

245

bldrtn
AIX

225

HP-UX

230

Linux

234

Solaris

238

Windows

246

BLOB

SQL

data

type
conversion

to

C

339

BLOBs

(binary

large

objects)
CLI

applications

95

BlockForNRows

CLI/ODBC

keyword

264

BlockLobs

CLI/ODBC

keyword

265

bookmarks

in

CLI
deleting

bulk

data

with

108

description

76

inserting

bulk

data

with

105

result

set

terminology

68

build

script
AIX

applications

222

AIX

routines

225

HP-UX

applications

228

HP-UX

routines

230

Linux

applications

232

Linux

routines

234

Solaris

applications

236

Solaris

routines

238

Windows

applications

245

Windows

routines

246

building

CLI

applications
UNIX

217

multi-connection

219

Windows

240

multi-connection

242

with

configuration

files

223

building

CLI

routines
UNIX

221

Windows

244

with

configuration

files

227

bulk

data
deleting,

in

CLI

108

inserting,

in

CLI

105

C
C

data

types

42

call

level

interface

(CLI)
advantages

5

compared

with

embedded

SQL

7

comparing

embedded

SQL

and

DB2

CLI

4

overview

4

capture

file

185

case

sensitivity
cursor

name

arguments

45

catalog

functions

163

catalogs
querying

163

CEILING

scalar

function

170

CHAR

scalar

function
for

CLI

applications

170

CHAR

SQL

data

type
conversion

to

C

339

character

strings
interpreting

45

length

45

CICS

(Customer

Information

Control

System)
running

applications

on

137

CLI

(call

level

interface)
AIX

application

compile

options

223

routine

compile

options

226

applications
issuing

SQL

23

terminating

51

array

input

chaining

60

binding

paramter

markers

28

bookmarks
deleting

bulk

data

108

inserting

bulk

data

105

retrieving

bulk

data

104

retrieving

data

77

updating

bulk

data

106

building

applications
multi-connection,

UNIX

219

multi-connection,

Windows

242

UNIX

217

Windows

240

with

configuration

files

223

building

routines
UNIX

221

Windows

244

with

configuration

files

227

bulk

data
deleting

108

inserting

105

retrieving

104

updating

106

compound

SQL

117

return

codes

119

configuration

keywords

257

cursors

63

selection

66

deferred

prepare

25

deleting

data

35

descriptors

147

©

Copyright

IBM

Corp.

1993

-

2004

383

CLI

(call

level

interface)

(continued)
consistency

checks

150

diagnostics

overview

47

environmental

setup

207

executing

SQL

24

functions
Unicode

140

handles
description

15

freeing

38

HP-UX
application

compile

options

229

routine

compile

options

231

initializing

18

introduction

3

issuing

SQL

23

keywords

257

Linux
application

compile

options

233

routine

compile

options

235

LOB

locators

97

long

data

102

multithreaded

applications
mixed

124

model

122

performance

improvement
array

input

chaining

60

preparing

SQL

24

retrieving

array

data
column-wise

binding

87

row-wise

binding

88

retrieving

data

with

bookmarks

77

retrieving

query

results

32

sample

program

files

249

location

of

249

Solaris

Operating

Environment
application

compile

options

237

routine

compile

options

239

static

profiling

183

stored

procedures
calling

113

commit

behavior

115

trace

facility

187

trace

files

192

Unicode
applications

139

functions

140

ODBC

driver

managers

141

updating

data

35

versus

embedded

dynamic

SQL

4

Windows
application

compile

options

246

routine

compile

options

247

CLI/ODBC

keywords
AppendAPIName

261

ArrayInputChain

261

AsyncEnable

262

AutoCommit

263

BitData

263

BlockForNRows

264

BlockLobs

265

ClientAcctStr

266

ClientApplName

266

ClientBuffersUnboundLOBS

267

ClientUserID

268

ClientWrkStnName

269

CLIPkg

269

CLI/ODBC

keywords

(continued)
CLISchema

270

ConnectNode

271

ConnectType

272

CurrentFunctionPath

272

CurrentMaintainedTableTypesForOpt

273

CurrentPackagePath

273

CurrentPackageSet

274

CurrentRefreshAge

275

CurrentSchema

275

CurrentSQLID

275

CursorHold

276

CursorTypes

277

Database

278

DateTimeStringFormat

279

DB2Degree

280

DB2Explain

280

DB2Optimization

281

DBAlias

282

DBName

282

DefaultProcLibrary

283

DeferredPrepare

283

DescribeInputOnPrepare

284

DescribeParam

285

DisableKeysetCursor

285

DisableMultiThread

286

DisableUnicode

286

FloatPrecRadix

287

GranteeList

288

GrantorList

289

Graphic

289

Hostname

290

IgnoreWarnings

291

IgnoreWarnList

291

initialization

file

255

KeepDynamic

292

KeepStatement

293

listing

by

category

257

LoadXAInterceptor

293

LOBCacheSize

293

LOBFileThreshold

294

LOBMaxColumnSize

294

LockTimeout

295

LongDataCompat

296

MapDateCDefault

296

MapDateDescribe

297

MapGraphicDescribe

298

MapTimeCDefault

299

MapTimeDescribe

300

MapTimestampCDefault

301

MapTimestampDescribe

301

Mode

302

OleDbReturnCharAsWChar

303

OptimizeForNRows

304

Patch1

304

Patch2

305

Port

305

ProgramName

306

Protocol

307

PWD

307

QueryTimeoutInterval

308

ReportPublicPrivileges

310

ReportRetryErrorsAsWarnings

309

RetryOnError

310

SchemaList

311

ServiceName

312

SkipTrace

312

CLI/ODBC

keywords

(continued)
SQLOverrideFileName

313

StaticCapFile

314

StaticLogFile

314

StaticMode

315

StaticPackage

315

StreamPutData

316

SyncPoint

317

TableType

317

TempDir

318

Trace

319

TraceComm

320

TraceErrImmediate

320

TraceFileName

321

TraceFlush

322

TraceFlushOnError

323

TraceLocks

324

TracePathName

324

TracePIDList

325

TracePIDTID

326

TraceRefreshInterval

327

TraceStmtOnly

327

TraceTime

328

TraceTimestamp

329

TxnIsolation

330

UID

330

Underscore

331

UseOldStpCall

332

WarningList

332

CLI/ODBC/JDBC
static

profiling
capture

file

185

creating

static

SQL

183

trace
facility

187

files

192

ClientAcctStr
CLI/ODBC

keyword

266

ClientApplName

CLI/ODBC

keyword

266

ClientBuffersUnboundLOBS

CLI/ODBC

keyword

267

ClientUserID

CLI/ODBC

keyword

268

ClientWrkStnName

CLI/ODBC

keyword

269

CLIPkg

CLI/ODBC

keyword

269

CLISCHEMA

CLI/ODBC

keyword

270

CLOB

(character

large

object)
data

type
CLI

applications

95

conversion

to

C

339

column

binding

offsets

89

column-wise

binding

87

columns
binding,

in

CLI

83

COM+
connection

reuse

134

loosely

coupled

support

134

transaction

manager

132

transaction

processing

134

transaction

timeout

134

command

help
invoking

372

commit
behavior

in

CLI

stored

procedures

115

transactions

29

384

CLI

Guide

and

Reference,

Volume

1

compile

options
AIX

CLI

applications

223

CLI

routines

226

HP-UX
CLI

applications

229

CLI

routines

231

Linux
CLI

applications

233

CLI

routines

235

Solaris

Operating

Environment
CLI

applications

237

CLI

routines

239

Windows
CLI

applications

246

CLI

routines

247

compound

SQL
CLI

executing

in

117

return

codes

119

CONCAT

scalar

function
CLI

170

concise

descriptor

functions

156

connection

handles
description

4

connection

pooling
ADO

135

ODBC

135

connections
attributes

changing

159

connection

strings

159

multiple

53

ConnectNode

CLI/ODBC

keyword

271

ConnectType

CLI/ODBC

keyword

272

conversions
data

types,

in

CLI

337

CONVERT

scalar

function

170

coordinated

transactions
distributed

127

establishing

128

copying
descriptors

in

CLI

applications

154

core

level

functions

3

COS

scalar

function
for

CLI

applications

170

COT

scalar

function
for

CLI

applications

170

CURDATE

scalar

function

170

CurrentFunctionPath

CLI/ODBC

keyword

272

CurrentMaintainedTableTypesForOpt

CLI/ODBC

keyword

273

CurrentPackagePath

CLI/ODBC

keyword

273

CurrentPackageSet

CLI/ODBC

keyword

274

CurrentRefreshAge

CLI/ODBC

keyword

275

CurrentSchema

CLI/ODBC

keyword

275

CurrentSQLID

CLI/ODBC

keyword

275

CursorHold

CLI/ODBC

keyword

276

cursors
CLI

(call

level

interface)
bookmarks

76

cursors

(continued)
CLI

(call

level

interface)

(continued)
considerations

63

selection

66

versus

embedded

dynamic

SQL

4

dynamic

scrollable

63

holding

across

rollbacks

53

scrollable
retrieving

data

with

in

CLI

74

CursorTypes

CLI/ODBC

keyword

277

CURTIME

scalar

function

170

D
data

conversions
CLI

337

data

conversion
C

data

types

41

C

to

SQL

data

types

345

data

types

39

default

data

types

41

description

39

SQL

data

types

41

SQL

to

C

data

types

339

data

retrieval
in

pieces,

CLI

93

data

types
C

language

41

C,

in

CLI

42

conversion
CLI

337

SQL

41

Database

CLI/ODBC

keyword

278

DATABASE

scalar

function

170

DATE

SQL

data

type
conversion

to

C

339

DateTimeStringFormat

CLI/ODBC

keyword

279

DAYNAME

scalar

function
for

CLI

applications

170

DAYOFMONTH

scalar

function

170

DAYOFWEEK

scalar

function
for

CLI

applications

170

DAYOFWEEK_ISO

scalar

function
for

CLI

applications

170

DAYOFYEAR

scalar

function

170

DB2
as

transaction

manager

128

DB2

books
printing

PDF

files

370

DB2

CLI
sample

program

files

249

DB2

Information

Center

354

invoking

362

DB2

tutorials

373

db2cli.ini

file
attributes

159

description

255

DB2Degree

keyword

280

DB2Explain

CLI/ODBC

keyword

280

DB2NODE

271

DB2Optimization

CLI/ODBC

keyword

281

DBAlias

CLI/ODBC

keyword

282

DBCLOB

data

type
description

95

DBCLOB

SQL

data

type
conversion

to

C

339

DBName

CLI/ODBC

keyword

282

DECIMAL

data

type
conversion

to

C

339

DefaultProcLibrary

CLI/ODBC

keyword

283

deferred

arguments

26

deferred

prepare
in

CLI

applications

25

DeferredPrepare

CLI/ODBC

keyword

283

DEGREES

scalar

function
for

CLI

applications

170

deleting
bulk

data

in

CLI

108

data

in

CLI

35

DescribeInputOnPrepare

CLI/ODBC

keyword

284

DescribeParam

CLI/ODBC

keyword

285

descriptor

handles

147

description

4

descriptors

147

allocating

151

concise

functions

156

consistency

checks

150

copying

154

freeing

151

header

fields

147

records

147

types

147

diagnostics

47

DIFFERENCE

scalar

function
extended

scalar

function

in

CLI

applications

170

disability

375

DisableKeysetCursor

CLI/ODBC

keyword

285

DisableMultiThread

CLI/ODBC

keyword

286

DisableUnicode

CLI/ODBC

keyword

286

distinct

types
description

143

distributed

transactions

127

distributed

unit

of

work

127

CICS

137

DB2

as

transaction

manager

128

description

127

Encina

137

processor

based

transaction

manager

137

documentation
displaying

362

dotted

decimal

syntax

diagrams

376

DOUBLE

data

type
conversion

to

C

339

drivers
CLI

9

manager

9

ODBC

9

E
embedded

SQL
compared

to

DB2

CLI

7

mixing

with

DB2

CLI

181

Index

385

Encina,

running

applications

on

137

environment

attributes
changing

159

environment

handles
description

4

ESCAPE

clauses
vendor

167

examples
distinct

types
CLI

applications

143

executing
SQL

in

CLI

24

EXP

scalar

function

170

F
fetching

LOB

data

in

CLI

98

File

DSN
database

to

connect

278

host

name

290

IP

address

290

protocol

used

307

service

name

312

file

input/output

for

LOB

data

in

CLI

100

FLOAT

SQL

data

type
conversion

to

C

339

FloatPrecRadix

CLI/ODBC

keyword

287

FLOOR

scalar

function

170

freeing

CLI

handles
in

CLI

application

38

freeing

statement

resources

in

CLI

36

G
GranteeList

CLI/ODBC

keyword

288

GrantorList

CLI/ODBC

keyword

289

Graphic

CLI/ODBC

keyword

289

GRAPHIC

SQL

data

type
conversion

to

C

339

H
handles

connection

4

descriptor

4,

147

environment

4

freeing

38

statement

4

types

15

help
displaying

362,

364

for

commands
invoking

372

for

messages
invoking

372

for

SQL

statements
invoking

373

Hostname

CLI/ODBC

keyword

290

HOUR

scalar

function

170

HTML

documentation
updating

363

I
IFNULL

scalar

function

170

IgnoreWarnings

CLI/ODBC

keyword

291

IgnoreWarnList

CLI/ODBC

keyword

291

implementation

parameter

descriptor

(IPD)

147

implementation

row

descriptor

(IRD)

147

importing
data

with

the

CLI

LOAD

utility

109

IN

DATABASE

statement

282

Information

Center
installing

355,

358,

360

INI

file
db2cli.ini

255

initialization
task

17

initialization

file
purpose

159

initializing
CLI

applications

18

INSERT

scalar

function

170

installing
Information

Center

355,

358,

360

INTEGER

SQL

data

type
conversion

to

C

339

INVALID_HANDLE

48

invoking
command

help

372

message

help

372

SQL

statement

help

373

IPD

descriptor

147

IRD

descriptor

147

isolation

levels
ODBC

9

issuing

SQL

in

CLI

23

J
JULIAN_DAY

scalar

function

170

K
KeepDynamic

CLI/ODBC

keyword

292

KeepStatement

CLI/ODBC

keyword

293

keyboard

shortcuts
support

for

375

keysets

68

L
large

object

(LOB)

data

types
fetching

with

locators

in

CLI

98

file

input

and

output

in

CLI

100

in

CLI

applications

95

in

ODBC

applications

101

LONGDATACOMPAT

CLI/ODBC

keyword

101

LCASE

scalar

function
description

170

LEFT

scalar

function
description

170

LENGTH

scalar

function

170

load

utility
callable

from

CLI

109

LoadXAInterceptor

CLI/ODBC

keyword

293

LOB

(large

object)

data

types
fetching

with

locators

in

CLI

98

file

input

and

output

in

CLI

100

in

CLI

applications

95

in

ODBC

applications

101

LONGDATACOMPAT

CLI/ODBC

keyword

101

LOB

locators

97,

98

LOBCacheSize

CLI/ODBC

keyword

293

LOBFileThreshold

CLI/ODBC

keyword

294

LOBMaxColumnSize

CLI/ODBC

keyword

294

LOCATE

scalar

function
listed

170

LockTimeout

CLI/ODBC

keyword

295

LOG

scalar

function

170

LOG10

scalar

function

170

long

data
inserts

and

updates,

in

CLI

102

retrieving

data

in

pieces

91

sending

data

in

pieces

91

LongDataCompat

CLI/ODBC

keyword

296

LONGDATACOMPAT

CLI/ODBC

keyword

101

LONGVARBINARY

data

type
conversion

to

C

339

LONGVARCHAR

data

type
conversion

to

C

339

LONGVARGRAPHIC

data

type
conversion

to

C

339

lower

case

conversion

scalar

function

170

LTRIM

scalar

function
listed

170

M
MapDateCDefault

CLI/ODBC

keyword

296

MapDateDescribe

CLI/ODBC

keyword

297

MapGraphicDescribe

CLI/ODBC

keyword

298

MapTimeCDefault

CLI/ODBC

keyword

299

MapTimeDescribe

CLI/ODBC

keyword

300

MapTimestampCDefault

CLI/ODBC

keyword

301

MapTimestampDescribe

CLI/ODBC

keyword

301

message

help
invoking

372

metadata
characters

164

Microsoft

Component

Services

(COM+)
transaction

manager

132

Microsoft

ODBC

9

midnight,

seconds

since

scalar

function

170

386

CLI

Guide

and

Reference,

Volume

1

MINUTE

scalar

function

170

mixing

DB2

APIs

and

DB2

CLI
multithreaded

124

mixing

embedded

SQL

and

DB2

CLI

181

multithreaded

124

MOD

scalar

function

170

Mode

CLI/ODBC

keyword

302

MONTH

scalar

function

170

MONTHNAME

scalar

function

170

MTS

and

COM

distributed

transaction

support
transaction

manager

132

MTS

support
transaction

manager

132

transaction

timeout

134

multi-threaded

applications

121

multi-threaded

applications,

CLI
model

122

multisite

updates

127

N
native

error

code

49

NOW

scalar

function

170

null-terminated

strings
in

CLI

applications

45

NUMERIC

SQL

data

type
conversion

to

C

339

O
ODBC

driver

managers
unixODBC

210,

212

ODBC

(open

database

connectivity)
and

DB2

CLI

3,

9

catalog

for

DB2

Connect

270

connection

pooling,

with

MTS

and

COM+

135

core

level

functions

3

isolation

levels

9

setting

up

UNIX

environment

208

vendor

escape

clauses

167

offsets
binding

columns

89

changing

parameter

bindings

82

OleDbReturnCharAsWChar

CLI/ODBC

keyword

303

online
help,

accessing

371

OptimizeForNRows

CLI/ODBC

keyword

304

options
connection

159

environment

159

querying

and

setting

159

statement

159

ordering

DB2

books

370

P
package

names
and

binding

201

parallelism
setting

degree

of

280

parameter

markers
binding

column-wise

array

input,

in

CLI

79

in

CLI

applications

26,

28

row-wise

array

input,

in

CLI

80

changing

bindings

82

use

in

SQLExecDirect

4

parameter

status

array,

CLI

81

parameters
diagnostics,

in

CLI

81

Patch1

CLI/ODBC

keyword

304

Patch2

CLI/ODBC

keyword

305

pattern

values

164

performance
CLI

array

input

chaining

60

PI

scalar

function

170

Port

CLI/ODBC

keyword

305

portability

when

using

CLI

instead

of

embedded

SQL

5

POWER

scalar

function
list

170

prepared

SQL

statements
in

CLI

applications
creating

24

printed

books,

ordering

370

printing
PDF

files

370

problem

determination
online

information

374

tutorials

374

process-based

transaction

manager

137

ProgramName

CLI/ODBC

keyword

306

Protocol

CLI/ODBC

keyword

307

PWD

CLI/ODBC

keyword

307

Q
QUARTER

scalar

function

170

queries
system

catalog

information

163

QueryTimeoutInterval

CLI/ODBC

keyword

308

R
RADIANS

scalar

function
list

170

RAND

scalar

function
list

170

REAL

SQL

data

type
conversion

to

C

339

reentrant

(multi-threaded)

121

REPEAT

scalar

function
list

170

REPLACE

scalar

function
list

170

ReportPublicPrivileges

CLI/ODBC

keyword

310

ReportRetryErrorsAsWarnings

CLI/ODBC

keyword

309

result

sets
specifying

rowset

returned

from,

in

CLI

71

terminology,

CLI

68

retrieving

data
array

column-wise

binding

87

row-wise

binding

88

bulk,

with

bookmarks

in

CLI

104

in

pieces,

CLI

93

with

bookmarks

in

CLI

77

with

scrollable

cursors,

in

CLI

74

XML

85

retrieving

query

results
CLI

32

retrieving

row

sets
CLI

examples

69

RetryOnError

CLI/ODBC

keyword

310

return

codes
CLI

compound

SQL

119

functions

48

RIGHT

scalar

function
vendor

escape

clauses

170

rollback
transactions

29

ROUND

scalar

function
vendor

escape

clauses

170

row

sets
description

68

retrieval

examples,

in

CLI

69

specifying,

in

CLI

71

row-wise

binding

85,

88

RTRIM

scalar

function
vendor

escape

clauses

170

S
samples

programs
CLI,

location

of

249

SchemaList

CLI/ODBC

keyword

311

search

conditions
in

input

to

catalog

functions

164

SECOND

scalar

function
in

CLI

applications

170

SECONDS_SINCE_MIDNIGHT

scalar

function

170

ServiceName

CLI/ODBC

keyword

312

SET

CURRENT

SCHEMA

statement

275

settings
CLI

environment
run-time

support

207

Windows

214

SIGN

scalar

function
list

170

SIN

scalar

function
list

170

SkipTrace

CLI/ODBC

keyword

312

SMALLINT

data

type
conversion

to

C/C++

339

SOUNDEX

scalar

function
in

CLI

applications

170

SPACE

scalar

function
list

170

SQL

(Structured

Query

Language)
dynamically

prepared

4

parameter

markers

26

SQL

Access

Group

3

SQL

statement

help
invoking

373

Index

387

SQL_ATTR_
CONNECTTYPE

128

LONGDATA_COMPAT

101

SQL_C_BINARY

345

SQL_C_BIT

345

SQL_C_CHAR

345

SQL_C_DATE

345

SQL_C_DBCHAR

345

SQL_C_DOUBLE

345

SQL_C_FLOAT

345

SQL_C_LONG

345

SQL_C_SHORT

345

SQL_C_TIME

345

SQL_C_TIMESTAMP

345

SQL_C_TINYINT

345

SQL_CONCURRENT_TRANS

128

SQL_COORDINATED_TRANS

128

SQL_ERROR

48

SQL_NEED_DATA

48

SQL_NO_DATA_FOUND

48

SQL_NTS

45

SQL_ONEPHASE

128

SQL_STILL_EXECUTING

48

SQL_SUCCESS

48

SQL_SUCCESS_WITH_INFO

48

SQL_TWOPHASE

128

SQLAllocStmt

deprecated

CLI

function

20

SQLBindCol

CLI

function

20

SQLBindParameter

function

26

SQLBrowseConnect

CLI

function
Unicode

version

140

SQLBrowseConnectW

CLI

function

140

SQLBulkOperations

CLI

function
deleting

bulk

data

108

inserting

bulk

data

105

retrieving

bulk

data

104

updating

bulk

data

106

SQLColAttribute

CLI

function
Unicode

version

140

SQLColAttributes

CLI

function
overview

20

Unicode

version

140

SQLColAttributesW

CLI

function

140

SQLColAttributeW

CLI

function

140

SQLColumnPrivileges

CLI

function
Unicode

version

140

SQLColumnPrivilegesW

CLI

function

140

SQLColumns

CLI

function
Unicode

version

140

SQLColumnsW

CLI

function

140

SQLConnect

CLI

function
Unicode

version

140

SQLConnectW

CLI

function

140

SQLDataSources

CLI

function
overview

20

Unicode

version

140

SQLDataSourcesW

CLI

function

140

SQLDescribeCol

CLI

function
overview

20

Unicode

version

140

SQLDescribeColW

CLI

function

140

SQLDriverConnect

CLI

function
default

values

159

Unicode

version

140

SQLDriverConnectW

CLI

function

140

SQLEndTran

CLI

function

31

SQLError

CLI

function

140

SQLErrorW

CLI

function

140

SQLExecDirect

CLI

function
overview

20

Unicode

version

140

SQLExecDirectW

CLI

function

140

SQLExecute

CLI

function
overview

20

SQLExtendedPrepare

CLI

function
Unicode

version

140

SQLExtendedPrepareW

CLI

function

140

SQLFetch

CLI

function
overview

20

SQLForeignKeys

CLI

function
Unicode

version

140

SQLForeignKeysW

CLI

function

140

SQLFreeStmt

CLI

function
overview

20

SQLGetConnectAttr

CLI

function
Unicode

version

140

SQLGetConnectAttrW

CLI

function

140

SQLGetConnectOption

CLI

function

140

SQLGetConnectOptionW

CLI

function

140

SQLGetCursorName

CLI

function
Unicode

version

140

SQLGetCursorNameW

CLI

function

140

SQLGetData

CLI

function
overview

20

SQLGetDescField

CLI

function
Unicode

version

140

SQLGetDescFieldW

CLI

function

140

SQLGetDescRec

CLI

function
Unicode

version

140

SQLGetDescRecW

CLI

function

140

SQLGetDiagField

CLI

function
Unicode

version

140

SQLGetDiagFieldW

CLI

function

140

SQLGetDiagRec

CLI

function
Unicode

version

140

SQLGetDiagRecW

CLI

function

140

SQLGetInfo

CLI

function
Unicode

version

140

SQLGetInfoW

CLI

function

140

SQLGetStmtAttr

CLI

function
Unicode

version

140

SQLGetStmtAttrW

CLI

function

140

SQLNativeSql

CLI

function
Unicode

version

140

SQLNativeSqlW

CLI

function

140

SQLNumResultCols

CLI

function
overview

20

SQLOverrideFileName

CLI/ODBC

keyword

313

SQLPrepare

CLI

function
overview

20

Unicode

version

140

SQLPrepareW

CLI

function

140

SQLPrimaryKeys

CLI

function
Unicode

version

140

SQLPrimaryKeysW

CLI

function

140

SQLProcedureColumns

CLI

function
Unicode

version

140

SQLProcedureColumnsW

CLI

function

140

SQLProcedures

CLI

function
Unicode

version

140

SQLProceduresW

CLI

function

140

SQLRowCount

CLI

function
overview

20

SQLSetConnectAttr

CLI

function
Unicode

version

140

SQLSetConnectAttrW

CLI

function

140

SQLSetConnectOption

deprecated

CLI

function
Unicode

version

140

SQLSetConnectOptionW

CLI

function

140

SQLSetCursorName

CLI

function
Unicode

version

140

SQLSetCursorNameW

CLI

function

140

SQLSetDescField

CLI

function
Unicode

version

140

SQLSetDescFieldW

CLI

function

140

SQLSetParam

deprecated

CLI

function

20

SQLSetStmtAttr

CLI

function
Unicode

version

140

SQLSetStmtAttrW

CLI

function

140

SQLSpecialColumns

CLI

function
Unicode

version

140

SQLSpecialColumnsW

CLI

function

140

SQLSTATE
format

49

in

CLI

4

SQLStatistics

CLI

function
Unicode

version

140

SQLStatisticsW

CLI

function

140

SQLTablePrivileges

CLI

function
Unicode

version

140

SQLTablePrivilegesW

CLI

function

140

SQLTables

CLI

function
Unicode

version

140

SQLTablesW

CLI

function

140

SQRT

scalar

function
list

170

statement

attributes
changing

159

statement

handles
allocating

22

description

4

statements
freeing

resources,

in

CLI

36

StaticCapFile

CLI/ODBC

keyword

314

StaticLogFile

CLI/ODBC

keyword

314

StaticMode

CLI/ODBC

keyword

315

StaticPackage

CLI/ODBC

keyword

315

stored

procedures
calling

CLI

applications

113

ODBC

escape

clause

167

StreamPutData

CLI/ODBC

keyword

316

strings
input

arguments

45

length

in

CLI

applications

45

SUBSTRING

scalar

function

170

SyncPoint

CLI/ODBC

keyword

317

system

catalogs
querying

163

388

CLI

Guide

and

Reference,

Volume

1

T
TableType

CLI/ODBC

keyword

317

TAN

scalar

function
list

170

targets
logical

nodes

271

TempDir

CLI/ODBC

keyword

318

termination
CLI

application

51

task

17

threads
multithreaded,

in

CLI

121

TIME

SQL

data

type
conversion

to

C

339

TIMESTAMP

data

type
conversion

to

C

339

TIMESTAMPADD

scalar

function

170

TIMESTAMPDIFF

scalar

function
description

170

Trace

CLI/ODBC

keyword

319

TraceComm

CLI/ODBC

keyword

320

TraceErrImmediate

CLI/ODBC

keyword

320

TraceFileName

CLI/ODBC

keyword

321

TraceFlush

CLI/ODBC

keyword

322

TraceFlushOnError

CLI/ODBC

keyword

323

TraceLocks

CLI/ODBC

keyword

324

TracePathName

CLI/ODBC

keyword

324

TracePIDList

CLI/ODBC

keyword

325

TracePIDTID

CLI/ODBC

keyword

326

TraceRefreshInterval

CLI/ODBC

keyword

327

traces
CLI/ODBC/JDBC

187

TraceStmtOnly

CLI/ODBC

keyword

327

TraceTime

keyword

328

TraceTimestamp

CLI/ODBC

keyword

329

transaction

managers
CLI

applications
configuration

128

programming

considerations

137

COM+

132

MTS

132

transactions
commit

or

rollback

29

ending

in

CLI

31

loosely

coupled

134

timeout,

with

MTS

and

COM+

134

troubleshooting
online

information

374

tutorials

374

TRUNCATE

or

TRUNC

scalar

function
overview

170

truncation
output

strings

45

tutorials

373

troubleshooting

and

problem

determination

374

two-phase

commit
CLI

127

TxnIsolation

CLI/ODBC

keyword

330

U
UCASE

scalar

function

170

UDTs

(user-defined

types)
description

143

in

CLI

144

UID

CLI/ODBC

keyword

330

Underscore

CLI/ODBC

keyword

331

Unicode

(UCS-2)
CLI

applications

139

functions

140

ODBC

driver

managers

141

units

of

work

(UOW)
distributed

29

UNIX
setting

up

ODBC

environment

208

unixODBC

driver

manager
build

scripts

212

configurations

212

setting

up

210

updates
bulk

data,

with

bookmarks

in

CLI

106

data

in

CLI

35

Updating
HMTL

documentation

363

UseOldStpCall

CLI/ODBC

keyword

332

USER

scalar

function

170

user-defined

types

(UDTs)
in

CLI

144

V
VARBINARY

SQL

data

type
conversion

to

C

339

VARCHAR

data

type
conversion

to

C

339

VARGRAPHIC

data

type
conversion

to

C

339

vendor

escape

clauses

167

W
WarningList

CLI/ODBC

keyword

332

WEEK

scalar

function
listed

170

WEEK_ISO

scalar

function
listed

170

Windows
CLI

environment

214

setting

up

CLI

environment

214

X
X/Open

CAE

49

X/Open

Company

3

X/Open

SQL

CLI

3

Y
YEAR

scalar

function
list

170

Index

389

390

CLI

Guide

and

Reference,

Volume

1

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

http://www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

http://www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

product

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1993

-

2004

391

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

392

CLI

Guide

and

Reference,

Volume

1

����

Printed

in

USA

SC09-4849-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

®

D
B

2

U
ni

ve
rs

al

D
at

ab
as

e™

C
LI

G
ui

de

an
d

R
ef

er
en

ce
,

Vo
lu

m
e

1

Ve
rs

io
n

8.
2

	Contents
	Part 1. CLI background information
	Chapter 1. Introduction to CLI
	Introduction to CLI
	DB2 Call Level Interface (CLI) versus embedded dynamic SQL
	Advantages of DB2 CLI over embedded SQL
	When to use DB2 CLI or embedded SQL

	Chapter 2. DB2 CLI and ODBC
	Comparison of DB2 CLI and Microsoft ODBC

	Part 2. Programming CLI applications
	Chapter 3. Writing a basic CLI application
	Initialization
	Handles in CLI
	Initialization and termination in CLI overview
	Initializing CLI applications

	Transaction processing
	Transaction processing in CLI overview
	Allocating statement handles in CLI applications
	Issuing SQL statements in CLI applications
	Preparing and executing SQL statements in CLI applications
	Deferred prepare in CLI applications
	Parameter marker binding in CLI applications
	Binding parameter markers in CLI applications
	Commit modes in CLI applications
	When to call the CLI SQLEndTran() function
	Retrieving query results in CLI applications
	Updating and deleting data in CLI applications
	Freeing statement resources in CLI applications
	Handle freeing in CLI applications
	Data types and data conversion in CLI applications
	SQL symbolic and default data types for CLI applications
	C data types for CLI applications
	String handling in CLI applications
	Diagnostics in CLI applications overview
	CLI function return codes
	SQLSTATES for DB2 CLI

	Termination
	Terminating a CLI application

	Chapter 4. Programming hints and tips
	Programming hints and tips for CLI applications
	Reduction of network flows with CLI array input chaining

	Chapter 5. Cursors
	Cursors
	Cursors in CLI applications
	Cursor considerations for CLI applications

	Result sets
	Result set terminology in CLI applications
	Rowset retrieval examples in CLI applications
	Specifying the rowset returned from the result set
	Retrieving data with scrollable cursors in a CLI application

	Bookmarks
	Bookmarks in CLI applications
	Retrieving data with bookmarks in a CLI application

	Chapter 6. Array input and output
	Array input
	Binding parameter markers in CLI applications with column-wise array input
	Binding parameter markers in CLI applications with row-wise array input
	Parameter diagnostic information in CLI applications
	Changing parameter bindings in CLI applications with offsets

	Array output
	Column binding in CLI applications
	Result set retrieval into arrays in CLI applications
	Retrieving array data in CLI applications using column-wise binding
	Retrieving array data in CLI applications using row-wise binding
	Changing column bindings in a CLI application with column binding offsets

	Chapter 7. Working with large amounts of data
	Specifying parameter values at execute time for long data manipulation in CLI applications
	Data retrieval in pieces in CLI applications
	Large object usage in CLI applications
	LOB locators in CLI applications
	Fetching LOB data with LOB locators in CLI applications
	Direct file input and output for LOB handling in CLI applications
	LOB usage in ODBC applications
	Bulk data manipulation
	Long data for bulk inserts and updates in CLI applications
	Retrieving bulk data with bookmarks using SQLBulkOperations() in CLI applications
	Inserting bulk data with bookmarks using SQLBulkOperations() in CLI applications
	Updating bulk data with bookmarks using SQLBulkOperations() in CLI applications
	Deleting bulk data with bookmarks using SQLBulkOperations() in CLI applications

	Importing data with the CLI LOAD utility in CLI applications

	Chapter 8. Stored procedures
	Calling stored procedures from CLI applications
	DB2 CLI stored procedure commit behavior

	Chapter 9. Compound SQL
	Executing compound SQL statements in CLI applications
	Return codes for compound SQL in CLI applications

	Chapter 10. Multithreaded CLI applications
	Multithreaded CLI applications
	Application model for multithreaded CLI applications
	Mixed multithreaded CLI applications

	Chapter 11. Multisite updates (two phase commit)
	Multisite updates (two phase commit) in CLI applications
	DB2 as transaction manager in CLI applications
	Microsoft Transaction Server (MTS) as transaction monitor
	Microsoft Transaction Server (MTS) and Microsoft Component Services (COM+) as transaction manager
	Loosely coupled support with Microsoft Component Services (COM+)
	Microsoft Transaction Server (MTS) and Microsoft Component Services (COM+) transaction timeout
	ODBC and ADO connection pooling with Microsoft Transaction Server (MTS) and Microsoft Component Services (COM+)

	Process-based XA-compliant Transaction Program Monitor (XA TP) programming considerations for CLI applications

	Chapter 12. Unicode
	Unicode CLI applications
	Unicode functions (CLI)
	Unicode function calls to ODBC driver managers

	Chapter 13. User-defined types (UDT)
	Distinct type usage in CLI applications
	User-defined type (UDT) usage in CLI applications

	Chapter 14. Descriptors
	Descriptors in CLI applications
	Consistency checks for descriptors in CLI applications
	Descriptor allocation and freeing
	Descriptor manipulation with descriptor handles in CLI applications
	Descriptor manipulation without using descriptor handles in CLI applications

	Chapter 15. Environment, connection, and statement attributes
	Environment, connection, and statement attributes in CLI applications

	Chapter 16. Querying system catalog information
	Catalog functions for querying system catalog information in CLI applications
	Input arguments on catalog functions in CLI applications

	Chapter 17. Vendor escape clauses
	Vendor escape clauses in CLI applications
	Extended scalar functions for CLI applications

	Chapter 18. Mixing embedded SQL and DB2 CLI
	Considerations for mixing embedded SQL and DB2 CLI

	Chapter 19. CLI/ODBC/JDBC Static Profiling
	Creating static SQL with CLI/ODBC/JDBC Static Profiling
	Capture file for CLI/ODBC/JDBC Static Profiling

	Chapter 20. CLI/ODBC/JDBC trace facility
	CLI/ODBC/JDBC trace facility
	CLI and JDBC trace files

	Chapter 21. CLI bind files and package names
	DB2 CLI bind files and package names

	Part 3. CLI environment and application building
	Chapter 22. CLI environmental setup
	Setting up the CLI environment
	Setting up the UNIX ODBC environment
	Setting up the unixODBC Driver Manager
	Sample build scripts and configurations for the unixODBC Driver Manager
	Setting up the Windows CLI environment

	Chapter 23. Building CLI applications
	UNIX
	Building CLI applications on UNIX
	Building CLI multi-connection applications on UNIX
	Building CLI routines on UNIX
	AIX
	Build script for AIX applications
	AIX CLI application compile and link options
	CLI applications and configuration files on AIX
	Build script for AIX routines
	AIX CLI routine compile and link options
	CLI routines and configuration files on AIX

	HP-UX
	Build script for HP-UX applications
	HP-UX CLI application compile and link options
	Build script for HP-UX routines
	HP-UX CLI routine compile and link options

	Linux
	Build script for Linux applications
	Linux CLI application compile and link options
	Build script for Linux routines
	Linux CLI routine compile and link options

	Solaris
	Build script for Solaris applications
	Solaris CLI application compile and link options
	Build script for Solaris routines
	Solaris CLI routine compile and link options

	Windows
	Building CLI applications on Windows
	Building CLI multi-connection applications on Windows
	Building CLI routines on Windows
	Batch file for Windows applications
	Windows CLI application compile and link options
	Batch file for Windows routines
	Windows CLI routine compile and link options

	Chapter 24. CLI sample programs
	CLI sample programs
	CLI samples

	Part 4. CLI/ODBC configuration keywords
	Chapter 25. CLI/ODBC configuration keywords
	db2cli.ini initialization file
	CLI/ODBC configuration keywords listing by category
	AppendAPIName CLI/ODBC configuration keyword
	ArrayInputChain CLI/ODBC configuration keyword
	AsyncEnable CLI/ODBC configuration keyword
	AutoCommit CLI/ODBC configuration keyword
	BitData CLI/ODBC configuration keyword
	BlockForNRows CLI/ODBC configuration keyword
	BlockLobs CLI/ODBC configuration keyword
	ClientAcctStr CLI/ODBC configuration keyword
	ClientApplName CLI/ODBC configuration keyword
	ClientBuffersUnboundLOBS CLI/ODBC configuration keyword
	ClientUserID CLI/ODBC configuration keyword
	ClientWrkStnName CLI/ODBC configuration keyword
	CLIPkg CLI/ODBC configuration keyword
	CLISchema CLI/ODBC configuration keyword
	ConnectNode CLI/ODBC configuration keyword
	ConnectType CLI/ODBC configuration keyword
	CurrentFunctionPath CLI/ODBC configuration keyword
	CurrentMaintainedTableTypesForOpt CLI/ODBC configuration keyword
	CurrentPackagePath CLI/ODBC configuration keyword
	CurrentPackageSet CLI/ODBC configuration keyword
	CurrentRefreshAge CLI/ODBC configuration keyword
	CurrentSchema CLI/ODBC configuration keyword
	CurrentSQLID CLI/ODBC configuration keyword
	CursorHold CLI/ODBC configuration keyword
	CursorTypes CLI/ODBC configuration keyword
	Database CLI/ODBC configuration keyword
	DateTimeStringFormat CLI/ODBC configuration keyword
	DB2Degree CLI/ODBC configuration keyword
	DB2Explain CLI/ODBC configuration keyword
	DB2Optimization CLI/ODBC configuration keyword
	DBAlias CLI/ODBC configuration keyword
	DBName CLI/ODBC configuration keyword
	DefaultProcLibrary CLI/ODBC configuration keyword
	DeferredPrepare CLI/ODBC configuration keyword
	DescribeInputOnPrepare CLI/ODBC configuration keyword
	DescribeParam CLI/ODBC configuration keyword
	DisableKeysetCursor CLI/ODBC configuration keyword
	DisableMultiThread CLI/ODBC configuration keyword
	DisableUnicode CLI/ODBC configuration keyword
	FloatPrecRadix CLI/ODBC configuration keyword
	GranteeList CLI/ODBC configuration keyword
	GrantorList CLI/ODBC configuration keyword
	Graphic CLI/ODBC configuration keyword
	Hostname CLI/ODBC configuration keyword
	IgnoreWarnings CLI/ODBC configuration keyword
	IgnoreWarnList CLI/ODBC configuration keyword
	KeepDynamic CLI/ODBC configuration keyword
	KeepStatement CLI/ODBC configuration keyword
	LoadXAInterceptor CLI/ODBC configuration keyword
	LOBCacheSize CLI/ODBC configuration keyword
	LOBFileThreshold CLI/ODBC configuration keyword
	LOBMaxColumnSize CLI/ODBC configuration keyword
	LockTimeout CLI/ODBC configuration keyword
	LongDataCompat CLI/ODBC configuration keyword
	MapDateCDefault CLI/ODBC configuration keyword
	MapDateDescribe CLI/ODBC configuration keyword
	MapGraphicDescribe CLI/ODBC configuration keyword
	MapTimeCDefault CLI/ODBC configuration keyword
	MapTimeDescribe CLI/ODBC configuration keyword
	MapTimestampCDefault CLI/ODBC configuration keyword
	MapTimestampDescribe CLI/ODBC configuration keyword
	Mode CLI/ODBC configuration keyword
	OleDbReturnCharAsWChar CLI/ODBC configuration keyword
	OptimizeForNRows CLI/ODBC configuration keyword
	Patch1 CLI/ODBC configuration keyword
	Patch2 CLI/ODBC configuration keyword
	Port CLI/ODBC configuration keyword
	ProgramName CLI/ODBC configuration keyword
	Protocol CLI/ODBC configuration keyword
	PWD CLI/ODBC configuration keyword
	QueryTimeoutInterval CLI/ODBC configuration keyword
	ReportRetryErrorsAsWarnings CLI/ODBC configuration keyword
	ReportPublicPrivileges CLI/ODBC configuration keyword
	RetryOnError CLI/ODBC configuration keyword
	SchemaList CLI/ODBC configuration keyword
	ServiceName CLI/ODBC configuration keyword
	SkipTrace CLI/ODBC configuration keyword
	SQLOverrideFileName CLI/ODBC configuration keyword
	StaticCapFile CLI/ODBC configuration keyword
	StaticLogFile CLI/ODBC configuration keyword
	StaticMode CLI/ODBC configuration keyword
	StaticPackage CLI/ODBC configuration keyword
	StreamPutData CLI/ODBC configuration keyword
	SyncPoint CLI/ODBC configuration keyword
	TableType CLI/ODBC configuration keyword
	TempDir CLI/ODBC configuration keyword
	Trace CLI/ODBC configuration keyword
	TraceComm CLI/ODBC configuration keyword
	TraceErrImmediate CLI/ODBC configuration keyword
	TraceFileName CLI/ODBC configuration keyword
	TraceFlush CLI/ODBC configuration keyword
	TraceFlushOnError CLI/ODBC configuration keyword
	TraceLocks CLI/ODBC configuration keyword
	TracePathName CLI/ODBC configuration keyword
	TracePIDList CLI/ODBC configuration keyword
	TracePIDTID CLI/ODBC configuration keyword
	TraceRefreshInterval CLI/ODBC configuration keyword
	TraceStmtOnly CLI/ODBC configuration keyword
	TraceTime CLI/ODBC configuration keyword
	TraceTimestamp CLI/ODBC configuration keyword
	TxnIsolation CLI/ODBC configuration keyword
	UID CLI/ODBC configuration keyword
	Underscore CLI/ODBC configuration keyword
	UseOldStpCall CLI/ODBC configuration keyword
	WarningList CLI/ODBC configuration keyword

	Part 5. Data conversion
	Chapter 26. Data conversion
	Data conversions supported in CLI
	SQL to C data conversion in CLI
	C to SQL data conversion in CLI

	Part 6. Appendixes
	Appendix A. DB2 Universal Database technical information
	DB2 documentation and help
	DB2 documentation updates

	DB2 Information Center
	DB2 Information Center installation scenarios
	Installing the DB2 Information Center using the DB2 Setup wizard (UNIX)
	Installing the DB2 Information Center using the DB2 Setup wizard (Windows)
	Invoking the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Displaying topics in your preferred language in the DB2 Information Center
	DB2 PDF and printed documentation
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Invoking contextual help from a DB2 tool
	Invoking message help from the command line processor
	Invoking command help from the command line processor
	Invoking SQL state help from the command line processor
	DB2 tutorials
	DB2 troubleshooting information
	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Dotted decimal syntax diagrams
	Common Criteria certification of DB2 Universal Database products

	Appendix B. Notices for the DB2 Call Level Interface Guide and Reference
	Trademarks

	Index
	Contacting IBM
	Product information

