
DB2 9 DBA exam 731 prep, Part 3: Database
access
Skill Level: Introductory

George Baklarz (baklarz@yahoo.com)
Manager, DB2 Worldwide Pre-sales Support Group
IBM

18 Jul 2006

This tutorial will take you through the various steps required to manage some of the
objects within DB2®. It includes overview information for indexes, constraints,
referential integrity, and views. This is the third in a series of seven tutorials that you
can use to help prepare for the DB2 9 for Linux®, UNIX®, and Windows™ Database
Administration Certification (Exam 731).

Section 1. Before you start

About this series

If you are preparing to take the DB2 DBA certification exam 731, you've come to the
right place -- a study hall, of sorts. This series of seven DB2 certification preparation
tutorials covers the major concepts you'll need to know for the test. Do your
homework here and ease the stress on test day.

About this tutorial

This tutorial will take you through the various steps required to manage some of the
objects within DB2. The following topics are included:

• Creating DB2 tasks using the GUI tools

• Creating and managing indexes

• Creating constraints on tables (for example, RI, informational, unique)

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 60

mailto:baklarz@yahoo.com
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/legal/copytrade.shtml


• Creating views on tables

• Examining the contents of the system catalog tables

• Enforcing data uniqueness

This is the third tutorial in a series of seven to help you prepare for the DB2 9 for
Linux, UNIX®, and Windows™ Database Administration Certification (Exam 731).
The material in this tutorial primarily covers the objectives in Section 3 of the exam,
entitled "Database Access." You can view these objectives at:
http://www-03.ibm.com/certify/tests/obj731.shtml.

DB2 installation is not covered in this tutorial. If you haven't already done so, we
strongly recommend that you download and install a copy of IBM DB2 9. Installing
DB2 will help you understand many of the concepts that are tested on the DB2 9
Database Administration Certification exam.

Prerequisites

Since you are reading this tutorial, you obviously want to be educated in the
nuances of administering DB2, or perhaps to upgrade your current skills to reflect
the new features found in the most recent release of the product. You could also be
interested in getting certified in the administration of DB2 and need to review what
we cover in the exam!

Whatever your reason, there are a few things you should do to get the most from
this and other tutorials:

1. Get a copy of DB2 9 . Without something to practice on, you won't be able
to try out the examples or explore the various features of the product.

2. Take the DB2 9 Fundamentals exam prep tutorials. These tutorials give
you the fundamentals on DB2 and will make it easier to understand some
of the terminology that is used in this tutorial. It probably wouldn't be a
bad idea if you passed that certification test before trying this one!

3. Practice and try things out on your own. While this tutorial tries to cover
many of the topics you need to get certified, nothing beats experience.

4. Read the DB2 Administration manuals. They can give you a lot of insight
on how DB2 works. There are also other sources of information on DB2
that can be found at the end of this tutorial (see Resources).

Section 2. Create DB2 tasks using the GUI tools

developerWorks® ibm.com/developerWorks

Database access
Page 2 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www-03.ibm.com/certify/tests/obj731.shtml
http://www.ibm.com/developerworks/downloads/im/udb/
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html?S_TACT=105AGX19&S_CMP=db2cert
http://www-03.ibm.com/certify/tests/test_index.shtml
http://www.ibm.com/legal/copytrade.shtml


DB2 Task Center

One of the DB2 tools that is used to control the database is the Task Center. The
Task Center is used to run tasks, either immediately or according to a schedule, and
to notify people about the status of completed tasks.

The Task Center includes all the functionality found in the Script Center in previous
versions of DB2, plus additional new features. A task is a script, together with
associated success conditions, schedules, and notifications. You can create a task
within the Task Center, create a script within another tool and save it to the Task
Center, import an existing script, or save the options from a DB2 dialog or wizard
such as the Load wizard. A script can contain DB2, SQL, or operating system
commands.

Create the tools database

To use the Task Center, the tools catalog must exist. The tools catalog contains
information about the administrative tasks that you configure with such tools as the
Task Center and Control Center.

The tools catalog may have been created for you when you installed DB2, but in the
event that it is not available, you can create it using either a DB2 command or the
tools menu.

To create the tools database from the command line, open up a DB2 command
window and issue the following command:

db2 create tools catalog cc create new database toolsdb

To create the database using the tools settings, select Tools > Tools Settings >
Scheduler Settings from within the Control Center:

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 60

http://www.ibm.com/legal/copytrade.shtml


Start the Task Center

Start the Task Center with the command db2tc from a command line, or click the
Task Center from any of the DB2 tools:

developerWorks® ibm.com/developerWorks

Database access
Page 4 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


In addition, the Task Center can be started from the DB2 menu in a Windows
environment:

Once the Task Center is started, you can manage, create, and run scripts.

Task Center functionality

For each task, you can do the following:

• Schedule the task

• Specify success and failure conditions

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 60

http://www.ibm.com/legal/copytrade.shtml


• Specify actions that should be performed when this task completes
successfully or when it fails

• Specify e-mail addresses (including pager addresses) that should be
notified when this task completes successfully or when it fails

You can specify conditional coding by creating task actions. Each task action
consists of a task and the action that should be performed on the task. For example,
task 1 can have the following task actions:

• If task 1 is successful, task action A enables the scheduling of task 2.

• If task 1 fails, task action B runs task 3.

You can also create a grouping task that combines several tasks in a single logical
unit of work. When the grouping task meets the success or failure conditions that
you define, any follow-on tasks are run. For example, you can combine three backup
scripts into a grouping task and then specify a reorganization as a follow-on task that
will be executed if all of the backup scripts execute successfully.

Create a task

The Task Center can require up to eight steps to generate a task:

1. Describe and name the task

2. Select a command script

3. Define the success or failure criteria (run properties)

4. Group tasks

5. Schedule the task to run

6. Set a notification level

7. Select task actions after completion

8. Set security

Each of these steps is described in the following panels. When the Task Center is
started, it displays all of the tasks that are currently defined in the system:

developerWorks® ibm.com/developerWorks

Database access
Page 6 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


To create a new task, either left-click in the task listing area, or select Task > New
from the menu at the top of the panel.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 60

http://www.ibm.com/legal/copytrade.shtml


This opens a window that allows you to define the task you want to create.

developerWorks® ibm.com/developerWorks

Database access
Page 8 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


The Task Center is updated with any new tasks that you create. Note that the
refresh options should be set to a reasonable time interval if you want to see any
changes to the tasks that are already in the list.

Describe and name the task

The task description panel lets you define the characteristics of the task itself:

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 60

http://www.ibm.com/legal/copytrade.shtml


The Name field contains the name of the task that you are creating. This name can
contain any character, so a descriptive name can be used.

The Type field tells DB2 the type of action that this task is going to perform. There
are four options:

• DB2 command script: This script issues DB2 commands, which can
contain SQL.

• OS command script: Operating system commands are included in this
type of script.

• MVS shell script: MVS shell scripts execute in an MVS or z/OS host
environment. This type of task can also include JCL (Job Control
Language) statements.

• Grouping task: Grouping task takes several tasks and places them into
one group that is executed together.

developerWorks® ibm.com/developerWorks

Database access
Page 10 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


The Description field can contain a lengthy description of the task being created.

The Task Category field is used to classify the type of task that is being created.
This is an optional field, but can be very useful when you're trying to find a previous
command, or to group commands together based on their purpose. Click the ellipsis
button at the end of the field to see a list of defined categories:

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 60

http://www.ibm.com/legal/copytrade.shtml


A task can have multiple categories associated with it. The available task categories
can be used to classify the task by selecting the category and then clicking the >
button. Additional categories can be created by typing a new entry under New task
category and clicking >. These categories can be used to sort the available tasks in
the main task window at a later time.

The Run System field indicates the system on which the command will run. This can
be a local system (as is the case in the sample figures) or any remote system that
has been cataloged.

developerWorks® ibm.com/developerWorks

Database access
Page 12 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


The DB2 Instance and Partition option lets you select the instance and partition on
which the command will run. The partition option is meant only for systems that have
the DPF (DB2 Partitioning Feature) installed. In such a case, the task can run on
specific partitions within the database, rather than across all of them.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 60

http://www.ibm.com/legal/copytrade.shtml


All of the fields, except for the description and categorization, need to be filled in for
the task to be created.

Select a command script

The command script panel contains the actual DB2 or operating system command
that you want to run against the database. The main window lets you type in the
command or use cut and paste operations to place the information into this panel.

developerWorks® ibm.com/developerWorks

Database access
Page 14 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


If you have created or saved a script in an external file, click the Import button to
load it.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 60

http://www.ibm.com/legal/copytrade.shtml


If a script needs to access data or output information to disk, specify the default
directory so that DB2 knows where to place or find information.

developerWorks® ibm.com/developerWorks

Database access
Page 16 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Finally, the DB2 statement terminator refers to the character that will be used to
delimit multiple DB2 statements. By default, this is the semicolon (;), but you may
need to change this if you are creating DB2 functions, triggers, or any SQL PL
statements. These DB2 objects use semicolons as their own statement delimiter, so
a different DB2 delimiter should be used (dollar signs ($) or at signs (@) are both
popular symbols to use).

Run properties

The Run Properties panel is used to define the success or failure criteria of the task.
You can either tell the script to stop when there is any non-zero return code (stop
execution at first return code that is a failure) or define a set of return code
conditions.

If a task can return multiple return codes that are considered successful, you need to
define a success code set. To display a list of code sets, click the Success code set
field.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 60

http://www.ibm.com/legal/copytrade.shtml


In the event that there are no success code sets displayed, or if none of them match
your requirements, create your own by clicking New.

developerWorks® ibm.com/developerWorks

Database access
Page 18 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


You can create your own success code set, which can contain multiple return code
values. You can then use this success code set for your current task, and reuse it for
additional tasks that you create later. This particular example creates a success
code set for the zero return code, as illustrated above. You can just use the default
return code check box on the first panel to achieve the same goal.

Group tasks

Use the grouping function to run or schedule together a large number of tasks.
Instead of creating a command task, define a grouping task. As soon as this type of
task is defined, the Group tab is enabled and the following window opens.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 60

http://www.ibm.com/legal/copytrade.shtml


On this tab, you can add all of the tasks that you want to run as part of this group. In
this example, two tasks have been added to the group. After you have defined all of
the tasks, schedule the group and set any success or failure conditions as you would
with an individual task.

Schedule tasks

Once you have defined your script and run characteristics of your task, define the
schedule on when it will run. You do not have to create a schedule for your task, but
to run it you must schedule it either individually or as part of a group.

The schedule tab contains the date and time at which the command is supposed to
be run.

developerWorks® ibm.com/developerWorks

Database access
Page 20 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


You can specify that the command runs once, or at multiple times based on a
schedule or on a list of saved schedules. If you want to run multiple tasks on the
same date or at the same time, it may be simpler to create one schedule record and
use that for each of your tasks rather than recreating it every time.

Set notification

The notification tab is used to tell DB2 where to send the completion code when the
task finishes. This does not send the actual results of the task, but only the return
code.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 60

http://www.ibm.com/legal/copytrade.shtml


Multiple notifications can be sent for an individual task. These notifications can be
based on:

• Task success: When the task successfully completes, a notification can
be sent.

• Task failure: When the task does not complete successfully, a
notification can be sent.

• Any condition: No matter what the result is, a notification is sent.

In addition to the notification level, you can also specify the way in which notification
is sent. The task center can either notify contacts or place information in the Journal
(see Journal). The contact list contains a set of users to whom you can send a page
or email notifications.

developerWorks® ibm.com/developerWorks

Database access
Page 22 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Note that if you want to send messages to users, you must set up an SMTP server
on your machine. Without this capability, a message cannot be sent.

The message itself can be customized to include any text that you want. A number
of symbolic variables are available within the text that are used to return information
about the task:

• &Categories: The categories associated with the task.

• &Completionstatus: The completion status of the task. This value
depends on the success code set associated with the task.

• &Description: The description of the task.

• &Duration: The length of time the run system took to complete the task
from start to finish.

• &End: The date and time the task completed.

• &Howinvoked: The method used to invoke the task.

• &Name: The name of the task.

• &Owner: The name of the owner of the task.

• &Returncode: The final return code of the task.

• &Runpartitions: The partitions on which the task ran.

• &Runsystem: The name of the system on which the task ran.

• &Schedulersystem: The name of the system on which the task is

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 23 of 60

http://www.ibm.com/legal/copytrade.shtml


scheduled.

• &Start: The date and time the task began running.

• &Type: The task type (that is, whether it is a DB2 script, an OS script, a
MVS shell script, a JCL script, or a grouping).

• &Userid: The user ID for the task.

Set task actions

The task actions tab determines what happens with the task after it has completed
execution.

There are three possible actions that can occur for a task, depending on whether or
not it:

• Completes successfully

• Fails at any step

• Results in any outcome (success or failure)

When any of these conditions are met, the task can perform a number of actions. It

developerWorks® ibm.com/developerWorks

Database access
Page 24 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


can:

• Run another task

• Schedule another task

• Disable the schedule of a task

• Delete itself

The task actions section lets you chain together many tasks, each one dependent on
the successful completion of the previous task. For example, you can make sure that
a table has been successfully created before you define indexes on it.

Set security

The security tab allows you to give read, write, and execute (run) privileges to other
users for the task being created. This can be useful when you have a number of
different users creating and maintaining tasks. In such a case, it might be easier to
create a group of users that are allowed to manage these tasks, rather than giving
each user access to the task.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 25 of 60

http://www.ibm.com/legal/copytrade.shtml


Task list

Once you have created the task, it is displayed in the main task menu.

The items in the task menu are shown by overview category. This is the same
category field that you filled in when you were creating the task. By using these
categories, you make it a lot simpler to find and manage these tasks.

A task will be removed from this list if it is physically deleted by the user, or if one of
the assigned actions was to delete itself after it had finished executing. If the screen
is automatically refreshed, the task will eventually disappear once it has run. To
determine the status of a task after it has completed, use the Journal, which we'll
discuss in the next panel.

Journal

The Journal keeps track of a number of events within the database engine. These
events include:

developerWorks® ibm.com/developerWorks

Database access
Page 26 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Task history: Displays the results of the tasks that have run

• Database history: Displays any maintenance activity against a database

• Messages: Lists the error messages that have been produced by the
database

• Notification log: Contains messages that have been produced by the
Health Center or alerts within the system

The Journal can be started from either the Control Center or the tools menu.

The journal can also be started from within the DB2 program group. The initial
screen is shown below.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 27 of 60

http://www.ibm.com/legal/copytrade.shtml


All of the items in the list are tasks (or groups of tasks) that have executed. To get
more details on a particular task, double-click on task. For example, clicking the last
task in the list illustrated in the figure above shows the report for that task.

developerWorks® ibm.com/developerWorks

Database access
Page 28 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


The results page shows you whether or not the task was successful and also
contains any messages that were produced by the task. There are an additional
three tabs that provide more information on the task that was executed. The second
tab provides information on the command script that was executed:

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 29 of 60

http://www.ibm.com/legal/copytrade.shtml


The third tab in the task report displays the physical output produced by the task.
The output from the SQL that was run is shown in the figure below. Note that the
SQL must issue the connect statement to the proper database for this to run
successfully. Without the connection, the task will not know what database to
operate on.

developerWorks® ibm.com/developerWorks

Database access
Page 30 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Finally, the last tab indicates the subsequent actions that were taken when the task
completed. In this case, the task deleted itself when it ran successfully.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 31 of 60

http://www.ibm.com/legal/copytrade.shtml


Summary

The Task Center lets you define tasks that can run a variety of commands, including:

• DB2 commands

• Operating system commands

• MVS shell or JCL commands

• Groups of the above types of commands

Tasks can be scheduled to work at specific times, and can notify other users of their
own success or failure. In addition, a task can also cause other tasks to be
scheduled, unscheduled, or deleted.

developerWorks® ibm.com/developerWorks

Database access
Page 32 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Section 3. Create and manage indexes

Introduction

Indexes are a critical component of any database that you might end up creating.
Although the relational model does not require indexes to run queries or calculate
results, your end users will be much happier with you if you create some indexes on
frequently used tables!

Indexes are physical objects that are associated with individual tables. Any
permanent table or declared temporary table can have multiple indexes defined on
it. You cannot define an index on a view.

Indexes are used for two primary reasons:

• To ensure uniqueness of data values

• To improve SQL query performance

Indexes can be used to access data in a sorted order more quickly and avoid the
time-consuming task of sorting the data using temporary storage. Indexes can also
be created on computed columns so that the optimizer can save computation time
by using the index instead of doing the calculations. Indexes are maintained
automatically by DB2 as data is inserted, updated, and deleted.

How indexes are created

As a DBA, you must be aware of how indexes are created. Although indexes are an
optional (but critical!) component of any database, they are sometimes created
automatically on your behalf. If you do not plan for indexes in advance, you may not
have sufficient resources to create or maintain them.

Indexes can be created through the use of the CREATE INDEX command. However,
indexes are also automatically generated if you create a table that contains a column
with a UNIQUE attribute, if a referential constraint is placed against a table, or if a
table has been defined with dimension (multidimensional) attributes. All of these
conditions require an index to enforce uniqueness in the table, and to provide
acceptable performance. Imagine if the database had to scan an entire table each
time it needed to check if a value was unique!

In addition to SQL commands that generate indexes, a variety of wizards are
available within the DB2 Control Center to help decide which indexes would be most
appropriate in a given situation.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 33 of 60

http://www.ibm.com/legal/copytrade.shtml


Issues with indexes

The first question you'll ask when generating an index is, "Which one will give me
the best performance?" Should you create an index on every column within a table
to ensure good performance? Or should you only create an index that gives the user
direct access to the data?

Indexes take up space on your system. They can reside in either the same table
space as the table you are indexing or a separate index table space. Since there are
physical limitations in the size of table spaces, you may not have sufficient space to
create all of the ones you want.

Updating indexes takes time. Whenever you insert, update, or delete records, DB2
must modify all corresponding indexes that are affected by your actions. Thus,
creating 15 indexes on your favorite table will result in 15 index updates every time
you change the data. In this case, rather than providing better performance, your
indexes will result in longer response times.

Finally, indexes may not be appropriate for columns that have few values (low
cardinality). An alternate indexing method (multidimensional clustering, or MDC)
may be more appropriate.

Where are indexes placed?

Before you decide to create some indexes, you should quickly review the concepts
of table spaces.

Tables and indexes are placed into table spaces. A table space is used as a layer
between the database and the container objects that hold the actual table data.

A container is a physical storage device. It can be identified by a directory name, a
device name, or a file name. A container is assigned to a table space and a table
space can span many containers. The ability to have multiple containers assigned to
a table space gets around operating system limitations that may limit the amount of
data that one container can have. The relationship among all of these objects is
illustrated in the chart below.

developerWorks® ibm.com/developerWorks

Database access
Page 34 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Although a table is the basic object that is placed into a table space, you must be
aware of additional objects within the DB2 system and how they are mapped to a
table space.

Table and index storage

So why the interest in the CREATE TABLE command when what you really want to
do is create some indexes? The difficulty with index placement is that it is dependent
on how the table was defined.

If a table is created without any regard to location, it will end up in the default system
space, along with any indexes that are created for it. This means that the
USERSPACE1 table space will quickly fill up with your tables and indexes, since
they are both stored in the same place.

Even if you conscientiously placed your tables in separate table spaces, you may
still have a problem, since the indexes will be created in the same place. You need
to specify the location of your indexes!

Creating tables

When you create a table, you can use an option to specify the table space -- or table

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 35 of 60

http://www.ibm.com/legal/copytrade.shtml


spaces -- in which the table and index will be placed:

CREATE TABLE TEST (
column 1 definition, column 2 definition, ...

) IN <tablespace name> INDEX IN <index space name>

This command gives you the option of specifying where the table is created, along
with the index. If you do not specify a separate index table space, the indexes are
created in the same table space as the table. You do not have the option of creating
indexes in a different table space after the table has been created. The moral of this
story: plan ahead before creating your indexes!

If you intend to partition your tables (range partitioning), you have the added
flexibility of placing every index for that table into its own table space. This is option
is only available with partitioned tables.

Creating indexes

Now that you know where your indexes are going to be created, it's time to examine
the CREATE INDEX command. Here's the basic command syntax:

CREATE <UNIQUE> INDEX <index name> ON <table name>
(
column 1 <ASC | DESC> ,
column 2 <ASC | DESC> ...
)

The UNIQUE attribute tells DB2 that the index must enforce uniqueness for all values
that are inserted. If a duplicate value is found during an UPDATE or INSERT
command, an error will be returned to the application.

The columns that are listed in brackets are used to generate the index. The optional
ASC (ascending) and DESC (descending) keywords tell DB2 how to order these
values in the index itself. These options are useful when you issue SQL statements
that sort the results, like so:

SELECT * FROM EMPLOYEE
ORDER BY EMPNO DESC

If the index has already been created in descending order, DB2 can use the index to
return the values in a sorted sequence, rather than having to do a separate sort
step. This can save considerable time on large answer sets. If answer sets are
sorted in both ascending and descending order, it can be more advantageous to add
the additional ALLOW REVERSE SCANS to the end of the CREATE INDEX
command. This tells DB2 to include additional pointers within the index to allow
efficient forward and backward chaining within the records. The ALLOW REVERSE
SCANS is now the default for any indexes created in DB2 9, but prior releases will
need to include this option to allow ascending and descending access on the same

developerWorks® ibm.com/developerWorks

Database access
Page 36 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


index.

Including addition columns in an index

DB2 has the ability to add additional columns to the index that you are creating. The
CREATE INDEX command allows the user to specify columns that are not part of the
actual index, but are kept in the index record for performance reasons.

CREATE UNIQUE INDEX IX ON EMPLOYEE (EMPNO) INCLUDE (LASTNAME,FIRSTNME)

The index must be UNIQUE for columns to be included in the index. When the index
is created, the additional columns are added to the index values. The index does not
use these values for sorting or determining uniqueness, but can use them when
satisfying an SQL query. For example, the following SELECT statement would not
need to read the actual data rows:

SELECT LASTNAME, FIRSTNME FROM EMPLOYEE WHERE EMPNO < '000300'

Examining the Visual Explain for this statement confirms the use of the index to get
the answer set.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 37 of 60

http://www.ibm.com/legal/copytrade.shtml


There are many circumstances in which placing data in the index will help
performance. Care should be taken to not use too many columns, however; if you
do, the size of the index can begin to approach the size of the physical data itself.

Clustering indexes

A clustering index is an index that is used by DB2 to try and insert records on the
same page as other records with similar index key values. If there is no space on
that page, an attempt is made to put the record into the surrounding pages.

The advantage of having a clustering index is that SELECT statements that look for a

developerWorks® ibm.com/developerWorks

Database access
Page 38 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


particular value (or range of values) on a key can quickly find the answer set without
scanning the entire table. Similar key values will be placed on the same data pages
so that only a portion of the entire table needs to be read. In addition, the need for
table reorganization can also be reduced by using a clustering index.

To insure that sufficient space is available for new rows on existing pages, the
PCTFREE keyword should be used during table creation to leave some space
available for future inserts and updates. Once the table has been loaded, the
PCTFREE value can be reduced to allow for more records to be added to existing
pages.

To create a clustering index on a table, append the CLUSTER keyword to the end of
the CREATE INDEX command, like so:

CREATE INDEX DEPTS_IX ON EMPLOYEE(WORKDEPT) CLUSTER

The PCTFREE keyword can also be used in the creation of an index. Specify a higher
PCTFREE at index creation time and then set it to a lower value later to allow for
records to be inserted into the index without causing index page splits. This is
particularly useful in high-transaction environments where there is a lot of insert and
delete activity. However, if your database is primarily meant for query workloads, it
may be more advantageous to place as much data onto the index pages as
possible. In this case, set PCTFREE to zero. From a database perspective, fewer
page reads will have to be done to load the index, but it will be more expensive to do
index maintenance, since index page splits will occur.

How many indexes should you create?

So how many indexes should you create for a table? The answer really depends on
the type of application that you are running against the table.

Use the following general rules to determine the typical number of indexes that you
define for a table. The number of indexes is based on the primary use of your
database:

• For online transaction processing (OLTP) environments, create one or
two indexes

• For mixed query and OLTP environments, create between two and five
indexes.

• For read-only query environments, create more than five indexes

Another option in determining which indexes to create is to use the Design Advisor
within the Control Center. The Design Advisor will ask you a number of questions
about your workload and database design and will then determine what the best
indexes are.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 39 of 60

http://www.ibm.com/legal/copytrade.shtml


Referential integrity and indexes

Indexes are a key component of referential integrity. Without indexes, performance
would be poor, and integrity checking would be extremely expensive.

Referential integrity allows you to define required relationships between and within
tables. The database manager maintains these relationships, which are expressed
as referential constraints and require that all values of a given attribute or table
column also exist in some other table column. The following figure illustrates an
example:

Let's look at some definitions of keys and constraints, using the figure above for
illustrative purposes.

A unique key is a set of columns in which no two values are duplicated in any other
row. Only one unique key can be defined as a primary key for each table. The
unique key may also be known as the parent key when it is referenced by a foreign
key.

A primary key is a special case of a unique key. Each table can only have one
primary key. In the figure, DEPTNO and EMPNO are the primary keys of the
DEPARTMENT and EMPLOYEE tables.

A foreign key is a column or set of columns in a table that refer to a unique key or
primary key of the same or another table. It is used to establish a relationship with a

developerWorks® ibm.com/developerWorks

Database access
Page 40 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


unique key or primary key and enforces referential integrity among tables. The
column WORKDEPT in the EMPLOYEE table is a foreign key because it refers to
the primary key -- the column DEPTNO -- in the DEPARTMENT table.

A parent key is a primary key or unique key of a referential constraint. A parent table
is a table containing a parent key that is related to at least one foreign key in the
same or another table. A table can be a parent in an arbitrary number of
relationships. In the figure above, the DEPARTMENT table, with a primary key of
DEPTNO, is a parent of the EMPLOYEE table, which contains the foreign key
WORKDEPT.

A dependent table is a table containing one or more foreign keys. A dependent table
can also be a parent table. A table can be a dependent in an arbitrary number of
relationships. For example, the EMPLOYEE table contains the foreign key
WORKDEPT, which is dependent on the DEPARTMENT table that has a primary
key.

A referential constraint is an assertion that non-null values of a designated foreign
key are valid only if they also appear as values of a unique key of a designated
parent table. The purpose of referential constraints is to guarantee that database
relationships are maintained and data entry rules are followed.

Enforcement of referential constraints has special implications for some SQL
operations that depend on whether the table is a parent or a dependent. The
database manager enforces referential constraints across systems based on the
referential integrity rules. The rules are:

• INSERT

• DELETE

• UPDATE

Creating referential integrity constraints

To define a foreign key relationship between two tables:

1. Create the parent table with a primary key

2. Load data into the parent table

3. Create the dependent table with the foreign key relationship

4. Load data into the dependent table

For the EMPLOYEE and DEPARTMENT example from the previous panel, the
definition for the DEPARTMENT table is as follows:

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 41 of 60

http://www.ibm.com/legal/copytrade.shtml


CREATE TABLE DEPARTMENT
(
DEPTNO INT NOT NULL PRIMARY KEY,
DEPTNAME VARCHAR(20) NOT NULL,
MGRNO INT
)

The table definition for the DEPARTMENT table does not necessarily have to have a
PRIMARY KEY specification on the DEPTNO line; you can use a CREATE UNIQUE
INDEX command instead.

Once data has been loaded into the DEPARTMENT table, the EMPLOYEE table
can be created. Note that you don't have to load data into the DEPARTMENT table
immediately, but you will need to populate it with data before the EMPLOYEE table
can have data inserted into it. The EMPLOYEE table can be defined as follows:

CREATE TABLE EMPLOYEE
(
EMPNO INT NOT NULL PRIMARY KEY,
FIRSTNAME VARCHAR(20) NOT NULL,
LASTNAME VARCHAR(20) NOT NULL,
WORKDEPT INT NOT NULL,
PHONENO CHAR(12) NOT NULL,
FOREIGN KEY(WORKDEPT) REFERENCES DEPARTMENT(DEPTNO)
ON DELETE RESTRICT)
)

The FOREIGN KEY clause defines the relationship between the EMPLOYEE table
and the DEPARTMENT table. Because of this relationship, an employee cannot be
inserted into the table if his or her WORKDEPT does not already exist in the
department table. In addition, any updates to that employee's WORKDEPT will also
be checked against the department list. The additional ON DELETE RESTRICT
clause tells DB2 to prevent a deletion of a department record in the DEPARTMENT
table, unless there are no references to that department in the EMPLOYEE table. In
other words, a department's employees must be all transferred to other departments
before DB2 will allow that department to be deleted. Other options are to make the
WORKDEPT null upon a department deletion (ON DELETE SET NULL), or to delete
the employee record that is connected with this record (ON DELETE CASCADE).

From an index perspective, both tables should have primary keys defined. This
eliminates duplicates from both tables, but also improves select performance. Also,
the primary key on the DEPARTMENT table is required so that the foreign key
relationship can be established with the EMPLOYEE table.

Referential integrity authority

To create a table with a referential constraint associated with it (foreign key), a user
must have appropriate permissions.

Consider our previous example with the EMPLOYEE and DEPARTMENT tables
(see Referential integrity and indexes). If the DEPARTMENT table were owned and
managed by the facilities department, and the EMPLOYEE table were managed by

developerWorks® ibm.com/developerWorks

Database access
Page 42 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


the personnel department, the two departments need to cooperate with one another.
If the EMPLOYEE table had the foreign constraint defined against the
DEPARTMENT table, the users in facilities could not delete any department records
without the help of the people in personnel! This is due to the ON DELETE
RESTRICT rule that was placed against the DEPARTMENT table. This means that a
user could place severe restrictions against your table without your knowledge. To
prevent this, explicit authority to set referential constraints must given to the
personnel department (the owners of the EMPLOYEE table):

GRANT REFERENCES(DEPTNO) ON DEPARTMENT TO USER PERSONNEL

Summary

Indexes are a key component of database design. They can be used to improve
performance, cluster records on pages, and guarantee uniqueness of records.

Index design is very dependent on the type of workload and the amount of space
needed to set aside for storage. Additional fields can be added to an index to
improve query performance. Tools also exist to help define the indexes required for
your system.

Referential integrity is a form of constraint checking between a dependent table and
a parent table. Indexes are required to ensure uniqueness in the parent table, as
well as improve performance of key checking during insert and update processing.
Special permission must be given to owners of dependent tables to be able to create
referential constraints against tables they do not own.

Section 4. Define data constraints on tables

What are constraints?

The integrity or validity of data in a database is of crucial importance. It is difficult to
ensure the validity of data being inserted into a database; DB2 provides the ability to
define some rule-based constraints or checks that can be incorporated into the
database. In DB2, the following checks can be used to minimize the risk of inserting
incorrect data into a table:

• The fields in a row can be checked to see if they conform to the data type
and length of the columns with which they are associated. For example,
the value "Geoff" does not match a column data type of INTEGER, and
therefore a row with that value will be rejected, thus ensuring the validity
of the data in the database.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 43 of 60

http://www.ibm.com/legal/copytrade.shtml


• If a primary key constraint has been defined on a table, then each row in
the table must have a unique value in the column or columns that
collectively form the primary key. If a row is inserted with the same key as
an existing one, the new row will be rejected.

• If a unique constraint has been defined on a table, each row in the table
must comply with this constraint by having a unique value or combination
of values that make up the unique key.

• If a foreign key constraint has been defined, each row in the table must
have a value in the foreign key column or columns that matches a primary
key of a row in a parent table. In some cases, a null value may be
acceptable if the column or columns defined as part of the foreign key are
also defined as nullable.

• If a check constraint has been defined on a column, each row must
comply with the constraint. For example, a check constraint on a salary
column of an employee table may prevent an application or user from
inserting a new employee record or row for which the salary is less than
zero. Any row inserted into the table that has a salary value of less than
zero will be rejected, thus minimizing the risk of inserting incorrect data
into the table.

Primary key constraints, unique constraints, and foreign key constraints are all
discussed in the section on Create and manage indexes. That section deals
primarily with check constraints.

Table constraints

Table-check constraints will enforce data integrity at the table level. Once a
table-check constraint has been defined for a table, every UPDATE and INSERT
statement will involve checking the restriction or constraint. If the constraint is
violated, the row will not be inserted or updated, and an SQL error will be returned.

A table-check constraint can be defined at table creation time or later using the
ALTER TABLE statement. The table-check constraints can help implement specific
rules for the data values contained in the table by specifying the values allowed in
one or more columns in every row of a table. This can save time for the application
developer, since the validation of each data value can be performed by the database
and not by each of the applications accessing the database.

Adding constraints

When you add a check constraint to a table that contains data, there are two
possibilities:

developerWorks® ibm.com/developerWorks

Database access
Page 44 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• All the rows will meet the check constraint.

• Some or all of the rows do will not meet the check constraint.

In the first case, when all the rows meet the check constraint, the check constraint
will be created successfully. Future attempts to insert or update data that does not
meet the constraint business rule will be rejected.

If there are some rows that do not meet the check constraint, the check constraint
will not be created (i.e., the ALTER TABLE statement will fail).

An ALTER TABLE statement that adds a new constraint to the EMPLOYEE table
discussed earlier (see Referential integrity and indexes) is shown below. The check
constraint is named check_job. DB2 will use this name to inform us if the
constraint is violated when an INSERT or UPDATE statement fails.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT check_job
CHECK (JOB IN ('Engineer','Sales','Manager'))

There is no special command used to change a check constraint. Whenever a check
constraint needs to be changed, you must drop it and create a new one. Check
constraints can be dropped at any time, and this action will not affect your table or
the data within it.

Creating tables with constraints

You can add a constraint to a table as you are creating that table. A constraint can
be added to individual columns by adding the CONSTRAINT/CHECK clause after the
column definition:

CREATE TABLE EMPLOYEE
(
EMPNO INT NOT NULL PRIMARY KEY,
JOB VARCHAR(10) CONSTRAINT CHECK_JOB

CHECK (JOB IN ('Engineer','Sales','Manager')),
...
)

The CONSTRAINT name is not required as part of the definition, but it is
recommended that you name the constraint in the event that you want to modify it at
some later date. If you don't name the constraint, you will have to determine its
system-defined name.

Constraints can also be defined across multiple columns, and these definitions are
usually placed at the end of the all of the column definitions. These constraints
combine column values and are often referred to as table constraints. The following
SQL is an example of a table constraint that checks an individual's age and salary:

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 45 of 60

http://www.ibm.com/legal/copytrade.shtml


CREATE TABLE EMPLOYEE
(
...,
CONSTRAINT CHECK_AGE_SALARY

CHECK (NOT(AGE < 30 AND SALARY > 60000))
)

The unusual logic in the CHECK statement is necessary due to the way constraints
are handled. The constraint within the brackets must hold true for the record to be
inserted. This means that the statement NOT(AGE < 30 AND SALARY > 60000)
must be true. The translation of this logic is that no one can be less than 30 years
old and make more than 60000 a year.

Informational constraints

All of the constraints that we've defined so far are enforced by DB2 when records
are inserted or updated. This can lead to high amounts of system overhead,
especially when loading large quantities of records.

If an application has already verified information before inserting a record into DB2, it
may be more efficient to use informational constraints, rather than normal
constraints. Informational constraints tell DB2 what format the data should be in, but
are not enforced during insert or update processing. However, this information can
be used by the DB2 optimizer and may result in better performance of SQL queries.
Consider the following CREATE TABLE statement:

CREATE TABLE EMPDATA
(
EMPNO INT NOT NULL,
SEX CHAR(1) NOT NULL

CONSTRAINT SEXOK
CHECK (SEX IN ('M','F'))
NOT ENFORCED
ENABLE QUERY OPTIMIZATION,

SALARY INT NOT NULL,
CONSTRAINT SALARYOK
CHECK (SALARY BETWEEN 0 AND 100000)
NOT ENFORCED
ENABLE QUERY OPTIMIZATION

)

This example contains two statements that change the behavior of the column
constraints. The first option is NOT ENFORCED, which instructs DB2 not to enforce
the checking of this column when data is inserted or updated. The second option is
ENABLE QUERY OPTIMIZATION, which is used by DB2 when SELECT statements
are run against this table. When this value is specified, DB2 will use the information
in the constraint when optimizing the SQL.

NOT ENFORCED option

If the table contains the NOT ENFORCED option, the behavior of INSERT statements
may appear odd. The following SQL will not result in any errors when run against the

developerWorks® ibm.com/developerWorks

Database access
Page 46 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


EMPDATA table:

INSERT INTO EMPDATA VALUES
(1, 'M', 54200),
(2, 'F', 28000),
(3, 'M', 21240),
(4, 'F', 89222),
(5, 'Q', 34444),
(6, 'K',132333)

Employee number five has a questionable gender (Q), and employee number six
has both an unusual gender and a salary that exceeds the limits of the salary
column. In both cases DB2 will allow the insert to occur, since the constraints are
NOT ENFORCED. This points out one of the weaknesses of informational constraints.
You must be certain that the data that you are inserting or loading conforms to the
definitions that you have placed into DB2.

ENABLE QUERY OPTIMIZATION option

What will probably cause more confusion is the result of a select statement against
the EMPDATA table after the insert you ran in the last panel:

SELECT * FROM EMPDATA
WHERE SEX = 'Q';

EMPNO SEX SALARY
----------- --- -----------

0 record(s) selected.

DB2 returned the incorrect answer to the query. The value "Q" is found within the
table, but the constraint on this column tells DB2 that the only valid values are "M"
and "F". The ENABLE QUERY OPTIMIZATION keyword also allowed DB2 to use
this constraint information when optimizing SQL statements. If this is not the
behavior that the you want, then you need to change the constraint through the use
of the ALTER command:

ALTER TABLE EMPDATA
ALTER CHECK SEXOK DISABLE QUERY OPTIMIZATION

Now, let's re-execute our earlier query. The results are as follows:

SELECT * FROM EMPDATA
WHERE SEX = 'Q';

EMPNO SEX SALARY
----------- --- -----------

5 Q 34444

1 record(s) selected.

When should informational constraints be used in DB2? The best scenario for using

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 47 of 60

http://www.ibm.com/legal/copytrade.shtml


informational constraints occurs when the user can guarantee that the application
program is the only application inserting and updating data. If the application already
checks all of the information beforehand, then using informational constraints can
result in faster performance and no duplication of effort.

Summary

There are a variety of constraints that are available within DB2 to maintain data
integrity. These constraints are data type, primary key, unique, foreign key, and
check constraints.

Check constraints allow the user to place rules on data within a column to ensure
that certain criteria are met before allowing a row to be inserted. These constraints
can be modified to enforce the conditions, or to ignore them. Similarly, the optimizer
can also be told to use the information within the constraints for optimization
purposes, or to ignore them.

Proper use of check constraints can help to improve query performance and
minimize load time. However, without proper data cleansing, the results that are
retrieved may not always be accurate.

Section 5. Create and manage views

Views

Views are virtual tables that are derived from one or more tables or views; they can
be used interchangeably with tables when retrieving data. Views can be very useful
when you want to hide certain columns or rows of a base table. If you don't want to
create another copy of a table, you can use a view to create a virtual table that only
shows users the data you want them to see.

When changes are made to data through a view, the data is changed in the
underlying table itself. Views themselves do not contain any real data. There are
some circumstances under which views cannot be updated, so views can be
classified as deletable, updatable, insertable, or read-only. The classification
indicates the kind of SQL operations allowed against the view.

A simple view

A simple example will illustrate the power and usefulness of a view. Consider the
following personnel table:

developerWorks® ibm.com/developerWorks

Database access
Page 48 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


CREATE TABLE PERSONNEL
(
PERSON_ID INT NOT NULL,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(20),
SALARY DEC(9,2),
EXTENSION CHAR(4),
...
)

It's not the most sophisticated of personnel tables, but it will help illustrate a point
about views. This table contains information that is highly sensitive, such as
employees' salaries. However, much of the information in this table could be used by
other departments or users. For example, the extension (phone number) column
could be used to produce an internal telephone directory. How can you take
advantage of this information without compromising the integrity of the salary
information?

You probably guessed that the solution has something to do with views. You can
create a view on this table that restricts the user to only seeing certain columns. The
following SQL statement creates a view that displays the users' first name, last
name, and telephone number:

CREATE VIEW TELEPHONE_BOOK AS
(
SELECT FIRST_NAME, LAST_NAME, EXTENSION FROM PERSONNEL
)

Grant users access to this view rather than to the base personnel table. A user
issuing a select statement against the view sees only three columns:

SELECT * FROM TELEPHONE_BOOK;

FIRST_NAME LAST_NAME EXTENSION
-------------- ------------- ---------
ANDREW BAKLARZ 2431
GEOFFREY BAKLARZ 8734
...

A view can be much more sophisticated than this, but this example illustrates the
fundamental features.

View syntax

Access to the DB2 SQL reference guide would be very useful at this point in time. Of
course, you probably don't have that handy, so here is a short syntax diagram for
view creation:

CREATE VIEW view-name (column list) AS (fullselect)

That's not really all of the parts of the command syntax, but it does illustrate what

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 49 of 60

http://www.ibm.com/legal/copytrade.shtml


you probably use most often. The CREATE statement contains these parts:

• View-name: The identifier for this view. It has the same limitations as a
real table name and cannot be the same as an existing table.

• Column list: This optional portion tells DB2 what the names of the
columns should be when the answer set is returned. For example, in the
previous example, all of the columns can be renamed, like so:

CREATE VIEW TELEPHONE_BOOK(FIRST, LAST, PHONE) AS
(
SELECT FIRST_NAME, LAST_NAME, EXTENSION FROM PERSONNEL
)

• Fullselect: This is the SQL that will be used to generate the view
definition. A fullselect could return individual rows based on a WHERE
clause, or it could do joins, aggregations, or any complex SQL operation.

Views with UNION

Views with tables connected through the use of UNION ALL have been supported
for a number of releases of DB2. SELECT, DELETE, and UPDATE operators have
also been allowed, assuming DB2 can determine the table to which the
corresponding command is to be applied.

In DB2, support for the INSERT operator has been extended to views with UNION
ALL, as long as the following conditions hold:

• The expressions have the same datatypes

• A constraint exists on at least one column that can be used to uniquely
identify where a row should be inserted, and the constraint ranges are
non-overlapping

Views defined in this fashion will also support UPDATE operations as long as the
column being changed does not violate the constraint for that column. In this case,
the user must first DELETE and then INSERT the record.

Deletable views

Depending on how a view is defined, the view can be deletable. A deletable view is
a view against which you can successfully issue a DELETE statement. There are a
few rules that need to be followed for a view to be considered deletable:

• Each FROM clause of the outer fullselect must identify only one base table
(with no OUTER clause), deletable view (with no OUTER clause), deletable
nested table expression, or deletable common table expression

developerWorks® ibm.com/developerWorks

Database access
Page 50 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• The outer fullselect must not use the VALUES clause

• The outer fullselect must not use the GROUP BY or HAVING clauses

• The outer fullselect must not include column functions in its select list

• The outer fullselect must not use set operations (UNION, EXCEPT, or
INTERSECT) with the exception of UNION ALL

• The base tables in the operands of a UNION ALL must not be the same
table, and each operand must be deletable

• The select list of the outer fullselect must not include DISTINCT

A view must meet all the rules listed above to be considered a deletable view.

Updatable views

An updatable view is a special case of a deletable view. A deletable view becomes
an updatable view when at least one of its columns is updatable. A column of a view
is updatable when all of the following rules are true:

• The view must be deletable

• The column must resolve to a column of a table (not using a dereference
operation), and the READ ONLY option must not be specified

• All the corresponding columns of the operands of a UNION ALL must
have exactly matching data types (including length or precision and
scale), and matching default values if the fullselect of the view includes a
UNION ALL

Insertable and read-only views

Insertable views allow you to insert rows using the view definition. A view is
insertable when all of its columns are updatable. For example, consider the following
PERSONNEL table and its associated view, TELEPHONE_BOOK:

CREATE TABLE PERSONNEL
(
PERSON_ID INT NOT NULL,
FIRST_NAME VARCHAR(20) NOT NULL,
LAST_NAME VARCHAR(20) NOT NULL,
SALARY DEC(9,2) NOT NULL,
EXTENSION CHAR(4) NOT NULL
)

CREATE VIEW TELEPHONE_BOOK AS
(
SELECT PERSON_ID, FIRST_NAME, LAST_NAME, EXTENSION FROM PERSONNEL
)

The TELEPHONE_BOOK view is not insertable because an insert statement does

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 51 of 60

http://www.ibm.com/legal/copytrade.shtml


not include the SALARY field, and this field cannot be null. However, if the original
table definition included a DEFAULT clause for the SALARY field, or if the field was
allowed to be null, then the view would be insertable.

A read-only view is a nondeletable view (see Deletable views). A view can be
read-only if it does not comply with at least one of the rules for deletable views.

In the event that a view is read-only, an INSTEAD OF trigger can be defined against
it to direct how an insert should take place.

An INSTEAD OF trigger is used only on views, not base tables. It has similar
characteristics to a normal trigger, but has the following restrictions:

• It is only allowed on views

• It is always FOR EACH ROW

• DEFAULT values get passed as null

• It cannot use positioned UPDATE/DELETE on cursor over view with
INSTEAD OF UPDATE/DELETE trigger

Define an INSTEAD OF trigger to handle situations in which an insert is ambiguous,
and then get around the limitations of a read-only view.

WITH CHECK OPTION

If the view definition includes conditions (such as a WHERE clause) and its intent is to
ensure that any INSERT or UPDATE statements referencing the view will have the
WHERE clause applied, the view must be defined using WITH CHECK OPTION. This
option can ensure the integrity of the data being modified in the database. An SQL
error will be returned if the condition is violated during an INSERT or UPDATE
operation.

The following is an example of a view definition using WITH CHECK OPTION. WITH
CHECK OPTION is required to ensure that the condition is always checked. In this
case, you want to ensure that the DEPT is always 10. This will restrict the input
values for the DEPT column. When a view is used to insert a new value, the WITH
CHECK OPTION is always enforced.

CREATE VIEW EMP_VIEW2
(EMPNO,EMPNAME,DEPTNO,JOBTITLE,HIREDATE)
AS SELECT ID,NAME,DEPT,JOB,HIREDATE FROM EMPLOYEE

WHERE DEPT=10
WITH CHECK OPTION

If this clause did not exist, it would be possible for someone working with this view to
update a record so that it is no longer part of the view. For example, the following
SQL statement would cause some problems.

developerWorks® ibm.com/developerWorks

Database access
Page 52 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


UPDATE EMP_VIEW2 SET DEPT=20 WHERE DEPT=10

The results of this statement is that the view now contains no records, since there
are no more employees in department 10.

Inoperative views

An inoperative view is a view that is no longer available for SQL statements. A view
becomes inoperative if:

• A privilege on which the view definition is dependent is revoked.

• An object, such as a table, alias, or function, on which the view definition
is dependent is dropped.

• A view on which the view definition is dependent becomes inoperative.

• A view that is the superview of the view definition (the subview) becomes
inoperative.

A view cannot be altered in DB2. You must recreate it with the changes that you
want.

Summary

A view is an efficient way of representing data without needing to maintain it. A view
is not an actual table and requires no permanent storage.

A view can include all or some of the columns or rows contained in the tables on
which it is based. For example, you can join a department table and an employee
table in a view, so that you can list all employees in a particular department.

A view can include an option to guarantee that inserts and updates on the view do
not violate the view definition.

Views can allow for inserts, deletes, and updates against the base table as long as
certain criteria are met. Even if a view cannot be updated, an INSTEAD OF trigger
may be written to get around the restriction.

Section 6. Access system catalog tables

System catalog tables

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 53 of 60

http://www.ibm.com/legal/copytrade.shtml


A set of system catalog tables is created and maintained for each database. These
tables contain information about the definitions of the database objects (e.g., tables,
views, indexes, and packages), and security information about the type of access
that users have to these objects. These tables are stored in the SYSCATSPACE
table space.

The system catalog tables are like any other table found in the database. You can
SELECT information from them using standard SQL syntax. A sample listing of
catalog tables is found in the following illustration:

These tables are updated during the operation of a database -- when a table is
created, for example. You cannot explicitly create or drop these tables, but you can
query and view their content. When the database is created, in addition to the
system catalog table objects, a number of other database objects are defined in the
system catalog:

• A set of routines (functions and procedures) is created in the schemas
SYSIBM, SYSFUN, and SYSPROC.

• A set of read-only views for the system catalog tables is created in the
SYSCAT schema.

developerWorks® ibm.com/developerWorks

Database access
Page 54 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• A set of updatable catalog views is created in the SYSSTAT schema.
These updatable views allow you to update certain statistical information
to investigate the performance of a hypothetical database, or to update
statistics without using the RUNSTATS utility.

After a database has been created, you may wish to limit the access to the system
catalog views.

Privileges on the system catalog tables

During database creation, SELECT privilege on the system catalog views is granted
to PUBLIC. In most cases, this does not present any security problems. However,
these tables describe every object in the database, and you may not want everyone
to know these details.

To reduce any security risks, you should revoke SELECT privilege from PUBLIC and
then grant the SELECT privilege as required to specific users. Granting and revoking
the SELECT privilege on the system catalog views is done in the same way as for it
is for any other view, but you must have either SYSADM or DBADM authority to do
it.

The following is a set of tables to which you should restrict access:

• SYSCAT.DBAUTH

• SYSCAT.TABAUTH

• SYSCAT.PACKAGEAUTH

• SYSCAT.INDEXAUTH

• SYSCAT.COLAUTH

• SYSCAT.PASSTHRUAUTH

• SYSCAT.SCHEMAAUTH

Restricting access to these tables prevents information on user privileges from
becoming available to everyone with access to the database.

In DB2 9, another option exists for restricting access to system catalog tables. When
issuing the CREATE DATABASE command, the RESTRICTIVE option can be used
which results in no privileges automatically granted to PUBLIC.

Revoking SELECT access

To remove SELECT access from one of the system catalog tables, issue the
following command from a DB2 command line (you must have SYSADM or DBADM
authority to do so):

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 55 of 60

http://www.ibm.com/legal/copytrade.shtml


REVOKE SELECT ON SYSCAT.DBAUTH FROM PUBLIC

You should revoke PUBLIC SELECT access from all of the system tables that you
feel a user should not be able to view.

Useful catalog tables

Of course, every DB2 catalog table is useful, but there are a few of them that you
may particularly want to query. There are well over 60 system catalog tables and
these are described in detail in Volume 1 of the DB2 SQL Reference manual. Some
especially useful views are:

• SYSCAT.COLUMNS: Contains one row for each column (including
inherited columns, where applicable) that is defined for a table or view.

• SYSCAT.INDEXCOLUSE: Lists all columns that participate in an index.

• SYSCAT.INDEXES: Contains one row for each index (including inherited
indexes, where applicable) that is defined for a table.

• SYSCAT.TABLES: Contains one row for each table, view, nickname, or
alias that is created. All of the catalog tables and views have entries in the
SYSCAT.TABLES catalog view.

• SYSCAT.VIEWS: Contains one or more rows for each view that is
created.

For example, if you want to determine what the columns are within the EMPLOYEE
table, along with their datatype, length, and scale, then you could run the following
SQL to retrieve this information:

SELECT COLNAME, TYPENAME, LENGTH, SCALE FROM SYSCAT.COLUMNS
WHERE TABNAME='EMPLOYEE'

Of course, you could just use the Control Center to view this information, but a
SELECT statement is useful when creating a script that generates this information for
a number of tables. The SYSCAT.VIEWS view is also particularly useful to
determine the state of the views in the database.

Summary

The system catalog tables contain information about the definitions of the database
objects and security information about the type of access that users have to these
objects.

All of the system catalog tables have PUBLIC select access. For higher levels of
security, the DBA may wish to revoke PUBLIC access to these objects.

developerWorks® ibm.com/developerWorks

Database access
Page 56 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Finally, system catalog tables contain useful information that you can retrieve by
using standard SQL select statements. Using SQL statements makes it easy to
create scripts that retrieve information about a large number of tables, columns,
indexes, and other objects that need to be maintained.

Section 7. Enforce data uniqueness

Enforcing data uniqueness

Many applications require that the data within a table be unique. This uniqueness
usually only applies to certain columns within the row, such as an employee ID or
vendor number. This uniqueness guarantees that you have only one record that
represents each individual user, transaction, or row.

The database also needs the ability to enforce unique rows within a table. To
implement referential integrity, the parent table must have unique rows; otherwise,
the relationship between the child and the parent rows would be ambiguous. In
addition, without this form of uniqueness and referential integrity, DB2 could not
optimize the access to multiple tables in a star-schema format. Clearly, the ability to
have unique rows is critical to many database applications.

Creating unique records

You can guarantee that rows within a table are unique in a variety of ways:

Use a primary key. During table creation, you can specify that a column is the
primary key of the table:

CREATE TABLE EMPLOYEE
(
EMPNO INT NOT NULL PRIMARY KEY,
LASTNAME VARCHAR(20) NOT NULL,
...
)

The PRIMARY KEY clause on the column definition tells DB2 to generate an index
automatically that will enforce the uniqueness of this column. In addition, there is
only one primary key for the entire table, so no other column can contain this clause.
If multiple columns are required to guarantee uniqueness of the row, the PRIMARY
KEY clause must follow the table definition:

CREATE TABLE EMPLOYEE
(
EMPNO INT NOT NULL,

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 57 of 60

http://www.ibm.com/legal/copytrade.shtml


LASTNAME VARCHAR(20) NOT NULL,
...,
PRIMARY KEY (EMPNO, LASTNAME)
)

Use the UNIQUE clause. The UNIQUE clause can also be used to generate unique
values within a row. Every column with this clause will be unique:

CREATE TABLE EMPLOYEE
(
EMPNO INT NOT NULL UNIQUE,
SOCINS CHAR(11) NOT NULL UNIQUE,
...,
)

In this example, both the employee number and the social insurance number must
be unique. In other words, there should be no two people with the same employee
number, and no two people with the same social insurance number. To enforce this
uniqueness, DB2 generates two indexes automatically, one for each column.

Use a unique index. Finally, uniqueness can also be guaranteed through the use of
a unique index. The CREATE INDEX command has the option of specifying that the
values must be unique in the column (or columns) that are being indexed:

CREATE UNIQUE INDEX UNIQUE_EMPLOYEE ON EMPLOYEE(EMPNO)

This index should be created immediately after creating the table. Otherwise, there
is the possibility that records will be inserted into the table that are not unique. If this
is the case, the index creation will fail because of duplicate records.

Eliminating duplicate rows

There may be situations in which some data within a table is not unique. This can be
due to "dirty" data, the result of consolidating many data sources, or the columns
returned in the result set. Since the data cannot be made unique, you must resort to
techniques with SQL that will eliminate these duplicate rows.

The simplest way of eliminating duplicate rows from a result set is to use the
DISTINCT keyword within a select statement:

SELECT DISTINCT WORKDEPT FROM EMPLOYEE

For multiple answer sets that are joined together, the user should specify UNION
rather than UNION ALL. UNION ALL does not eliminate duplicates in the answer
set, while UNION does.

SELECT WORKDEPT FROM EMPLOYEE WHERE EMPNO > '000100'
UNION

developerWorks® ibm.com/developerWorks

Database access
Page 58 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


SELECT WORKDEPT FROM EMPLOYEE WHERE EMPNO < '000900'

Summary

Uniqueness can be guaranteed in tables by using primary keys, UNIQUE clauses, or
unique indexes. Uniqueness in answer sets can also be guaranteed by using the
DISTINCT clause in a select statement, or the UNION clause with multiple answer
sets.

Section 8. Conclusion

Summary

This tutorial has covered the following topics with respect to database management:

1. Ability to create DB2 tasks using the GUI tools

2. Knowledge of the creation and management of indexes

3. Ability to create constraints on tables (e.g., RI, informational, unique)

4. Ability to create views on tables

5. Skill in examining the contents of the system catalog tables

6. Knowledge of how to enforce data uniqueness

Although the material presented in this tutorial has given you a good overview of
indexes, constraints, referential integrity, and views, nothing prepares you more for
certification than actually trying out these commands yourself and working on a real
database. While many of these features are not needed to run a database, their use
will result in better performance and improved control over the quality of your data.

ibm.com/developerWorks developerWorks®

Database access
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 59 of 60

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• Check out the other parts of the DB2 9 DBA exam 731 prep tutorial series.

• For more information on the DB2 9 for Linux, UNIX, and Windows Database
Administration Certification (Exam 731), check out these links:

• Information Management Training information

• General Certification information -- including some book suggestions,
exam objectives, and courses.

• DB2 9 overview. Find information about the new data server that includes
patented pureXML technology.

• Certification exam site. Click the exam number to see more information about
Exam 731 (check back later if you do not see Exam 731 listed).

• Read this article about scheduling and automation in DB2.

• Stay current with developerWorks technical events and webcasts.

Get products and technologies

• A trial version of DB2 9 is available for free download.

• Download DB2 Express-C, a no-charge version of DB2 Express Edition for the
community that offers the same core data features as DB2 Express Edition and
provides a solid base to build and deploy applications.

Discuss

• Participate in the discussion forum for this content.

About the author

George Baklarz
George Baklarz, B.Math, M.Sc. (Comp Sci), is the manager of the DB2 Worldwide
Pre-sales Support Group. He has more than nineteen years of experience with DB2
and has co-authored the DB2 UDB Version 8.1 Database Administration Certification
Guide (Prentice-Hall, 2003). In his spare time, he teaches database theory at the
University of Guelph, and presents at a variety of conferences, including the
International DB2 Users Group.

developerWorks® ibm.com/developerWorks

Database access
Page 60 of 60 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www-306.ibm.com/software/data/education/
http://www-306.ibm.com/software/data/education/cert.html
http://www-306.ibm.com/software/data/db2/v9/pr.html
http://www-03.ibm.com/certify/tests/test_index.shtml
http://www.ibm.com/developerworks/db2/library/techarticle/0301gartner/0301gartner.html
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/downloads/im/udb/?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/downloads/im/udbexp/index.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/forums/#IM
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites

	Create DB2 tasks using the GUI tools
	DB2 Task Center
	Create the tools database
	Start the Task Center
	Task Center functionality
	Create a task
	Describe and name the task
	Select a command script
	Run properties
	Group tasks
	Schedule tasks
	Set notification
	Set task actions
	Set security
	Task list
	Journal
	Summary

	Create and manage indexes
	Introduction
	How indexes are created
	Issues with indexes
	Where are indexes placed?
	Table and index storage
	Creating tables
	Creating indexes
	Including addition columns in an index
	Clustering indexes
	How many indexes should you create?
	Referential integrity and indexes
	Creating referential integrity constraints
	Referential integrity authority
	Summary

	Define data constraints on tables
	What are constraints?
	Table constraints
	Adding constraints
	Creating tables with constraints
	Informational constraints
	NOT ENFORCED option
	ENABLE QUERY OPTIMIZATION option
	Summary

	Create and manage views
	Views
	A simple view
	View syntax
	Views with UNION
	Deletable views
	Updatable views
	Insertable and read-only views
	WITH CHECK OPTION
	Inoperative views
	Summary

	Access system catalog tables
	System catalog tables
	Privileges on the system catalog tables
	Revoking SELECT access
	Useful catalog tables
	Summary

	Enforce data uniqueness
	Enforcing data uniqueness
	Creating unique records
	Eliminating duplicate rows
	Summary

	Conclusion
	Summary

	Resources
	About the author

